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On the Extension of Bounded Holomorphic
Maps from Gleason Parts of the Maximal
Ideal Space of H∞

Alexander Brudnyi

Abstract. Let H∞ be the algebra of bounded holomorphic functions on the open unit disk, and let
M be its maximal ideal space. Let Ma be the union of nontrivial Gleason parts (analytic disks) of M.
In this paper, we study the problem of extensions of bounded Banach-valued holomorphic functions
and holomorphic maps with values in Oka manifolds from Gleason parts of Ma/D. The resulting
extensions satisfy the uniform boundedness principle in the sense that their norms are bounded by
constants that do not depend on the choice of the Gleason part. The results extend fundamental results
of D. Suárez on the characterization of the algebra of restrictions of Gelfand transforms of functions
in H∞ to Gleason parts of Ma/D. The proofs utilize our recent advances on ∂̄-equations on quasi-
interpolating sets and Runge-type approximations.

1 Formulation of main results

1.1

Recall that for a commutative unital complex Banach algebra A, the maximal ideal
space M(A) ⊂ A∗ is the set of nonzero homomorphisms A→C endowed with the
Gelfand topology, the weak-∗ topology of A∗. It is a compact Hausdorff space
contained in the unit sphere of A∗. The Gelfand transform defined by â(φ) ∶= φ(a)
for a ∈ A and φ ∈M(A) is a nonincreasing-norm morphism from A into the Banach
algebra C(M(A)) of complex-valued continuous functions on M(A).

Let H∞ be the Banach algebra of bounded holomorphic functions on the open unit
disk D ⊂ C equipped with pointwise multiplication and supremum norm ∥⋅∥∞, and
let M be its maximal ideal space. Then the Gelfand transform ˆ ∶ H∞ → C(M) is an
isometry and the map ι ∶ D↪M taking z ∈ D to the evaluation homomorphism f ↦
f (z), f ∈ H∞, is an embedding with dense image by the celebrated Carleson corona
theorem [5]. In the sequel, we identify D with ι(D).

Let

ρ(z, w) ∶= ∣ z −w
1 − w̄z

∣ , z, w ∈ D,(1.1)

be the pseudohyperbolic metric on D.
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On the extension of bounded holomorphic maps 625

For m1 , m2 ∈M, the formula

ρ(m1 , m2) ∶= sup{∣ f̂ (m2)∣ ∶ f ∈ H∞, f̂ (m1) = 0, ∥ f ∥H∞ ≤ 1}(1.2)

gives an extension of ρ to M ×M. The extended function is lower semicontinuous
on M ×M (see [10, Theorem 6.2]) and determines a metric on M with the property
that any two open balls of radius 1 are either equal or disjoint. The Gleason part of
m ∈M is then defined by P(m) ∶= {m′ ∈M ∶ ρ(m′ , m) < 1}. Hoffman’s classification
of Gleason parts [10] shows that there are only two cases: either P(m) = {m} or P(m)
is an analytic disk. The latter case means that there is a parameterization of P(m), i.e.,
a continuous one-to-one and onto map L ∶ D→ P(m) such that f̂ ○ L ∈ H∞ for every
f ∈ H∞. By Ma we denote the union of all nontrivial (analytic disks) Gleason parts
of M. It is known that Ma ⊂M is open and P(m) ⊂Ma if and only if m belongs to
the closure of an interpolating sequence for H∞.

For a Gleason part P ⊂Ma/D, consider the closed ideal IP = { f ∈ H∞ ∶ f̂ ≡
0 on P}. According to Gorkin [9], the quotient Banach algebra H∞/IP is semisimple
with maximal ideal space P̄ (- the closure of P in M). The corresponding Gelfand
transform maps f + IP ∈ H∞/IP to f̂ ∣P̄ ∈ C(P̄). In [15, 16], Suárez proved that the
Gelfand transform maps H∞/IP isomorphically onto the closed subalgebra O(P̄)
of functions g ∈ C(P̄) such that g ○ L ∈ H∞, where L is a parameterization of P.
Specifically, he proved the following interpolation result.

Theorem A There is an absolute constant C ≥ 1 such that for every g ∈ O(P̄), there
exists f ∈ H∞ such that

f̂ ∣P̄ = g and ∥ f ∥∞ ≤ C∥g∥C(P̄) .

