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Abstract

In answer set programming, inconsistencies arise when the constraints placed on a program

become unsatisfiable. In this paper, we introduce a technique for dynamic consistency checking

for our goal-directed method for computing answer sets, under which only those constraints

deemed relevant to the partial answer set are tested, allowing inconsistent knowledgebases

to be successfully queried. However, the algorithm guarantees that, if a program has at least

one consistent answer set, any partial answer set returned will be a subset of some consistent

answer set.

KEYWORDS: dynamic consistency checking, answer set programming, goal-directed, consis-
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1 Introduction

Answer Set Programming (ASP) (Gelfond and Lifschitz 1988) has gained popularity

as a way to develop non-monotonic reasoning applications.Three problems which

prevent ASP from being adopted on a larger scale are (i) the need to compute a

complete answer set regardless of the query, (ii) the ability of a minor inconsistency to

render an entire knowledgebase useless, and (iii) the need to ground programs prior

to execution. Our previous work with goal-directed ASP addresses the first(Marple

et al. 2012), and we leave the third for future work. In this paper, we address the

second problem in context of goal-directed execution of answer set programs.

Currently, most popular ASP solvers rely on SAT solvers (Giunchiglia et al. 2004;

Gebser et al. 2007) which can’t simply disregard inconsistencies that are unrelated to

a query. Because complete answer sets are computed, the underlying program must be

consistent. Thus much of the existing work in querying inconsistent knowledgebases

has focused on repairing programs to restore consistency (Arenas et al. 2003). In

contrast, our goal in this paper is to be able to work with the consistent part of

the knowledgebase, i.e., as long as a query does not invoke clauses from the part of

the knowledgebase that is inconsistent, we should be able to execute it and produce

an answer set, if one exists. Thus, we do deviate from standard ASP semantics, as
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under ASP semantics, there are no answer sets in the presence of inconsistencies in

the knowledgebase.

In this paper, we introduce dynamic consistency checking (DCC), a method for

querying inconsistent databases that requires no modification of the underlying

programs or queries. Instead, DCC takes advantage of goal-directed answer set

programming to ignore inconsistencies that are unrelated to the current query.

Additionally, because DCC reduces the number of consistency checks that a partial

answer set must satisfy, it can significantly improve the performance of goal-directed

execution.

At the core of the problem is the issue of relevance. Because ASP and the

underlying stable model semantics lack a relevance property, the truth value of an

atom can depend on other, totally unrelated rules and atoms (Dix 1995). Because

such rules may not be encountered during normal top-down execution, any goal-

directed execution strategy for ASP must either alter the semantics or employ some

form of consistency checking to ensure correctness. In designing our goal-directed

method we chose the latter route, employing consistency checks to ensure that

constraints imposed by these rules are satisfied.

DCC employs splitting sets (Lifschitz and Turner 1994) to reduce the number of

consistency checks that must be satisfied while retaining strong guarantees regarding

correctness. Execution using DCC employs a modified relevance criteria to determine

which consistency checks are relevant to the current partial answer set, and only

those checks are enforced.

DCC has been implemented as an extension of the Galliwasp system (Marple and

Gupta 2013), which makes use of our original goal-directed method. As we will

demonstrate, DCC has several advantages over other potential strategies based on

ignoring unrelated inconsistencies. We will show that, if a program has at least one

consistent answer set, then a query will succeed using DCC if and only if the partial

answer set returned is a subset of some consistent answer set. If no consistent answer

set exists, then DCC can allow partial answer sets to be found for a consistent subset

of the program. We will also demonstrate that DCC can improve the performance

of goal-directed execution and that partial answer sets produced using DCC can

provide more targeted results than either full answer sets or partial answer sets with

comprehensive consistency checking.

The remainder of the paper is structured as follows. In Section 2 we discuss issues

that are potential impediments to widespread adoption of ASP. Next, in Section 3, we

give an overview of goal-directed ASP, focusing on consistency checking. In Section 4

we introduce our technique for dynamic consistency checking using splitting sets and

prove several interesting properties. In Section 5 we examine advantages of DCC and

compare the results of Galliwasp with and without dynamic consistency checking.

Finally, in Section 7 we discuss related and future work and draw conclusions.

2 Answer Set Programming: Challenges

While the Answer Set Programming paradigm has gained wide popularity among

researchers, there are still issues that stand in the way of its use by ordinary
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users. The overarching goal of our research project is to eliminate such issues. The

major issues are briefly described next, though this paper is mainly concerned with

addressing only the last one.

