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It is well known that, under inertialess conditions, the orientation vector of a
torque-free neutrally buoyant spheroid in an ambient simple shear flow rotates along
so-called Jeffery orbits, a one-parameter family of closed orbits on the unit sphere
centred around the direction of the ambient vorticity (Jeffery, Proc. R. Soc. Lond. A,
vol. 102, 1922, pp. 161–179). We characterize analytically the irreversible drift in
the orientation of such torque-free spheroidal particles of an arbitrary aspect ratio,
across Jeffery orbits, that arises due to weak inertial effects. The analysis is valid in
the limit Re, St � 1, where Re = (γ̇L2ρf )/µ and St = (γ̇L2ρp)/µ are the Reynolds
and Stokes numbers, which, respectively, measure the importance of fluid inertial
forces and particle inertia in relation to viscous forces at the particle scale. Here, L
is the semimajor axis of the spheroid, ρp and ρf are the particle and fluid densities,
γ̇ is the ambient shear rate, and µ is the suspending fluid viscosity. A reciprocal
theorem formulation is used to obtain the contributions to the drift due to particle
and fluid inertia, the latter in terms of a volume integral over the entire fluid domain.
The resulting drifts in orientation at O(Re) and O(St) are evaluated, as a function
of the particle aspect ratio, for both prolate and oblate spheroids using a vector
spheroidal harmonics formalism. It is found that particle inertia, at O(St), causes a
prolate spheroid to drift towards an eventual tumbling motion in the flow–gradient
plane. Oblate spheroids, on account of the O(St) drift, move in the opposite direction,
approaching a steady spinning motion about the ambient vorticity axis. The period
of rotation in the spinning mode must remain unaltered to all orders in St. For the
tumbling mode, the period remains unaltered at O(St). At O(St2), however, particle
inertia speeds up the rotation of prolate spheroids. The O(Re) drift due to fluid
inertia drives a prolate spheroid towards a tumbling motion in the flow–gradient
plane for all initial orientations and for all aspect ratios. Interestingly, for oblate
spheroids, there is a bifurcation in the orientation dynamics at a critical aspect
ratio of approximately 0.14. Oblate spheroids with aspect ratios greater than this
critical value drift in a direction opposite to that for prolate spheroids, and eventually
approach a spinning motion about the ambient vorticity axis starting from any initial
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orientation. For smaller aspect ratios, a pair of non-trivial repelling orbits emerge from
the flow–gradient plane, and divide the unit sphere into distinct basins of orientations
that asymptote to the tumbling and spinning modes. With further decrease in the
aspect ratio, these repellers move away from the flow–gradient plane, eventually
coalescing onto an arc of the great circle in which the gradient–vorticity plane
intersects the unit sphere, in the limit of a vanishing aspect ratio. Thus, sufficiently
thin oblate spheroids, similar to prolate spheroids, drift towards an eventual tumbling
motion irrespective of their initial orientation. The drifts at O(St) and at O(Re) are
combined to obtain the drift for a neutrally buoyant spheroid. The particle inertia
contribution remains much smaller than the fluid inertia contribution for most aspect
ratios and density ratios of order unity. As a result, the critical aspect ratio for the
bifurcation in the orientation dynamics of neutrally buoyant oblate spheroids changes
only slightly from its value based only on fluid inertia. The existence of Jeffery orbits
implies a rheological indeterminacy, and the dependence of the suspension shear
viscosity on initial conditions. For prolate spheroids and oblate spheroids of aspect
ratio greater than 0.14, inclusion of inertia resolves the indeterminacy. Remarkably,
the existence of the above bifurcation implies that, for a dilute suspension of oblate
spheroids with aspect ratios smaller than 0.14, weak stochastic fluctuations (residual
Brownian motion being analysed here as an example) play a crucial role in obtaining
a shear viscosity independent of the initial orientation distribution. The inclusion of
Brownian motion leads to a new smaller critical aspect ratio of approximately 0.013.
For sufficiently large Re Per, the peak in the steady-state orientation distribution shifts
rapidly from the spinning- to the tumbling-mode location as the spheroid aspect ratio
decreases below this critical value; here, Per = γ̇ /Dr, with Dr being the Brownian
rotary diffusivity, so that Re Per measures the relative importance of inertial drift
and Brownian rotary diffusion. The shear viscosity, plotted as a function of Re Per,
exhibits a sharp transition from a shear-thickening to a shear-thinning behaviour, as
the oblate spheroid aspect ratio decreases below 0.013. Our results are compared in
detail to earlier analytical work for limiting cases involving either nearly spherical
particles or slender fibres with weak inertia, and to the results of recent numerical
simulations at larger values of Re and St.

Key words: low-Reynolds-number flows, rheology, suspensions

1. Introduction
The present paper is concerned with the theoretical determination of the viscosity of

a dilute non-interacting suspension of non-Brownian anisotropic particles as a function
of the particle volume fraction, a classical problem in microhydrodynamics (Batchelor
1977). The relevant volume fraction here is the hydrodynamic one, nL3, where n is the
particle number density and L is the largest characteristic dimension of an individual
particle; nL3� 1 implies hydrodynamic diluteness. We consider the simplest geometry
for a non-spherical particle, that of a spheroid, wherein the deviation from sphericity
is characterized by a single parameter, the particle aspect ratio, and in which case L
would be the semimajor axis. The analogous problem for spheres was first analysed
by Einstein in 1906 (Leal 1992) who showed that a suspension of rigid spheres,
in the dilute non-interacting limit, behaves as a Newtonian fluid with an effective
viscosity that is enhanced relative to that of the suspending fluid by a factor (5/2)φ,
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Inertial effects on the orientation of anisotropic particles in shear flow 633

φ (�1) being the volume fraction, and the factor 5/2 often referred to as the
Einstein coefficient. The determination of the analogue of the Einstein coefficient for
a suspension of spheroids, a dimensionless function of the spheroid aspect ratio that
multiplies nL3, turns out to be considerably more involved. Stokesian hydrodynamics
alone does not, in fact, provide for a unique answer in this regard.

In order to better understand the above difficulty, one may again examine a
suspension of spheres, where a similar difficulty occurs in determining the O(φ2)

correction to the effective viscosity. This calculation, which includes the first
effects of hydrodynamic interactions, was accomplished much later (than Einstein)
by Batchelor and Green in 1972 (Batchelor & Green 1972a,b). The difficulty
in the pair problem arises because a naive summation of the long-ranged pair
interactions in the suspension viscosity problem, and in other related problems
that include the determination of the hindered settling velocity (Batchelor 1972)
and the permeability of a dilute fixed bed (Hinch 1977), leads to either divergent
or conditionally convergent integrals, and only in the 1970s was it shown that
appropriate renormalizations were needed to sensibly characterize the effects of
hydrodynamic interactions on the bulk characteristics of Stokesian suspensions. For
the suspension viscosity problem in particular, even after the renormalization, the
notion of the particulate phase modifying the shear viscosity to O(φ2), and, thence,
of a Newtonian rheology for a Stokesian suspension at this order, was found to
be crucially dependent on the topology of the pair-sphere trajectories. This is due
to the occurrence of closed pair pathlines, and the resulting indeterminacy of the
pair-distribution function on such trajectories in the purely hydrodynamic limit
(Batchelor & Green 1972a). The occurrence of closed particle (Kao, Cox & Mason
1977) or fluid trajectories (Subramanian & Koch 2006a,c, 2007) in Stokes flows is not
uncommon, the underlying reason being the principle of reversibility associated with
the quasisteady Stokes equations. The above indeterminacy associated with the pair
probability on closed pair-particle pathlines prevents a straightforward determination
of the stress tensor, at O(φ2), for a range of linear flows that includes the rheologically
important case of simple shear flow (Kao et al. 1977). Any calculation of the O(φ2)

contribution in such flows must therefore appeal to physics outside of Stokesian
hydrodynamics in the dilute regime, such as three-particle interactions, weak particle
(Subramanian & Brady 2006) or fluid inertia (Morris, Yan & Koplik 2007) or weak
Brownian motion (Morris & Brady 1997).

For a suspension of spheroids, the aforementioned rheological indeterminacy is
already present at O(nL3), that is, even in the absence of hydrodynamic interactions.
The aspect-ratio-dependent analogue of the Einstein coefficient depends only on the
single-particle orientation distribution (owing to the absence of positional correlations
at this order), and the latter is indeterminate. It was shown originally by Jeffery (1922)
that an isolated spheroid in simple shear flow rotates along any of a one-parameter
family of closed orbits now known as Jeffery orbits. The Jeffery orbits are spherical
ellipses, with those for a prolate spheroid having their major axes aligned with
the flow direction; the ones for an oblate spheroid are obtained via a 90◦ rotation.
The existence of such closed orbits on the unit sphere of orientations leads to the
indeterminacy above. In the convective limit (that is, for large values of the rotary
Péclet number defined as Per = γ̇ /Dr, Dr being the Brownian rotary diffusivity, and
γ̇ being the shear rate), the orientation probability density may be conveniently
written in the form g(C, τ )f (C) (Leal & Hinch 1971). The coordinates (C, τ ) form a
non-orthogonal system on the unit sphere that characterizes the particle motion along
Jeffery orbits, with C being an orbit constant that ranges from 0 to ∞ and τ being the
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phase that changes at a constant aspect-ratio-dependent rate along a given orbit. The
first factor in the orientation probability density, g(C, τ ), determines the distribution
of orientations along a Jeffery orbit, while the second factor, f (C), determines the
distribution of orientations across the various Jeffery orbits. Strictly speaking, neither
of these two components is uniquely determined in the convective limit in the absence
of interparticle interactions. A tiny polydispersity in the particle aspect ratio, however,
is sufficient for the orientation distribution along a single Jeffery orbit to converge
to a unique steady distribution given by the inverse rate of change of the azimuthal
angle as found by Jeffery, and is a function of the particle aspect ratio (Okagawa, Cox
& Mason 1973a,b). On the other hand, the function f (C) is, by definition, unchanged
by particle motion along Jeffery orbits, and therefore preserves its functional form in
the absence of interactions. As a result, one predicts a sensitive dependence of the
rheology of a dilute non-interacting suspension of non-Brownian spheroids on the
initial orientation distribution! As for spherical particle suspensions, earlier authors
have appealed to mechanisms such as Brownian motion (Leal & Hinch 1971; Hinch
& Leal 1972), viscoelasticity (Leal 1975), fluid and particle inertia (Subramanian &
Koch 2005, 2006b), and pair-hydrodynamic interactions in the limit of large aspect
ratios (Okagawa et al. 1973a; Rahnama, Koch & Shaqfeh 1995), to obtain a drift
across Jeffery orbits in an effort to endow the suspension with a finite memory and,
thereby, arrive at a unique steady-state distribution across Jeffery orbits.

