
Euro. Jnl of Applied Mathematics (2019), vol. 30, pp. 1153–1186 c© Cambridge University Press 2019. 1153
doi:10.1017/S0956792519000044

Mean-field optimal control as Gamma-limit of
finite agent controls†

M . F O R N A S I E R1, S . L I S I N I2, C . O R R I E R I3 AND G . S A V A RÉ 2

1Department of Mathematics, TU München, Boltzmannstr. 3, Garching bei München D-85748, Germany
email: massimo.fornasier@ma.tum.de

2Dipartimento di Matematica “F. Casorati”, Università di Pavia, Via Ferrata 5, 27100 Pavia, Italy
email: stefano.lisini@unipv.it; giuseppe.savare@unipv.it

3Dipartimento di Matematica “G. Castelnuovo”, Sapienza Università di Roma,
Piazzale Aldo Moro 5, 00185 Roma, Italy

email: orrieri@mat.uniroma1.it

(Received 11 March 2018; revised 16 December 2018; accepted 1 February 2019; first published online 8 March 2019)

This paper focuses on the role of a government of a large population of interacting agents as a mean-
field optimal control problem derived from deterministic finite agent dynamics. The control problems
are constrained by a Partial Differential Equation of continuity-type without diffusion, governing the
dynamics of the probability distribution of the agent population. We derive existence of optimal
controls in a measure-theoretical setting as natural limits of finite agent optimal controls without
any assumption on the regularity of control competitors. In particular, we prove the consistency of
mean-field optimal controls with corresponding underlying finite agent ones. The results follow from
a �-convergence argument constructed over the mean-field limit, which stems from leveraging the
superposition principle.
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1 Introduction

In the mathematical modelling of biological, social and economical phenomena, self-
organisation of multi-agent interaction systems has become a focus of applied mathematics and
physics and mechanisms are studied towards the formation of global patterns. In the last years,
there has been a vigorous development of literature describing collective behaviour of interacting
agents [29–31, 40–42, 61], towards modelling phenomena in biology, such as motility and cell
aggregation [15,43,44,54], coordinated animal motion [7,20,23,25–27,31,49,51,52,56,60,64],
coordinated human [28, 33, 58] and synthetic agent interactions and behaviour, as in the case of
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cooperative robots [24, 48, 53, 59]. Part of the literature is particularly focused on studying the
corresponding mean-field equations in order to simplify models for large populations of interact-
ing agents: the effect of all the other individuals on any given individual is described by a single
averaged effect. As it is very hard to be exhaustive in accounting all the developments of this
very fast growing field, we refer to Refs. [18, 19, 21, 22, 62] for recent surveys.

Self-organisation is an incomplete concept, see, e.g., Ref. [12], as it is not always occurring
when needed. In fact, local interactions between agents can be interpreted as distributed controls,
which, however, are not always able to lead to global coordination or pattern formation. This
motivated the research also of centralised optimal controls for multi-agent systems, modelling
the intervention of an external government to induce desired dynamics or pattern formation. In
this paper, we are concerned with the control of deterministic multi-agent systems of the type

ẋi(t)=FN (xi(t), x(t))+ ui(t), i= 1, . . . , N . (1.1)

The map FN : Rd × (Rd)N→Rd models the interaction between the agents and u represents the
action of an external controller on the system. The control is optimised by minimisation of a cost
functional

EN (x, u) :=
∫ T

0

1

N

N∑
i=1

LN (xi(t), x(t)) dt+
∫ T

0

1

N

N∑
i=1

ψ(ui(t)) dt, (1.2)

where LN is a suitable cost function used for modelling the goal of the control and capturing the
work done to achieve it, and ψ is an appropriate positive convex function, which is superlinear at
infinity and models the effective cost of employing the control. When the number N of agents is
very large, dynamical programming for solving the optimal control problem defined by minimi-
sation of (1.2) under the constraints (1.1) becomes computationally intractable. In fact, Richard
Bellman coined the term ‘curse of dimensionality’ precisely to describe this phenomenon.

For situations where agents are indistinguishable, e.g., drawn independently at random from
an initial probability distribution μ0, and the dynamics FN (xi(t), x(t))=FN

(
xi(t),μN

t

)
depends

in fact from the empirical distribution μN
t = 1

N

∑N
i=1 δxi(t), one may hope to invoke again the

use of mean-field approximations for a tractable (approximate) solution of the control problem.
By formally considering the mean-field limit of the system (1.1) for N→∞, one obtains the
continuity equation of Vlasov-type:

∂tμt +∇ ·
(
(F(x,μt)+ vt)μt

)= 0 in (0, T)×Rd , (1.3)

where μ is the weak limit of μN and represents the (time-dependent) probability distribution
of agents and ν = vμ is a suitable vector control measure absolutely continuous w.r.t. μ and
subjected to a cost functional

E(μ, ν) :=
∫ T

0

∫
Rd

L(x,μt) dμt(x) dt+
∫ T

0

∫
Rd
ψ(v(t, x)) dμt(x) dt. (1.4)

The vector measure ν = vμ can in fact be obtained as the weak limit of the sequence of finite
dimensional control measures:

νN =
∫ T

0
δt ⊗ νN

t dt, νN
t =

1

N

N∑
i=1

ui(t)δxi(t), t ∈ [0, T].
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Under suitable assumptions on ψ , on the convergence of FN to F and of LN to L and assuming
for simplicity that the initial data are confined in a compact subset of Rd , one of the main results
of this paper can be summarised as follows.

Theorem 1.1 If the initial measures μN
0 = 1

N

∑N
i=1 δxN

i (0) weakly converge to a limit probability

measure μ0, then the minimum EN
(
μN

0

)
of (1.2) among all the solution of the controlled system

(1.1) converges to the minimum E(μ0) of the functional (1.4) among all the solutions of (1.3) with
initial datum μ0. Moreover, all the accumulation points (in the topology of weak convergence of
measures) of the measures associated with minimisers xN , uN of (1.2) are minima of (1.4).

The idea of solving finite agent optimal control problems by considering a mean-field approxi-
mation has been considered since the 1960s [36,37,45] with the introduction of stochastic optimal
control. The optimal control of stochastic differential equations

d X i
t =F

(
X i

t ,μN
t

)+ v
(
t, X i

t

)+ σdW i
t , i= 1, . . . , N ,

with non-degenerate diffusion and independent Brownian motions W i has been studied for a
long while via the optimal control of the law μt = Law(Xt) constrained by a McKean–Vlasov
equation:

∂tμt +∇ ·
(
(F(x,μt)+ v(t, x))μt

)= σ�μt,

under a suitable control cost

E(μ, v) :=
∫ T

0

∫
Rd

L(x,μt) dμt(x) dt+
∫ T

0

∫
Rd
ψ(v(t, x))dμt(x) dt.

Most of the literature on stochastic control is focused primarily on the solution of McKean–
Vlasov optimal control problems. The most popular methods are based on extending
Pontryagin’s maximum principle [2, 6, 9, 14, 17] or deriving a dynamic programming principle,
and with it a form of a Hamilton–Jacobi–Bellman equation on a space of probability measures
[8, 47, 55]. However, the rigorous justification that the McKean–Vlasov optimal control prob-
lem is consistent with the limit of optimal controls for stochastic finite agent models has been
proved surprisingly just very recently [46]. The techniques used in the latter paper are largely
based on martingale problems, combining ideas from the McKean–Vlasov limit theory with a
well-established compactification method for stochastic control [36].

The first work addressing the consistency of mean-field optimal control for deterministic finite
agent systems is [39]. In the latter paper, an analogous result as Theorem 1.1 is derived for general
penalty functions ψ with polynomial growth, including the interesting case of linear growth at
0 and infinity, motivated by results of sparse controllability for finite-agent models [10, 11, 16].
Other models of sparse mean-field optimal control have been considered in Refs. [1,13,38]. The
generality of the penalty function ψ in Ref. [39] has required to restrict the class of controls:
they have been assumed to be locally Lipschitz continuous in space feedback control functions
ui(t)= v(t, xi) with controlled time-dependent Lipschitz constants.

In this paper and in our main result Theorem 1.1, we remove this restriction, but we still impose
suitable coercivity on the admissible controls, by requiring the function ψ to have superlinear
growth to infinity. As sparsity of controls, i.e., the localisation of controls in space, is mainly due
to the linear behaviour of the penalty function at 0, the superlinear growth at infinity does not
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exclude the possibility of using this model for sparse control. Moreover, in this framework, there
is no need for enforcing a priori that controls are smooth feedback functions of the state variables
and the limit process comes very natural in a measure-theoretical sense. In view of the minimal
smoothness required to the governing interaction functions FN , F (they are assumed to be just
continuous), there is no uniqueness of solutions in general of (1.1) and (1.3). Hence, the main
results of mean-field limit are derived by leveraging the powerful machinery of the superposition
principle [3, Theorem 3.4].

Finally, a comparison between deterministic and stochastic cases is in order. The consistency
result obtained in [46] allows for degenerate diffusion σ = 0 (and deterministic initial condition)
but does not subsume the results obtained in Ref. [39]. In the present paper, the assumptions
on the system can be further weakened by employing the superposition principle, for which a
stochastic counterpart is missing. It seems that sharp results for purely deterministic dynam-
ics require in fact measure-theoretical methods, which are difficult to be directly applied to the
stochastic setting. Recall also that stochastic control problems are linked to their deterministic
counterpart up to non-anticipativity restrictions on the control policy. Nonetheless, determinis-
tic consistency results in control theory could be fruitfully applied to the stochastic setting in
the study of large-deviation asymptotics. We refer to Ref. [50] for an application of the present
result to the analysis of fluctuations of stochastic interacting particle systems in the mean-field
and small-noise regime.

The paper is organised as follows: after recalling in detail the notation and a few prelim-
inary results on optimal transport, doubling functions and convex functionals on measures in
Section 2, we describe our setting of optimal control problems in Section 3, together with the
precise statements of our main results. We address the existence of solutions of the finite agent
optimal control problem in Section 4. Crucial moment estimates are derived in Section 5 for
feasible competitors for the mean-field control problem, which are useful for deriving compact-
ness arguments further below. Section 6 is dedicated to the proofs of our main theorems. A
relevant part is devoted to Theorem 1.1 by developing a �-convergence argument. While the
�–lim inf inequality follows by relatively standard lower semicontinuity arguments, the deriva-
tion of the �– lim sup inequality requires a technical application of the superposition principle.
Equi-coercivity and convergence of minimisers follow from compactness arguments based on
moment estimates from Section 5.

2 Notation and preliminary results

Throughout the paper, we work with Rd as a state space and we fix a time horizon T > 0. We will
denote by λ the normalised restriction of the Lebesgue measure to [0, T], λ := 1

T L 1 [0, T].
Given (S, d) a metric space, we use the classical notation AC([0, T]; S) for the classes of

S-valued absolute continuous curves. We indicate with M(Rd), M(Rd; Rd) the space of Borel
(vector-valued) measures.

2.1 Probability measures and optimal transport costs

We call P(Rd) the space of Borel probability measures. If f :	→Rh is a Borel map defined in
a Borel subset 	 of Rd and μ ∈P(Rd) is concentrated on 	, we will denote by f
μ the Borel
measure in Rh defined by f
μ(B) :=μ( f −1(B)), for every Borel subset B⊂Rh.
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Whenever ψ : Rd→ [0,+∞] is a lower semicontinuous function, we set

Cψ (μ0,μ1) := inf

{∫
Rd×Rd

ψ( y− x) dγ (x, y) : γ ∈�(μ0,μ1)

}
, (2.1)

where �(μ0,μ1) is the set of the optimal transport plans:

�(μ0,μ1) := {γ ∈P (Rd ×Rd
)

: γ
(
B×Rd

)=μ0(B), γ
(
Rd × B

)=μ1(B)

∀ B Borel set in Rd
}
.

In the particular case, when ψ(z) := |z|, z ∈Rd , (2.1) defines the L1-Wasserstein distance

W1(μ0,μ1) := inf

{∫
Rd×Rd

|x− y| dγ (x, y) : γ ∈�(μ0,μ1)

}
; (2.2)

the infimum in (2.2) is always finite and attained if μ0,μ1 belong to the space P1(Rd) of Borel
probability measure with finite first-order moment:

P1(Rd) :=
{
μ ∈P(Rd) :

∫
Rd
|x| dμ(x)<+∞

}
.