The first problem relates to grounding an ASP program. Because existing sys-

tems for executing ASP programs rely on SAT solvers, ASP programs containing

predicates have to be grounded first. Even when restricted to finitely groundable

programs, the size of a grounded program can be exponentially large. Thus, while

writing ASP programs, one has to write code in a way that will keep the size of

the grounded program small. The grounding step can be avoided if goal-directed

strategies, such as Galliwasp, are developed and used to execute ASP programs. At

present, even though the execution algorithm used by Galliwasp is goal-directed, it

assumes that the input program is grounded. Note that work is in progress to extend

Galliwasp so that predicate ASP programs (including those containing functions)

can be executed in a goal-directed manner without being grounded (Salazar et al.

2014).

The second problem relates to computing an entire model of a program. Most

current ASP execution methods compute the entire answer set, but in practice,

we may only be interested in knowing if a specific piece of knowledge can

be inferred. Consider the case of a large relational database coded in ASP.

Without additional constraints, a complete answer set will contain all of the

information in the database, not just the answer to a successful query. To work

around this, constraints will need to be added to pare down the results, effec-

tively requiring that a program be written where a single query might otherwise

suffice. So if we rely on such solvers, then ASP can be used for solving specific

problems, but its use for building large knowledge-based applications will pose

challenges.

Finally, the third problem relates to being able to work with ASP programs which

are inconsistent. As long as the answer being sought only depends on a consistent

subset of the knowledgebase, one should be able to infer that knowledge. However,

this is not the case with current ASP systems. The entire knowledgebase has to

be consistent in order for them to produce a solution. To take a trivial example,

consider a consistent ASP program κ to which the clause p :- not p. is added,

where p does not occur elsewhere in the program. The augmented program will have

no answer sets. It is difficult for SAT solver-based approaches to identify subsets of

the program that are consistent. A query-driven, goal-directed approach, in contrast,

only ‘touches’ those parts of the program that are needed for establishing the

query. All constraints that involve any of the literals ‘touched’ during the execution

of the query, directly or indirectly, must also be enforced. However, constraints

that do not involve such literals need not be executed, as they are independent

of the part of the program that was involved in answering the query. This is

precisely the idea behind our work on dynamic consistency checking presented in

this paper: only consistency checks that involve the portion of the program that

is ‘touched’ by the query are executed. Thus, adding the rule p :- not p. to

knowledgebase κ above will not alter the execution of the program unless a query

contains p.
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3 Goal-Directed Answer Set Programming

Under our basic goal-directed method, a partial answer set is constructed by adding

both positive and negative literals as they succeed during execution. When a query

succeeds and all consistency checks have been satisfied, the set of positive literals

in the partial answer set is guaranteed to be a subset of some consistent answer set

of the program (Marple et al. 2012). This method can be applied to arbitrary ASP

programs, including those with rules that contain classical negation and disjunction.

Such rules are simply converted to an equivalent set of normal rules.

Execution uses a modified form of co-SLD resolution (SLD resolution with

coinduction) (Gupta et al. 2007). Under co-SLD resolution, each call is added to the

coinductive hypothesis set (CHS); a call can succeed coinductively if it unifies with

an ancestor call in the CHS. In our goal-directed execution method, the CHS also

serves as the candidate answer set. However, some modifications are necessary to

adapt co-SLD resolution to ASP:

• Negated calls are also allowed to succeed coinductively, i.e., negated calls (e.g.,

not p) are added to the CHS. A negated call can succeed coinductively if it

unifies with an ancestor negated call in the CHS.

• A literal and its negation cannot be in the CHS at the same time. If adding

a literal to the CHS leads to such a situation, the computation fails and

backtracking ensues.

• Coinductive success is allowed only if an even, non-zero number of negations

occur between the recursive call and its ancestor call.

While the above description covers the basic execution of our algorithm, it omits

perhaps the most important part, consistency checking. To understand the role of

consistency checking, we must first examine the issue of relevance in more detail.

3.1 Relevance

The issue of relevance is central to goal-directed ASP. In defining relevance, (Dix

1995) uses the dependency graph of a program P and the following notions:

• “dependencies of(X) := {A : X depends on A}”, i.e. X calls A directly or

indirectly, and

• “rel rule(P ,X) is the set of relevant rules of P with respect to X, i.e. the set

of rules that contain an A ∈ dependencies of(X) in their heads.”