(Here and below for a normed space X, its norm is denoted by ∥⋅∥X .)
In the framework of the Stein-like theory on M developed in [2] analogous to the

classical theory of complex functions on Stein spaces, and taking into account the
results of Suárez, P̄ can be viewed as an analog of a complex connected submanifold
of M, and O(P̄) as an analog of the space of holomorphic functions on P̄. Following
this line, and using recent advances from the author’s work [3, 4], in this paper we
will prove analogs of Theorem A for such functions on P̄ with values in complex
Banach spaces and in some complex submanifolds of Cn . Our results are related to
some general interpolation results obtained previously in [2, Theorem 1.9] and [3,
Theorem 1.11].

1.2

Our first result extends Theorem A to the case of Banach-valued functions.
Let X be a complex Banach space, and let V ⊂ D be an open subset. We denote

by H∞comp(V , X) the Banach space of X-valued holomorphic functions f on V with
relatively compact images equipped with norm ∥ f ∥H∞comp(V ,X) ∶= supz∈V ∥ f (z)∥X . If
V = D ∩ V̂ for an open set V̂ ⊂M, then every function f ∈ H∞comp(V , X) extends to
a function with a relatively compact image f̂ ∈ C(V̂ , X) (see [14, Theorem 3.2] and
[2, Proposition 1.3]). Let P ⊂Ma be a Gleason part with a parameterization L ∶ D→
P. We denote by O(P̄, X) ⊂ C(P̄, X) the Banach subspace of continuous X-valued
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626 A. Brudnyi

functions g on P̄ such that g ○ L is a holomorphic X-valued function on D with norm
∥g∥C(P̄ ,X) ∶= supx∈P̄ ∥g(x)∥X .

Theorem 1.1 There is an absolute constant C ≥ 1 such that for every g ∈ O(P̄, X), there
exists f ∈ H∞comp(D, X) such that

f̂ ∣P̄ = g and ∥ f ∥H∞comp(D,X) ≤ C∥g∥C(P̄ ,X) .

It was established in [15, Theorem 4.1] that if the Gleason part P is a homeomorphic
disk, i.e., if a parameterization L ∶ D→M of P is an embedding, then Theorem A is
valid with constant C = 1. So it is natural to ask whether this would also be true in the
case of Theorem 1.1.

To formulate our second result, let us recall the following definitions.
(▽)A complex manifoldM is said to be Oka if every holomorphic map f ∶ K →M

from a neighborhood of a compact convex set K ⊂ Ck , k ∈ N, can be approximated
uniformly on K by entire maps Ck →M.

We refer to the book [7] and the paper [13] for examples and basic results of the
theory of Oka manifolds.
(▽) A path-connected topological space X is i-simple if for each x ∈ X the

fundamental group π1(X , x0) acts trivially on the i-homotopy group π i(X , x) (see,
e.g., [12, Chapter IV.16] for the corresponding definitions and results).

For instance, X is i-simple if the group π i(X) is trivial and 1-simple if and only if
the group π1(X) is abelian. Also, every path-connected topological group is i-simple
for all i. The same is true for a complex manifold biholomorphic to the quotient of a
connected complex Lie group by a connected closed Lie subgroup (see, e.g., [11, (3.2)]).

Let M be a complex manifold, and let P ⊂Ma be a Gleason part with parameteri-
zation L ∶ D→ P. A continuous map F ∈ C(P̄,M) is said to be holomorphic (written,
F ∈ O(P̄,M)) if F ○ L ∶ D→M is a holomorphic map of complex manifolds.

Let O be the class of connected Oka manifolds M embeddable as complex
submanifolds into complex Euclidean spaces and having i-simple for i = 1, 2 finite
unbranched coverings. The analog of Theorem A for holomorphic maps with values
in manifolds of class O is as follows:

Theorem 1.2 Let M ⊂ Cn be of class O , and let K be a compact subset of M. There is a
constant C = C(M, K , n)1 such that for every map F ∈ O(P̄,M) with image in K, there
exists a map G = (g1 , . . . , gn) ∈ (H∞)n ⊂ C(D,Cn)with a relatively compact image in
M such that

Ĝ∣P̄ = F and ∥G∥(H∞)n ≤ C .

Here, Ĝ ∶= (ĝ1 , . . . , ĝn).

