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Ideally, binary-collision algorithms conserve kinetic momentum and energy. In practice,
the finite size of collision cells and the finite difference in the particle locations affect the
conservation properties. In the present work, we investigate numerically how the accuracy
of these algorithms is affected when the size of collision cells is large compared with
gradient scale length of the background plasma, a parameter essential in full-f fusion
plasma simulations. Additionally, we discuss implications for the conserved quantities in
drift-kinetic formulations when fluctuating magnetic and electric fields are present: we
suggest how the accuracy of the algorithms could potentially be improved with minor
modifications.
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1. Introduction

Charged particles in a plasma interact with each other through the long-range Coulomb
collisions and, in a particle-in-cell simulation, these interactions can be modelled with
the so-called binary-collision methods. The two widely used schemes are by Takizuka &
Abe (1977) and by Nanbu (1997). If equal particle weights are used, both these methods
preserve kinetic momentum and energy in local homogeneous simulations, which explains
the popularity of these two schemes. Also, the convergence properties of the methods are
well established. In Wang et al. (2008), collisional relaxation rates from these models are
evaluated in a spatially homogeneous plasma with no electric field or magnetic fields and
the accuracy of the methods is compared as a function of time step and number of test
particles per cell showing an O(

√
Δt) dependency for the accuracy of electron–electron

collisions while including electron–ion collisions was independent of Δt. Nanbu’s method
was further tested by Dimits et al. (2009), but again excluding fields. In global simulations,
including configuration-space effects, the conservation properties generally depend on
time step, number of test particles, particle sampling method, interpolation schemes and
implementation of electromagnetic fields as well. The account of these effects is less
established.

The importance of momentum and energy conservation itself depends on what quantity
one is interested in, the time scale of the simulations (compared with collision time) and,
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also, the relative importance of the collisions compared with, for example, turbulent effects
and particle noise. In Kiviniemi, Heikkinen & Peeters (2000), a momentum-conserving
binary-collision model and a test-particle collision model were compared in the case of
an externally induced radial field. Starting from zero parallel flow, it was shown that both
methods give initially the same radial particle flux. After that the parallel velocity starts to
develop in the momentum-conserving case and the flux decays. Since the development
of parallel flow is a slower process than the changes in the mean radial electric field
〈Er〉, it is also possible to simulate a quasi-steady state of Er in order to investigate the
accuracy of neoclassical analytic estimates as a function of gradient scale lengths, as
done in Kiviniemi, Heikkinen & Peeters (2002). Violation of momentum conservation in
numerical realizations can be mitigated, for example, by forcing the curl of electric field E
to zero with small adjustments in the radial component Er (Heikkinen et al. 2012). Finally,
if also magnetic fluctuations are included in the simulation model, they contribute to both
the conserved toroidal angular momentum and the energy (see, e.g. Hirvijoki et al. 2020).
Consequently, the binary-collision models should be considered in conjunction with the
invariants of the collisionless dynamics.

In this work, we first take a look at the conventional conserved quantities and, as an
example, demonstrate how even these can be inaccurate if the collision cell is too wide
compared with the gradient scale length. After that we briefly discuss the conserved
quantities in a drift-kinetic electromagnetic model, and propose how the accuracy of
the conservation properties could potentially be improved while still using the standard
binary-collision model.

2. Classic binary-collisions model

In performing particle-in-cell simulations and using the widely used binary-collision
models (Takizuka & Abe 1977; Nanbu 1997), collisional effects are naturally implemented
so that they only change those parts of momentum and energy that directly depend on the
particle distribution function. For example, in the 6-D Vlasov–Maxwell model, the fields
E and B are kept fixed during the collisional step. Correspondingly, the global functionals

PF =
∑

s

∫
msvFs dv dx, (2.1)

EF =
∑

s

∫
1
2

ms|v|2Fs dv dx, (2.2)

should remain constant during the collisional step. Here, ms and Fs are the mass and
distribution function of species s, and x and v are the location of particle in configuration
and velocity space, respectively.