Then, “given any semantics SEM and a program P , it is perfectly reasonable that the

truth-value of a literal L, with respect to SEM(P ), only depends on the subprogram

formed from the relevant rules of P with respect to L”, formalized as:

Definition 1

“Relevance states that for all literals L: SEM(P )(L) = SEM(rel rule(P , L))(L).”

(Dix 1995)

Despite being “perfectly reasonable”, the above definition of relevance does not

hold for ASP. This is due to the presence of rules which contain an odd loop over
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negation (OLON). OLONs occur implicitly in rules with an empty head, but also

occur in rules with non-empty heads, whenever a rule can be called recursively with

an odd number of negations between the original and recursive calls. These “OLON

rules” place constraints on a program that must be satisfied by any consistent answer

set. For example, given an OLON rule of the form:

p :- B, not p.

where B is a conjunction of literals, one of the following must be satisfied:

1. p must succeed through other means, or

2. at least one literal in B must fail.

That is, the rule imposes the constraint p ∨ not B on the program. Such a rule can

thus alter the truth-value of a literal in B despite not being relevant to the literal

under Definition 1.

3.2 Consistency Checking

Because ASP lacks a relevance property of its own, our algorithm uses consistency

checks to enforce a modified relevance property, where for a program P and literal

L, the set of rules in P relevant to L is expanded to include every OLON rule in the

program (Marple et al. 2012). That is,

nmr rel rul(P , L) = rel rul(P , L) ∪ OLON(P ) (1)

where rel rul(P ,L) is the set of relevant rules defined in Section 3.1 and OLON(P)

is the set of OLON rules in P . The semantics of P with respect to L can now be

defined in terms of the subprogram formed by the expanded set of relevant rules:

SEM(P )(L) = SEM(nmr rel rule(P , L))(L) (2)

This property ensures that an answer set of the subprogram, if one exists, will be a

subset of some consistent answer set of P (Marple et al. 2012).

To enforce our modified relevance property, our method uses a special rule,

the non-monotonic reasoning check (NMR check), which calls a sub-check for each

OLON rule in a program. Each sub-check ensures that the associated OLON rule is

satisfied. The NMR check is then automatically appended to each query, ensuring

that the property will hold for any query which succeeds (Marple et al. 2012).

The construction of the sub-checks involves creating rules for the dual of each

OLON rule in the program. Duals explicitly encode the negation of a literal. For

example, given:

p :- q, not r.

the dual rules for p are:

not p :- not q.

not p :- r.

In the case of sub-checks, the negation of the head is first appended to encapsulate

the success of a literal through other means. The entire process is as follows:
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p :- q. % Rule 1: OLON

q :- not r, not p. % Rule 2: OLON

r :- not p. % Rule 3: Ordinary

:- q, r. % Rule 4: OLON

chk_1 :- p.

chk_1 :- not q.

chk_2 :- r.

chk_2 :- p.

chk_2 :- q.

chk_4 :- not q.

chk_4 :- not r.

nmr_check :- chk_1, chk_2, chk_4.

Fig. 1. A simple program with consistency checks added.

1. For rules with non-empty heads, the negation of the head is appended to the

body of the rule, if not already present.

2. The dual of the rule is computed.

3. The dual is given a unique head, which is also added to the body of the NMR

sub-check.

The example in Figure 1 shows a simple ASP program with the NMR check and

sub-checks added.

While this ensures that our method adheres to the semantics of ASP, the execution

of the NMR check can adversely impact performance. ASP programs routinely make

heavy use of headless rules to enforce constraints, which can result in an NMR

check which contains thousands of goals. For example, an instance of the 20-Queens

problem can produce an NMR check containing 25,100 goals, each representing

a sub-check that must be executed alongside any query. A means of reducing the

performance impact of these checks is thus extremely desirable.

4 Dynamic Consistency Checking

Dynamic Consistency Checking (DCC) began as an attempt to improve the perfor-

mance of goal-directed execution. While we have developed various other techniques

to reduce the performance impact of consistency checking, none of them reduce the

actual number of checks that must be satisfied, as this is impossible to do while

guaranteeing full compliance with the ASP semantics. DCC was our attempt to

reduce the number of checks performed while staying as close to the original ASP

semantics as possible.

As any reduction in the number of consistency checks will result in non-compliance

with the ASP semantics, selecting which checks to enforce depends on the properties

desired from the modified semantics. In the case of DCC, these properties also make

the technique useful for querying inconsistent knowledgebases.

Definition 2

For a program P, the desired properties of DCC are:

1. Execution shall always be consistent with the ASP semantics of the sub-program

of P (further defined in Section 4.1).
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a :- b.

b :- not c.

c :- not b.

p :- a.

q :- b.