Remark 1.3 (1) The class O was originally introduced in [3] in connection with
Theorem 1.6 of that paper. The proof of this theorem invokes an extension result

1We write C = C(α1 , α2 , . . . ) if the constant C depends only on α1 , α2 , . . . .
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for continuous maps defined on certain subsets of the maximal ideal space of the
algebra H∞(D ×N). The extension result is obtained using some obstruction theory
and depends on the fact that the covering dimension of the maximal ideal space
M(H∞(D ×N)) is 2 and on the i-simplicity for i = 1, 2 of manifolds of class O .

(2) The class O contains, e.g., ● complements in C
k , k > 1, of complex algebraic

subvarieties of codimension ≥ 2 and of compact polynomially convex sets (these
manifolds are simply connected; see [6]); ● connected Stein Lie groups; ● quotients of
connected reductive complex Lie groups by Zariski closed subgroups (these manifolds
are quasi-affine algebraic (see, e.g., [1, Theorem 5.6] for the references); they have
i-simple finite unbranched coverings because Zariski closed subgroups have finitely
many connected components and quotients of connected complex Lie groups by
connected closed Lie subgroups are i-simple for all i (see, e.g., [11, (3.2)])). Also, direct
products of manifolds from class O belong to O and so forth.

2 Auxiliary results

A subset S of a metric space (M, d) is said to be ε-separated if d(x , y) ≥ ε for all
x , y ∈ S, x ≠ y. A maximal ε-separated subset of M is said to be an ε-chain. Thus, if
S ⊂M is an ε-chain, then S is ε-separated and for every z ∈M/S there is an x ∈ S such
that d(z, x) < ε. The existence of ε-chains follows from the Zorn lemma.

A subset S ⊂ D is said to be quasi-interpolating, if an ε-chain of S, ε ∈ (0, 1), with
respect to the pseudohyperbolic metric ρ (see (1.1)) is an interpolating sequence
for H∞. (In fact, in this case, every ε-chain of S, ε ∈ (0, 1), with respect to ρ is an
interpolating sequence for H∞; this easily follows from [8, Chapter X, Corollary 1.6,
Chapter VII, Lemma 5.3].)

Let K ⊂ D be a Lebesgue measurable subset, and let X be a complex Banach space.
Two X-valued functions on D are equivalent if they coincide a.e. on D. The com-
plex Banach space L∞(K , X) consists of equivalence classes of Bochner measurable
essentially bounded functions f ∶ D→ X equal 0 a.e. on D/K equipped with norm
∥ f ∥L∞(K ,X) ∶= ess supz∈K ∥ f (z)∥X . Also, we denote by Cρ(D, X) the Banach space
of bounded continuous functions f ∶ D→ X uniformly continuous with respect to
ρ equipped with norm ∥ f ∥Cρ(D,X) ∶= supz∈D ∥ f (z)∥X .

In [4], we studied the differential equation

∂F
∂z̄
= f (z)

1 − ∣z∣2 , ∣z∣ < 1, f ∈ L∞(K , X).(2.1)

We proved that if K is quasi-interpolating, then equation (2.1) has a weak solution
F ∈ Cρ(D, X), i.e., such that for every C∞ function s with compact support in D,

∬
D

F(z) ⋅ ∂s(z)
∂z̄

dz ∧ dz̄ = −∬
D

f (z)
1 − ∣z∣2 ⋅ s(z) dz ∧ dz̄,(2.2)

given by a bounded linear operator LX
K ∶ L∞(K , X) → Cρ(D, X). Specifically, we

obtained the following result.
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628 A. Brudnyi

Theorem 2.1 [4, Theorem 1.1] Suppose a quasi-interpolating set K ⊂ D is Lebesgue
measurable and ζ = {z j} is an ε-chain of K, ε ∈ (0, 1), with respect to ρ such that

δ(ζ) ∶= inf
k
∏

j, j≠k
ρ(z j , zk) ≥ δ > 0.2

There is a bounded linear operator LX
K ∶ L∞(K , X) → Cρ(D, X) of norm

∥LX
K∥ ≤

cε
1 − ε

⋅max{1,
log 1

δ
(1 − ε∗)2 } , ε∗ ∶=max{ 1

2
, ε} ,(2.3)

for a numerical constant c < 52 × 106 such that for every f ∈ L∞(K , X) the function
LX

K f is a weak solution of equation (2.1).
The operator LX

K has the following properties:
(i) If T ∶ X → Y is a bounded linear operator between complex Banach spaces, then

TLX
K = LY

K T ,

where (T f )(z) ∶= T( f (z)), z ∈ D, f ∶ D→ X.
(ii) If f ∈ L∞(K , X) has a compact essential range, then the range of LX

K f is relatively
compact.

