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Abstract

The effects of the phase variation, the evolution of the electron beam, the evolution of the
radiation intensity, and the higher-order modes due to waveguides on a free-electron laser
(FEL) oscillator have been analyzed by using two electron beams of different energies
based on the proposed FEL facility which is to be operated in the far-infrared and infrared
regions. The three-dimensional (3D) effects on a FEL oscillator due to waveguides and
higher-order modes were studied using an extended 3D FEL code with two electron beams
that we have developed. The effects of the variation on the amplitude of radiation on the elec-
tron beam’s emittance and energy spreads were also calculated in the case of waveguide for
multi-particle and multi-pass numbers by using a new 3D code. The phase variation, the var-
iation in the beam envelope, the evolution of the amplitude, and power were calculated for the
fundamental mode. The results were compared with those of the higher-order modes of the
wiggler for various TE and TM modes for determining the FEL’s performance which is
required for high-quality electron beams.

Introduction

A free-electron laser (FEL) will operate from microwave through ultraviolet spectra, and
relies upon stimulated scattering due to the ponderomotive potential created from the beat-
ing of the wiggler and radiation fields (Freund and Antonsen, 1996). The FEL power
depends on the electron beam stability, the optical diffraction, and three-dimensional
(3D) effects. The collective instability (Bonifacio et al., 1984) and stability (Nam and
Kim, 2010) of the electron beam play important roles in the electron beam and radiation
field systems.

Theoretical studies on several waveguide types for FEL operation have been carried out at
millimeter and sub-millimeter wavelength regions (Yakover et al., 1996). The total electromag-
netic field circulating in a resonator is represented as a superposition of transverse modes of
the cavity. Coupled-mode theory was employed to derive a generalized 3D steady-state oscil-
lation criterion from which the oscillator supermode (Pinhasi and Gover, 1996) can be found
analytically in the linear gain approximation.

A quasi-3D time-dependent particle simulation (Sharp et al., 1990) was developed to model
slippage effects and waveguide effects on a single pass microwave FEL. The Gaussian mode is
decomposed into the waveguide with TE and TM modes of the vacuum modes of a rectangular
waveguide (Freund and Chang, 1990) and the subsequent evolution of both the multimode
radiation field in the waveguide and the trajectories of the ensemble of electrons in the
beam are followed self-consistently.

McNeil et al. (2004) proposed a single-pass two-beam FEL model. The model uses two
electron beams with different energies in one-dimensional limit and shows an improved out-
put coherence of the injected seed field. The higher energy electron beam is chosen so that its
fundamental resonance wavelength is a harmonic resonance wavelength of the lower-energy
beam.

In this paper, the 3D effects on a FEL oscillator due to the waveguide and higher-order
modes are described for the nonlinear formulation of the interaction based on a two- beam
system. We developed a code using an extended 3D model with two electron beams. The
code includes TE and TM modes for the waveguide, as well as the electron beam’s
emittance, energy spread, betatron oscillations, and higher-order modes. The evolution of
radiation field’s intensity for the fundamental and higher-order modes for various TE
and TM modes for the waveguide was studied. The effects of TE and TM modes for the
waveguide on a proposed FEL facility that will be operated in the far-infrared and infrared
regions were studied by using the extended 3D simulation code that we have developed. This
paper also presents both the normalized FEL amplitude for the optimization of the beam’s
emittance and energy spread due to the TE and TM modes for the waveguide in a two-beam
oscillator system.
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Theory and formulation

The vector potential in a rectangular waveguide bounded by − a/2
< x < a/2 and − b/2 < y < b/2 may be written in the form of the TE
and TM modes (Freund and Chang, 1990):

dA(x, y, z, t) =
∑1
l,n

′dAl,n(z)e(1)ln (x, y) cos al,n(z, t)
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The summation symbol
∑′ indicates that both l and n may

not be zero and l and n indicate the transverse mode numbers.

al,n(z, t) =
∫z
0

dz′kl,n(z′) − vt (3)

e(1)ln (x, y) =
np
kl,nb
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where X = x + a/2 and Y = y + a/2.
The cutoff wave number of the mode is given by
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Maxwell’s equation is given by
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The symbols s and f indicate the slow beam (lower energy beam)
and the fast beam (higher energy beam) respectively.