:- p, q.

chk_1 :- not p.

chk_1 :- not q.

nmr_check :- chk_1.

Fig. 2. Example program (consistency checks added).

:- p, q.

q :- not r, not q.

chk_1 :- not p.

chk_1 :- not q.

chk_2 :- r.

chk_2 :- q.

nmr_check :- chk_1, chk_2.

Fig. 3. Example program (consistency checks added).

2. If P has at least one consistent answer set, execution shall be consistent with the

ASP semantics of P.

In this section, we discuss the relevance property employed by DCC before moving

on to the algorithm itself. Finally, we provide proofs that DCC satisfies the above

properties.

4.1 Relevance Under DCC

While our original relevance property, given in Formula 2, makes every consistency

check relevant to every literal, DCC selects only those checks necessary to enforce

our desired properties from Definition 2. Relevant checks are dynamically selected

based on the literals in the partial answer set.

At first glance, it might seem sufficient to select only those checks which directly

call literals in the partial answer set (or their negations). However, this can lead

to incorrect results. Consider the program in Figure 2. One consistent answer set

exists: {c, not a, not b, not p, not q}. However, given a query ?- a., selecting only those

checks which directly call some literal in the partial answer set will yield {a, b, not c},
thus violating our desired properties.

Clearly, our properties require that we select at least those checks which can

potentially reach a literal in the partial answer set. However, this can lead to

behavior that is difficult to predict. Consider the program in Figure 3 with the query

?- not p. The presence of either q or not q in each OLON rule might seem to

indicate that both consistency checks will be activated and cause the query to fail.

However, only chk 1 will be activated. Because the first clause will succeed, neither

q nor its negation will be added to the partial answer set, and the query will succeed.

https://doi.org/10.1017/S1471068414000118 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068414000118


422 K. Marple and G. Gupta

To achieve more predictable behavior, DCC selects relevant checks using specially

constructed splitting sets. A splitting set for a program is any set of literals such that

if the head of a rule is in the set, then every literal in the body of the rule must also

be in the set (Lifschitz and Turner 1994). The rules in a program P can then be

divided relative to a splitting set U into the bottom, bU(P ), containing those rules

whose head is in U, and the top, P \ bU(P ).

The splitting sets used to determine relevant NMR sub-checks are created

by constructing splitting sets for each NMR sub-check and merging sets whose

intersection is non-empty. The result is a set of disjoint splitting sets Ui such that

for an NMR sub-check C, if C ∈ Ui, then for every literal L reachable by C, L ∈ Ui.

This allows us to define the sub-checks relevant to a literal as those whose heads

are in the same splitting set:

dcc rel rul(P , L) = rel rul(P , L) ∪ OLON(P , L),

OLON(P , L) = {R : R ∈ OLON(P ) ∩ bUi
(P ) ∧ L ∈ Ui}

(3)

where OLON(P,L) is the set of OLON rules relevant to L. This leads us to DCC’s

relevance property, which defines the semantics of P with respect to L in terms of

the new set of relevant rules:

SEM(P )(L) = SEM(dcc rel rule(P , L))(L) (4)

This definition allows for more predictable behavior than simply selecting the

checks reachable by a given literal. In the case of Programs 2 and 3, only one

splitting set will be created, resulting in behavior that is identical to normal goal-

directed ASP. Indeed, as we will prove in Section 4.3, execution will be consistent

with ASP whenever a program has at least one answer set.

4.2 Execution with DCC

Given DCC’s relevance property in Formula 4, our goal-directed execution strategy

must be modified to enforce it. A query should succeed if and only if every OLON

rule relevant to a literal in the partial answer set is satisfied. In addition to creating

the associated splitting sets, the application of the relevant NMR sub-checks also

becomes more complex.

The creation of the necessary splitting sets can be accomplished by examining a

program’s call graph after the NMR sub-checks have been added. A simple depth-

first search is sufficient to construct the splitting set for an individual sub-check,

after which overlapping sets can be merged. For added efficiency, constructing and

merging the sets can be performed simultaneously: whenever a literal is encountered

that has already been added to another set, that set is merged with the current

one. This eliminates the need to traverse any branch in the call graph more than

once. The overhead of searching the sets themselves can be minimized with proper

indexing.