(iii) If f ∈ L∞(X , K) is continuously differentiable on an open set U ⊂ D, then LX
K f is

continuously differentiable on U.

An important example of a quasi-interpolating set is a pseudohyperbolic neigh-
borhood of a Carleson contour used in the proof of the corona theorem. In particular,
using the construction from the proof of the theorem, one obtains the following (for
the proof of this result, see [5, 17] and [8, Chapter VIII.5]).

Lemma 2.2 Suppose f ∈ H∞ with ∥ f ∥∞ ≤ 1. Given 0 < β < 1, there is an ε = ε(β) ∈
(0, β), a quasi-interpolating set Kβ ⊂ D having a 1

2 -chain ζ ⊂ Kβ such that δ(ζ) ≥ δ =
δ(β) > 0, and a function Φ ∈ C∞(D), 0 ≤ Φ ≤ 1, satisfying D/Kβ ⊂ Φ−1({0, 1}) and
(i)

{z ∈ D ∶ ∣ f (z)∣ ≥ β} ⊂ Φ−1(0) ∩ (D/Kβ);
(ii)

{z ∈ D ∶ ∣ f (z)∣ ≤ ε} ⊂ Φ−1(1) ∩ (D/Kβ);
(iii)

∂Φ
∂z̄
= g(z)

1 − ∣z∣2 , z ∈ D, where g ∈ L∞(Kβ ,C), ∥g∥∞ ≤ A = A(β).

Using the previous results, we prove the following Banach-valued version of [16,
Lemma 3.9].

2Hence, ζ is an interpolating sequence for H∞ by the Carleson theorem (see, e.g., [8, Chapter VII,
Theorem 1.1]).
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Lemma 2.3 Let X be a complex Banach space, let u be an inner function, and let
0 < β < 1. Put V = {z ∈ D ∶ ∣u(z)∣ < β} and suppose that g ∈ H∞comp(V , X). Then there
are ε = ε(β) ∈ (0, β), C = C(β) > 0, and G ∈ H∞comp(D, X) such that
(i)

∥G∥H∞comp(D,X) ≤ C∥g∥H∞comp(V ,X) and

(ii)

∣G(z) − g(z)∣ ≤ C∥g∥H∞comp(V ,X)∣u(z)∣ when ∣u(z)∣ < ε.

Proof We choose Φ of Lemma 2.2 for the function f ∶= u. According to Lemma
2.2(ii) and (iii) and Theorem 2.1(ii) and (iii), there is a function with relatively compact
image F ∈ C∞(D, X) such that for some c = c(β) > 0,

∂F
∂z̄
= g

u
∂Φ
∂z̄

, and ∥F∥∞ ≤
cA
ε
∥g∥H∞comp(V ,X) .

(Note that g
u

∂Φ
∂z̄ ∈ L∞(Kβ , X) and has a relatively compact image.)

Consider the function G = gΦ − Fu. Then the previous equation implies ∂G
∂z̄ =

0, i.e., G ∈ H∞comp(D, X) and by Lemma 2.2(i) (since limr→1− ∣u(re iθ)∣ = 1 a.e. θ ∈
[0, 2π)),

∥G∥H∞comp(D,X) ≤
cA
ε
∥g∥H∞comp(V ,X) .