Substituting Eq. (1) into Eq. (7), averaging over the period 2π/ω
after multiplying by sin[αl,n(z, t)] and cos[αl,n(z, t)], integrating in x
and y after obtaining the dot product with e(1)ln (x, y), multiplying by
4a3b3ek2l,nv and 4abek2l,nv, the ordinary differential equations for
δal,n and kl,n of the TE modes will be obtained:
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where δal,n = eδAl,n/mc2.
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, integrating in x and y, assuming that
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The source terms are given by
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In time-dependent simulation, the radiation in the ith slice is
replaced by

dAi � dAi − (dz/lw)(l/cDt)× [dAi − dAi−1] (15)

The numerical analysis and simulations

The parameters of our simulation were an undulator period 2 cm;
a number of periods of 100; beam currents (Ib) of 75 and 25 A for
n = 3, respectively; a radius of curvature 450–520 cm; and a reso-
nator length of 8.0 m. The simulation used our extended 3D sim-
ulation code, which describes the effects of two-electron beams

Fig. 1. The ratio of the derivative of the wave number and the
wave number for (a) TE01, (b) TE21, and (c) TM21 modes.
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with different energies, i.e., 10.4 MeV (higher-energy beam) and
6 MeV (lower-energy beam). The seed field at the lower electron
beam energy is modeled by defining its initial scaled intensity at
the beginning of the FEL interaction to be two orders of magni-
tude greater than that of the harmonic. Multi-particle and multi-
pass simulations were performed for a particle number of 200 and
a pass number of 300. In the simulations, the minimum waist
position of the radiation is at the center of the cavity. The radia-
tion spot size (w0) at minimum waist, higher order modes, and
the number of macro-particles ( j = 200) were used in the
simulations.

The differential equations governing each mode are integrated
simultaneously with the 3D Lorentz force equations for an ensem-
ble of electrons subject to the wiggler, electromagnetic, and static
self-fields of the beam.

These equations describe the gain and refractive guiding of the
signal. An arbitrary optical signal may be represented by an
ensemble of the vacuum waveguide modes which satisfies the
boundary conditions of the electromagnetic field imposed by
the waveguide wall. The FEL interaction will cause each mode
in the ensemble to either grow or decay at different rates. The rel-
ative amplitudes and the evolution of wave number for each TE
and TM modes will vary over the course of the interaction and
will alter the radiation profile to describe the optical guiding of
the signal. The refractive guiding is presented by the waveguide

mode representation because variations of the wave number result
in the corresponding variations under the wave-particle resonance
conditions that alter the individual growth and damping rates of
various modes.

The phase variation is related to the refractive guiding of the
signal which is included in the general 3D formulation. The

Fig. 2. The slow electron beam cross-sections at the center (a) and at the end
(b) of wiggler for the total modes with TE01, TE21, and TM21 modes for the two-beam
system with an emittance of εn = 10 mm · mradand an energy spread of 0.1%.

Fig. 3. The fast electron beam cross-sections at the center (a) and at the end
(b) of wiggler for the total modes with TE01, TE21, and TM21 modes for the
two-beam system with an emittance of εn = 10 mm ·mradand an energy spread of 0.1%.

Fig. 4. Evolutions of the radiation field intensity for the total modes with TE01, TE21,
and TM21 modes in the two-beam system with an emittance of εn = 10 mm · mrad and
an energy spread of 0.1%.
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ratio of the derivative of the wave number and the wave number
for each TEln and TMln modes are shown in Figure 1 using the 3D
time-dependent simulations which we have developed.

The states of the electron beam are illustrated in Figure 2. The
evolution of the electron beam in this system describes the effects
of the wiggler-induced oscillation on the transverse and axial
velocities, and the wiggler gradients on the variation in the

beam envelope due to the betatron oscillations. We plot the load-
ing of the slow electron beams at the center of wiggler and at the
end of wiggler as shown in Figure 2.