In this paper, we appeal specifically to weak inertial effects as a mechanism
leading to a unique distribution of orientations across Jeffery orbits independent of
initial conditions, a unique value for the Einstein coefficient analogue, and, thereby,
a unique steady-state rheology in simple shear flow. We consider inertia of both the
particle and that of the suspending fluid, and determine the inertial drift, at leading
order, for both prolate and oblate spheroids of an arbitrary aspect ratio using a
reciprocal theorem formulation together with a novel spheroidal harmonics formalism.
The relevant non-dimensional measures of fluid and particle inertia are the Reynolds
and Stokes numbers defined as Re= γ̇L2ρf /µ and St= γ̇L2ρp/µ, and the leading-order
drifts occur at O(Re) and O(St), respectively; here, ρp and ρf are the particle and
fluid densities, L the semimajor axis, and µ the suspending fluid viscosity. The time
period of rotation remains equal to the Jeffery period to this order. For particle inertia
alone, the analysis, being simpler, is extended to O(St2), and it is thereby shown that
particle inertia acts to decrease the time period of rotation of a prolate spheroid,
consistent with recent simulation results (see discussion below). The effect of fluid
inertia on the time period of rotation occurs at O(Re3/2) for spheroids with aspect
ratios of order unity, and an analysis of the same will be reported separately.

Jeffery (1922) himself had hypothesized that weak inertial effects would eventually
move the particle to an orbit of minimum dissipation. These correspond to the
log-rolling and tumbling orbits for prolate and oblate spheroids, respectively. Initial
experimental investigations (Taylor 1923; Trevelyan & Mason 1951) were inconclusive.
The earliest analytical investigation to study the effect of weak fluid inertia on a nearly
spherical particle in simple shear flow was that of Saffman (1956), and appeared to
confirm Jeffery’s hypothesis, although no details were given. In the same paper, the
author concluded that particle inertia does not lead to any drift. In contrast, Karnis,
Goldsmith & Mason (1966), in experiments with disks and rods in Couette flow,
observed the particles to migrate towards orbits of maximum energy dissipation.
Later, Harper & Chang (1968) analysed the motion of a dumbbell-shaped particle, in
simple shear flow, in the limit when the intersphere separation is much greater than
the inertial screening length (of O(aRe−1/2), a being the sphere radius). The torque
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Inertial effects on the orientation of anisotropic particles in shear flow 635

leading to the drift was regarded as arising from inertial lift forces (Saffman 1965)
acting independently on each sphere and, as a result, the dumbbell was found to
move towards a tumbling mode. However, as argued in Subramanian & Koch (2005),
use of the Saffman lift force is inconsistent with the limit considered by the authors.
There have been more recent investigations for the inertial drift, based on a reciprocal
theorem formulation, that are either limited to particles with large aspect ratios
(Subramanian & Koch 2005), with the attendant simplifications arising from viscous
slender body theory (Batchelor 1970a), or to particles with aspect ratios near unity
which allow for a regular perturbation expansion about a sphere (Subramanian &
Koch 2006b). For nearly spherical axisymmetric particles, Subramanian & Koch
(2006b) conclude that the effect of fluid inertia is in accordance with Jeffery’s
hypothesis (as we show later, in appendix D, this is incorrect). Particle inertia was
found to cause prolate and oblate near-spheres to drift towards tumbling and spinning
modes, respectively. For slender fibres, Subramanian & Koch (2005) found a fluid
inertial drift towards the tumbling mode, a decrease in the speed of rotation with
increasing Re, and a relatively modest critical Re above which the particle ceases
to rotate. It was also argued herein that the effects of particle inertia would be
asymptotically small for large aspect ratios. Recently, the effect of particle inertia on
the orientation of axisymmetric particles of arbitrary aspect ratios, to O(St), has been
examined by Einarsson, Angilella & Mehlig (2014). The authors obtain the correction
to the leading-order Jeffery angular velocity, and conclude that prolate and oblate
spheroids drift towards the tumbling and spinning modes, respectively, consistent
with the near-sphere analysis of Subramanian & Koch (2006b). Even more recently,
Einarsson et al. (2015a,b) have looked at the effect of both particle and fluid inertia
on spheroids of an arbitrary aspect ratio, and we comment on this effort in § 8.

There have been several recent numerical investigations that examine the orientation
dynamics of anisotropic particles in simple shear flow. These may be conveniently
divided into those that analyse the orientational motion of neutrally buoyant spheroids
(Re=St), over a wide range of Re, via (mainly) Lattice Boltzmann simulations (Aidun,
Lu & Ding 1998; Ding & Aidun 2000; Qi & Luo 2003; Huang et al. 2012; Mao &
Alexeev 2014) and via the distributed Lagrangian multiplier based fictitious domain
method (Yu, Phan-Thien & Tanner 2007), and those that examine the orientation
dynamics of massive spheroids and triaxial ellipsoids in shear flow in the absence
of fluid inertia, but over a wide range of St, via a numerical integration of the
governing ODE’s (Lundell & Carlsson 2010, 2011; Challabotla, Nilsen & Andersson
2015). One of the main conclusions of the second group of investigations is a rather
sharp transition, across a narrow range in St, from a small-St to a large-St dynamics.
In the former regime, as would be expected, the inertial drift leads to a spiralling
trajectory for the orientation vector, with each turn of the spiral closely resembling a
Jeffery orbit. In the latter regime, the drift is again asymptotically slow but has a very
different character, akin to the classical Euler top (Goldstein 1962) with a superposed
secular drift, that is outside the scope of the current investigation. The first group
of investigations above, culminating in the recent effort of Huang et al. (2012), has
identified a series of transitions in the rotation mode as a function of Re for both
prolate and oblate spheroids. With increasing Re, the sequence of rotation modes
are tumbling, log-rolling, inclined rolling, precession and nutation around an inclined
axis and, finally, a stationary state at the highest Re values (Huang et al. 2012), for
a prolate spheroid. For an oblate spheroid, this sequence is simpler, consisting of
a low-Re, spinning mode followed by an inclined spinning mode, and a stationary
state at the highest Re values. The general focus of these simulation efforts has
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been more on the transition in rotations, and less on the dependence of the period
of rotation on Re; although it is clear that, over the lower range of Re values, the
period increases monotonically due to the onset of fluid inertial effects. The work by
Mao & Alexeev (2014) is an exception in this regard, and the authors find that the
effects of particle and fluid inertia are, respectively, to decrease and increase the time
period of rotation from the inertialess Jeffery value. Note that, in two dimensions,
increasing Re had already been shown to eventually arrest rotation of an elliptic
cylinder (Ding & Aidun 2000). In three dimensions, for sufficiently slender bodies,
such an arrest has been predicted to occur at a fairly modest Re of O(κ−1 ln κ),
κ being the large aspect ratio (Subramanian & Koch 2005). As is the case for
numerical investigations, the above efforts for neutrally buoyant spheroids (and, to
a lesser extent, those for massive spheroids) are limited in the number of aspect
ratios examined and in terms of analysing the detailed dependence of the nature
of the final steady or time-periodic state on the particular initial orientation. For
instance, excepting Mao & Alexeev (2014), all other efforts only look at prolate and
oblate spheroids with aspect ratios of 2 and 0.5, respectively. Further, the numerical
simulations of neutrally buoyant spheroids are necessarily limited to wall-bounded
domains with periodic boundary conditions in the flow and vorticity directions. The
effect of the wall confinement on the aforementioned transitions is not small, and
the effects of periodicity are uncertain. There is also some disagreement, between
different efforts, with regard to the detailed sequence of transitions, and the precise
estimates of the associated critical Re values. This appears partly due to the differing
nature of the numerical methods, and partly due to the different initial orientations
examined in different investigations. The analysis given here will serve as a very
useful point of validation for any numerical effort. Although restricted to Re, St� 1,
the qualitative nature of the orientation dynamics is expected to conform to predictions
even when Re, St∼O(1). In sharp contrast to the above numerical investigations and
the earlier theoretical efforts, we cover the entire range of aspect ratios for both
prolate and oblate spheroids, and show that, for sufficiently thin oblate spheroids
(aspect ratios smaller than approximately 0.14, which have not been examined in any
of the above simulations), the long-time orientation dynamics is a function of the
initial orientation, with the unit sphere being divided into distinct basins of attraction
corresponding to the tumbling and spinning modes. For the dilute regime of relevance
here, the dependence on initial conditions for the said aspect ratios is expected to be
eliminated, over much longer times, on account of weak thermal or hydrodynamically
induced orientation fluctuations. The case of weak Brownian motion is analysed here
in some detail.

Very recently, there have been a pair of numerical investigations of both neutrally
and non-neutrally buoyant prolate spheroids, again using variants of the Lattice
Boltzmann method. Rosen, Lundell & Aidun (2014) examined a neutrally buoyant
prolate spheroid with aspect ratio 4 (in contrast to the aspect ratio of 2 considered
in virtually all of the aforementioned numerical efforts) in simple shear flow with
increasing Re. A sequence of rotational states, similar to that found earlier by
Huang et al. (2012) for a prolate spheroid of aspect ratio 2, was found, although
the transition Reynolds numbers differed in magnitude (lower for the higher aspect
ratio). Importantly, the authors interpreted the transitions from one rotational state
to the other in terms of the analogous bifurcations of the fixed points of a model
two-dimensional two-parameter vector field. This dynamical systems perspective is
crucial to understand the underlying system symmetries. For instance, the analogy
with the model dynamical system naturally explains the presence of two possible

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.14


Inertial effects on the orientation of anisotropic particles in shear flow 637

inclined log-rolling and precessing modes, symmetrically disposed about the ambient
vorticity axis; as to which one is actually observed in a simulation depends on the
initial orientation. The authors also observed the tumbling mode of the spheroid to
coexist with other rotational states at higher Re, until the tumbling period diverged
at a critical Reynolds number, via a saddle-node bifurcation, in a manner similar to
that found earlier by one of the authors for two-dimensional elliptic cylinders (Ding
& Aidun 2000). Rosen et al. (2015) have extended the study of Rosen et al. (2014)
to non-neutrally buoyant spheroids, and examine in detail the effects of varying
particle inertia and aspect ratio (prolate spheroids with aspect ratios ranging from 2
to 6) on the different transition Reynolds numbers (tumbling → tumbling/log-rolling,
tumbling/log-rolling → tumbling/inclined log-rolling, etc).