P1(Rd) endowed with W1(μ0,μ1) is a complete and separable metric space. In particular, we
will consider absolutely continuous curves t 
→μt in AC([0, T]; P1(Rd)). They will canonically
induce a parameterised measure μ̃ := ∫ δt ⊗μt dλ(t) in P1([0, T]×Rd) satisfying

∫
f (t, x) dμ̃(t, x)=

∫ T

0

∫
Rd

f (t, x) dμt(x) dλ(t)=
∫ T

0

∫
Rd

f (t, x) dμt(x) dt. (2.3)

Convergence with respect to W1 is equivalent to weak convergence (in duality with continuous
and bounded functions) supplemented with convergence of first moment; equivalently, for every
sequence (μn)n∈N ⊂P1(Rd) and candidate limit μ ∈P1(Rd)

lim
n→∞W1(μn,μ)= 0 ⇔ lim

n→∞

∫
ζ dμn =

∫
ζ dμ for every ζ ∈C(Rd), sup

x∈Rd

ζ (x)

1+ |x| <∞.

In P1(Rd), we consider the subset PN (Rd) of discrete measures

PN (Rd) :=
{
μ= 1

N

N∑
i=1

δxi for some xi ∈Rd

}
.

A measure μ belongs to PN (Rd) if and only if # supp(μ)≤N and Nμ(B) ∈N for every Borel
set B of Rd . Let us now fix an integer N ∈N and consider vectors x= (x1, . . . , xN ) ∈ (Rd)N ; we
will use the notation σ : (Rd)N→ (Rd)N to denote a permutation of the coordinates of vectors in
(Rd)N and we set

dN (x, y) :=min
σ

1

N

N∑
i=1

|xi − σ ( y)i|, |x|N := dN (x, o)= 1

N

N∑
i=1

|xi|.
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To every vector x ∈ (Rd)N , we can associate the measure μ[x] := 1
N

∑N
i=1 δxi ∈PN (Rd) and we

notice that by (6.37) [5, Theorem 6.0.1]

dN (x, y)=W1(μ[x],μ[ y]), |x|N =
∫
Rd
|x| dμ[x](x)=W1(μ[x], δ0).

From now on, we say that a map GN : Rd × (Rd)N→Rk is symmetric if

GN (x, y)=GN (x, σ ( y)) for every permutation σ : (Rd)N→ (Rd)N .

Given a symmetric and continuous map GN , we can associate a function defined on measures
GN : Rd ×PN (Rd)→Rk by setting

GN (x,μ[ y]) :=GN (x, y).

Throughout the paper, we use the following notion of convergence for symmetric maps:

Definition 2.1 We say that a sequence of symmetric maps GN , N ∈N, P1-converges to G :
Rd ×P1(Rd)→Rk uniformly on compact sets as N→+∞ if for every sequence of measure
μk ∈PNk (Rd) converging to μ in P1(Rd) as Nk→∞, we have

lim
k→+∞

sup
x∈C

∣∣GNk (x,μk)−G(x,μ)
∣∣= 0, for every compact C⊂Rd .

2.2 Doubling and moderated convex functions

Definition 2.2 We say that φ : [0,+∞)→ [0,+∞) is an admissible function if φ(0)= 0, φ is
strictly convex and of class C1 with φ′(0)= 0, superlinear at +∞ and doubling, i.e., there exists
K > 0 such that

φ(2r)≤K
(
1+ φ(r)

)
for any r ∈ [0,+∞). (2.4)

Let U be a subspace of Rd . We say that a convex function ψ : U→ [0,+∞) is moderated if
there exists an admissible function φ : [0,+∞)→ [0,+∞) and a constant C> 0 such that

φ(|x|)− 1≤ψ(x)≤C(1+ φ(|x|)) for every x ∈U . (2.5)

By convexity, an admissible function φ satisfies φ(r)+ φ′(r)(s− r)≤ φ(s) for every r, s ∈
[0,+∞); in particular, choosing s= 0 and s= 2r, one obtains

0≤ φ(r)≤ rφ′(r)≤ (φ(2r)− φ(r))≤K
(
1+ φ(r)

)
for every r ∈ [0,+∞). (2.6)

It is not difficult to see that if a differentiable convex function φ satisfies

rφ′(r)≤ A(1+ φ(r)) for every r≥ R,

for some constants A, R> 0, then φ satisfies (2.4) with K =max(eA, max[0,2R] φ). In fact, differ-
entiating the function z 
→ (φ(zr)+ 1) for z ∈ [1, D] and r≥ R, we get ∂

∂θ

(
φ(θr)+ 1

)= rφ′(θr)≤
A(1+ φ(θr)) so that

φ(Dr)≤ (φ(r)+ 1)e(D−1)A D> 1, r> R.
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In particular, (2.4) yields

φ(Dr)≤ (φ(r)+ 1)e(D−1)K D> 1, r> 0.

We also recall that φ′ is monotone, i.e.,

(φ′(r)− φ′(s))(r− s)≥ 0 for every s, r≥ 0. (2.7)

The next lemma shows that it is always possible to approximate a convex superlinear function
by a monotonically increasing sequence of moderated ones.

Lemma 2.3 Let U be a subspace of Rd and ψ : U→ [0,+∞] be a superlinear function with
ψ(0)= 0.

(1) There exists an admissible function θ : [0,+∞)→ [0,+∞) such that

ψ(x)≥ θ (|x|)− 1

2
for every x ∈U. (2.8)

(2) If ψ is also convex, then there exists a sequence ψN : U→ [0,+∞), N ∈N, of moderated
convex functions such that

ψN (x)≤ψN+1(x), ψN (x) ↑ψ(x) as N→+∞ for every x ∈U .

Proof It is not restrictive to assume U =Rd .

Claim 1. Let us set h(r) :=min|x|≥r ψ(x) and n̄ :=min
{
n≥ 0 : h(2n)≥ 1

}
, r̄ := 2n̄. The map h :

[0,+∞)→ [0,+∞] is increasing, lower semicontinuous and satisfies limr→∞ h(r)/r=+∞. By
a standard result of convex analysis (see, e.g., [57, Lemma 3.7]), there exists a convex superlinear
function k : [0,+∞)→ [0,+∞) such that h(r)≥ k(r) for every r ∈ [0,+∞), so thatψ(x)≥ k(|x|)
for every x ∈Rd .

Let us define the sequence (an)n∈N by induction:

an := 0 for every n ∈N, n< n̄; an̄ := 2−n̄,

an+1 :=min
(

2an, 2−(n−1)
(
k(2n)− k

(
2n−1

)) )
for every n≥ n̄.

Since k is convex and increasing, the sequence n 
→ an is positive and increasing; since k is
superlinear, it is also easy to check that limn→∞ an =+∞.

We now consider the piecewise linear continuous function θ1 : [0,+∞)→ [0,+∞) on the
dyadic partition {0, 20, 21, 22, . . . , 2n, . . .}, n ∈N, satisfying

θ1(r)≡ 0 if 0≤ r≤ r̄= 2n̄, θ ′1(r)= an if 2n < r< 2n+1, n ∈N, n≥ n̄.

Since θ ′1 ≤ k′ a.e. in [0,+∞), we have θ1 ≤ k. Moreover, by construction, for 0≤ r≤ 2r̄, we have
θ1(r)≤ θ1(2r̄)= 1 and θ ′1(2r)≤ 2θ ′1(r) if r≥ r̄, so that θ1 is also doubling since

θ1(2r)= θ1(2r̄)+
∫ r

r̄
2θ ′1(2s) ds≤ 1+ 4

∫ r

r̄
θ ′1(s) ds= 1+ 4θ1(r) for every r≥ r̄.

Replacing now θ1 by the convex combination θ2(r) := 1
2θ1(r)+ 1

2 r/r̄, we get a strictly increasing
function, still satisfying (2.8).
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By possibly replacing θ2 with θ3(r) := ∫ r
r−1 θ (s) ds (where we set θ2(s)≡ θ2(0)= 0 whenever

s< 0), we obtain a C1 function. Strict convexity can be eventually obtained by taking the convex
combination θ (r) := (1− ε)θ3(r)+ ε(√1+ r2 − 1) for a sufficiently small ε > 0.

Claim 2. Notice that the function x 
→ θ2(|x|) is convex. We can define ψN by inf-convolution:

ψN (x) := inf
y∈Rd

ψ( y)+Nθ2(|x− y|), x ∈Rd . (2.9)

It is easy to check that the infimum in (2.9) is attained, ψN is convex (since it is the
inf-convolution of two convex functions) and satisfies the obvious bounds

ψN (x)≤Nθ2(|x|), ψN (x)≤ψ(x), ψN (x)≤ψN+1(x) for every x ∈Rd .

In particular, ψN is continuous; since x 
→ θ2(x) is continuous at x= 0 and θ2(|x|)≥ 1
2r̄ |x|, we

easily get limN→∞ ψN (x)=ψ(x) for every x ∈Rd .
It remains to show that ψN is moderated. Since ψ(x)≥ θ2(|x|)− 1/2 and for every y ∈Rd the

triangle inequality yields min(|x− y|, |y|)≥ |x|/2, we get

ψN (x)+ 1/2≥ inf
y∈Rd

θ2(|y|)+Nθ2(|x− y|)≥ θ2(|x|/2)≥ 1

4
θ2(|x|)− 1

4

and the bounds

1

4
θ (|x|)− 3

4
≤ψN (x)≤ 4N

1

4
θ2(|x|).

By possibly replacing θ2 with θ , we conclude. �

Let us make explicit two simple applications of the properties of Definition 2.2.

Remark 2.4 If K⊂P1(Rd) is a relatively compact set and ψ : U→ [0,+∞] is a superlinear
function defined in a subspace U of Rd with ψ(0)= 0, then there exists an admissible function
θ : [0,+∞)→ [0,+∞) such that

sup
μ∈K

∫
Rd
θ (|x|) dμ(x)<∞, θ (|x|)≤ 1+ψ(x) for every x ∈U . (2.10)

In fact, Prokhorov theorem yields the tightness of the set K̃ := {|x|μ :μ ∈K} of finite measures,
so that we can find a superlinear function α : Rd→ [0,∞) such that

sup
μ∈K

∫
Rd
α(x) dμ(x)<∞.

We can then apply the first statement of Lemma 2.3 with superlinear function α ∧ψ .

Lemma 2.5 Let ζ : Rd→ [0,+∞) be a moderated convex function with ζ (0)= 0 and let μi
n ∈

P1(Rd), i= 0, 1, be two sequences converging to μ in P1(Rd) and let γn be the optimal plan
attaining the minimum in (2.2) for W1(μ0

n,μ1
n). If

lim sup
n→∞

∫
ζ dμi

n ≤
∫
ζ dμ, (2.11)
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then

lim
n→∞

∫
ζ ( y− x) dγn(x, y)= 0, lim

n→∞ Cζ
(
μ0

n,μ1
n

)= 0. (2.12)

Proof Let φ be an admissible function satisfying (2.5) for ψ := ζ . We observe that for every
x, y ∈Rd

φ(|y− x|)≤ φ(|x| + |y|)≤K
(

1+ φ ( 1
2 |x| + 1

2 |y|
) )≤K

(
1+ φ(|x|)+ φ(|y|)

)
. (2.13)

Inequality (2.11) shows that ζ is uniformly integrable w.r.t. μn (see [5, Lemma 5.1.7]) so that

lim
n→∞

∫
φ
(|x|) dμi

n(x)=
∫
φ
(|x|) dμ(x), i= 1, 2,

whence

lim
n→∞

∫ (
φ(|x|)+ φ(|y|)

)
dγn(x, y)= 2

∫
φ(|x|) dμ(x)=

∫ (
φ(|x|)+ φ(|y|)

)
dγ (x, y)

where γ := (x, x)
μ is the weak limit of γn. It follows that the function (x, y) 
→ φ(|x|)+ φ(|y|) is
uniformly integrable with respect to γn so that, by (2.13) and [5, Lemma 5.1.7]

lim
n→∞

∫
φ(|y− x|) dγn(x, y)=

∫
φ(|y− x|) dγ (x, y)= 0.

Since ζ ( y− x)≤C(1+ φ(|y− x|)) by (2.5), we get (2.12). �

2.3 Convex functionals on measures

We are concerned with the main properties of functionals defined on measures, for a detailed
treatment of this subject, we refer to [4]. Let ψ : Rh→ [0,+∞] be a proper, l.s.c., convex and
superlinear function, so that its recession function supr>0

ψ(rx)
r =∞ for all x �= 0; we will also

assume ψ(0)= 0.
Let now 	 be an open subset of some Euclidean space, μ ∈M+(	) be a reference measure

and ν ∈M(	; Rh) a vector measure; we define the following functional:

�(ν|μ) :=
∫
	

ψ(v(x)) dμ(x) if ν = vμ�μ, �(ν|μ) :=+∞ if ν ��μ. (2.14)

We state the main lower semicontinuity result for the functional �.