On the other hand, Lemma 2.2(ii) implies that G(z) = g(z) − F(z)u(z) when
∣u(z)∣ < ε. Thus, for such z,

∣G(z) − g(z)∣ = ∣F(z)u(z)∣ ≤ cA
ε
∥g∥H∞comp(V ,X)∣u(z)∣. ∎

3 Proofs

Proof of Theorem 1.1 The construction presented in [16, Section 4] is also appli-
cable to maps g ∈ O(P̄, X). In particular, one can define an open set Ω ⊂ D, a
Blaschke product b ∈ H∞, such that b̂ = 0 on P̄ and V = {z ∈ D ∶ ∣b(z)∣ < 1

2} ⊂ Ω,
and a function h ∈ Hcomp(Ω, X) whose image is contained in the image of g∣P such
that for every point x ∈ P and a net {zα} ⊂ D converging to x,

lim
α

h(zα) = g(x).(3.1)

Since V is the intersection of D and the open set V̂ ∶= {x ∈M ∶ ∣b̂(x)∣ < 1
2} ⊂M,

the function h extends to a continuous X-valued function ĥ with a relatively compact
image on V̂ (see [14, Theorem 3.2] and [2, Proposition 1.3]). By (3.1) and the definition
of h,

ĥ∣P̄ = g , and ∥ĥ∥C(V̂ ,X) = ∥g∥C(P̄ ,X) .(3.2)
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630 A. Brudnyi

Further, we apply Lemma 2.3 to the inner function b and the function h ∈
H∞comp(V , X) with β = 1

2 . Then, due to (3.2), we get absolute constants C > 0 and
ε ∈ (0, 1

2 ), and a function f ∈ H∞comp(D, X) such that

∥ f ∥H∞comp(D,X) ≤ C∥g∥H∞comp(V ,X) ,

and

∣ f (z) − h(z)∣ ≤ C∥g∥H∞comp(V ,X)∣b(z)∣ when ∣b(z)∣ < ε.

Since b̂ = 0 on P̄, the latter inequality and (3.2) imply

f̂ ∣P̄ = g ,

as required. ∎

Proof of Theorem 1.2 Let F ∈ O(P̄,M) have an image in K. According to Theorem
1.1, there is a map F1 ∈ (H∞)n such that

F̂1∣P̄ = F and ∥F1∥(H∞)n ≤ C .(3.3)

Further, as in the previous proof, one applies a construction from [16, Section 4]
to define an open set Ω ⊂ D, a Blaschke product b ∈ H∞, such that b̂ = 0 on P̄ and
V = {z ∈ D ∶ ∣b(z)∣ < 1

2} ⊂ Ω, and a holomorphic map H ∈ H∞(Ω,M) with image
in K such that

Ĥ∣P̄ = F .(3.4)

Since M ∈ O , conditions (3.3) and (3.4) allow us to apply [3, Theorem 1.11] with c =
2, δ = 1

2 , k = 1, Πk
c ,δ = {z ∈ D ∶ ∣2b(z)∣ < δ}, Πk

c = Πk
c ,1, g = F1, b = C, and f = H to

get a constant C(M, K , n) ∶= C(M, K , n, b, c, k, δ) > 1 and a map G ∈ (H∞)n with a
relatively compact image in M such that

Ĝ∣P̄ = F and ∥G∥(H∞)n ≤ C(M, K , n),

as required. ∎

4 Concluding remark

Let Mn be the n-fold direct product of M. For Gleason parts P1 , . . . , Pn ∈Ma with
parameterizations L1 , . . . , Ln , we set P ∶= P1 ×⋯× Pn ⊂Mn

a and L ∶= (L1 , . . . , Ln) ∶=
D

n → P. As before, for a complex Banach space X, we denote by O(P̄, X) the Banach
space of continuous X-valued maps f on the closure P̄ ⊂Mn of P such that f ○ L ∈
H∞(Dn , X) equipped with the norm ∥ f ∥C(P̄ ,X). Based on Theorem 1.1, we can prove
formally a more general statement.

Theorem 4.1 For every f ∈ O(P̄, X), there is a map F ∈ O(Mn , X) such that

F∣P = f and ∥F∥C(Mn ,X) ≤ Cn ∥ f ∥C(P̄ ,X) ,

where C is the constant in Theorem 1.1.
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Proof The proof is by induction on n. For n = 1, the theorem is the content of
Theorem 1.1. Assuming that Theorem 4.1 is proved for n − 1 with n > 1, let us prove
it for n. To this end, we set P′ ∶= P1 ×⋯× Pn−1 and L′ = (L1 , . . . , Ln−1).

Lemma 4.2 O(P̄, X) is isometrically isomorphic to O(P̄′ ,O(P̄n , X)).