The rheology of anisotropic particle suspensions is relevant to a wide range of
problems and applications. Blood rheology is sensitively dependent on the orientation
distribution of the dominant suspended constituent – red blood cells (Caro et al. 2012).
Magma is a three-phase mixture of inorganic silicate melt, gas bubbles and anisotropic
mineral crystals. While the role of bubbles on magma rheology (which determines the
nature of the volcanic eruption) has been investigated in some detail earlier (Manga
et al. 1998; Llewellin, Mader & Wilson 2002), the importance of suspended crystals
on magma rheology has only been recognized recently (Mueller, Llewellin & Mader
2011). It has, in fact, been shown that the shear viscosity increases significantly with
increasing anisotropy (tending either towards a fibre or a disk morphology) of the
suspended particles (Mueller, Llewellin & Mader 2010). Apart from the rheological
significance, analysing the dynamics of anisotropic particles in shearing flows is also
important in other contexts. For instance, reflective flakes, with sizes of the order
of micrometres and often having extreme aspect ratios, are routinely used for flow
visualization purposes (Thoroddsen & Bauer 1999; Goto, Kida & Fujiwara 2011).
Interpretation of the scattered intensity patterns that arise from the suspended flakes
depend crucially on knowledge of their orientation dynamics in the local shearing
flow, and there have been investigations in this regard (Savas 1985; Gauthier, Gondret
& Rabaud 1998). Although not directly relevant to the present investigation, the
emerging field of inertial microfluidics (Carlo 2009; Amini, Lee & Carlo 2014)
involves high-throughput particle separation protocols in microfluidic channels that
rely on the unique (transverse) equilibrium positions adopted by spherical particles
under the action of inertial lift forces. Recently, it has been found that unique
equilibrium positions, that arise from aspect-ratio-dependent lift forces, can also
lead to shape sorting of particulate matter (Masaeli et al. 2012). The shape-selective
nature of inertial lift forces relies crucially on the coupled positional and orientation
dynamics of anisotropic particles in the bounded channel geometry. Other applications
of interest, pertaining to atmospheric and geophysical scenarios, have been mentioned
in Dabade, Marath & Subramanian (2015).

The paper is organized as follows. In § 2, a reciprocal theorem formulation (Leal
1979; Subramanian & Koch 2005, 2006b) is used to obtain the governing equation
for the angular velocity of a spheroid in simple shear flow, accounting for both
fluid and particle inertia. The analysis of particle inertia is a fairly straightforward
exercise, involving a regular expansion of the angular velocity for small St, with
the leading-order term being the Jeffery angular velocity. The analysis of even
weak fluid inertia is a difficult exercise in general, but it is shown that the O(Re)
correction has a regular character, with its calculation requiring only a knowledge of
the Stokes velocity fields. Thus, in § 3, we derive an analytical expression for the
disturbance velocity field due to a freely rotating spheroid in simple shear flow, at
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Re = 0, based on a vector spheroidal harmonics formalism developed originally by
Kushch and co-workers in the context of elastic composites (Kushch 1997, 1998;
Kushch & Sangani 2003). The general velocity field is expressed in spheroidal
coordinates as a sum of five contributions, each corresponding to a simpler canonical
linear flow, the relative amplitudes of these component flows being determined by
the instantaneous orientation of the spheroid. As a validation exercise, this velocity
field is first used to obtain the Jeffery equations for the spheroidal angular velocity
in § 4. We then analyse the effects of particle and fluid inertia in §§ 5 and 6,
respectively. Section 5.1 analyses the O(St) drift for both prolate and oblate spheroids,
while § 5.2 examines the O(St2) alteration in the period of rotation of a tumbling
prolate spheroid. Sections 6.1 and 6.2 analyse the O(Re) inertial drift for prolate
and oblate spheroids, respectively, with a detailed characterization of the bifurcation
in the orientation dynamics that occurs in the latter case for aspect ratios smaller
than 0.142. Section 6.3 examines the drift, arising from both particle and fluid
inertia, for non-neutrally buoyant prolate and oblate spheroids, as a function of the
density ratio (ρp/ρf = St/Re); for neutrally buoyant oblate spheroids, in particular,
the aspect ratio for the aforementioned bifurcation decreases slightly to 0.137. In § 7,
we present the calculation of the steady-state shear viscosity, to O(nL3), of a dilute
suspension of neutrally buoyant spheroids. In § 7.1, the shear viscosity is calculated
for a suspension of non-Brownian spheroids, and the aforementioned bifurcation
in the orientation dynamics implies a kink in the shear-viscosity curve for oblate
spheroids at the critical aspect ratio of 0.137, and a dependence of the viscosity on
the initial orientation distribution, for smaller aspect ratios, via the relative proportions
of particles in the tumbling and spinning modes at the initial instant. Next, in § 7.2,
we show that even asymptotically weak Brownian motion, acting over sufficiently
long times, eliminates this dependence. The resulting unique steady shear viscosity
now exhibits a jump across a considerably smaller aspect ratio of approximately
0.0126 (for oblate spheroids) owing to a discontinuous transition in the peak of the
orientation distribution from the vicinity of the spinning mode (aspect ratios greater
than 0.0126) to the vicinity of the tumbling mode (aspect ratios less than 0.0126)
in the convective limit (Re Per → ∞). In § 8, we begin with a summary of the
main results, and then examine the steady shear viscosity for finite Re Per, showing,
in particular, that a dilute inertial suspension of thin oblate spheroids exhibits a
pronounced shear-thickening rheology for aspect ratios greater than 0.0126.

2. Formulation for the inertial drift: the generalized reciprocal theorem

The generalized reciprocal theorem relates the velocity and stress fields of the
problem of interest and those of a simpler test problem for which the solution is
known. Both sets of fields are solutions for the flow past a given body (a spheroid
with a given orientation in the present case), but with different boundary conditions
and possibly governed by different dynamical equations (Leal 1979; Subramanian &
Koch 2005, 2006b). Since the quantity of interest here is the inertial correction to the
angular velocity of a spheroid in simple shear flow, the first problem, (σ ′(1), u′(1)), is
taken to correspond to a spheroid suspended in a Newtonian fluid undergoing simple
shear flow with the inertial acceleration, both of the particle and that of the fluid,
being taken into account. Here, u′(1) = u(1) − Γ · x is the disturbance velocity field,
σ ′(1) = σ (1) − 2E is the corresponding stress field, and Γ · x is the ambient simple
shear defined with the origin at the centre of the spheroid, all in non-dimensional
form. Γ = 1′x1

′
y and E = (1′x1′y + 1′y1

′
x)/2 are the transpose of the non-dimensional
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velocity gradient and rate-of-strain tensors, respectively, in a space-fixed coordinate
system; X′, Y ′ and Z′ being the flow, gradient and vorticity directions, respectively, of
the ambient simple shear. The test problem, (σ (2), u(2)), corresponds to the Stokesian
rotation of a spheroid, with the same instantaneous orientation, in an otherwise
quiescent ambient. The reciprocal theorem then yields the following identity:∫

S
n · u′(1) · σ (2) dS−

∫
S

n · u(2) · σ (1) dS= Re
∫

V

Du(1)

Dt
· u(2) dV, (2.1)

where n is the unit normal into the fluid domain V and S includes all bounding
surfaces. Here, Re is a non-dimensional measure of fluid inertia in relation to viscous
forces, and is defined as Re= γ̇L2/ν, where γ̇ is the ambient shear rate, L is taken to
be the spheroid semimajor axis, ν=µ/ρf is the kinematic viscosity of the suspending
fluid, with µ and ρf being its viscosity and density, respectively. The velocity fields
u′(1) and u(2) decay sufficiently rapidly for the surface integrals at infinity to be
neglected, and the bounding surface S in (2.1) reduces to that of the spheroid (Sp).
The inertial acceleration (Du(1))/Dt in (2.1) is written in terms of Γ and u′(1) below
(see (2.11)). The no-slip boundary conditions in the two problems imply that, on SP,
u′(1) =Ω1 ∧ x− Γ · x and u(2) =Ω2 ∧ x, where Ω1 and Ω2 are the angular velocities
of the spheroid in the actual problem and test problem, respectively. In this paper,
we determine Ω1 to O(Re), and to O(St2), where St = ρpγ̇L2/µ is a dimensionless
measure of particle inertia, ρp being the particle density. The relative importance
of particle and fluid inertia is determined by the ratio St/Re = ρp/ρf . Thus, for a
gas–solid system we have St�Re, but for solid–liquid systems St≈Re; for neutrally
buoyant particles in particular, St= Re.

Accounting for the boundary conditions above, the surface integrals in (2.1) may
now be expressed as: ∫

Sp

n · u(2) · σ (1) dS = Ω2 ·L1, (2.2)

= StΩ2 ·
d
dt
(Ip ·Ω1), (2.3)∫

Sp

n · u′(1) · σ (2) dS =
∫

Sp

n · (Ω1 ∧ x− Γ · x) · σ (2) dS, (2.4)

= Ω1 ·L2 − Γ :
∫

Sp

x(σ (2) · n) dS, (2.5)

where we have assumed the absence of any external torque in the problem of interest.
As a result, the hydrodynamic torque (L1) must equal the angular acceleration, and
Ip above is the moment of inertia tensor of the spheroid. For an inertialess particle,
the torque-free condition would mean L1= 0. The identity (2.1) now takes the form:

Ω1 ·L2 = Γ :
∫

Sp

x(σ (2) · n) dS+ St
[

d
dt
(Ip ·Ω1)

]
·Ω2 + Re

∫
V

Du(1)

Dt
· u(2) dV. (2.6)

The non-dimensional equations of motion and the continuity equation for the
problem of interest, (σ (1), u(1)), are given by:

Re
[
∂u(1)

∂t
+ u(1) · ∇u(1)

]
=−∇p(1) +∇2u(1), (2.7)
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∇ · u(1) = 0. (2.8)

with

u(1) =Ω1 ∧ x for x ∈ Sp, (2.9)

u(1)→ Γ · x for x→∞. (2.10)

In terms of the disturbance field used in the reciprocal theorem formulation above, we
have:

Re
[
∂u′(1)

∂t
+ (Γ · x) · ∇u′(1) + Γ · u′(1) + u′(1) · ∇u′(1)

]
=−∇p′(1) +∇2u′(1), (2.11)

∇ · u′(1) = 0, (2.12)

with

u′(1) =Ω1 ∧ x− Γ · x for x ∈ Sp, (2.13)

u′(1)→ 0 for x→∞. (2.14)

The test problem, (σ (2), u(2)), in (2.1), is defined by

−∇p(2) +∇2u(2) = 0, (2.15)
∇ · u(2) = 0, (2.16)

with

u(2) =Ω2 ∧ x for x ∈ Sp, (2.17)

u(2)→ 0 for x→∞. (2.18)

For St = 0, Ω2 may be chosen orthogonal to the spheroidal symmetry axis since
the axial rotation of the spheroid does not couple to a change in its orientation. An
inertialess spheroid, as it rotates along a Jeffery orbit, spins at a rate commensurate
with the ambient vorticity vector projected along its axis. However, with particle
inertia, the presence of gyroscopic forces implies that orientation and spin dynamics
are coupled, and the test problem must therefore include both the axial and transverse
rotation problems (Subramanian & Koch 2006b).