Theorem 2.6 Suppose that we have two sequences μn ∈M+(	), νn ∈M(	; Rh) weakly
converging to μ ∈M+(	) and ν ∈M(	, Rh), respectively. Then

lim inf
n→+∞ �(νn|μn)≥�(ν|μ).

In particular, if lim infn→+∞ �(νn|μn)<+∞, we have ν�μ.

The proof can be found in Ref. [5, Lemma 9.4.3].
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3 The optimal control problem and main results

Cost functional

Assume that we are given a sequence of functions LN : Rd × (Rd)N→ [0,+∞), N ∈N, and a
function L : Rd ×P1(Rd)→ [0,+∞) such that LN is continuous and symmetric for every N ∈N
and L is continuous. We assume that

LN P1-converges to L uniformly on compact sets, as N→∞, (3.1)

in the sense of Definition 2.1.
Assume that we are given

a subspace U ⊂Rd and a moderated convex function ψ : U→ [0,+∞) with ψ(0)= 0.

We will also fix an auxiliary function φ satisfying (2.5).
Typical examples we consider for ψ include

• ψ(x)= 1
p |x|p, p> 1;

• ψ(x)= 1
p |x| for |x| ≤ 1 and ψ(x)= 1

p |x|p for |x|> 1, p> 1.

Denoting by UN the Cartesian product, we define a cost functional EN : AC([0, T]; (Rd)N )×
L1([0, T]; UN )→ [0,+∞) by

EN (x, u) :=
∫ T

0

1

N

N∑
i=1

LN (xi(t), x(t)) dt+
∫ T

0

1

N

N∑
i=1

ψ(ui(t)) dt. (3.2)

We consider also another cost functional E : AC([0, T]; P1(Rd))×M([0, T]×Rd; U)→
[0,+∞) defined by (recall (2.3))

E(μ, ν) :=
∫ T

0

∫
Rd

L(x,μt) dμt(x) dt+�(ν|μ̃), (3.3)

where � is defined as in (2.14). Notice that if �(ν|μ̃)<∞, then ν = vμ for a Borel vector
field v ∈ L1

μ̃
([0, T]×Rd; U) so that for λ-a.e. t ∈ [0, T], the measure ν t := v(t, ·)μt belongs to

M(Rd; U) and we can write

�(ν|μ̃)=
∫

[0,T]×Rd
ψ(v(t, x)) dμ̃(t, x)=

∫ T

0

∫
Rd
ψ(v(t, x)) dμt dt=

∫ T

0
�(ν t|μt) dt. (3.4)

We shall prove below that the functional E is the �-limit of EN in suitable sense [34].

The constraints (state equations)

Assume that we are given a sequence of functions FN : Rd × (Rd)N→Rd , N ∈N, symmetric
and continuous and a continuous function F : Rd ×P1(Rd)→Rd . We assume that there exist
constants A, B≥ 0 such that

|FN (x, y)| ≤ A+ B(|x| + |y|N ), |F(x,μ)| ≤ A+ B

(
|x| +

∫
Rd
|y| dμ( y)

)
, (3.5)
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and FN , F and U satisfy the compatibility condition

FN (x, y)−F(x,μ) ∈U for every x ∈Rd , y ∈ (Rd)N , μ ∈P1(Rd). (3.6)

Moreover, we assume that

FN P1-converges to F uniformly on compact sets, as N→∞, (3.7)

in the sense of Definition 2.1.
Given u= (u1, . . . , uN ) ∈ L1([0, T]; UN ), a control map, we consider the system of differential

equations:

ẋi(t)=FN (xi(t), x(t))+ ui(t), i= 1, . . . , N . (3.8)

The map FN : Rd × (Rd)N→Rd models the interaction between the agents and u represents the
action of an external controller on the system. For every u ∈ L1([0, T]; UN ) and x0 ∈ (Rd)N ,
thanks to (3.5) and the continuity of FN , there exists a global solution in the Carathéodory sense,
x ∈ AC([0, T]; (Rd)N ) of (3.8) such that x(0)= x0. Since we have assumed only the continuity of
the velocity field FN , uniqueness of solutions is not guaranteed in general. We then define the
non-empty set:

A N :=
{

(x, u) ∈ AC([0, T];
(
Rd
)N × L1

(
[0, T]; UN

)
: x and u satisfy (3.8), EN (x, u)<∞

}
.

Moreover, we also define for every x0 ∈ (Rd)N the non-empty set

A N (x0) := {(x, u) ∈A N : x(0)= x0
}
.

Every initial vector x0 = (x0,1, . . . , x0,N ) ∈ (Rd)N gives rise to the empirical distribution:

μ0 =μ[x0] := 1

N

N∑
i=1

δx0,i .

Similarly, every curve x ∈ AC([0, T]; (Rd)N ) is associated with the curve of probability measures:

μ=μ[x] ∈ AC
(
[0, T]; P1

(
Rd
))

: μt := 1

N

N∑
i=1

δxi(t), t ∈ [0, T],

and every pair (x, u) ∈ AC([0, T]; (Rd)N )× L1([0, T]; UN ) is linked to the control vector mea-
sure:

ν = ν[x, u] ∈M([0, T]×Rd; U) : ν :=
∫ T

0
δt ⊗ ν t dλ, ν t := 1

N

N∑
i=1

ui(t)δxi(t).

We will show that for every choice of solutions and controls (xN , uN ) ∈A N (xN
0 ) such that the

cost functional EN (xN , uN ) remains uniformly bounded and the initial empirical distributions
μN

0 =μ[xN
0 ] are converging to a limit measure μ0 in P1(Rd) a mean-field approximation holds:

Theorem 3.1 (Compactness) Let (xN
0 )N∈N be a sequence of initial data in (Rd)N such that the

empirical measure μN
0 =μ[xN

0 ] converges to a probability measure μ0 in P1(Rd) as N→∞,
and let (xN , uN ) ∈A N (xN

0 ) such that the cost functional EN (xN , uN ) remains uniformly bounded.
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Up to extraction of a suitable subsequence, the empirical measures μN =μ[xN ] converge
uniformly in P1

(
Rd
)

to a curve of probability measures μ ∈ AC([0, T]; P1(Rd)), the control mea-
sures νN = ν[xN , uN ] converge to a limit control measure ν weakly∗ in M([0, T]×Rd; U) and
(μ, ν) fulfils the continuity equation:

∂tμt +∇ ·
(

F(x,μt)μt + ν t

)
= 0 in (0, T)×Rd (3.9)

in the sense of distributions.

Motivated by the above result, we define the non-empty set

A :=
{

(μ, ν) ∈ AC([0, T]; P1(Rd))×M([0, T]×Rd; U) :

μ and ν satisfy (3.9) in the sense of distributions, E(μ, ν)<∞
}

,

and its corresponding subset associated with a given initial measure μ0 ∈P1(Rd):

A (μ0) := {(μ, ν) ∈A :μ(0)=μ0}.
The elements of A N can be interpreted as the trajectories (x1, . . . , xN ) of N agents along with

their strategies (u1, . . . , uN ), whose dynamics is described by the system of Ordinary Differential
Equations (ODEs) (3.8). Analogously, the elements of A can be interpreted as the trajectories
of a continuous or discrete distribution of agents whose dynamics is described by the Partial
Differential Equation (3.9) under the action of an external controller described by the measure ν.

The minimum problems

The objective of the controller is to minimise the cost functional EN (resp. E). We consider the
following optimum sets, defined by the corresponding optimal control problems:

EN (x0) := min
(x,u)∈A N (x0)

EN (x, u), PN (x0) := argmin
{
EN (x, u) : (x, u) ∈A N (x0)

}
, (3.10)

E(μ0) := min
(μ,ν)∈A (μ0)

E(μ, ν), P(μ0) := argmin {E(μ, ν) : (μ, ν) ∈A (μ0)} , (3.11)

where we suppose that μ0 ∈D(E) := {μ ∈P1(Rd) : A (μ) is not empty}.
We are interested in the rigorous justification of the convergence of the control problem (3.10)

towards the corresponding infinite dimensional one (3.11).

Main results

We state now more formally our main result concerning the sequence of functionals EN to E,
inspired to �-convergence.

Theorem 3.2 (�-convergence) The following properties hold:

• �– lim inf inequality: for every (μ, ν) ∈ AC([0, T]; P1(Rd))×M([0, T]×Rd; U) and every
sequence (xN , uN ) ∈ AC([0, T]; (Rd)N )× L1([0, T]; UN ) such that μ[xN ]→μ in C([0, T];
P1(Rd)), ν[xN , uN ]⇀∗ ν in M([0, T]×Rd; U), we have

lim inf
N→∞ EN

(
xN , uN

)≥ E(μ, ν). (3.12)
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• �– lim sup inequality: for every (μ, ν) ∈A such that∫
Rd
φ(|x|) dμ0(x)<∞, (3.13)

there exists a sequence (xN , uN ) ∈A N with xN
0,i ∈ supp(μ0) for every i= 1, . . . , N, such that

μ
[
xN
]→μ in C

(
[0, T]; P1

(
Rd
))

, ν
[
xN , uN

]
⇀∗ ν in M([0, T]×Rd; U), (3.14)

lim
N→∞

1

N

N∑
i=1

φ(|xN
0,i|)=

∫
Rd
φ(|x|) dμ0(x), (3.15)

and

lim sup
N→∞

EN
(
xN , uN

)≤ E(μ, ν). (3.16)

As a combination of Theorems 3.1 and 3.2, we obtain the convergence of minima.

Theorem 3.3 Let μ0 ∈P1(Rd) be satisfying (3.13).

(1) There exists a sequence xN
0 ∈ (Rd)N , N ∈N, satisfying

lim
N→∞W1

(
μ
[
xN

0

]
,μ0
)= 0, (3.17)

lim sup
N→∞

1

N

N∑
i=1

φ
(∣∣xN

0,i

∣∣)= ∫ φ(|x|) dμ0(x), (3.18)

lim
N→∞ EN

(
xN

0

)= E(μ0). (3.19)

(2) If a sequence xN
0 satisfies (3.17), then for every choice of (xN , uN ) ∈ P(xN

0 ) with μN :=
μ[xN ] and νN := ν[xN , uN ], the collection of limit points (μ, ν) of (μN , νN ) in C([0, T];
P1(Rd))×M([0, T]×Rd; U) is non-empty and contained in P(μ0).

(3) If moreover U =Rd and μ0 has compact support, then every sequence (xN
0 )N∈N satisfying

(3.17) and uniformly supported in a compact set also satisfies (3.18) and (3.19).

3.1 Examples

First-order examples

Take a continuous function H : Rd→Rd satisfying

|H(x)| ≤ A+ B|x| ∀x ∈Rd

and set

FN (x, y) := 1

N

N∑
j=1

H(x− yj)=
∫
Rd

H(x− y) dμ[ y]( y)

and

F(x,μ) :=
∫
Rd

H(x− y) dμ( y).
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When H =−∇W for an even function W ∈C1(Rd), the system (3.8) is associated with the
gradient flow of the interaction energy W : (Rd)N→R defined by

W(x) := 1

2N2

N∑
i, j=1

W (xi − xj)

with respect to the weighted norm ‖x‖2 = 1
N

∑N
i=1 |xi|2.

More generally, we can consider a continuous kernel K(x, y) : Rd ×Rd→Rd satisfying

|K(x, y)| ≤ A+ B(|x| + |y|) ∀x, y ∈Rd ,

obtaining

FN (x, y) := 1

N

N∑
j=1

K(x, yj)=
∫
Rd

K(x, y) dμ[ y]( y)

and

F(x,μ) :=
∫
Rd

K(x, y) dμ( y).

An example for LN and L is the variance:

LN (x, x) :=
∣∣∣∣∣∣x−

1

N

N∑
j=1

xj

∣∣∣∣∣∣
2

,

and

L(x,μ) :=
∣∣∣∣x−

∫
Rd

y dμ( y)

∣∣∣∣
2

.

A second-order example

Second-order systems can be easily reduced to first-order models if we admit controls on posi-
tions and velocities. Let us see an example where controls act only on the velocities. Assume d =
2m and write the vector x= (q, p), where q ∈Rm denotes the position and p ∈Rm the velocity.