In a binary-collision algorithm with equal particle weights, implementing this strategy
amounts to requiring that the kinetic energy and momentum are conserved in a pairwise
collision between the particles p1 and p2. Effectively, one requires that the following
conditions are met:

mp1vp1(tn) + mp2vp2(tn) = mp1vp1(tn+1) + mp2vp2(tn+1), (2.3)

mp1 |vp1(tn)|2 + mp2 |vp2(tn)|2 = mp1 |vp1(tn+1)|2 + mp2 |vp2(tn+1)|2, (2.4)

where tn+1 = tn + Δt and Δt is the time step. While convergence of these methods as
a function of time step and number of test particles per cell has been demonstrated in
homogeneous backgrounds (Wang et al. 2008), we will next show that, even in the absence
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FIGURE 1. Scan of bootstrap current jbs as a function of normalized binary-collision cell
size, Δr/LT . The jbs values are collected from the maximum current density location, and the
error bars represent one standard deviation around the mean value and compared with analytic
estimates of Sauter and Hager. The ion part of the total current is shown with stars. Here Δr is
the collision cell width in the radial direction and LT = 0.06 m is the temperature gradient scale
length in the middle of the pedestal.

of fluctuating fields, these methods can be inaccurate if the background profiles change
significantly within one collision cell.

2.1. Effect of collision-cell width on the accuracy of binary-collision models
In axisymmetric tokamak geometry, the conservation of toroidal angular momentum is
important to properly describe neoclassical and turbulent transport of particles and heat.
In Kiviniemi et al. (2002), the effect of steep gradients on the accuracy of neoclassical
analytic estimates was tested but not the effect of the size of the collision cell with respect
to the gradient length scale of the background. Here, this effect is tested using the full-f
particle-in-cell code ELMFIRE (Korpilo et al. 2016), running it in neoclassical mode and
computing the bootstrap current similarly as in Kiviniemi et al. (2014). To investigate
the effect of the number of collision cells on the simulation accuracy and the numerical
precision of the results, the number of cells, Ncells = N × N, was varied in a scan as N =
30, 100, 200, 300, 450 (see figure 1). The important relation in such study is the relation
between the cell width and the gradient scale lengths but since the bootstrap current itself
heavily depends on the profiles we keep gradient scale lengths fixed as Ln = LT = 0.06 m.
The simulation domain was thus partitioned in N uniformly distributed collision cells in
both radial and poloidal directions. The total number of particles was kept fixed between
the simulations. For the case N = 450 the number of particles per cell is approximately
300 on average, which is sufficiently high for convergence of the collisional rates (Wang
et al. 2008).

The formation of bootstrap current is a two-step process where, at first, the ion current
results from orbit topologies. As a second step, this ion current is transferred to electrons
via collisions. Both of these steps can be affected by the cell width but, as seen in figure 1,
the ion current is small compared with total current and is not significantly affected by
the number of cells. Thus, collisions are mostly responsible for the cell-width effect.
For the total current, increasing the number of binary-collision cells improved the
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quantitative agreement between the converged ELMFIRE simulation result and the
analytical estimates of Sauter, Angioni & Lin-Liu (1999) and Hager & Chang (2016).
With 300 × 300 collision cells, the simulated mean bootstrap current density is within 3 %
from both theoretical predictions. Adding more collision cells did not notably change the
result, but with fewer cells, ELMFIRE predicts distinctly lower jbs values. The two cases
with the sparsest grids remain well below their corresponding analytical estimates, the
relative difference for both is around 20 %. The simulated jbs experiences strong temporal
fluctuations which produce significant uncertainties. The error bars in figure 1 illustrate
one standard deviation from the mean and their size does not change when the number of
collision cells is altered.

Part of this puzzle is that the particles are paired for collisions from finite sized
neighbourhoods, the extent of which is determined by the number of collision cells used.
The denser the grid is, the smaller the volume one cell covers. The binary-collision
operator used in ELMFIRE assumes that the plasma background properties stay similar
within each of these collision cells. Most importantly the background density and
temperature should not vary substantially over one collision cell as the collision frequency
which determines the scattering angle in the binary-collision model depends directly on
background temperature through the Coulomb logarithm but also implicitly through the
statistical increase in relative velocity as the average velocities of particles are significantly
different in the inner and outer side of the collision cell. In addition, it is also directly
proportional to density. During a simulation, the particle density is sampled to the
simulation grid, and thus, the density considered in the collisions is fixed in each of the
spatial grid cells. The smallest studied collision grid had size 30 × 30 which is sparser than
the 50 × 50 grid describing the density background in the radial and poloidal directions,
violating the assumption for the collision operator. For the larger collision grids tested in
the scan, the resolution for the density is no longer a limiting factor, but accurate enough
temperature resolution is also required.