Using the form of the inertial acceleration in (2.11), (2.6) may be rewritten as:

Ω1 ·L2= Γ :
∫

Sp

x(σ (2) · n) dS+ St
[

d
dt
(Ip ·Ω1)

]
·Ω2

+Re
∫

V

[
∂u′(1)

∂t
+ (Γ · x) · ∇u′(1) + Γ · u′(1) + u′(1) · ∇u′(1)

]
· u(2) dV. (2.19)

Further, noting that the velocity field in the test problem is linear in Ω2, one may
write u(2) = U(2) · Ω2, L2 = L(2) · Ω2 and σ (2) = Σ (2) · Ω2, where U(2) and L(2) are
second-order tensors, and Σ (2) is a third-order tensor, dependent only on the geometry
of the spheroidal particle, and are known in closed form as a function of the aspect
ratio (see § 3; also see Dabade et al. (2015)). Accounting for Ω2 being arbitrary, (2.19)
takes the form:

Ω1 · L
(2) = Γ :

∫
Sp

x(Σ (2)
· n) dS+ St

d
dt
(Ip ·Ω1)

+Re
∫

V

[
∂u′(1)

∂t
+ (Γ · x) · ∇u′(1) + Γ · u′(1) + u′(1) · ∇u′(1)

]
· U(2) dV, (2.20)
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X

YZ

FIGURE 1. The body-fixed and space-fixed coordinate systems for a spheroid in simple
shear flow.

valid for arbitrary Re and St. In § 3, we obtain expressions for the disturbance
fields that appear in (2.20), using a spheroidal harmonics formalism, in a body-fixed
coordinate system aligned with the spheroid symmetry axis. As a result, it becomes
convenient to evaluate the unsteady acceleration involved in the last integral on the
right-hand side of (2.20) in a coordinate system that rotates with the spheroid (XYZ
in figure 1), but with the Y-axis constrained to lie in the flow–gradient plane. The
constraint implies that while the axes of this coordinate system section rotate with
the spheroid, the resulting spin about the spheroid axis (Z) differs from the actual
rate of spin. Using the relation between the time derivatives in the two coordinate
systems, we have:

∂u′(1)

∂t
+ u′(1) · ∇u′(1) = du′(1)

dt
(2.21)

=
(

du′(1)

dt

)
r

+Ωb ∧ u′(1), (2.22)

=
(
∂u′(1)

∂t

)
r

+ u(1)r · ∇u′(1) +Ωb ∧ u′(1), (2.23)

where Ωb is the angular velocity of the body-fixed coordinate system, and we
have used that the total time derivative in the rotating coordinate system involves
calculating the rate of change for an element that moves with the velocity in the
rotating coordinate system, which is given in terms of the original disturbance field
as u(1)r = u′(1) −Ωb ∧ x. Using this relation, (2.23) takes the form:

∂u′(1)

∂t
+ u′(1) · ∇u′(1) =

(
∂u′(1)

∂t

)
r

+ u′(1) · ∇u′(1) +Ωb ∧ u′(1) − (Ωb ∧ x) · ∇u′(1),

(2.24)

where the third term arises from the usual rate of change of the rotating unit vector
triad relative to a space-fixed coordinate system, while the fourth term denotes the rate
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of change due to the spatially inhomogeneous disturbance velocity field being swept
past a space-fixed point with velocity Ωb ∧ x. Using (2.24) in (2.20), we have the
following form for the reciprocal theorem identity:

Ω1 · L
(2) = Γ :

∫
Sp

x(Σ (2)
· n) dS+ St

d
dt
(Ip ·Ω1)

+Re
∫

V

[(
∂u′(1)

∂t

)
r

+ (Γ · x) · ∇u′(1) + Γ · u′(1) + u′(1) · ∇u′(1)

+ Ωb ∧ u′(1) − (Ωb ∧ x) · ∇u′(1)
]
· U(2) dV, (2.25)

which will be used in conjunction with the expressions for the disturbance velocity
fields derived in § 3.

In order to estimate the O(Re) correction to Ω1, it is sufficient to use the
leading-order Jeffery approximation for Ωb in the volume integral in (2.25), since the
neglected terms of O(ReSt) and O(Re2) are asymptotically smaller than those retained.
This leading-order angular velocity, obtained from neglecting the inertial contributions
in (2.25), is given by:

Ωjeff · L
(2) = Γ :

∫
Sp

x(Σ (2)
· n) dS. (2.26)

The components of Ωjeff orthogonal to p, obtained from (2.26), lead to the well-known
Jeffery orbit equations for a spheroid (see § 4) which, in non-dimensional form, are
given by Leal & Hinch (1971), Kim & Karrila (1991):

ṗjeff =ω ∧ p+ κ
2 − 1
κ2 + 1

[E · p− p(E : pp)], (2.27)

where ṗjeff =Ωjeff ∧ p, ω= (1/2) ε : (Γ −Γ †), with Γ as defined before, is the ambient
vorticity vector and κ is the spheroid aspect ratio; if b be the semiminor axis, κ =
L/b and b/L for prolate and oblate spheroids, respectively. Since the spheroid spins
at a rate commensurate with the projected ambient vorticity, we have Ωjeff · p= (ω ·
p)/2. The solution of (2.27) may be written in terms of spherical coordinates (with
the ambient vorticity direction as the polar axis) as:

tan φj = 1

κ tan
[

κt
(κ2 + 1)

] , (2.28)

tan θj = Cκ
(κ2 sin2 φj + cos2 φj)1/2

, (2.29)

where θj is the angle between the symmetry axis of the spheroid and the direction
(Z′) of ambient vorticity and φj is the dihedral angle between the flow–vorticity plane
(X′Z′) and the orientation–vorticity plane (ZZ′) – see figure 1. Here, C is the orbit
constant, ranging from zero (log-rolling motion for a prolate spheroid, and spinning
for an oblate spheroid, about the ambient vorticity) to infinity (tumbling motion in the
flow–gradient plane), and τ = κt/(κ2 + 1) is the phase along an orbit (Leal & Hinch
1971; Kim & Karrila 1991). The period of rotation is independent of the orbit constant,
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being given by Tjeff = 2π(κ + 1/κ) for all C. Thus, Ωb =Ω t
jeff =−φ̇j sin θj 1x + θ̇j 1y +

φ̇j cos θj 1z, with φj and θj satisfying the Jeffery equations above; the superscript ′t′
emphasizes the difference in the spin component of Ωb compared to Ωjeff · p.

To determine Ω1 to O(Re), one may also use the Stokes approximation (u′(1)s ) for the
velocity field u′(1) in (2.25). That this approximation leads to a convergent integral may
be seen by noting that, for a linear flow at Re= 0, we have u′(1)s ∼O(1/r2) for r� L,
and from (2.11), it is then seen that (Du′(1)s )/Dt ∼ O(1/r2) for large r. Since u(2) ∼
O(1/r2) for r� L, the O(Re) integrand based on the Stokes approximation is O(1/r4)

for r�L, implying convergence. As for the case of sedimentation in a quiescent fluid
(Dabade et al. 2015), this points to the regular nature of the O(Re) correction, with
the dominant contribution to the O(Re) torque arising due to fluid inertial forces acting
within a volume of order the size of the particle itself. It may be shown that the next
correction to the angular velocity is O(Re3/2), and is singular in character, arising from
the effects of inertia acting on length scales of O(Re−1/2). The non-uniformity of the
Stokes approximation must be accounted for at this order (Subramanian et al. 2011).
As will be seen later, while the O(Re) correction evaluated here is sufficient to account
for an inertial drift across Jeffery orbits, the effects of inertia on the Jeffery period,
observed in recent simulations (Mao & Alexeev 2014), where the spheroid rotation
in either the tumbling or spinning mode is observed to slow down with increasing
Re, requires an analysis of the next correction at O(Re3/2), and this will be reported
separately.

To O(Re), (2.25) may now be written as:

Ω1 · L
(2) − St

d
dt
(Ip ·Ω1)

= Γ :
∫

Sp

x(Σ (2)
· n) dS+ Re

∫
V

[
∂u′(1)s

∂t
+ (Γ · x) · ∇u′(1)s + Γ · u′(1)s

+ u′(1)s · ∇u′(1)s +Ω t
jeff ∧ u′(1)s − (Ω t

jeff ∧ x) · ∇u′(1)s

]
· U(2) dV, (2.30)

which is the final form on which subsequent calculations are based. Note that St
in (2.30) is still arbitrary. The operator on the left-hand side, when considered
alone, governs the rotations of an axisymmetric free body arising from a balance of
centrifugal and gyroscopic forces. These are known from classical mechanics (the
Euler top), and correspond to the limit St→∞ (Goldstein 1962). Herein, we assume
St to be small, and only consider the effects of weak particle inertia to O(St2). The
surface integral on the right-hand side must lead to the well-known Jeffery orbits
(Jeffery 1922) in the inertialess limit, while the second term, the volume integral,
captures fluid inertial effects to O(Re). The analysis of the leading-order effects of
fluid inertia therefore requires the Stokes disturbance velocity field (u′(1)s ) due to a
torque-free spheroid, of an arbitrary orientation, in an ambient simple shear flow.