We consider the vector field FN (x, x)= (FN
1 (x), f N

2 (x, x)) defined by

FN
1 ((q, p))= p, FN

2 ((q, p), (q, p))=− 1

N

N∑
j=1

∇W ( p− pj), (3.20)

where the first component FN
1 is local and it is not influenced by the interaction with the other

particles.
We are interested in the system{

q̇i = pi,

ṗi =− 1
N

∑N
j=1 ∇W ( pi − pj)+ ui,

which corresponds to (3.8) where the vector u has the particular form u= ((0, u1), . . . , (0, uN )),
so that it is constrained to the subspace UN where U = {(0, u) : u ∈Rm} ⊂R2m. The limit vector
field F(x,μ)= (F1(x), f 2(x,μ)) is defined by

F1((q, p))= p, F2((q, p),μ)=−∇pW ∗μ,
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and the continuity equation

∂tμt +∇ ·
(

F(x,μt)μt + ν t

)
= 0

becomes a Vlasov-like equation

∂tμt + p · ∇qμt +∇p ·
(
F2(x,μt)μt + ν t

)= 0.

It is easy to check that this structure fits in our abstract setting, since FN , f satisfy the compati-
bility condition (3.6): for every x ∈Rd , y ∈ (Rd)N and μ ∈P1(Rd), we have F(x,μ)−FN (x, y)=(
0, F2(x,μ)−FN

2 (x, y)
) ∈UN .

By choosing FN
2 in (3.20) as

FN
2 ((q, p), (q, p))=−αp− 1

N

N∑
j=1

∇W ( p− pj),

for some α > 0, we obtain a model with friction in the velocity part. By choosing FN
2 in (3.20) as

FN
2 ((q, p), (q, p))=− 1

N

N∑
j=1

a(|q− qj|)( p− pj),

where a : [0,+∞)→R+ is a continuous and non-increasing (thus bounded) function, we obtain
a model of alignment in velocity. A particular and interesting example for a is given by the
following decreasing function a(|q|)= 1/(1+ |q|2)γ for some γ ≥ 0, which yields the Cucker–
Smale flocking model [31, 32].

An example for LN and L in the second-order model is the variance of the velocities:

LN ((q, p), (q, p)) :=
∣∣∣∣∣∣p−

1

N

N∑
j=1

pj

∣∣∣∣∣∣
2

,

and

L((q, p),μ) :=
∣∣∣∣p−

∫
Rd

r2 dμ(r1, r2)

∣∣∣∣
2

.

4 The finite dimensional problem

Here we discuss the well-posedness of the finite dimensional control problem (3.10).
A first estimate on the solution is presented in the following Lemma, where we use the notation
|y|N = 1

N

∑N
i=1 |yi|, with y= ( y1, . . . , yN ) ∈ (Rd)N .

Lemma 4.1 Let (x, u) ∈A N . Then

sup
t∈[0,T]

|x(t)|N ≤
(
|x(0)|N + AT +

∫ T

0
|u(s)|N ds

)
e2BT , (4.1)

where A and B are the constants of the assumption (3.5).

Proof From the integral formulation of equation (3.8), we get

|xi(t)| ≤ |xi(0)| +
∫ t

0
|FN (xi(s), x(s))|ds+

∫ t

0
|ui(s)| ds

≤ |xi(0)| +
∫ t

0
(A+ B(|xi(s)| + |x(s)|N )) ds+

∫ t

0
|ui(s)| ds.
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Averaging with respect to N , we obtain

|x(t)|N ≤ |x(0)|N + AT +
∫ T

0
|u(s)|N ds+ 2B

∫ t

0
|x(s)|N ds

and we conclude by Gronwall lemma. �

Proposition 4.2 For every N ∈N and x0 ∈ (Rd)N , the minimum problem (3.10) admits a
solution, i.e., the set PN (x0) is not empty.

Proof We fix N ∈N and x0 ∈ (Rd)N . Let λ := inf {EN (x, u) : (x, u) ∈A N (x0)}. Since A N (x0)
is not empty, λ<+∞. Let (xk , uk) ∈A N (x0) be a minimising sequence and C := supk E

N

(xk , uk)<+∞.
Since

sup
k

∫ T

0
ψ(uk

i (t)) dt≤C, ∀ i= 1, . . . , N , (4.2)

and the function ψ is superlinear, then the sequence uk is equi-integrable and hence weakly
relatively compact in L1([0, T]; UN ). Hence there exists u ∈ L1([0, T], UN ) and a subsequence,
again denoted by uk , weakly convergent to u in L1([0, T], UN ).

Thanks to Lemma 4.1, the associated trajectories xk are equi-bounded. Let us now show the
equi-continuity of xk

i (t). For s≤ t, by equation (3.8), we have

xk
i (t)− xk

i (s)=
∫ t

s
FN (xk

i (r), xk(r)) dr+
∫ t

s
uk

i (r) dr. (4.3)

Using the growth conditions (3.5) and (4.1), we get

∣∣xk(t)− xk(s)
∣∣
N
≤ 1

N

N∑
i=1

∫ t

s

∣∣ f N
(
xk

i (r), xk(r)
)∣∣ dr+

∫ t

s

∣∣uk(r)
∣∣
N

dr

≤ A(t− s)+ 2B

∫ t

s

∣∣xk(r)
∣∣
N

dr+
∫ t

s

∣∣uk(r)
∣∣
N

dr

≤ A(t− s)+ 2B

(
|x0|N + AT +

∫ T

0

∣∣uk(r)
∣∣
N

dr

)
e2BT (t− s)+

∫ t

s
|uk(r)|N dr.

Since
∫ T

0 |uk(r)|N dr is bounded, we have

sup
k

∣∣xk(t)− xk(s)
∣∣
N
≤ C̃|t− s| + sup

k

∣∣∣∣
∫ t

s

∣∣uk(r)
∣∣
N

dr

∣∣∣∣ , ∀ s, t ∈ [0, T], (4.4)

where C̃ := A+ 2B
(
|x0|N + AT + supk

∫ T
0 |uk(r)|N dr

)
e2BT . By the equi-integrability of uk , the

inequality (4.4) shows the equi-continuity of xk . By Ascoli–Arzelà theorem, there exists a con-
tinuous curve x and a subsequence, again denoted by xk such that xk→ x in C([0, T]; (Rd)N ).
Passing to the limit in (4.3), we obtain

xi(t)− xi(s)=
∫ t

s
FN (xi(r), x(r)) dr+

∫ t

s
ui(r) dr, i= 1, . . . , N ,
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from which we deduce that x is absolutely continuous and solves equation (3.8). Hence (x, u) ∈
A N (x0).

Finally, by the convexity of ψ and the continuity of LN , we obtain the lower semicontinuity
property:

lim inf
k

EN
(
xk , uk

)= lim inf
k

[ ∫ T

0

1

N

N∑
i=1

LN
(
xk

i (t), xk(t)
)

dt+ 1

N

N∑
i=1

∫ T

0
ψ
(
uk

i (t)
)

dt

]

≥
∫ T

0

1

N

N∑
i=1

LN (xi(t), x(t)) dt+ 1

N

N∑
i=1

∫ T

0
ψ(ui(t)) dt,

whence the minimality of (x, u) ∈A N (x0). �

5 Momentum estimates

In this section, we study the set A . We observe that if (μ, ν) ∈A , then for any ζ ∈C1
c (Rd), we

have that the map t 
→ ∫
Rd ζdμt is absolutely continuous, a.e. differentiable, and

d

dt

∫
Rd
ζ (x) dμt(x)=

∫
Rd
〈 f (t, x),∇ζ (x)〉 dμt(x)+

∫
Rd
〈∇ζ (x), dν t(x)〉 for a.e. t ∈ [0, T], (5.1)

for the vector field f (t, x) :=F(x,μt) satisfying the structural bounds

| f (t, x)| ≤ A+ B

(
|x| +

∫
Rd
|x| dμt

)
. (5.2)

In order to highlight the structural assumptions needed for the a priori estimates of this section,
we introduce the set

˜A := {(μ, ν, f ) :μ ∈ AC
(
[0, T]; P1

(
Rd
))

, ν ∈M (
[0, T]×Rd; U

)
, E (ν, μ̃) <∞,

f : [0, T]×Rd→Rd Borel function satisfying (5.1) and (5.2)
}
;

(5.3)

the above discussion shows that if (μ, ν) ∈A , then setting f (t, x) :=F(x,μt), we have
(μ, ν, f ) ∈ ˜A .

Firstly, let us show a uniform bound in time of the first moment, which is the infinite
dimensional version of Lemma 4.1.

Lemma 5.1 If (μ, ν, f ) ∈ ˜A , then the following estimate holds true

sup
t∈[0,T]

∫
Rd
|x| dμt(x)≤

(∫
Rd
|x| dμ0(x)+ AT + |ν| ((0, T)×Rd

))
e2BT . (5.4)

In particular, there exists a constant M > 0 only depending on A, B, T , E(μ, ν) and
∫
Rd |x| dμ0

such that

| f (t, x)| ≤M(1+ |x|) for every (t, x) ∈ [0, T]×Rd . (5.5)

Proof Let ζ ∈C1
c (Rd) be a cut-off function such that 0≤ ζ ≤ 1,

ζ (x)=
{

1 if |x| ≤ 1,
0 if |x| ≥ 2,
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and |∇ζ | ≤ 1. Let ζn be the sequence ζn(x) := ζ (x/n). Consider now the product ζn(x)|x| and
smooth it out in zero by substituting |x| with gε(x) :=√|x|2 + ε. Now ζngε is a proper test
function and the following equality holds true:∫

Rd
ζn(x)gε(x)dμt(x)−

∫
Rd
ζn(x)gε(x)dμ0(x)

=
∫ t

0

∫
Rd
〈 f (s, x),∇(ζn(x)gε(x))〉dμs(x)ds+

∫ t

0

∫
Rd
〈∇(ζn(x)gε(x)), dνs(x)〉ds.

Thanks to

|∇ζn(x)| ≤ 1

n
, gε(x)≤ |x| +√ε, |∇gε(x)| = |x|√|x|2 + ε ≤ 1,

we can write∫
Rd
ζn(x)gε(x)dμt(x)−

∫
Rd
ζn(x)gε(x)dμ0(x)

≤
(

1+
√
ε

n

) ∫ t

0

∫
Rd
| f (s, x)|dμs(x)ds+

(
1+
√
ε

n

) ∫ t

0

∫
Rd

d|νs|(x)ds.

Apply now monotone convergence as ε→ 0 first, then let n→∞. Owing to ζn|x| ↗ |x|, we get∫
Rd
|x|dμt(x)−

∫
Rd
|x|dμ0(x)≤

∫ t

0

∫
Rd
| f (s, x)|dμs(x)ds+ |ν| ((0, T)×Rd

)
≤
∫ t

0

∫
Rd

[
A+ B

(
|x| +

∫
Rd
|x| dμs(x)

)]
dμs(x)ds+ |ν| ((0, T)×Rd

)
≤ AT + 2B

∫ t

0

∫
Rd
|x|dμs(x)ds+ |ν| ((0, T)×Rd

)
,

and we conclude by Gronwall inequality. �

Lemma 5.2 If (μ, ν, f ) ∈ ˜A with ν = vμ̃, then for any ϑ ∈C1
Lip(Rd) the following equality

holds:

d

dt

∫
Rd
ϑ(x) dμt(x)=

∫
Rd
〈 f (t, x)+ v(t, x),∇ϑ(x)〉 dμt(x) for a.e. t ∈ [0, T],

where C1
Lip(Rd) denotes the space of continuously differentiable functions with bounded gradient.

Proof Let ϑ ∈C1
Lip(Rd) and ζn the sequence of cut-off functions defined in the proof of

Lemma 5.1. Then ζnϑ is a test function and

d

dt

∫
Rd
ζn(x)ϑ(x)dμt(x)=

∫
Rd
〈 f (t, x)+ v(t, x),∇(ζn(x)ϑ(x))〉dμt(x)

=
∫
Rd
〈 f (t, x)+ v(t, x),∇ζn(x)ϑ(x)+ ζn(x)∇ϑ(x)〉dμt(x).

Taking into account that |∇ζn| ≤ 1
nχB2n , the Lipschitz continuity of ϑ , the growth condition on f

and Lemma 5.1, by dominated convergence, we obtain that∫
Rd
ϑ(x)dμt(x)=

∫
Rd
ϑ(x)dμ0(x)+

∫
Rd
〈 f (t, x)+ v(t, x),∇ϑ(x)〉dμt(x).
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�

Now we are ready to prove the main result of this section. It involves an auxiliary admissible
function θ : [0,∞)→ [0,∞) (according to Definition 2.2) dominated by ψ , i.e.,

θ (|x|)≤ 1+ψ(x) for every x ∈U ; (5.6)

notice that, combining Lemma 2.3 and Remark 2.4, if μ0 ∈P1(Rd), we can always find an
admissible function θ satisfying (5.6) and∫

Rd
θ (|x|) dμ0(x)<∞. (5.7)

Proposition 5.3 Let (μ, ν, f ) ∈ ˜A and let θ be an admissible function satisfying (5.6) and (5.7).
Then there exists a constant C> 0, depending only on A, B, T,

∫
Rd |x| dμ0(x), E(μ, ν), θ (1) and

the doubling constant K of θ (see (2.4)), such that

sup
t∈[0,T]

∫
Rd
θ (|x|) dμt(x)≤C

(
1+

∫
Rd
θ (|x|) dμ0(x)

)
. (5.8)

Proof Since E(μ, ν)<+∞, we have that ν = vμ̃. We also set ϑ(x) := θ (|x|), x ∈Rd .