The plasma temperature profile determines the speeds of individual particles. In
particular, across a steep pedestal, the temperature changes abruptly and so do the
velocities of the particles in that region. When particles collide, their relative velocity is
scattered and new velocities for both particles are calculated from the result. The collision
process inevitably introduces non-locality in the updated particle velocities because the
colliding particles are paired at random within a collision cell. The random pairing is
an approximation compared with true collisions but is often considered sufficient in
simulation. However, depending on the used grid size, the particles can have significant
distance between each other. Even if at the continuous level the Landau operator is local
and describes Coulomb collisions at a resolution comparable to that of the Debye length –
the effective distance beyond which the interaction is screened – practical implementations
in kinetic simulations of fusion plasmas rarely are able to resolve this distance.

The differences observed between the studied simulation cases could result, for example,
from the introduced finite spatial sampling of the background temperature. The thermal
speed of the particles relate to temperature through the equation for vth = √

2T/m, and
the change of average temperature within a collision cell with radial width Δr can be
approximated by Δr∂rT = (Δr/LT)T with LT the temperature gradient length scale. Inside
a cell of the sparsest studied collision grid, the difference in temperature Δr/LT can be
around 10 % when LT = 0.06 m, which at the very high temperatures involved becomes
significant. In contrast, with a grid size 300 × 300, the difference is less than 1 %. Since
the collision frequency is a function of the plasma temperature, one can expect a direct
effect from not resolving the temperature accurately enough. Finally, numerical estimation
of the bootstrap current requires accurate modelling of parallel flow velocity and, in the
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ELMFIRE simulations, the average parallel velocity of a particle species is sampled
from the individual particle velocities which allows small inaccuracies to accumulate.
Therefore, more accurate description of the velocity distribution obtained with denser
collision grids is likely to improve the simulated bootstrap current jbs.

3. Conserved quantities in an electromagnetic drift-kinetic model

If electromagnetic fluctuations are included in the simulations, they affect the quantities
that are conserved by the collisionless dynamics. Considering then also the collisional
dynamics, the binary-collision model should retain the invariants of the collision-free
model. For fusion plasmas, an electromagnetic drift-kinetic model that results as the
k⊥ρ � 1 limiting case of the electromagnetic gyrokinetic model (Burby & Brizard 2019)
is of particular interest. The analysis of the conserved quantities for such a model can be
found, for example in Hirvijoki et al. (2020).

For this case, the ‘kinetic-momentum’- and the ‘kinetic energy’-like functionals, that
the binary-collision algorithm should leave invariant for fixed values of the fields E1 and
B1, are given by

PF =
∑

s

∫
Fs

(
esA0 + msub0 − ∂Ks

∂E1
× B1

)
· eϕ du dμ dx, (3.1)

EF =
∑

s

∫ (
Ks − ∂Ks

∂E1
· E1

)
Fs du dμ dx, (3.2)

where the summation over s again refers to particle species. Here, B0 = ∇ × A0 is
the background magnetic field, with b0 = B0/|B0| the corresponding unit vector. The
dynamical fields in the system are the distributional densities Fs, which include the
phase-space Jacobian, and the electric and magnetic field perturbations E1 and B1. The
single drift-centre kinetic energy function in the model (Hirvijoki et al. 2020) is given by

K = 1
2

mu2 + μ|B0|
(

1 + b0 · B1

|B0| + |B1⊥|2
2|B0|2

)
− m

2|B0|2 |E1⊥ + ub0 × B1|2. (3.3)

From the global functionals, we identify the individual particle contributions, namely

P(x, u) =
(

eA0 + mub0 − ∂K
∂E1

× B1

)
· eϕ, (3.4)

E(x, u, μ) = K − ∂K
∂E1

· E1. (3.5)

Regardless of what exactly a conservative binary-collision algorithm does, it should satisfy
the pairwise conservation of toroidal angular momentum and total energy

P1,n + P2,n = P1,n+1 + P2,n+1, (3.6)

E1,n + E2,n = E1,n+1 + E2,n+1, (3.7)

with the notation P1,n ≡ P(x1,tn, u1,tn), etc. and (xtn, utn, μtn) and (xtn+1, utn+1, μtn+1) referring
to the particle coordinates before and after the collisional time step Δt.