The fast electron beam cross-sections are shown in Figure 3 at
the center of wiggler and at the end of wiggler. The cross-sections
of the fast electron beam are much shorter than those of the slow
beam. However, the cross-section of beam at the end of wiggler
after saturation is longer than that of the electron beam at the
center of the wiggler.

The evolution of the radiation intensity with axial distance for
the total, TE01, TE21, and TM21 modes is shown in Figure 4 for a
two-beam system.

As shown in the figure, the radiation intensity saturates at z =
1.3 m with the relative field intensity level of approximately 2.5.
This represents a much lower growth rate and efficiency than
found for either of the TE and TM mode, despite the fact that
the cutoff frequency and dispersion curves are degenerate for
TE21 and TM21 modes. The difference between the two modes
lies in the transverse mode structure.

Evolution of the radiation field intensity in the x and y planes
for the total modes including TE01,TE21, and TM21 modes with
an emittance of εn = 10 mm · mradand energy spread of 0.1% in
the two-beam oscillator system is shown in Figure 5(a) and the
result is compared with that of a single beam system as shown
in Figure 5(b).

Evolution of the radiation field intensity in the single beam
system has lower radiation amplitudes relative to that in the
higher energy beam with a two-beam oscillator. For an emittance
of εn = 10 mm · mradand energy spread of 0.1%, the saturation
intensity |A|2 of the single beam with TE01, TE21, and TM21

modes at 200 particles and 300 passes decreased by approximately
11% relative to that for the two beams.

Evolutions of the total power with passes of 300 and 200 par-
ticles are shown in Figure 6 for the case of two electron beams. All
resonant modes which are restricted to the TE01, TE21, and TM21

modes are simultaneously included in the simulation. As observed
in the figure, the total power saturates at a level of approximately
2 GW after 300 passes. It is also evident that although the TE01
mode was overwhelmingly dominant upon the injection of the
signal, it comprises only approximately 68% of the power at sat-
uration. The remaining powers are composed of theTE21 and
TM21 modes which are less than approximately 11%.

This is due to the fact that the growth rates of the TE21 and
TM21 modes are higher than that of the TE01 mode at this
frequency.

Fig. 5. Evolutions of the radiation field intensity for the total modes with TE01, TE21,
and TM21 modes in the two-beam system (a) and the single beam system (b) with
an emittance of εn = 10 mm · mradand an energy spread of 0.1%.

Fig. 6. Evolutions of the total power for the total modes, TE01,
TE21, and TM21 modes for the two-beam system with an emit-
tance of εn = 10 mm · mradand an energy spread of 0.1%.
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Conclusions

The 3D effects on a FEL oscillator with the waveguide were stud-
ied for the phase variation, the evolution of the electron beam, the
evolution of the radiation intensity, and the higher-order modes
by using an extended 3D FEL code with two electron beams
that we have developed.

A set of coupled nonlinear differential equations was derived
for the evolution of each mode which is integrated in conjunc-
tion with the 3D Lorentz force equations for an ensemble of
electrons.

The ratios of the derivative of the wave number and the wave
number for each TEln and TMln mode were calculated by the 3D
time-dependent simulations which we have developed.

The states of the electron beam were also studied for the load-
ing of the slow electron beams at the center of wiggler and at the
end of wiggler. The results were compared with those of the fast
electron beams to analysis the wiggler-induced oscillation in the
transverse and axial velocities.

The evolution of the radiation intensity with axial distance for
the total modes, TE01, TE21, and TM21 modes was calculated for
two-beam system. The radiation intensity saturates at z = 1.3 m
with the relative field intensity level of approximately 2.5. This
represents a much lower growth rate and efficiency than found
for either of the TE and TM mode, despite the fact that the cutoff
frequency and dispersion curves are degenerate for the TE21 and
TM21 modes.

For an optimized emittance of εn = 10 mm · mradand energy
spread of 0.1%, the saturation intensity of the single beam with
TE01, TE21, and TM21 modes at 200 particles and 300 passes

decreased by approximately 11% relative to that for the coupled
two-beam oscillator system.

The radiation field’s intensity for the higher-order modes was
highly sensitive compared with the fundamental mode of wave-
guide; however, it was less sensitive to the emittance and the
energy spread for the coupled two-beam oscillator system.
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