To apply the NMR check when executing a query with DCC, it must also be

dynamically constructed. The NMR check should consist of those sub-checks which

are relevant to a literal in the partial answer set. However, because the sub-checks
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themselves may add literals to the partial answer set, simply executing the query

and then selecting the relevant checks once is insufficient. Instead, each time a literal

succeeds, the relevant sub-checks are added to the NMR check. Similarly, the state

of the NMR check is restored when backtracking occurs. In this manner, the NMR

check will always remain consistent with the current partial answer set.

4.3 Correctness of DCC

Now that we have established DCC’s algorithm, we can prove that it satisfies the

property it was designed to enforce. That is:

Theorem 4.1

If a program P has at least one consistent answer set, then a query will succeed

under DCC if and only if the partial answer set is a subset of some consistent

answer set of P .

Proof

Observe that, if a DCC query succeeds, the partial answer set will be X = A ∪ B

where

• A is a partial answer set of the splitting set U formed by the union of the

splitting sets containing relevant NMR sub-checks

• B is the set of succeeding literals which are not reachable by any NMR

sub-check

Per the Splitting Set Theorem (Lifschitz and Turner 1994), a set X ′ is an answer

set of P if and only if X ′ = A′ ∪ B′ where A′ is an answer set of bU(P ), B′ is an

answer set of eU(P \ bU(P ), A′), and A′ ∪B′ is consistent.1 Thus our theory will hold

if A ⊆ A′, B ⊆ B′ and A′ ∪ B′ is consistent.

Because every NMR sub-check relevant to some literal in A will be activated and

must succeed for the DCC query to succeed, A will always be a subset of some

consistent answer set of bU(P ). Furthermore, such an answer set must exist for the

DCC query to succeed. Thus, for any succeeding DCC query, there exists an answer

set A′ of bU(P ) such that A ⊆ A′.2

Because only OLON rules can lead to inconsistency in an ASP program3, the set

B will always be a subset of some consistent answer set of eU(P \ bU(P ), A′), if one

exists. Therefore, if at least one consistent answer set exists for P , we can select B′

such that B′ is an answer set of eU(P \ bU(P ), A) such that B ⊆ B′.

Finally, because A′ contains every NMR sub-check relevant to any literal in A, A′

will always be consistent with B′. Thus, if P has at least one answer set, a query will

1 For a set X of positive literals in U, eU (P \ bU (P ), X) is a partial evaluation of the top of P with
respect to X. The partial evaluation is constructed by first dropping rules whose bodies contain the
negation of a literal in X and them removing calls to literals in X from the bodies of the remaining
rules.

2 If no literals in the query are reachable by any NMR sub-checks, U will be empty and both A′ and A
will be the empty set.

3 While rules involving classical negation and disjunction can lead to inconsistency, Galliwasp handles
these by converting them to a set of equivalent normal rules, including OLON rules.
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succeed under DCC if and only the partial answer set is a subset of some consistent

answer set of P . �

5 Advantages of DCC

Execution with DCC offers several advantages over normal goal-directed ASP. The

three primary advantages are partial answer sets of inconsistent programs, output

that is relevant to the query, and improved performance.

5.1 Answer Sets of Inconsistent Programs

One disadvantage of ASP is the way in which it handles inconsistency in a

knowledgebase. Any inconsistency, no matter how small, renders the entire program

inconsistent, and thus no answer set will exist. This behavior can be particularly

inconvenient in large knowledgebases where an inconsistency may be completely

unrelated to a particular query. Given a large, perfectly consistent database imple-

mented in ASP, adding the rule :- not c. where c is a unique literal, will cause

any query to the database to fail.

With DCC, if a query succeeds prior to adding the rule above, then it will continue

to succeed even after the rule is added.

5.2 Query-relevant Output

One advantage of goal-directed ASP is the ability to compute partial answer sets

using a query. Ideally, partial answer sets will contain only literals which are related

to the query. However, the execution of the NMR check can force the addition of

literals which are unrelated to the current query. By omitting unnecessary NMR

checks, DCC can limit this irrelevant output.

Consider the case where two consistent ASP programs, A and B, are concatenated

to form a new program C. Assume that A and B have no literals in common and

that each contains one or more OLON rules. A full answer set of C will obviously

contain literals from both of the sub-programs. As a result of the OLON rules, any

partial answer set obtained using goal-directed ASP will also contain literals from

both sub-programs. However, using DCC, a succeeding query which targets only

one sub-program will only contain literals from that sub-program.

Exploiting this behavior does require care on the part of the programmer. For

example, many ASP programs use OLON rules in place of queries. However, such

rules will often force all or most of a program’s literals into a single splitting set. As

a result, every OLON rule will always be deemed relevant, and DCC will function

no differently than normal goal-directed ASP. We will see this behavior in some of

the sub-programs examined in the next section.