3. The solutions of the Stokes equations in spheroidal coordinates
The reciprocal theorem formulation in its final form, (2.30), requires the Stokes

velocity disturbance field due to a torque-free spheroidal particle in a simple shear
flow. Following Subramanian & Koch (2006b), the velocity disturbance field for an
arbitrarily oriented spheroid may be obtained by resolving the ambient shear flow
into five canonical component linear flows. Since the ambient vorticity tensor does
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not induce a disturbance field in the Stokes regime, such a resolution reflects the
decomposition of the ambient rate-of-strain tensor into five canonical components
in a body-fixed coordinate system with its z-axis aligned with the spheroid axis
of symmetry. In terms of the angles θj and φj defined earlier in § 2, the ambient
rate-of-strain tensor, given by E= (1′x1′y+1′y1

′
x)/2 in the original space-fixed coordinate

system, may now be written as:

E = cos2 θj sin φj cos φj1x1x + 1
2 cos θj(cos2 φj − sin2 φj)(1x1y + 1y1x)

+ sin θj cos θj sin φj cos φj(1x1z + 1z1x)− cos φj sin φj1y1y

+ 1
2 sin θj(cos2 φj − sin2 φj)(1y1z + 1z1y)+ sin2 θj sin φj cos φj1z1z (3.1)

in terms of the body-fixed unit vector triplet [1x 1y 1z]. Note that the Y-axis of
the body-fixed coordinate system is constrained to lie in the flow–gradient (X′Y ′)
plane at all times (reflected in the equality of the xz and zx component of the
rate-of-strain tensor in (3.1)), and the relations between the unit vectors in the
two coordinate systems are given by 1x = cos θj cos φj1′x + cos θj sin φj1′y − sin θj1′z,
1y = −sinφj1′x + cos φj1′y and 1z = sin θj cos φj1′x + sin θj sin φj1′y + cos θj1′z. The
aforementioned decomposition of E may now be written in the following form in
terms of the respective matrix representations: cos2 θj sin φj cos φj

1
2 cos θj(cos2 φj − sin2 φj) sin θj cos θj sin φj cos φj

1
2 cos θj(cos2 φj − sin2 φj) −cosφj sin φj

1
2 sin θj(cos2 φj − sin2 φj)

sin θj cos θj sin φj cos φj
1
2 sin θj(cos2 φj − sin2 φj) sin2 θj sin φj cos φj


=
− 1

2 sin2 θj sin φj cos φj 0 0
0 − 1

2 sin2 θj sin φj cos φj 0
0 0 sin2 θj sin φj cos φj


+
 1

2(cos2 θj + 1) sin φj cos φj 0 0
0 − 1

2(cos2 θj + 1) sin φj cos φj 0
0 0 0


+
 0 1

2 cos θj(cos2 φj − sin2 φj) 0
1
2 cos θj(cos2 φj − sin2 φj) 0 0

0 0 0


+
 0 0 sin θj cos θj sin φj cos φj

0 0 0
sin θj cos θj sin φj cos φj 0 0


+
0 0 0

0 0 1
2 sin2 θj(cos2 φj − sin2 φj)

0 1
2 sin2 θj(cos2 φj − sin2 φj) 0

 . (3.2)

The five component matrices above correspond, respectively, to an axisymmetric
extensional flow (uniaxial or biaxial depending on the sign of sin φj cos φj)
along the spheroidal axis (z) of symmetry with an amplitude proportional to
sin2 θj cos φj sin φj; a pair of extensional flows in the plane (xy) transverse to the
axis of symmetry, one of them being obtained from the other via a 45◦ rotation about
the symmetry axis, and with amplitudes proportional to ((cos2 θj + 1) sin φj cos φj)/2
and (cos θj(cos2 φj − sin2 φj))/2; and a pair of longitudinal extensional flows in
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planes containing the axis of symmetry (the xz and yz planes) and with amplitudes
proportional to sin θj cos θj sin φj cos φj and (sin2 θj(cos2 φj − sin2 φj))/2.

Denoting the disturbance fields corresponding to the five component linear flows
as u1s − u5s, we have u′(1)s =

∑5
i=1 uis, with u1s corresponding to the axisymmetric

extension, u2s, u3s corresponding to the two planar extensions, and u4s, u5s correspon-
ding to the pair of longitudinal extensions above. While the expressions for these
component Stokesian velocity fields may be obtained using earlier results based on
the method of singularities (Chwang & Wu 1974, 1975), herein we use the vector
spheroidal harmonics formalism developed by Kushch and co-workers (Kushch 1997,
1998). The reasons for this choice have been outlined in Dabade et al. (2015), where
the formalism was used for a single sedimenting particle in an otherwise quiescent
fluid. Since the structure of the formalism, and a comparison with a similar expansion
of the velocity field in terms of spherical harmonics, originally given by Lamb (for
instance, see Kim & Karrila (1991, chap. 4)), has already been explained in some
detail in Dabade et al. (2015), we will be brief here. The formalism is based on
expressing the general solution of the Stokes equations, around an arbitrary number
of spheroidal particles, as a superposition of growing and decaying vector harmonics
in local spheroidal coordinates defined with respect to a Cartesian system centred at
each particle, and aligned with the particle axis of symmetry. For a prolate spheroid,
the spheroidal coordinates (ξ, η, φ) are related to Cartesian coordinates (x, y, z) as
x + iy= dξ̄ η̄ exp(iφ) and z= dξη, with ξ̄ =√(ξ 2 − 1) and η̄ =√(1− η2), where d
is the interfocal distance. Here, the constant-ξ -surfaces denote a family of confocal
prolate spheroids with the interfoci distance being equal to 2d; ξ0 denotes the surface
of the particle. The constant-η-surfaces represent a family of confocal two-sheeted
hyperboloids, while the constant-φ-surfaces are planes passing through the axis of
symmetry. The disturbance field due to a single particle in an infinite viscous ambient
must involve only decaying spheroidal harmonics, and may therefore be written in the
form:

u(x)=
3∑

i=1

∞∑
t=0

t∑
s=−t

A(i)ts S(i)ts (r, d), (3.3)

where the decaying (singular) partial vectorial solutions are given by:

S(1)ts = e1Fs−1
t+1 − e2Fs+1

t+1 + 1zFs
t+1, (3.4)

S(2)ts =
1
t
[e1(t+ s)Fs−1

t + e2(t− s)Fs+1
t + 1zsFs

t ], (3.5)

S(3)ts = e1{−(x− iy)D2Fs−1
t−1 − (ξ 2

0 − 1)dD1Fs
t + (t+ s− 1)(t+ s)β−(t+1)Fs−1

t−1 }
+ e2{(x+ iy)D1Fs+1

t−1 − (ξ 2
0 − 1)dD2Fs

t − (t− s− 1)(t− s)β−(t+1)Fs+1
t−1 }

+ 1z[zD3Fs
t−1 − ξ 2

0 dD3Fs
t −C−(t+1),sFs

t−1], (3.6)

with S(i)ts → 0 for r→∞. Here, βt = (t+ 3)/((t+ 1)(2t+ 3)), Ct,s= (t+ s+ 1)(t− s+
1)βt, with t= 0, 1, . . . ; |s|6 t; further, e1 = (1x + i1y)/2, e2 = (1x − i1y)/2, with 1z, as
before, being directed along the axis of symmetry of the spheroidal coordinate system.
The Di denote differential operators with D1 = (∂/∂x − i∂/∂y), D2 = (∂/∂x + i∂/∂y),
and D3 = (∂/∂z). In (3.4)–(3.6), the functions Fs

t ≡ Fs
t (r, d) are the singular solid

spheroidal harmonics of the form Fs
t = Qs

t (ξ)Y
s
t (η, φ), with Y s

t (η, φ) = (t − s)!/(t +
s)!Ps

t (η) exp(isφ) being the familiar scalar surface harmonics, and Ps
t and Qs

t being
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the associated Legendre functions of the first and second kind, respectively (Morse &
Feshbach 1953). The analogues of all of the above expressions, for an oblate spheroid,
can be derived from using the transformation ξ ↔ iξ̄ and d ↔ −id (Dabade et al.
2015).

Now, the S(1)ts and S(2)ts are harmonic functions, while the S(3)ts satisfy the biharmonic
equation, and are therefore the only vectorial solutions associated with a non-trivial
pressure field. The index t in S(i)ts is a measure of the rapidity of decay of the velocity
disturbance field for large r, with limr→∞ u(x) ∝ r−t, this arising from the large-ξ
behaviour of the Qs

t . Since the S(3)ts alone include the fundamental singularities of the
Stokes equations, in light of the large-r behaviour indicated above, one expects the
S(3)1s to be relevant to the translation problem where u(x)∝ 1/r; and the S(3)2s to come
into play for both transverse rotations and the disturbance fields in an ambient linear
flow, for all of which u(x) ∝ 1/r2 – see (3.7)–(3.15) and (3.27)–(3.29) below. Note
that axial rotation is an exception in that it does not generate a pressure field and the
velocity disturbance in this case is harmonic, being proportional to S(2)20 (see (3.36)).
The second index s in all these cases denotes the variation of the velocity field as
a function of the azimuthal angle in the plane transverse to the symmetry axis, with
s = 0 corresponding to an axisymmetric exterior field; for instance, the disturbance
velocity field in an ambient axisymmetric extensional flow must involve S(3)20 .

For a prolate spheroid, use of the surface boundary condition at ξ = ξ0 leads to the
following expressions, in terms of the S(3)ts , for the disturbance velocity and pressure
fields corresponding to the five canonical linear flows above:

u1s = −dξ̄0

(Q1
1(ξ0)− ξ0Q1

2(ξ0))
(sin2 θj sin φj cos φj)S(3)20 , (3.7)

p1s = −2dξ̄0

(Q1
1(ξ0)− ξ0Q1

2(ξ0))
(sin2 θj sin φj cos φj)D3F0

1, (3.8)

u2s =− dξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
[sin φj cos φj(1+ cos2 θj)](S(3)22 + S(3)2,−2), (3.9)

p2s =− 2dξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
[sin φj cos φj(1+ cos2 θj)](D3F2

1 +D3F−2
1 ), (3.10)

u3s = idξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
[cos θj cos 2φj](S(3)22 − S(3)2,−2), (3.11)

p3s = 2idξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
[cos θj cos 2φj](D3F2

1 −D3F−2
1 ), (3.12)

u4s = 2dξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
(sin θj cos θj sin φj cos φj)(S(3)21 − S(3)2,−1), (3.13)

p4s = 4dξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
(sin θj cos θj sin φj cos φj)(D3F1

1 −D3F−1
1 ), (3.14)

u5s =− idξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
[sin θj(cos2 φj − sin2 φj)](S(3)21 + S(3)2,−1), (3.15)

p5s =− 2idξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
[sin θj(cos2 φj − sin2 φj)](D3F1

1 +D3F−1
1 ). (3.16)
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On substitution of the expressions for the S(3)ts and Fs
t , given in (3.6), the disturbance

velocity fields take the following forms:

u1s = − dξ̄0

(Q1
1(ξ0)− ξ0Q1

2(ξ0))
(sin2 θj sin φj cos φj)

×
[

x
∂

∂z
(P0

1Q0
1)− 1zdξ 2

0
∂

∂z
(P0

2Q0
2)− dξ̄ 2

0

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P0

2Q0
2)

]
, (3.17)

p1s = − 2dξ̄0

(Q1
1(ξ0)− ξ0Q1

2(ξ0))
(sin2 θj sin φj cos φj)

∂

∂z
(P0

1Q0
1), (3.18)

u2s = dξ̄0

(ξ0Q1
2(ξ0)− 3Q1

1(ξ0))
(1+ cos2 θj) sin φj cos φj

×
[

x
{
∂

∂y
(P1

1Q1
1 sin φ)− ∂

∂x
(P1

1Q1
1 cos φ)