Proof We prove that the correspondence f ↦ f ′, f ∈ O(P̄, X), where

f ′(x1 , . . . , xn−1)(xn) ∶= f (x1 , . . . , xn), (x1 , . . . , xn) ∈ P̄,

gives the required isometry.
Indeed, it is clear that f ′ ∈ C(P̄′ , C(P̄, X)). Next, given x′ ∶= (x1 , . . . , xn−1) ∈ P̄′,

let us take a net (z′α) ⊂ Dn−1 such that the net (L′(z′α)) ⊂ P′ converges to x′. By the
definition, each ( f ′(L′(z′α))) ○ Ln = f (L′(z′α), Ln(⋅)) is an X-valued holomorphic
function on D and

lim
α

f ′(L′(z′α))(Ln(z)) = lim
α

f (L′(z′α), Ln(z)) = f (x′ , Ln(z))

= f ′(x′)(Ln(z)), z ∈ D.

Moreover, images of functions f ′(L′(z′α)) ○ Ln ∈ H∞(D, X) belong to the compact
set f (P̄) ⊂ X. Thus, using a standard normal family argument for bounded holomor-
phic functions, we obtain that the net ( f ′(L′(z′α)) ○ Ln) has a subnet converging uni-
formly on compact subsets of D to ( f ′(x′)) ○ Ln . Hence, ( f ′(x′)) ○ Ln ∈ H∞(D, X).
This shows that f ′ ∈ C(P̄′ ,O(P̄n , X))).

Similarly, given xn ∈ P̄n , one shows that ( f ′ ○ L′)(xn) ∈ H∞(Dn−1 , X) and its
image belongs to the compact set f (P̄). Using the Bochner integral, we define

Kr( f ′ ○ L′)(z1 , . . . , zn−1) =
1

(2πi)n−1 ∫
T

n−1
r

( f ′ ○ L′)(w1 , . . . , wn−1)
(w1 − z1)⋯(wn−1 − zn−1)

dw1⋯dwn−1;

here,Tn−1
r is the boundary torus of the open polydiskDn−1

r , whereDr ∶= {z ∈ C ∶ ∣z∣ <
r}, r ∈ (0, 1), and (z1 , . . . , zn−1) ∈ Dn−1

r . Then Kr( f ′ ○ L′) is a holomorphic function
on D

n−1
r with values in O(P̄n , X) such that for each xn ∈ P̄n ,

(Kr( f ′ ○ L′))(xn) = ( f ′ ○ L′)∣Dn−1
r
(xn).

Thus, Kr( f ′ ○ L′) = f ′ ○ L′∣Dn−1
r

for all r ∈ (0, 1). This shows that f ′ ○ L′ ∈ H∞
(Dn−1 , X); hence, the correspondence f ↦ f ′ determines an isometrical isomor-
phism between O(P̄, X) and O(P̄′ ,O(P̄n , X)), as required. ∎

Using the lemma, let us continue the proof of the theorem. To this end, let
f ∈ O(P̄, X) and f ′ ∈ O(P̄′ ,O(P̄n , X)) be as in Lemma 4.2. Then, by the induction
hypothesis, there is an F′ ∈ O(Mn−1 ,O(P̄n , X)) such that

F′∣P̄′ = f ′ and ∥F′∥O(Mn−1 ,O(P̄n ,X)) ≤ Cn−1∥ f ′∥O(P̄′ ,O(P̄n ,X)) = Cn−1∥ f ∥O(P̄ ,X) .

We define

g′(xn)(x1 , . . . , xn−1) ∶= F′(x1 , . . . , xn−1)(xn), (x1 , . . . , xn−1) ∈Mn−1 , xn ∈ P̄n .
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632 A. Brudnyi

As in Lemma 4.2, one proves that g′ ∈ O(P̄n ,O(Mn−1 , X)). Applying Theorem 1.1 to
g′, we construct a function G′ ∈ O(M,O(Mn−1 , X)) such that

G′∣P̄n
= g′ and ∥G′∥O(M,O(Mn−1 ,X)) ≤ C∥G′∥O(P̄n ,O(Mn−1 ,X)) ≤ Cn∥ f ∥O(P̄ ,X) .

We set

F(x1 , . . . , xn) ∶= G′(xn)(x1 , . . . , xn−1), (x1 , . . . , xn) ∈Mn .

Then F satisfies the required conditions. ∎

Acknowledgments I thank the anonymous referee for many helpful comments that
improved the presentation of the paper.
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