5.3 Performance Compared to Normal Consistency Checking

In this section we compare Galliwasp’s performance on several programs, with and

without DCC. As the results in Table 1 demonstrate, programs that take advantage
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Table 1. Comparative Performance Results

Execution Timesa

Problem Splitting Sets Query Original w/ DCC

hanoi-5x15 0 solveh 0.276 0.274

pigeons-30x30 1 solvep 0.065 0.065

schur-3x13 1 solves 0.105 0.105

hanoi-schur 1 solveh 0.134 0.028

hanoi-schur 1 solves 0.134 0.134

hanoi-pigeons 1 solveh 0.346 0.341

hanoi-pigeons 1 solvep 0.343 0.342

pigeons-schur 2 solvep 9.958 0.672

pigeons-schur 2 solves 9.745 0.172

han-sch-pigs 2 solveh 9.817 0.093

han-sch-pigs 2 solvep 9.780 0.094

han-sch-pigs 2 solves 9.942 0.201

a CPU time in seconds.

of DCC can see a massive improvement in performance. Additionally, even when a

program does not take advantage of DCC, the overhead remains minimal.

To simulate programs which take advantage of DCC, the following three programs

were concatenated together in various combinations:

• hanoi-5x15 is a 5 ring, 15 move instance of the Towers of Hanoi. The query

?- solveh. will return a partial answer set containing the solution.

• pigeons-30x30 is an instance of the MxN-Pigeons problem. The query ?-

solvep. will find a complete answer set.

• schur-3x13 is a 3 partition, 13 number instance of the Schur Numbers

problem. The query ?- solves. finds a complete answer set.

Each of the three base programs, and thus each combination, has at least one

consistent answer set. The Towers of Hanoi instance contains no OLON rules, and

consequently no splitting sets. The other two programs contain OLON rules that

force the computation of a complete answer set, and thus have one splitting set

each. As a result, a DCC query containing only solveh will not activate any NMR

sub-checks, while queries containing solvep or solves will activate every NMR

sub-check for their respective problems. Thus DCC execution of solveh will not

access any splitting sets, while solvep and solves will access one set each.

In general, the fewer splitting sets accessed by a DCC query relative to the total,

the better it will perform compared to a non-DCC query. This is exemplified by the

cases with two splitting sets in Table 1. In the programs tested, each splitting set

represents a large number of OLON rules. As the non-DCC results indicate, the

negative impact of increasing the number of OLON rules can be immense. DCC is

able to avoid this by satisfying only those rules relevant to the current query.
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6 Related and Future Work

DCC is an extension of goal-directed ASP (Marple et al. 2012) and has been

implemented using the Galliwasp system (Marple and Gupta 2013). The technique

relies heavily on the properties of splitting sets, and the Splitting Set Theorem in

particular (Lifschitz and Turner 1994).

Numerous other methods for querying inconsistent databases have been devel-

oped. The problem of Consistent Query Answering is defined in terms of minimal

database repairs in (Arenas et al. 1999), which develops a technique based on query

modification that is built upon in several subsequent works (Celle and Bertossi 2000;

Arenas et al. 2003). However, these techniques require that database inconsistencies

be identified and accounted for. Because DCC relies on a goal-directed technique

for computing answer sets, our method allows inconsistent information to simply be

ignored unless it directly relates to the current query.

Plans for future work focus on modifying the technique to work with ungrounded

ASP programs. Detecting OLONs and constructing the associated splitting sets

prior to grounding has the potential to both reduce the overhead and allow the use

of DCC with a wider range of solvers. Of particular interest is integration with a

datalog ASP system currently under development (Salazar et al. 2014).

7 Conclusions

In this paper we have introduced Dynamic Consistency Checking (DCC), a technique

for querying inconsistent ASP programs using a goal-directed execution method. We

have discussed the relevant aspects of goal-directed ASP, presented the relevance cri-

teria which DCC enforces and proven that DCC is consistent with the ASP semantics

for programs which have at least one consistent answer set. Additionally, we have

examined the advantages of DCC with respect to querying inconsistent databases,

achieving more useful output from queries, and improving the performance of the

Galliwasp system. As our results demonstrate, DCC can be efficiently implemented

and programs which take advantage of it can achieve significant benefits. Future

work will focus on allowing DCC to operate on ungrounded ASP programs and

adapting the technique into additional ASP solvers.
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