Step 1: We start by approximating θ from below with a sequence of C1 functions:

ϑn(x) := θn(|x|), θn(r) :=
{
θ (r) if |x| ≤ n

θ ′(n)(r− n)+ θ (n) if r> n.

Observe that θn are Lipschitz since (θn)′(r)≤ θ ′(n), for every r≥ 0.∫
Rd
ϑn(x)dμt(x)=

∫
Rd
ϑn(x)dμ0(x)+

∫ t

0

∫
Rd
〈 f (s, x)+ v(s, x),∇ϑn(x)〉dμs(x)ds

≤
∫
Rd
ϑn(x)dμ0(x)+

∫ t

0

∫
Rd
| f (s, x)+ v(s, x)||∇ϑn(x)|dμs(x)ds.

By construction, θn(|x|)↗ θ (|x|) |∇ϑn(x)| ↗ |∇ϑ(x)|, for every x ∈Rd; we can thus pass to the
limit in the relation above to get∫

Rd
ϑ(x)dμt(x)≤

∫
Rd
ϑ(x)dμ0(x)+

∫ t

0

∫
Rd
| f (s, x)+ v(s, x)||∇ϑ(x)|dμs(x)ds. (5.9)

Step 2: We want to estimate the right-hand side of (5.9). Since θ ′(r)≥ 0 by (2.6) and |∇ϑ(x)| =∣∣∣θ ′(|x|) x
|x|
∣∣∣= θ ′(|x|), (5.5) yields

∫
Rd
| f (s, x)||∇ϑ(x)|dμs(x)≤M

∫
Rd

(1+ |x|)θ ′(|x|)dμs(x).

By the monotonicity of θ ′ (2.7) in [0, 1] and (2.6), we have

(1+ r)θ ′(r)≤ 2K(1+ θ (1)+ θ (r)),
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so that ∫
Rd
| f (s, x)||∇ϑ(x)|dμs(x)≤ 2MK

(
1+ θ (1)+

∫
Rd
θ (|x|)dμs(x)

)
.

Concerning the second term on the right-hand side of (5.9), we have

|v(s, x)||∇ϑ(x)| ≤ θ (|v(s, x)|)+ θ∗(|∇ϑ(x)|)
= θ (|v(s, x)|)+ θ∗(θ ′(|x|))
= θ (|v(s, x)|)+ θ ′(|x|)|x| − θ (|x|)
≤ θ (|v(s, x)|)+K(1+ θ (|x|)),

where the equality θ (|x|)+ θ∗(θ ′(|x|))= θ ′(|x|)|x| comes from the definition of the Fenchel
conjugate θ∗. What we end up with is the following:∫ t

0

∫
Rd
|v(s, x)||∇ϑ(x)|dμs(x)ds≤

∫ T

0

∫
Rd
θ (|v(s, x)|)dμs(x)ds+Kt+K

∫ t

0

∫
Rd
θ (|x|)dμs(x)ds

≤ TE(μ, ν)+ (1+K)T +K

∫ t

0

∫
Rd
θ (|x|)dμs(x)ds.

Summing up the two estimates, we obtain for every t ∈ [0, T] and a suitable constant C> 0 :∫
Rd
θ (|x|)dμt(x)≤

∫
Rd
θ (|x|)dμ0(x)+CT +C

∫ t

0

∫
Rd
θ (|x|)dμs(x)ds,

and thanks to the Gronwall inequality, we get∫
Rd
θ (|x|)dμt(x)≤ eCT

(∫
Rd
θ (|x|)dμ0(x)+CT

)
. �

6 Proof of the main theorems

6.1 The superposition principle

We first recall the superposition principle for solutions of the continuity equation

∂tμt +∇ · (w(t, ·)μt)= 0. (6.1)

Let us denote with �T the complete and separable metric space of continuous functions from
[0, T] to Rd endowed with the sup-distance and introduce the evaluation maps et : �T→Rd

defined by et(γ ) := γ (t), for t ∈ [0, T]. The following result holds:

Theorem 6.1 (Superposition principle) Let μt be a narrowly continuous weak solution to (6.1)
with a velocity field w satisfying∫ T

0

∫
Rd
|w(t, x)| dμt(x)dt<+∞.

Then there exists π ∈P(�T ) concentrated on the set of curves γ ∈ AC([0, T]; Rd) such that

γ̇ (t)=w(t, γ (t)) for a.e. t ∈ [0, T].
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Moreover, μt = (et)#π for any t ∈ [0, T], i.e.,∫
Rd
ϑ( y) dμt( y)=

∫
�T

ϑ(γ (t)) dπ (γ ), ∀ ϑ ∈Cb(Rd).

For the proof, we refer to Ref. [3, Theorem 3.4].

6.2 �-convergence

Let us start with a preliminary lemma.

Lemma 6.2 Let (x, u) ∈ AC([0, T]; (Rd)N )× L1([0, T]; UN ) and μ=μ[x], ν = ν[x, u]. Then we
have

1

N

N∑
i=1

ψ(ui(t))≥�(ν t|μt) for a.e. t ∈ [0, T]. (6.2)

Moreover, if (x, u) ∈A N , then

1

N

N∑
i=1

ψ(ui(t))=�(ν t|μt) for a.e. t ∈ [0, T]. (6.3)

Proof Let us first compute the density of ν w.r.t. μ̃. We introduce the finite set IN := {1,
2, . . . , N} with the discrete topology and the normalised counting measure σN = 1

N

∑N
i=1 δi.

We can identify x with a continuous map from [0, T]× IN to Rd , x(t, i) := xi(t), so that μt =
x(t, ·)
σN . Similarly, we set u(t, i) := ui(t), where u : [0, T]→UN is a Borel representative. In
order to represent μ̃ and ν, it is useful to deal with the map y : [0, T]× IN→ [0, T]×Rd , y(t, i) :=
(t, x(t, i)), which yields μ̃= y


(
λ⊗ σN

)
and ν = y


(
u · (λ⊗ σN )

)
. We denote by Y ⊂ [0, T]×Rd

the range of y and by

X (t)= {x ∈Rd : (t, x) ∈ Y } = {x ∈Rd : xi(t)= x for some i ∈ IN }
its fibres. For every (t, x) ∈ [0, T]×Rd , we will also consider the set

J (t, x) := {i ∈ IN : xi(t)= x} with its characteristic function χ t,x(i) :=
{

1 if xi(t)= x

0 otherwise.
(6.4)

For every t ∈ [0, T], the collection {χ t,x : x ∈ X (t)} provides a partition of unity of IN and for every
i ∈ IN , the map (t, x) 
→ χ t,x is upper semicontinuous in [0, T]×Rd . The conditional measures
μ̃t,x ∈P(IN ) are then defined by

μ̃t,x(J ) := σN (J ∩ J (t, x))/σN (J (t, x)), (t, x) ∈ Y ;

since for every J ⊂ IN

σN (J ∩ J (t, x))=
∫

J

χ t,x dσN = 1

N

∑
i∈ J

χ t,x(i),

the map (t, x) 
→ σN (J ∩ J (t, x)) is also upper semicontinuous and μ̃t,x is a Borel family.
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One immediately checks that μ̃t,x provides a disintegration (see, e.g., [5, Theorem 5.3.1]) of
λ⊗ σN w.r.t. the map y, i.e.,

λ⊗ σN =
∫

[0,T]×Rd
μ̃t,x dμ̃(t, x).

Since ν = y

(
u · (λ⊗ σN )

)
, we eventually end up with the representation formula for the Borel

vector field v : ⎧⎪⎨
⎪⎩

v(t, x) :=
∫

IN

u(t, i) dμ̃t,x(i)= 1


 J (t, x)

∑
i∈J (t,x)

ui(t) if (t, x) ∈ Y ,

v(t, x) := 0 otherwise.

In particular,

ν t = v(t, ·)μt, μt =
∑

x∈X (t)


 J (t, x)

N
δx,

and consequently

�(ν t|μt)=
∫
Rd
ψ(v(t, x)) dμt(x)=

∑
x∈X (t)


 J (t, x)

N
ψ

⎛
⎝ 1


 J (t, x)

∑
i∈J (t,x)

ui(t)

⎞
⎠. (6.5)

The convexity of ψ immediately yields

�(ν t|μt)≤ 1

N

N∑
i=1

ψ(ui(t)). (6.6)

Let us show that equality holds in (6.6) if (x, u) ∈A N .
Let P be the collection of all the partitions P of IN . It is clear that for every t ∈ [0, T], the

family Px(t) := {J (t, x) : x ∈ X (t)} is an element of P; moreover for every P ∈P , the set

SP := {t ∈ [0, T] : Px(t)= P} is Borel. (6.7)

To show (6.7), we introduce an order relation on P: we say that P1 ≺ P2 if every element of P1

is contained in some element of P2. We denote by P̂ := {Q ∈P : P≺Q} the collection of all the
partitions Q coarser than P.

It is easy to check that for every P ∈P , the set P−1
x

(
P̂
)= {t ∈ [0, T] : Px(t) ∈ P̂} is closed. In

fact, if Px(t) �∈ P̂, then there is a set I ∈ P not contained in any element of Px(t), so that we can
find two indices i, j ∈ I belonging to different elements of Px(t), i.e., xi(t) �= xj(t). By continuity,
this relation holds in a neighbourhood U of t, so that Px(s) �∈ P̂ for every s ∈U .

Since for every partition P ∈P {P} = P̂ \ ∪{Q̂ : Q ∈ P̂, Q �= P
}
, it follows that

SP = P−1
x

(
P̂
) \ ⋃

Q∈P̂,Q�=P

P−1
x

(
Q̂
)

,

so that SP is the difference between closed sets and (6.7) holds.
We can therefore decompose the interval [0, T] in the finite Borel partition {SP : P ∈P}. On

the other hand, for every partition P ∈P and every pair of indices i, j in I ∈ P, we have xi(t)=
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xj(t) in SP so that ẋi(t)= ẋj(t) for λ-almost every t ∈ SP and consequently, by (3.8), we obtain that
ui(t)= uj(t) for λ-a.e. t ∈ SP. We eventually deduce


Iψ

(
1


I

∑
i∈I

ui(t)

)
=
∑
i∈I

ψ(ui(t)) for every I ∈ Px(t), λ-a.e. in SP,

and therefore, by (6.5),

�(ν t|μt)=
∑

I∈Px(t)


I

N
ψ

(
1


I

∑
i∈I

ui(t)

)
= 1

N

∑
I∈Px(t)

∑
i∈I

ψ(ui(t))

=
N∑

i=1

ψ(ui(t)) for λ-a.e. t ∈ SP.

Since {SP : P ∈P} is a finite Borel partition of [0, T], we get (6.3). �

Proof of Theorem 3.2 The lim inf inequality. Let (μ, ν) ∈ AC([0, T]; P1(Rd))×M([0, T]×
Rd; U) and (xN , uN ) ∈ AC([0, T]; (Rd)N )× L1([0, T]; UN ), N ∈N, such that μN =μ[xN ]→
μ in C([0, T]; P1(Rd)) and νN = ν[xN , uN ]⇀∗ ν in M([0, T]×Rd; U).

Since LN ≥ 0, LN (x, xN (t))→ L(x,μt) on compact sets and μ[xN ]⇀∗ μ, then for every
compact K ⊂Rd , by (3.1) we have

lim inf
N→+∞

∫
Rd

LN
(
x, xN (t)

)
dμN

t (x)

≥ lim inf
N→+∞

∫
K

LN
(
x, xN (t)

)
dμn

t (x)=
∫

K
L(x,μt) dμt(x).