}
− dξ̄ 2

0

12

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P2

2Q2
2 cos 2φ)− dξ 2

0

12
1z
∂

∂z
(P2

2Q2
2 cos 2φ)

]
, (3.19)

p2s = 2dξ̄0

(ξ0Q1
2(ξ0)− 3Q1

1(ξ0))
(1+ cos2 θj) sin φj cos φj

×
[
∂

∂y
(P1

1Q1
1 sin φ)− ∂

∂x
(P1

1Q1
1 cos φ)

]
, (3.20)

u3s = dξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
cos θj(cos2 φj − sin2 φj)

×
[

x
{
∂

∂x
(P1

1Q1
1 sin φ)+ ∂

∂y
(P1

1Q1
1 cos φ)

}
+ dξ̄ 2

0

12

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P2

2Q2
2 sin 2φ)+ dξ 2

0

12
1z
∂

∂z
(P2

2Q2
2 sin 2φ)

]
, (3.21)

p3s = 2dξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
cos θj(cos2 φj − sin2 φj)

×
[
∂

∂x
(P1

1Q1
1 sin φ)+ ∂

∂y
(P1

1Q1
1 cos φ)

]
, (3.22)

u4s = 2dξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
(sin θj cos θj sin φj cos φj)

[
r
∂

∂z
(P1

1Q1
1 cos φ)

− dξ 2
0

3
1z
∂

∂z
(P1

2Q1
2 cos φ)− dξ̄ 2

0

3

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P1

2Q1
2 cos φ)

]
, (3.23)

p4s = 4dξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
(sin θj cos θj sin φj cos φj)

∂

∂z
(P1

1Q1
1 cos φ), (3.24)

u5s = dξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
sin θj(cos2 φj − sin2 φj)

[
r
∂

∂z
(P1

1Q1
1 sin φ)

− dξ 2
0

3
1z
∂

∂z
(P1

2Q1
2 sin φ)− dξ̄ 2

0

3

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P1

2Q1
2 sin φ)

]
, (3.25)

p5s = 2dξ0ξ̄0

Q1
2(ξ0)(2ξ 2

0 − 1)
sin θj(cos2 φj − sin2 φj)

∂

∂z
(P1

1Q1
1 sin φ). (3.26)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.14


648 V. Dabade, N. K. Marath and G. Subramanian

As shown by Dabade et al. (2015), the test velocity fields in (2.30), corresponding to
transverse rotations about the x and y axes, are given by:

u(2)sx =
id(2ξ 2

0 − 1)
2Q0

1(ξ0)ξ0 − ξ̄0Q1
1(ξ0)

(S(2)1,1 − S(2)1,−1)

+ id(ξ0Q1
1(ξ0)+ 2ξ̄0Q0

1(ξ0))

Q1
2(ξ0)(2Q0

1(ξ0)ξ0 − ξ̄0Q1
1(ξ0))

(S(3)2,1 + S(3)2,−1), (3.27)

= − d(2ξ 2
0 − 1)

(2ξ0Q0
1(ξ0)− ξ̄0Q1

1(ξ0))
(2P0

1Q0
11y + P1

1Q1
1 sin φ1z)

− d
(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

[
r
∂

∂z
(P1

1Q1
1 sin φ)− dξ 2

0

3
1z
∂

∂z
(P1

2Q1
2 sin φ)

− dξ̄ 2
0

3

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P1

2Q1
2 sin φ)

]
, (3.28)

u(2)sy =
d(2ξ 2

0 − 1)
(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

(S(2)1,1 + S(2)1,−1)

+ d(ξ0Q1
1(ξ0)+ 2ξ̄0Q0

1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

(S(3)2,1 − S(3)2,−1), (3.29)

= d(2ξ 2
0 − 1)

(2ξ0Q0
1(ξ0)− ξ̄0Q1

1(ξ0))
(2P0

1Q0
11x + P1

1Q1
1 cos φ1z)

+ d
(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

[
r
∂

∂z
(P1

1Q1
1 cos φ)− dξ 2

0

3
1z
∂

∂z
(P1

2Q1
2 cos φ)

− dξ̄ 2
0

3

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P1

2Q1
2 cos φ)

]
, (3.30)

respectively, with the corresponding pressure fields being given by:

p(2)sx =
2id(ξ0Q1

1(ξ0)+ 2ξ̄0Q0
1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

(D1
2 +D−1

2 ), (3.31)

= − 2d(ξ0Q1
1(ξ0)+ 2ξ̄0Q0

1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

∂

∂z
(P1

1Q1
1 sin φ), (3.32)

p(2)sy =
2(ξ0Q1

1(ξ0)+ 2ξ̄0Q0
1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

(D1
2 −D−1

2 ), (3.33)

= 2d(ξ0Q1
1(ξ0)+ 2ξ̄0Q0

1(ξ0))

Q1
2(ξ0)(2ξ0Q0

1(ξ0)− ξ̄0Q1
1(ξ0))

∂

∂z
(P1

1Q1
1 cos φ), (3.34)

where Ds
t = dD3Fs

t . The test velocity field corresponding to rotation about the z-axis
is given by:

u(2)sz =
2idξ̄0

Q1
1(ξ0)

S(2)10 , (3.35)

= dξ̄0

Q1
1(ξ0)

(−sinφ1x + cos φ1y)(P1
1Q1

1), (3.36)

with p(2)sz = 0, there being no associated pressure field with axial rotation. The
magnitudes of the torque for axial and transverse rotations are given by 8πXC and
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8πYC respectively, with XC = 4(ξ 2
0 − 1)/(3ξ 3

0 (2ξ0 − 2(ξ 2
0 − 1) coth−1 ξ0)) and YC =

4(2ξ 2
0 − 1)/(3ξ 3

0 (2(ξ
2
0 + 1) coth−1 ξ0 − 2ξ0)). The second-order tensors characterizing

the test problem that appear in (2.30) are therefore given by U(2) = u(2)sx 1x + u(2)sy 1y +
u(2)sz 1z and L(2) =−8π(XCpp+ YC(I − pp)), with p= 1z.

4. Jeffery orbits using spheroidal harmonics
To begin with, we validate the spheroidal harmonics formalism by considering

(2.30) in the limit Re= St= 0, in which case Ω1, at each instant, is directly given in
terms of the surface integral (rather than being governed by a differential equation):

Ω1 · L
(2) =Ωjeff · L

(2) = Γ :
∫

Sp

x(Σ (2)
· n) dS. (4.1)

In the inertialess limit, the transverse and axial rotation problems are decoupled. The
spheroid spins at a rate commensurate with the ambient vorticity, that is, Ωjeff · p =
(ω · p)/2. Thus, in (4.1) one may consider only the components of L(2) corresponding
to transverse rotation. With n = 1ξ , we have the following expression for the stress
vector:

Σ (2)
· 1ξ =−P(2)1ξ + 2

[
ξ̄

d(ξ 2 − η2)1/2

∂

∂ξ
U(2) + 1

2
1ξ ∧ (∇ ∧ U(2))

]
, (4.2)

all quantities being evaluated at ξ = ξ0. Here, P(2) is a pressure vector corresponding to
the transverse rotations. Based on (4.2), it is convenient to identify three contributions
to each angular velocity component – one pressure (p) and two viscous (v1 and v2)
ones. The detailed calculation, following the substitution of (4.2) in (4.1), yields the
following expressions for these contributions:

Ωx
p =

3
4(2ξ 2

0 − 1)

[
−2ξ 2

0 ξ̄
2
0 coth−1 ξ0 +

(
2ξ 2

0 −
4
3

)]
sin θj(ξ

2
0 sin2 φj − ξ̄ 2

0 cos2 φj),

(4.3)

Ωx
v1 =

sin θj

2ξ 2
0 − 1

[(
ξ̄ 2

0 (1− 5ξ 2
0 )

2
ξ0 coth−1 ξ0 + ξ

2
0

2
(5ξ 2

0 − 7)
)

sin2 φj

− ξ̄ 2
0

2

(
ξ0(5− 7ξ 2

0 ) coth−1 ξ0 + 7ξ 2
0

)
cos2 φj

]
, (4.4)

Ωx
v2 =

sin θj

2ξ 2
0 − 1

[(
ξ0ξ̄

2
0 (2ξ

2
0 − 1)

2
coth−1 ξ0 + 3ξ 2

0

2

(
1− 2ξ 2

0

3

))
sin2 φj

+ ξ̄ 2
0

(
2ξ 2

0 + ξ0(1− 2ξ 2
0 ) coth−1 ξ0

)
cos2 φj

]
, (4.5)

Ωy
p =− 1

8(3ξ
2
0 − 3ξ̄ 2

0 ξ0 coth−1 ξ0 − 2) sin 2θj sin 2φj, (4.6)

Ω
y
v1 =

ξ0(−6ξ 3
0 + 7ξ0 + (6ξ 4

0 − 9ξ 2
0 + 3) coth−1 ξ0)

4(2ξ 2
0 − 1)

sin 2θj sin 2φj, (4.7)

Ω
y
v2 =

ξ0(ξ0(6ξ 2
0 − 7)+ (−6ξ 4

0 + 9ξ 2
0 − 3) coth−1 ξ0)

8(2ξ 2
0 − 1)

sin 2θj sin 2φj, (4.8)

with Ωx
jeff =−Ωx

p +Ωx
v1 +Ωx

v2 and Ωy
jeff =−Ωy

p +Ωy
v1 +Ωy

v2. The rates of change of
θj and φj are now related to the transverse angular velocity vector, Ωx

jeff 1x + Ωy
jeff 1y,
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as φ̇j0 =−Ωx
jeff /sin θj and θ̇j0 =Ωy

jeff , leading to the following equations for a prolate
spheroid: (

dθj

dt

)
0

= 1
(2ξ 2

0 − 1)
sin θj cos θj sin φj cos φj, (4.9)(

dφj

dt

)
0

=− 1
(2ξ 2

0 − 1)
[ξ 2

0 sin2 φj + ξ̄ 2
0 cos2 φj], (4.10)

where the subscript ‘0’ denotes the Stokesian limit. The equivalent relations for an
oblate spheroid, obtained using ξ0↔ iξ̄0 in (4.10). These reduce to the invariant form
given in (2.27) on noting that p= sin θj cosφj1x′ + sin θj sinφj1y′ + cos θj1z′ , and with the
spheroid aspect ratio being given by κ = ξ0/ξ̄0(ξ̄0/ξ0) for prolate (oblate) spheroids.