The standard binary-collision algorithms, however, are not designed to preserve these
particular invariants in the presence of the perturbations E1 and B1, resulting in deviations
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ΔP and ΔE such that

P1,n + P2,n = P1,n+1 + P2,n+1 + ΔP, (3.8)

E1,n + E2,n = E1,n+1 + E2,n+1 + ΔE. (3.9)

Since the field fluctuations by definition are supposed to be small, the new values for
velocities from a standard binary-collision step nevertheless are expected to approximately
retain the invariants, and significant errors to accumulate only over time. Consequently, a
small perturbation, for example a shift in the location or velocity of particle one, x1, at
every time step, could potentially be used to make the deviations ΔE and ΔP to vanish.

3.1. Potential corrections to conserving P and E
Using (x1, x2, x3) for the configuration space coordinates of particle 1 after the standard
binary-collision step has been taken and the errors ΔP and ΔE are known, we could adjust,
say, two of the coordinates according to

[
Δx1
Δx2

]
=

[
dP/dx1 dP/dx2
dE/dx1 dE/dx2

]−1 [
ΔP
ΔE

]
(3.10)

to reduce the error. Furthermore, this corrective step can be iterated to suppress the error
significantly. In the three-dimensional case, there is freedom to choose any two out of the
three available components for tuning the quantities P and E. In toroidal coordinates, the
relative errors in momentum appear to be quite small. The correction terms depend much
on the numerical parameters and mainly on radial coordinate, P ≈ P(r). Other corrections
are very small.

In figure 2, the correction method is tested with a simple test case for sinusoidal
|B1|/|B0| = O(10−3) fluctuations. Repeated binary collisions of two particles are carried
out and, after each binary collision, P and E are corrected using (3.10) (‘0’ refers to the
error just after binary collision). The standard deviation of the error compared with P
(E) before the binary collision is shown. It can be seen that the correction in P is small,
O(10−10), while the relative error in E is of the order of 10−4. Tuning with Δr together
with poloidal (Δθ ) or toroidal (Δφ) correction shows the best performance confirming
that in practise the radial coordinate r tunes P ≈ P(r) after which the fine tuning of E is
done with either θ or φ.

If a scheme, such as the one described above, is adopted to enforce the conservation
properties, one can expect at least some level of artificial transport. We can try to estimate
the level of such induced transport in the following manner. Say the bare binary-collision
algorithm, without fluctuating fields, provides a change in the parallel velocity Δu. In
the presence of fluctuations, this induces an additional change in the toroidal canonical
momentum which we can approximate from

ΔP ∼ mΔu
∂

∂u
∂K
∂E1

× B1 · eφ ∼ mΔu
(

B1

B0

)2

R. (3.11)

If we shift the particle position in the radial direction, the dominant change in the canonical
toroidal momentum becomes

ΔP ∼ eΔr
∂Ψp

∂r
∼ eΔrRB0,p, (3.12)

where B0,p is the poloidal component of the unperturbed magnetic field. In trying to
counter the change in the toroidal momentum credited for the fluctuating fields during
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(a) (b)

FIGURE 2. Relative change of E and P just after binary collisions (index ‘0’ in the x label) and
after iterative corrections.

a Coulomb collision, the particle’s radial position then needs to be shifted by the amount

Δr ∼ m
eBp

(
B1

B0

)2

Δu. (3.13)

The associated diffusion coefficient can be estimated from D ∼ (Δr)2/Δt, which together
with (Δu)2/Δt ∼ νu2 and ν denoting the collision frequency, leads to the estimate

D = (Δr)2

Δt
∼

(
B0

B0,p

)2 (
B1

B0

)4

ρ2
0ν. (3.14)

Even if the magnetic fluctuations were comparable with the poloidal magnetic field,
the term (B0/B0,p)

2(B1/B0)
4 would remain considerably less than one. Consequently, we

expect that the transport from the corrective algorithm would remain at most at the level
of classical diffusion and likely be significantly less than that.

4. Conclusions

In this work, we have demonstrated that the accuracy of the widely used binary-collision
algorithm decreases when the collision grid cell size reaches a significant fraction of the
gradient scale length of the plasma background. This indicates that, while the standard
binary-collision algorithm works well in homogeneous backgrounds, either very small
collision cell sizes should be used in the steep gradient regions at the tokamak edge
or the collision algorithm modified. We then suggested one possibility to modify the
existing binary-collision algorithms to regain the conservation of the quantities important
in transport simulations when electromagnetic fluctuations are present. We expect such
minor modifications to be also practical enough for implementations.
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