(6.8)

Since

1

N

N∑
i=1

LN
(
xN

i (t), xN (t)
)= ∫

Rd
LN
(
x, xN (t)

)
dμN

t (x)

and L≥ 0, by (6.8) we obtain

lim inf
N→∞

∫ T

0

1

N

N∑
i=1

LN
(
xN

i (t), xN (t)
)

dt≥
∫ T

0

∫
Rd

L(x,μt) dμt(x) dt. (6.9)

By (6.2) we have

1

N

N∑
i=1

ψ
(
uN

i (t)
)≥� (νN

t

∣∣μN
t

)
for a.e. t ∈ [0, T], (6.10)

and Theorem 2.6 yields

lim inf
N→∞

∫ T

0
�
(
νN

t

∣∣μN
t

)
dt= lim inf

N→∞ �
(
νN
∣∣μ̃N

)≥�(ν|μ̃)=
∫ T

0
�(ν t|μt) dt. (6.11)

By (6.9), (6.10) and (6.11), it follows (3.12).

The lim sup inequality. Recall that φ is an admissible function satisfying (2.5). Let (μ, ν) ∈A ,
such that E(μ, ν)<+∞ and

∫
Rd φ(|x|) dμ0(x)<∞.
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Since �(ν|μ̃)<+∞, we have ν = vμ̃ for a Borel vector field v : [0, T]×Rd→U . Since
(μ, ν) ∈A the continuity equation

∂tμt +∇ ·
(
w(t, ·)μt

)= 0 (6.12)

holds with the vector field w(t, x) := f (t, x)+ v(t, x), f (t, x) :=F(x,μt). By (3.5) and Lemma 5.1,
we have that

f ∈C
(
[0, T]×Rd

)
, | f (t, x)| ≤M(1+ |x|),

∫ T

0

∫
Rd
|w(t, x)| dμt(x) dt<+∞. (6.13)

By Theorem 6.1, there exists a probability measure π ∈P(�T ) such that (et)
π =μt for every
t ∈ [0, T] and it is concentrated on the absolutely continuous solutions of the ODE:

γ̇ (t)= f (t, γ (t))+ v(t, γ (t)). (6.14)

The strategy of the proof consists in finding an appropriate sequence of measures πN ∈PN (�T )
narrowly convergent to π , defining μN

t := (et)
πN and xN a corresponding curve such that
μ[xN ]=μN . Then the objective is to construct a suitable sequence of controls uN in such a way
that the sequence (xN , uN ) belongs to A N , μN→μ in C([0, T]; P1(Rd)), νN = ν[xN , uN ]⇀∗ ν
in M([0, T]×Rd; U) and (3.16) holds.

Step 1: Definition of auxiliary functionals. We define the set

A := {γ ∈ �T : γ ∈ AC
(
[0, T]; Rd

)
, (6.14) holds for a.e. t ∈ [0, T]

}
and we observe that π (A)= 1.

Starting from μ and L, we define the functional L : A→ [0,+∞) by

L(γ ) :=
∫ T

0
L(γ (t),μt) dt.

Starting from ψ and v, we define the functional F : A→ [0,+∞) by

F(γ ) :=
∫ T

0
ψ(v(t, γ (t))) dt.

By Fubini’s theorem and the finiteness of E(μ, ν), we have∫ T

0

∫
Rd

L(x,μt) dμt(x) dt=
∫ T

0

∫
A

L(et(γ ),μt) dπ (γ ) dt=
∫

A
L(γ ) dπ (γ ) (6.15)

and ∫ T

0

∫
Rd
ψ(v(t, x)) dμt(x) dt=

∫ T

0

∫
A
ψ(v(t, et(γ )) dπ (γ ) dt=

∫
A
F(γ ) dπ (γ ). (6.16)

We define the functional H : A→ [0,+∞) by

H(γ ) :=
∫ T

0
φ(|v(t, γ (t))|) dt.

Starting by φ satisfying (2.5), we define the functional G : A→ [0,+∞) by

G(γ ) := φ(|γ (0)|)+
∫ T

0
φ(|γ (t)|) dt.
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It is not difficult to show that G and L are continuous. Here we prove that F and H are lower
semicontinuous. Let γ ∈ A and (γk)k∈N be a sequence in A, such that limk→+∞ supt∈[0,T] |γk(t)−
γ (t)| = 0. We define the sequence fk ∈ L1([0, T]; Rd) by fk(t) := v(t, γk(t)).

If supk∈N
∫ T

0 φ(|v(t, γk(t))|) dt<+∞, then by de la Vallée Poussin’s criterion [4, Proposition
1.12] for equi-integrability and Dunford–Pettis theorem, there exist g ∈ L1([0, T]; Rd) and a
subsequence (not relabeled) of fk weakly convergent in L1([0, T]; Rd) to g such that

lim inf
k∈N

∫ T

0
φ(|v(t, γk(t))|) dt≥

∫ T

0
φ(|g(t)|) dt.

Since γk satisfies

γk(t2)− γk(t1)=
∫ t2

t1

[v(t, γk(t))+ f (t, γk(t))] dt, ∀ t1, t2 ∈ [0, T] (6.17)

and γ satisfies

γ (t2)− γ (t1)=
∫ t2

t1

[v(t, γ (t))+ f (t, γ (t))] dt, ∀ t1, t2 ∈ [0, T] (6.18)

passing to the limit in (6.17) as k→∞, we obtain

γ (t2)− γ (t1)=
∫ t2

t1

[g(t)+ f (t, γ (t))] dt.

By (6.18) it holds:

∫ t2

t1

g(t)dt=
∫ t2

t1

v(t, γ (t))dt, ∀t1, t2 ∈ [0, T],

and Lebesgue differentiation theorem yields g(t)= v(t, γ (t)) for a.e. t ∈ [0, T].

Step 2: Construction of πN . We define the function F := (F, L, G, H) : A→R4.
Notice that the finiteness of E(μ, ν), (6.15) and (6.16) implies that

∫
A F(γ ) dπ (γ )

<+∞,
∫

A L(γ ) dπ (γ )<+∞ and
∫

A H(γ ) dπ (γ )<+∞. Since
∫

A G(γ ) dπ (γ )= ∫ T
0

∫
Rd φ(|x|)

dμt(x) dt, by Proposition 5.3, we also have that
∫

A G(γ ) dπ (γ )<+∞.
By Lusin’s theorem applied to the space A with the measure π and the function F, there exists

a sequence of compact sets Ak such that Ak ⊂ Ak+1 ⊂ A, π (A \ Ak)< 1
k , for all k ≥ 1, and F|Ak is

continuous. Moreover, we have

lim
k→∞

π (Ak)= π
⎛
⎝ ∞⋃

j=1

Aj

⎞
⎠= 1, π

⎛
⎝A \

∞⋃
j=1

Aj

⎞
⎠= 0. (6.19)

Then we define π̃ k ∈P(�T ) by

π̃ k := 1

π (Ak)
π Ak .

https://doi.org/10.1017/S0956792519000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000044


1178 M. Fornasier et al.

It is easy to check that (π̃ k)k∈N weakly converges to π as k→∞; since for each component Fj,
j= 1, 2, 3, 4, of F is non-negative, Beppo Levi monotone convergence theorem yields

lim
k→+∞

∫
Ak

Fj(γ ) dπ (γ )=
∫
⋃∞

k=1 Ak

Fj(γ ) dπ (γ )=
∫

A
Fj(γ ) dπ (γ ), (6.20)

and (6.19) easily yields

lim
k→∞

∣∣∣∣
∫
�T

F(γ ) dπ̃ k(γ )−
∫
�T

F(γ ) dπ (γ )

∣∣∣∣= 0. (6.21)

Since Ak is compact, we can find a sequence of atomic measures

m 
→ π̃ k
m := 1

m

m∑
i=1

δγi,k,m , γi,k,m ∈ Ak ,

narrowly convergent to π̃ k as m→+∞. Since F|Ak is bounded and continuous, in particular, it
holds that

lim
m→∞

∫
�T

F(γ ) dπ̃ k
m(γ )=

∫
�T

F(γ ) dπ̃ k(γ ).

Hence, for every k ∈N, there exists m̄(k) satisfying

W
(
π̃ k

m, π̃ k
)≤ 1

k
and

∣∣∣∣
∫
�T

F(γ ) dπ̃ k
m(γ )−

∫
�T

F(γ ) dπ̃ k(γ )

∣∣∣∣≤ 1

k
, ∀m≥ m̄(k), (6.22)

where W is any distance metrising the weak convergence.
We define π̄ k := π̃ k

m̄(k) and we clearly have that π̄ k ∈Pm̄(k)(�T ), W (π̄ k , π )→ 0 as k→∞ and,
by (6.21) and (6.22),

lim
k→∞

∣∣∣∣
∫
�T

F(γ ) dπ̄ k(γ )−
∫
�T

F(γ ) dπ (γ )

∣∣∣∣= 0. (6.23)

Since we can choose the sequence k 
→ m̄(k) strictly increasing, we can consider the sequence
N 
→ πN such that πN ∈PN (�T ), πN := π̄ k when m̄(k)≤N < m̄(k + 1); πN narrowly converges
to π as N→+∞ and

lim
N→+∞

∫
�T

F(γ ) dπN (γ )=
∫
�T

F(γ ) dπ (γ ). (6.24)

Since all the components of F are non-negative and lower semicontinuous maps, by a com-
bination of [4, Proposition 1.62 (a)] and [4, Proposition 1.80], we have that (6.23) yields, in
particular, that the measures

σN
1 :=F π + F πN , σN

2 := G π + G πN , σN
3 :=H π +H πN , σN

4 :=L π +L πN

weakly converge to σ1 := 2F π , σ2 := 2G π , σ3 := 2H π and σ4 := 2L π , respectively. In partic-
ular, they are uniformly tight, so that for every ε > 0, there exists N̄(ε) ∈N and a compact set Bε
and such that

Bε ⊂ AN ,
(
π + πN

)
(�T\Bε)+

∫
�T \Bε

(F+L+H+ G) d(π + πN )≤ ε for every N ≥ N̄(ε).

(6.25)
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Step 3: Definition of (xN , uN ) and convergence. We define μN
t := (et)
πN ∈PN (Rd) and we

denote by xN a corresponding curve such that μ[xN ]=μN . We define

f N (t, x) :=FN
(
x, xN (t)

)=F
(
x,μN

t

)
, vN (t, x) := v(t, x)+ f (t, x)− f N (t, x) (6.26)

uN
i (t) := vN (t, xN

i (t)) (6.27)

and uN = (uN
1 , . . . , uN

N ). Notice that

f (t, x)− f N (t, x) ∈U and uN ∈UN , thanks to the compatibility condition (3.6).

We have that νN := ν[xN , uN ]= vNμN . Since each component xN
i of xN belongs to A, then the

sequence (xN , uN ) belongs to A N , so that (μN , νN ) ∈A . Using the same computation of the
proof of Proposition 5.3, taking into account that μN satisfies

∂tμ
N
t +∇ ·

((
f (t, ·)+ v(t, ·))μN

t

)= 0, (6.28)

with (recall (6.16) and (6.24))∫ T

0

∫
Rd
ψ(v(t, x)) dμN

t (x) dt=
∫
�T

F(γ ) dπN (γ )≤ 1+ E(μ|ν)

for N sufficiently large, we obtain by (6.13), (5.8) and (5.5) that

sup
N∈N

sup
t∈[0,T]

∫
Rd
|x| dμN

t (x)<+∞, sup
N∈N

sup
t∈[0,T]

∫
Rd
φ(|x|) dμN

t (x)<+∞, (6.29)

which implies the uniform convergence μN→μ in C([0, T]; P1(Rd)) and the uniform estimate∣∣ f N (t, x)
∣∣≤M ′(1+ |x|) for every t ∈ [0, T], x ∈Rd , N ∈N, (6.30)

for a suitable constant M ′ > 0. By a direct computation, using the assumption (3.7), we obtain
that νN ⇀∗ ν in M([0, T]×Rd; U).

Step 4: Definition and convergence of FN . We define FN : A→ [0,+∞) by

FN (γ ) :=
∫ T

0
ψ(vN (t, γ (t))) dt. (6.31)

Here we show that the sequence FN converges to F uniformly on every compact set �⊂ Ah

for some h ∈N. To do it, we fix �⊂ Ah and we prove that for any γ ∈� and every sequence
(γN )N∈N ⊂� such that supt∈[0,T] |γN (t)− γ (t)|→ 0, we have FN (γN )→F(γ ) as N→+∞.

By the assumption (3.7), we have that

lim
N→+∞

∣∣ f (t, γN (t))− f N (t, γN (t))
∣∣= 0, ∀ t ∈ [0, T].