Taken together, (4.9) and (4.10) describe Jeffery orbits on the unit sphere. As is well
known, the orbits for a general aspect ratio are the non-planar curves of intersection
of a cone, with an elliptical cross-section, with the unit sphere (Trevelyan & Mason
1951). For spheres (ξ0→∞), these orbits reduce to circles oriented perpendicularly
to the ambient vorticity. In the limiting cases of a slender fibre and a flat disk
(accounting for the prolate–oblate transformation, both limits correspond to ξ0→ 1),
the orbits become meridional in character, with the polar axis corresponding to the
flow and gradient axes, respectively. In the absence of additional physical mechanisms
such as inertia (Subramanian & Koch 2005, 2006b), viscoelasticity, Brownian motion
(Leal & Hinch 1971) or hydrodynamic interactions (Okagawa et al. 1973a,b), a given
spheroidal particle is confined to its initial Jeffery orbit for all times. This is readily
seen in the (C, τ ) coordinates introduced by Leal & Hinch (1971), and defined by:

C= tan θj
[ξ 2

0 sin2 φj + ξ̄ 2
0 cos2 φj]1/2

ξ0
; τ = tan−1

[
ξ̄0

ξ0 tan φj

]
, (4.11a,b)

C= tan θj
[ξ̄ 2

0 sin2 φj + ξ 2
0 cos2 φj]1/2

ξ 0
; τ = tan−1

[
ξ0

ξ 0 tan φj

]
, (4.12a,b)

for prolate and oblate spheroids, respectively. Using (4.9) and (4.10), the Stokesian
orientation dynamics in terms of C and τ , reduces to:

dC
dt
= 0, (4.13)

dτ
dt
= ξ0ξ̄0

2ξ 2
0 − 1

, (4.14)

for both prolate and oblate spheroids. Thus, the Jeffery orbits are conveniently
parametrized by the orbit constant C, and the limiting members of this one-parameter
family correspond to a tumbling motion of the spheroid in the flow–gradient plane
(C=∞) and a log-rolling or spinning (C= 0) motion about the vorticity axis. Unlike
the azimuthal angle, the phase τ changes at a constant albeit aspect-ratio-dependent
rate. The Jeffery period is the time required for τ to complete a 2π-cycle, and is
given by Tjeff = 2π(2ξ 2

0 − 1)/ξ0ξ 0; the Jeffery period diverges as O(ξ0 − 1)−1/2 in the
limit of a slender fibre or a flat disk, with the particle spending most of this time
in the flow-aligned or gradient-aligned orientation, respectively. The particle flips
between aligned orientations, moving along the aforementioned nearly meridional
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trajectories, in a small O(ξ0− 1)1/2 fraction of the rotation period. For later purposes,
we note that, in the limit of a slender fibre, (4.11a,b) reduces to C= tan θj sinφj. For a
flat disk, on the other hand, one finds C= (ξ 2

0 − 1)−1/2 tan θj cosφj from (4.12a,b) with
ξ0→ 1, implying that ξ̄0C, rather than C, is a more appropriate choice for the orbit
constant, since O(1) values of C in the flat-disk limit correspond to a vanishingly
small neighbourhood of the gradient–vorticity plane.

5. The effect of particle inertia: massive spheroids (Re= 0, St� 1)

In this section, we present results for the O(St) and O(St2) corrections to the Jeffery
angular velocity. Section 5.1 details the O(St) analysis and examines the resulting drift
across Jeffery orbits. It is shown, consistent with earlier results (Subramanian & Koch
2006b; Einarsson et al. 2014), that a prolate spheroid asymptotes to a tumbling mode
while an oblate spheroid approaches a spinning mode. The absence of an angular
acceleration implies that particle inertia can have no effect after an oblate spheroid
has drifted across Jeffery orbits to a steadily spinning configuration. This is not true
for a prolate spheroid, and the analysis in § 5.2 shows that particle inertia modifies
the tumbling period at O(St2).

Considering (2.30) with Re= 0, one obtains:

Ω1 · L
(2) = Γ :

∫
Sp

x(Σ (2)
· n) dS+ St

d
dt
(Ip ·Ω1), (5.1)

where the second term on the right-hand side denotes the O(St) rate of change of the
angular momentum in the inertial reference frame. It is convenient to evaluate this
in the body-fixed coordinate system, rotating with Ωb, chosen to evaluate the fluid
inertia terms in (2.30), and given by Ωb= [−φ̇j sin θj, θ̇j, φ̇j cos θj]; recall that the spin
(Z) component, φ̇j cos θj, is that needed to constrain the Y-axis to the flow–gradient
plane. The space-fixed rate of change is related to the body-fixed rate of change as
(d/dt)(·)= ((d/dt)(·))b +Ωb ∧ (·), and (5.2) takes the form:

Ω1 · L
(2) = Γ :

∫
Sp

x(Σ (2)
· n) dS+ St

[
Ip ·

(
dΩ1

dt

)
b

+Ωb ∧ (Ip ·Ω1)

]
, (5.2)

the moment of inertia tensor being a constant in the body-fixed coordinate system.
The formal expressions for the inertial corrections to the Jeffery angular velocity
are readily obtained. Using a regular expansion of the form Ω1 = Ωjeff + StΩ (1)

1St +
St2Ω

(2)
1St + O(St3) for the particle angular velocity, Ωb = Ωbjeff + StΩbSt for the

angular velocity of the body-fixed coordinate system, and the expansion (d/dt)b =
d/(dtjeff )+ St(d/dt1)+O(St)2 for the time rate of change, in (5.2), one obtains:

Ω
(1)
1St · L

(2) = Ip ·
dΩjeff

dtjeff
+Ωbjeff ∧ (Ip ·Ωjeff ), (5.3)

Ω
(2)
1St · L

(2) = Ip ·

(
dΩjeff

dt1
+ dΩ (1)

1St

dtjeff

)
+Ωbjeff ∧ (Ip ·Ω

(1)
1St)+ΩbSt ∧ (Ip ·Ωjeff ), (5.4)

at O(St) and O(St2), respectively. Here, d/(dtjeff ) denotes the rate of change along a
Jeffery orbit, and is given by (4.9) and (4.10) in terms of θj and φj. The derivative
d/dt1 denotes the correction to this rate of change due to the O(St) deviation from
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a Jeffery orbit. Knowing Ω
(1)
1St , d/dt1 may be expressed in terms of corrections to

the Jeffery rates of change of θj and φj. The test-torque tensor, L(2), in (5.3) and
(5.4) has already been defined at the end of § 3. The non-dimensional moment
of inertia tensor, Ip, is given by (4π/15)ξ̄ 2

0 [(2ξ̄ 2
0 /ξ

4
0 )pp + ((2ξ 2

0 − 1)/ξ 4
0 )(I − pp)]

and (4π/15)ξ̄0[(2/ξ0)pp + ((2ξ 2
0 − 1)/ξ 3

0 )(I − pp)] for prolate and oblate spheroids,
respectively.

5.1. The O(St) analysis: drift due to particle inertia
The O(St) correction to Ωjeff may be evaluated from (5.3) in a straightforward manner.
We only note that Ωjeff in (5.3) includes the spin component, and the transverse
components of Ω (1)

1St , that drive the O(St) drift, therefore couple to the axial spin at
leading order. For nearly spherical particles, Subramanian & Koch (2006b) argued
that the inertial drift may be interpreted as arising from an imbalance between the
centrifugal and gyroscopic torques, both of which depend on the axial spin. Defining
φ̇jSt =−Ω (1)x

1St / sin θj and θ̇jSt = StΩ (1)y
1St , the equations for the rates of change, at O(St),

have the following general form:(
dθj

dt

)
St

= sin θj cos θj [Fp
1(ξ0)+ Fp

2(ξ0) cos 2φj + Fp
3(ξ0) cos 2θj + Fp

4(ξ0) cos 4φj

+Fp
5(ξ0) cos(2θj − 4φj)+ Fp

6(ξ0) cos(2θj + 4φj)], (5.5)(
dφj

dt

)
St

= sin φj cos φj [Gp
1(ξ0)+Gp

2(ξ0) cos 2θj +Gp
3(ξ0) cos 2φj

+Gp
4(ξ0) cos(2θj) cos(2φj)], (5.6)

for both prolate and oblate spheroids. The aspect-ratio-dependent functions are given
by:

Fp
1(ξ0)= (4ξ

4
0 − 7ξ 2

0 + 3)(ξ 2
0 coth−1 ξ0 + coth−1 ξ0 − ξ0)

160ξ0(1− 2ξ 2
0 )

2
, (5.7)

Fp
2(ξ0)= ξ̄

4
0 (coth−1 ξ0 + ξ0(ξ0 coth−1 ξ0 − 1))

40ξ0(1− 2ξ 2
0 )

2
, (5.8)

Fp
3(ξ0)= Fp

4(ξ0)=− ξ̄
2
0 (ξ

2
0 coth−1 ξ0 + coth−1 ξ0 − ξ0)

160ξ0(2ξ 2
0 − 1)2

, (5.9)

Fp
5(ξ0)= Fp

6(ξ0)=−Fp
3(ξ0)

2
, (5.10)

Gp
1(ξ0)=− (3ξ

4
0 − 5ξ 2

0 + 2)((ξ 2
0 + 1) coth−1 ξ0 − ξ0)

40ξ0(1− 2ξ 2
0 )

2
, (5.11)

Gp
2(ξ0)= ξ 2

0 Gp
3(ξ0)=−ξ 2

0 Gp
4(ξ0)= ξ0(−ξ 3

0 + ξ0 + (ξ 4
0 − 1) coth−1 ξ0)

40(1− 2ξ 2
0 )

2
, (5.12)

for a prolate spheroid, and for an oblate spheroid the functions can be obtained using
the prolate–oblate transformation (note that the transformation ξ0↔ iξ̄0 and d↔−id,
has to be applied on the relevant dimensional angular velocity, having accounted for
the aspect-ratio dependence that occurs in the relevant non-dimensional parameter –
St here and Re in § 6.2). Although not needed for the calculations here, we note that
the correction to the axial spin at O(St), Ω (1)z

1St , is given by Hp(ξ0) cos θj sin2 θj sin 2φj,
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with Hp(ξ0) = ξ̄ 2
0 (ξ̄

2
0 coth−1 ξ0 − ξ0)/(40ξ0(2ξ 2

0 − 1)), for a prolate spheroid. Thus,
including particle inertia leads to an increased spin in the extensional quadrants of
the simple shear flow and a reduction in the compressional quadrants, since the
persistence of spin, at O(St), is proportional to the instantaneous rate of change of
spin along a Jeffery orbit. The spin remains the same, to O(St), for orientations in
the flow–vorticity (φj= 0,π) and gradient–vorticity planes (φj=π/2, 3π/2), since the
rate of change of spin, at leading order, is zero for these orientations.