Since H is continuous in Ah, it holds

lim
N→+∞

∫ T

0
φ(|v(t, γN (t))|) dt=

∫ T

0
φ(|v(t, γ (t))|) dt. (6.32)

Since φ is strictly convex and superlinear, by Visintin’s Theorem [63, Theorem 3], v(·, γN (·))
strongly converges in L1(0, T) to v(·, γ (·)). Then, using also the continuity of ψ , along a
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subsequence (still denoted by γN ), we have

lim
N→+∞ψ(v(t, γN (t))+ f (t, γN (t))− f N (t, γN (t))=ψ(v(t, γ (t))), for a.e. t ∈ [0, T].

Since by (5.5) and (6.30), we have∣∣ f (t, γN (t))− f N (t, γN (t))
∣∣≤ (M +M ′)

(
1+ |γN (t)|),

then, using the doubling property and the uniform convergence of γN , we can find a constant C
such that

ψ
(
v(t, γN (t))+ f (t, γN (t))− f N (t, γN (t))

)≤C
(

1+ φ(|v(t, γN (t))|)
)

.

By (6.32), the generalised dominated convergence theorem (see for instance [35, Theorem 4,
p. 21]) shows that

lim
N→+∞

∫ T

0
ψ(vN (t, γN (t))) dt=

∫ T

0
ψ(v(t, γ (t))) dt.

Step 5: Definition and convergence of LN . We define LN : A→ [0,+∞) by

LN (γ ) :=
∫ T

0
LN (γ (t), xN (t)) dt. (6.33)

Here we show that the sequence LN converges to L uniformly on every compact set �⊂ Ah

for some h ∈N. As in Step 4, we fix �⊂ Ah and we prove that for every sequence (γN )N∈N ⊂�,
with supt∈[0,T] |γN (t)− γ (t)|→ 0, we have LN (γN )→L(γ ) as N→+∞. Indeed, by (3.1),

lim
N→+∞ LN (γN (t), xN (t))= L(γ (t),μt), ∀ t ∈ [0, T].

Since (γN )N is bounded and μN→μ in C([0, T]; P1(Rd)), by (3.1) we obtain that

sup
N∈N

LN (γN (t), xN (t))<+∞.

By dominated convergence we conclude.

Step 6: Conclusion. By the growth assumptions (6.13) and (6.30) on f , f N , the doubling
property of φ and (2.5), we have

FN (γ )≤C(1+F(γ )+ G(γ )) ∀ γ ∈ A, ∀N ∈N. (6.34)

Moreover, by (3.1) and the uniform convergence of μN to μ, there exists a constant C such that

LN (γ )≤L(γ )+C ∀ γ ∈ A, ∀N ∈N. (6.35)

Fix ε > 0 and let Bε and N̄(ε) such that (6.25) holds and∣∣∣∣
∫
�T

F(γ )dπN (γ )−
∫
�T

F(γ )dπ (γ )

∣∣∣∣< ε.
By (6.34), (6.35) and (6.25), we have∫

�T \Bε
FN (γ )d(π + πN )(γ )≤ ε,

∫
�T \Bε

LN (γ )d(π + πN )(γ )≤ ε ∀N ≥ N̄(ε).
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Moreover, from the previous step, there exists Ñ(ε) such that

sup
γ∈Bε

∣∣FN (γ )− F(γ )
∣∣≤ ε, sup

γ∈Bε

∣∣LN (γ )−L(γ )
∣∣≤ ε ∀N ≥ Ñ(ε).

Hence∣∣∣∣
∫
�T

FN (γ )dπN (γ )−
∫
�T

F(γ )dπ (γ )

∣∣∣∣≤
∣∣∣∣
∫

Bε

FN (γ )dπN (γ )−
∫

Bε

F(γ )dπ (γ )

∣∣∣∣
+
∣∣∣∣
∫
�T \Bε

FN (γ )dπN (γ )−
∫
�T \Bε

F(γ )dπ (γ )

∣∣∣∣
≤ ε+ 2ε, ∀N ≥max{N̄(ε), Ñ(ε)},

which shows that

lim
N→∞

∫
�T

FN (γ )dπN (γ )=
∫
�T

F(γ )dπ (γ ).

Analogously we obtain

lim
N→∞

∫
�T

LN (γ )dπN (γ )=
∫
�T

L(γ )dπ (γ ). �

6.3 Convergence of minima

Proof of Theorem 3.1 Equi-continuity. Let N be fixed and s≤ t. From the constraint (3.8),
we get

W1(μN
s ,μN

t )≤ 1

N

N∑
i=1

∣∣xN
i (s)− xN

i (t)
∣∣

≤ 1

N

N∑
i=1

∫ t

s

∣∣FN (xi(r), xN (r))
∣∣ dr+ 1

N

N∑
i=1

∫ t

s

∣∣uN
i (r)

∣∣ dr

≤ C̃(t− s)+
∫ t

s

1

N

N∑
i=1

∣∣uN
i (r)

∣∣ dr,

where C̃ := A+ 2B
(

supN |xN (0)|N + AT + supN

∫ T
0 |uN (r)|N dr

)
e2BT (see the proof of (4.4))

which is uniformly bounded, since μn
0 is converging in P1(Rd) and E(μN , νN ) is uniformly

bounded.
By Remark 2.4, we can select an admissible function θ satisfying (2.10) with K := {μ0} ∪
{μN

0 : N ∈N}. The uniform bound on E(μN , νN ) implies that

sup
N

∫ T

0

1

N

N∑
i=1

θ
(∣∣uN

i (r)
∣∣) dr<+∞,

by the convexity and superlinearity of θ , there exists a uniform modulus of continuity ω :
[0,+∞)→ [0,+∞) such that supN

∫ t
s

1
N

∑N
i=1 |uN

i (r)| dr≤ω(t− s).
Hence we have just shown the equi-continuity property

W1
(
μN

s ,μN
t

)≤ω(|t− s|)+ C̃|t− s| ∀ t, s ∈ [0, T].
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Compactness. From Theorem 5.3, we have

sup
N∈N

sup
t∈[0,T]

∫
Rd
θ (|x|) dμn

t (x)<+∞.

This implies that the family (μN )N∈N ⊂P1(Rd) is relatively compact (see, e.g., [5,
Proposition 7.1.5]).

The application of Ascoli–Arzelà theorem provides a limit curve μ ∈C([0, T]; P1(Rd)) and a
subsequence, still denoted by μN , such that

sup
t∈[0,T]

W1
(
μ
[
xN
]

t
,μt

)→ 0. (6.36)

Concerning the control part, we write νN = vNμN . Since EN (xN , uN ) is uniformly bounded, we
have

sup
N∈N

∫ T

0

∫
Rd
ψ
(
vN (t, x)

)
dμN

t (x) dt<+∞.

By the superlinearity of ψ and the convergence (6.36), using the same argument of the proof of
Ref. [5, Theorem 5.4.4], we obtain that there exist v : [0, T]×Rd→U and a subsequence (again
denoted by vN ) such that ∫ T

0

∫
Rd
ψ(v(t, x)) dμt(x) dt<+∞

and

lim
N→∞

∫ T

0

∫
Rd

ξ (t, x) · vN (t, x)dμN
t (x) dt=

∫ T

0

∫
Rd

ξ (t, x) · v(t, x)dμt(x) dt,

∀ ξ ∈C∞c ([0, T]×Rd; Rd).

This proves the convergence of νN→ ν := vμ in M([0, T]×Rd; U) and the fact that (μ, ν)
satisfies (3.9). �

Proof of Theorem 3.3 The first two claims are standard consequence of the �-convergence
result of Theorem 3.2 and the coercivity property stated in Theorem 3.1. We thus consider the
third claim.

Let us fix μ0 ∈P1(Rd) with compact support and (μ, ν) ∈ P(μ0). By Theorem 3.2, we can find
a sequence of discrete solutions (x̂N , ûN ) corresponding to initial data x̂N

0 supported in supp(μ0)
and measures (μ̂N , ν̂N ) converging to (μ, ν) such that (3.15) and (3.16) hold. Theorem 3.2 also
yields limN→∞ EN (x̂N

0 )= E(μ0).
Let now (xN

0 )N∈N be any other sequence satisfying (3.17) with (xN , uN ) ∈ P(xN
0 ) and μN =

μ[xN ], νN = ν[xn, uN ]. Applying Lemma 2.5, we deduce that the associated measures μN
0 satisfy

lim
N→∞ Cφ

(
μ̂N

0 ,μN
0

)= 0.

Up to a permutation of the initial points (x̂N
0,1, x̂N

0,2, . . . , x̂N
0,N ) (and of the corresponding solutions

(x̂N , ûN )) which, however, leaves μ̂N
0 , μ̂N , ν̂N invariant, we may assume by (2.1) that

cN = Cφ
(
μ̂N

0 ,μN
0

)= 1

N

N∑
i=1

φ
(∣∣x̂N

0,i − xN
0,i

∣∣). (6.37)
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For 0< δ < T and yN ,δ := δ−1(x̂N
0 − xN

0 ), we can then define a new competitor by

xN ,δ(t) :=
{

(1− t/δ) xN
0 + t/δ x̂N

0 if t ∈ [0, δ),

x̂N (t− δ) if t ∈ [δ, T],

uN ,δ
i (t) :=

⎧⎨
⎩yN ,δ −FN

(
xN ,δ

i , xN ,δ(t)
)

if t ∈ [0, δ),

ûN (t− δ) if t ∈ [δ, T].

It is easy to check that (xN ,δ , uN ,δ) ∈A (xN
0 ) so that EN (xN

0 )≤ EN (xN ,δ , uN ,δ). On the other hand,

TEN
(
xN ,δ , uN ,δ

)≤ 1

N

∫ δ

0

N∑
i=1

LN
(

xN ,δ
i (t), xN ,δ(t)

)
dt+

1

N

∫ δ

0

N∑
i=1

ψ
(

yN ,δ −FN (xN ,δ
i , xN ,δ(t))

)
dt+ TEN

(
x̂N , ûN

)
.

From the doubling property and the compactness of supports of (xN
0 ), applying the same argument

as in the proof of Theorem 3.2, we get

ψ
(

yN ,δ −FN
(

xN ,δ
i , xN ,δ(t)

))
≤C

(
1+ φ

(∣∣∣x̂N
0 − xN

0

∣∣∣ /δ))
≤CeK/δ

(
1+ φ

(∣∣∣x̂N
0 − xN

0

∣∣∣)) 0< δ < 1.

Setting μN ,δ
t =μ[xN ,δ(t)] we get,

T
(
EN
(
xN ,δ , uN ,δ

)− EN
(

x̂N , ûN
))
≤C cNδ

(
1+ eK/δ

)+ δ sup
t∈[0,1]

∫
Rd

LN
(

x,μN ,1
t

)
dμN ,1

t .

(6.38)

If we choose δ = δ(N) :=−K
(

log(cN )
)−1

, since limN→∞ supt∈[0,1] W1(μN ,1
t ,μ0)= 0, we see that

the right-hand side of (6.38) tends to 0 as N→∞, so that we eventually obtain

lim sup
N→∞

EN
(
xN

0

)≤ lim sup
N→∞

EN
(
xN ,δ , uN ,δ

)≤ lim sup
N→∞

EN
(

x̂N , ûN
)

‘= E(μ0).

Acknowledgements

We wish to thank Filippo Santambrogio for useful discussions concerning the third claim of
Theorem 3.3.

Conflicts of interest

None.

References

[1] ALBI, G., BONGINI, M., CRISTIANI, E. & KALISE, D. (2016) Invisible control of self-organizing
agents leaving unknown environments. SIAM J. Appl. Math. 76(4), 1683–1710.

[2] ALBI, G., CHOI, Y.-P., FORNASIER, M. & KALISE, D. (2017) Mean field control hierarchy. Appl.
Math. Optim. 76(1), 93–135.

https://doi.org/10.1017/S0956792519000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000044


1184 M. Fornasier et al.

[3] AMBROSIO, L. & CRIPPA, G. (2014) Continuity equations and ODE flows with non-smooth velocity.
Proc. Roy. Soc. Edinburgh Sect. A 144(6), 1191–1244.

[4] AMBROSIO, L., FUSCO, N. & PALLARA, D. (2000) Functions of Bounded Variation and
Free Discontinuity Problems. Oxford Mathematical Monographs, The Clarendon Press, Oxford
University Press, New York.

[5] AMBROSIO, L., GIGLI, N. & SAVARÉ, G. (2008) Gradient Flows in Metric Spaces and in the Space
of Probability Measures, 2nd ed. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel.

[6] ANDERSSON, D. & DJEHICHE, B. (2011) A maximum principle for SDEs of mean-field type. Appl.
Math. Optim. 63(3), 341–356.

[7] BALLERINI, M., CABIBBO, N., CANDELIER, R., CAVAGNA, A., CISBANI, E., GIARDINA, I.,
LECOMTE, V., ORLANDI, A., PARISI, G., PROCACCINI, A., VIALE, M., & ZDRAVKOVIC, V. (2008)
Interaction ruling animal collective behavior depends on topological rather than metric distance:
evidence from a field study. Proc. Nat. Acad. Sci. 105(4), 1232–1237.

[8] BAYRAKTAR, E., COSSO, A. & PHAM, H. (2018) Randomized dynamic programming principle and
Feynman-Kac representation for optimal control of McKean-Vlasov dynamics. Trans. Amer. Math.
Soc. 370(3), 2115–2160.

[9] BENSOUSSAN, A., FREHSE, J. & YAM, P. (2013) Mean Field Games and Mean Field Type Control
Theory. Springer Briefs in Mathematics, Springer, New York.

[10] BONGINI, M. & FORNASIER, M. (2014) Sparse stabilization of dynamical systems driven by
attraction and avoidance forces. Netw. Heterog. Media 9(1), 1–31.

[11] BONGINI, M. & FORNASIER, M. (2017) Sparse control of multiagent systems. In: Active Particles,
Vol. 1, Advances in Theory, Models, and Applications. Modeling and Simulation in Science,
Engineering and Technology, Birkhäuser/Springer, Cham, pp. 173–228.

[12] BONGINI, M., FORNASIER, M. & KALISE, D. (2015) (Un)conditional consensus emergence under
perturbed and decentralized feedback controls. Discrete Contin. Dyn. Syst. 35(9), 4071–4094.

[13] BONGINI, M., FORNASIER, M., ROSSI, F. & SOLOMBRINO, F. (2017) Mean-field Pontryagin
maximum principle. J. Optim. Theory Appl. 175(1), 1–38.

[14] BUCKDAHN, R., DJEHICHE, B. & LI, J. (2011) A general stochastic maximum principle for SDEs of
mean-field type. Appl. Math. Optim. 64(2), 197–216.

[15] CAMAZINE, S., DENEUBOURG, J.-L., FRANKS, N. R., SNEYD, J., THERAULAZ, G. & BONABEAU,
E. (2003) Self-organization in Biological Systems. Princeton Studies in Complexity, Princeton
University Press, Princeton, NJ. Reprint of the 2001 original.

[16] CAPONIGRO, M., FORNASIER, M., PICCOLI, B. & TRÉLAT, E. (2013) Sparse stabilization and
optimal control of the Cucker-Smale model. Math. Control Relat. Fields 3(4), 447–466.

[17] CARMONA, R., DELARUE, F. & LACHAPELLE, A. (2013) Control of McKean-Vlasov dynamics
versus mean field games. Math. Financ. Econ. 7(2), 131–166.

[18] CARRILLO, J. A., CHOI, Y.-P. & HAURAY, M. (2014) The derivation of swarming models: mean-
field limit and Wasserstein distances. In: Collective Dynamics from Bacteria to Crowds. CISM
Courses and Lectures, Vol. 553, Springer, Vienna, pp. 1–46.

[19] CARRILLO, J. A., CHOI, Y.-P. & PEREZ, S. P. (2017) A review on attractive-repulsive hydro-
dynamics for consensus in collective behavior. In: Active Particles, Vol. 1, Advances in Theory,
Models, and Applications. Modeling and Simulation in Science, Engineering and Technology,
Birkhäuser/Springer, Cham, pp. 259–298.

[20] CARRILLO, J. A., D’ORSOGNA, M. R. & PANFEROV, V. (2009) Double milling in self-propelled
swarms from kinetic theory. Kinet. Relat. Models 2(2), 363–378.

[21] CARRILLO, J. A., FORNASIER, M., TOSCANI, G. & VECIL, F. (2010) Particle, kinetic, and hydrody-
namic models of swarming. In: Mathematical Modeling of Collective Behavior in Socio-economic
and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser
Boston, Inc., Boston, MA, pp. 297–336.

[22] CHOI, Y.-P., HA, S.-Y. & LI, Z. (2017) Emergent dynamics of the Cucker-Smale flocking model and
its variants. In: Active Particles, Vol. 1, Advances in Theory, Models, and Applications. Modeling
and Simulation in Science, Birkhäuser/Springer, Cham, pp. 299–331.

https://doi.org/10.1017/S0956792519000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000044


Mean-field optimal control as Gamma-limit of finite agent controls 1185

[23] CHUANG, Y.-L., D’ORSOGNA, M. R., MARTHALER, D., BERTOZZI, A. L. & CHAYES, L. S. (2007)
State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Phys.
D 232(1), 33–47.

[24] CHUANG, Y.-L., HUANG, Y. R., D’ORSOGNA, M. R. & BERTOZZI, A. L. (2007) Multi-vehicle
flocking: scalability of cooperative control algorithms using pairwise potentials. In: 2007 IEEE
International Conference on Robotics and Automation, IEEE, pp. 2292–2299.

[25] COUZIN, I. D. & FRANKS, N. R. (2003) Self-organized lane formation and optimized traffic flow in
army ants. Proc. R. Soc. London, B: Biol. Sci. 270(1511), 139–146.

[26] COUZIN, I. D., KRAUSE, J., FRANKS, N. R. & LEVIN, S. A. (2005) Effective leadership and decision-
making in animal groups on the move. Nature 433(7025), 513.

[27] CRISTIANI, E., PICCOLI, B. & TOSIN, A. (2010) Modeling self-organization in pedestrians and ani-
mal groups from macroscopic and microscopic viewpoints. In: Mathematical Modeling of Collective
Behavior in Socio-economic and Life Sciences. Modeling and Simulation in Science, Engineering
and Technology, Birkhäuser Boston, Inc., Boston, MA, pp. 337–364.

[28] CRISTIANI, E., PICCOLI, B. & TOSIN, A. (2011) Multiscale modeling of granular flows with
application to crowd dynamics. Multiscale Model. Simul. 9(1), 155–182.

[29] CUCKER, F. & DONG, J.-G. (2011) A general collision-avoiding flocking framework. IEEE Trans.
Automat. Control 56(5), 1124–1129.

[30] CUCKER, F. & MORDECKI, E. (2008) Flocking in noisy environments. J. Math. Pures Appl. 89(3),
278–296.

[31] CUCKER, F. & SMALE, S. (2007) Emergent behavior in flocks. IEEE Trans. Automat. Control 52(5),
852–862.

[32] CUCKER, F. & SMALE, S. (2007) On the mathematics of emergence. Jpn. J. Math. 2(1), 197–227.
[33] CUCKER, F., SMALE, S. & ZHOU, D.-X. (2004) Modeling language evolution. Found. Comput. Math.

4(3), 315–343.
[34] DAL MASO, G. (1993) An Introduction to �-convergence. Progress in Nonlinear Differential

Equations and their Applications, Vol. 8, Birkhäuser Boston, Inc., Boston, MA.
[35] EVANS, L. C. & GARIEPY, R. F. (2015) Measure Theory and Fine Properties of Functions.

Textbooks in Mathematics, CRC Press, Boca Raton, FL, revised edition.
[36] FLEMING, W. H. (1977) Generalized solutions in optimal stochastic control. Differential games and

control theory, II (Proc. 2nd Conf., Univ. Rhode Island, Kingston, R.I., 1976), pp. 147–165. Lecture
Notes in Pure and Appl. Math., 30. Dekker, New York.

[37] FLORENTIN, J. J. (1961) Optimal control of continuous time, Markov, stochastic systems. J. Electron.
Control 10, 473–488.

[38] FORNASIER, M., PICCOLI, B. & ROSSI, F. (2014) Mean-field sparse optimal control. Philos. Trans.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2028), 20130400.

[39] FORNASIER, M. & SOLOMBRINO, F. (2014) Mean-field optimal control. ESAIM Control Optim.
Calc. Var. 20(4), 1123–1152.

[40] GRÉGOIRE, G. & CHATÉ, H. (2004) Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2),
025702.

[41] JADBABAIE, A., LIN, J. & STEPHEN MORSE, A. (2003) Correction to: “Coordination of groups
of mobile autonomous agents using nearest neighbor rules” [IEEE Trans. Automat. Control 48(6),
988–1001; MR 1986266]. IEEE Trans. Automat. Control 48(9), 1675.

[42] KE, J., MINETT, J. W., AU, C.-P. & WANG, W. S.-Y. (2002) Self-organization and selection in the
emergence of vocabulary. Complexity 7(3), 41–54.

[43] KELLER, E. F. & SEGEL, L. A. (1970) Initiation of slime mold aggregation viewed as an instability.
J. Theor. Biol. 26(3), 399–415.

[44] KOCH, A. L. & WHITE, D. (1998) The social lifestyle of myxobacteria. Bioessays 20(12), 1030–1038.
[45] KUSHNER, H. J. (1962) Optimal stochastic control. IRE Trans. Autom. Control 7(5), 120–122.
[46] LACKER, D. (2017) Limit theory for controlled McKean-Vlasov dynamics. SIAM J. Control Optim.

55(3), 1641–1672.
[47] LAURIÈRE, M. & PIRONNEAU, O. (2014) Dynamic programming for mean-field type control. C. R.

Math. Acad. Sci. Paris 352(9), 707–713.

https://doi.org/10.1017/S0956792519000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000044


1186 M. Fornasier et al.

[48] LEONARD, N. E. & FIORELLI, E. (2001) Virtual leaders, artificial potentials and coordinated control
of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001, Vol. 3.
IEEE, pp. 2968–2973.

[49] NIWA, H.-S. (1994) Self-organizing dynamic model of fish schooling. J. Theor. Biol. 171(2),
123–136.

[50] ORRIERI, C. (2018) Large deviations for interacting particle systems: joint mean-field and small-
noise limit. arXiv preprint arXiv:1810.12636.

[51] PARRISH, J. K. & EDELSTEIN-KESHET, L. (1999) Complexity, pattern, and evolutionary trade-offs
in animal aggregation. Science 284(5411), 99–101.

[52] PARRISH, J. K., VISCIDO, S. V. & GRUNBAUM, D. (2002) Self-organized fish schools: an
examination of emergent properties. Biol. Bull. 202(3), 296–305.

[53] PEREA, L., ELOSEGUI, P., & GÓMEZ, G. Extension of the Cucker-Smale control law to space flight
formations. J. Guidance Control Dyn. 32(2), 527–537, 2009.

[54] PERTHAME, B. (2007) Transport Equations in Biology. Frontiers in Mathematics, Birkhäuser Verlag,
Basel.

[55] PHAM, H. & WEI, X. (2018) Bellman equation and viscosity solutions for mean-field stochastic
control problem. ESAIM Control Optim. Calc. Var., 24(1), 437–461.

[56] ROMEY, W. L. (1996) Individual differences make a difference in the trajectories of simulated
schools of fish. Ecol. Modell. 92(1), 65–77.

[57] ROSSI, R. & SAVARÉ, G. (2003) Tightness, integral equicontinuity and compactness for evolution
problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2(2), 395–431.

[58] SHORT, M. B., D’ORSOGNA, M. R., PASOUR, V. B., TITA, G. E., BRANTINGHAM, P. J., BERTOZZI,
A. L. & CHAYES, L. B. (2008) A statistical model of criminal behavior. Math. Models Methods Appl.
Sci. 18(suppl.), 1249–1267.

[59] SUGAWARA, K. & SANO, M. (1997) Cooperative acceleration of task performance: foraging
behavior of interacting multi-robots system. Phys. D Nonlinear Phenom. 100(3–4), 343–354.

[60] TONER, J. & TU, Y. (1995) Long-range order in a two-dimensional dynamical xy model: how birds
fly together. Phys. Rev. Lett. 75(23), 4326.

[61] VICSEK, T., CZIRÓK, A., BEN-JACOB, E., COHEN, I. & SHOCHET, O. (1995) Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229.

[62] VICSEK, T. & ZAFEIRIS, A. (2012) Collective motion. Phys. Rep. 517(3–4), 71–140.
[63] VISINTIN, A. (1984) Strong convergence results related to strict convexity. Comm. Partial Differ.

Equ. 9(5), 439–466.
[64] YATES, C. A., ERBAN, R., ESCUDERO, C., COUZIN, I. D., BUHL, J., KEVREKIDIS, I. G., MAINI,

P. K. & SUMPTER, D. J. T. (2009) Inherent noise can facilitate coherence in collective swarm motion.
Proc. Nat. Acad. Sci. 106(14), 5464–5469.

https://doi.org/10.1017/S0956792519000044 Published online by Cambridge University Press

https://arxiv.org/abs/1810.12636
https://doi.org/10.1017/S0956792519000044