From the definition of C for a prolate spheroid, the irreversible orbital drift, at O(St),
may now be obtained as:

dC
dt
= C

sin θj cos θj

dθj

dt
+ C cos φj sin φj

ξ 2
0 sin2 φj + ξ̄ 2

0 cos2 φj

dφj

dt
, (5.13)

= St
[

C
sin θj cos θj

(
dθj

dt

)
St

+ C cos φj sin φj

ξ 2
0 sin2 φj + ξ̄ 2

0 cos2 φj

(
dφj

dt

)
St

]
, (5.14)

where (dθj/dt)St and (dφj/dt)St are given by (5.5) and (5.6). For St � 1, the weak
inertial drift leads to a tightly spiralling trajectory of the spheroidal axis, with each
turn of this spiral closely approximating a Jeffery orbit. It is convenient to characterize
the drift in terms of the pitch of this spiral measured in units of C. The pitch equals
the change in C in a single Jeffery period, 1C, and T−1

jeff (1C) may be regarded as the
C-component of an averaged inertial drift velocity. One obtains:

1Cp =
∫ Tjeff

0

dC
dt

dt, (5.15)

=
(

dτ
dt

)−1 ∫ 2π

0

dC
dt

dτ , (5.16)

= St
(2ξ 2

0 − 1)
ξ0ξ̄0

∫ 2π

0

[
C

sin θj cos θj

(
dθj

dt

)
St

+ C cos φj sin φj

ξ 2
0 sin2 φj + ξ̄ 2

0 cos2 φj

(
dφj

dt

)
St

]
dτ ,

(5.17)

where the subscript ‘p’ denotes particle inertia, and the τ -integrals are to be evaluated
for C fixed. Using (5.5) and (5.6):

1Cp = St C
(2ξ 2

0 − 1)
ξ0ξ̄0

{∫ 2π

0
[Fp

1(ξ0)+ Fp
2(ξ0) cos 2φj + Fp

3(ξ0) cos 2θj + Fp
4(ξ0) cos 4φj

+Fp
5(ξ0) cos(2θj − 4φj)+ Fp

6(ξ0) cos(2θj + 4φj)] dτ

+
∫ 2π

0

sin2 φj cos2 φj

(ξ 2
0 sin2 φj + ξ̄ 2

0 cos2 φj)
[Gp

1(ξ0)+Gp
2(ξ0) cos 2θj

+ Gp
3(ξ0) cos 2φj +Gp

4(ξ0) cos 2θj cos 2φj] dτ
}
. (5.18)

This may in turn be written as:

1Cp = St C
(2ξ 2

0 − 1)
ξ0ξ̄0

{[I1Fp
1(ξ0)+ I2Fp

2(ξ0)+ I3Fp
3(ξ0)+ I4Fp

4(ξ0)+ I5Fp
5(ξ0)+ I6Fp

6(ξ0)]
+ [J1Gp

1(ξ0)+ J2Gp
2(ξ0)+ J3Gp

3(ξ0)+ J4Gp
4(ξ0)] }, (5.19)
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FIGURE 2. The drift due to the particle inertia, as characterized by the normalized change
in the orbit constant in a single Jeffery period, St−1(1Cp/(C2 + 1)), plotted as a function
of C/(C+ 1), for a prolate spheroid; C/(C+ 1) = 0 and C/(C+ 1) = 1 correspond to
the log-rolling and tumbling modes, respectively. (a) Uses the additional normalization
factor of ξ 2

0 , so the drift remains finite in the near-sphere limit (ξ0→∞). (b) Uses the
normalization factor ((ξ0− 1)3/2 log(ξ0− 1))−1, to make the drift finite in the slender-fibre
limit (ξ0→ 1).

where the values of Ii and Ji result from integrating the corresponding trigonometric
functions in (5.18) over τ . To evaluate the drift to O(St), the trigonometric functions
involved may be related to C and τ using (4.11a,b), the error in this approximation
being O(St2). The expressions for I1 to I6 and J1 to J4 as functions of C and ξ0 are
given in appendix C.

The drift for a prolate spheroid that results from using (5.19) and (C 1)–(C 9) is
plotted as a function of the normalized orbit constant, C/(C + 1) in figure 2 for
various aspect ratios. The drift is evidently zero for C= 0 and C=∞[C/(C+ 1)= 1]
on account of symmetry, but is positive for all other values of C and for all aspect
ratios. Thus, a massive prolate spheroid always drifts towards the tumbling mode. In
the near-sphere limit (ξ0→∞), 1Cp≈ St ((πC)/30)ξ−2

0 , as is expected on account of
the drift being proportional to the square of the eccentricity (e = 1/ξ0). In the limit
of a slender fibre (ξ0 → 1), one finds 1Cp ≈ −St ((π

√
2C)/5)(ξ0 − 1)3/2 ln(ξ0 − 1).

A leading-order estimate from the non-aligned phase of a rotating fibre comes out to
be larger than O[(ξ0 − 1) ln(ξ0 − 1)]. This estimate arises from transverse moments
of inertia of O(ξ0 − 1) driving a drift against a resistive torque of O[ln(ξ0 − 1)]−1

predicted by slender body theory; the next correction in the non-aligned phase is
O[(ξ0 − 1)2 ln(ξ0 − 1)]. The actual estimate of O[(ξ0 − 1)3/2 ln(ξ0 − 1)] above must
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–0.04

1.00.2 0.4 0.6 0.80

Spinning Tumbling

Flat disk

Near-sphere

FIGURE 3. The drift due to the particle inertia, as characterized by the normalized
change in the orbit constant in a single Jeffery period, St−1((1Cp)/((C2 + 1))), plotted
as a function of C/(C+ 1), for an oblate spheroid; C/(C+ 1) = 0 and C/(C+ 1) = 1
correspond to the spinning and the tumbling modes, respectively.

therefore involve the dominant flow-aligned phase of the fibre. These near-sphere and
slender-fibre scalings, together with a normalizing factor of (C2+ 1)−1, are accounted
for in figure 2 in order to render the 1Cp curve, in the relevant asymptotic limit, a
finite one for all C.

The drift due to particle inertia for an oblate spheroid may be obtained in a similar
manner with expressions for the analogues of the Ii and Ji now being obtained using
(4.12a,b). The normalized 1Cp for a massive oblate spheroid is plotted as a function
of C/(C + 1) in figure 3, and is negative for all values of C and aspect ratios,
implying that the spheroid would asymptote to a steady spinning mode starting from
any initial orientation. In the near-sphere limit, 1Cp is just the negative of that for a
prolate spheroid. In contrast to a prolate spheroid, however, a normalization based on
this near-sphere scaling of O(ξ−2

0 ) alone suffices for plotting 1Cp, since the inertial
drift remains finite in the flat-disk limit – limξ0→11Cp≈−π2(((C2 + 1)1/2 − 1)/(20C)).
The moments of inertia of a thin oblate spheroid are only O(ξ0 − 1)1/2, but their
smallness appears to be compensated by the long, O(ξ0 − 1)−1/2, period available for
inertia to act, leading to 1Cp being O(1) for ξ0→ 1. Note that the 1Cp curve for
any oblate spheroid crosses that of a near-sphere, with this cross-over point moving
in from C/(C+ 1)= 1 to a limiting value of approximately 0.75 for a flat disk. thus,
for sufficiently thin spheroids, the inertial drift increases in magnitude below this
cross-over C, while decreasing for greater C values.

The expressions for (dθj/dt)St and (dφj/dt)St do not match those given in
Subramanian & Koch (2006b) for a near-sphere in the limit ξ0→∞. The expression
for (dθj/dt)St given in Subramanian & Koch (2006b, (3.15) therein) missed a 1/2
in the term that multiplies cos(2φj) and the expression (3.16) for (dφj/dt)St missed
a factor of (1+ sin2 θj)/2. The expressions for the transverse components of the
O(St) angular velocity have been recently obtained by Einarsson et al. (2014), for an
arbitrary-aspect-ratio spheroid, directly from the equations of motion. On account of
the spheroidal coordinates used here, and in order to facilitate a smooth transition to
the O(St2) results presented in the next subsection, we have rederived the equations
governing the O(St) drift. The O(St) rates of change φ̇j and θ̇j in (5.5) and (5.6)
match with those given in Einarsson et al. (2014), although the results therein are
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not interpreted in terms of an orbital drift. The latter offers a convenient interpretation,
and also a physically significant one. The influence of additional physical mechanisms
on the orientation distribution, either the weak Brownian motion considered in § 7.2,
or orientation fluctuations of a hydrodynamic origin that might arise at higher volume
fractions from pair interactions, are best interpreted, in (C, τ ) coordinates, in terms
of the distribution of Jeffery orbits arising from a balance of a deterministic inertial
drift and diffusion along the C coordinate.

Finally, it will be seen in §§ 6.1 and 6.2, where we determine the orbital drift 1Cf

driven by fluid inertia, that, for extreme aspect ratios, fluid inertia always dominates
particle inertia. This is because the moment of inertia of a slender fibre (O(ρL3b2))
or a flat disk (O(ρL4b)) is asymptotically smaller than the moment of inertia of the
disturbed fluid sphere (O(ρL5)) around the rotating particle that contributes to the fluid
inertial forces and governs the O(Re) drift (Subramanian & Koch 2005).

5.2. The O(St2) analysis: effect of particle inertia on the time period of rotation
There is no correction to the period of rotation at O(St) for a Jeffery orbit with
any C. This may be seen by writing the period T as T = ∫ −π

π
dφj/φ̇j, and using

φ̇ = φ̇j0 + St(dφj/dt)St, with φ̇j0 and (dφj/dt)St being given by (4.10) and (5.6),
respectively. The O(St) correction to the Jeffery period then takes the form
1TSt=St

∫ −π

π
(dφj/φ̇

2
j0)(dφj/dt)St, which integrates to 0 for any fixed C. The correction

to the time period for an inertial spheroid, comes at O(St2) for all orbits except for
the spinning mode (C = 0). As will be seen later in § 6, the rate of change of φj

due to the fluid inertia at O(Re) takes the same form as (5.6), and therefore there
is no correction to the time period of rotation at O(Re) either. For fluid inertia, as
mentioned in earlier sections, the modification of the period arises at O(Re3/2) and
not at O(Re2), and the singular origin implies that such a modification would be
present for both the tumbling and (steadily) spinning modes; the slowing down of
a freely rotating sphere in simple shear has already been analysed (Lin, Peery &
Schowalter 1970; Stone, John & Lovalenti 2000).

In what follows, we determine the correction to the Jeffery period for a tumbling
prolate spheroid. Using φ̇j= φ̇j0+ St(dφj/dt)St+ St2(dφj/dt)St2 , the O(St2) correction to
the period of rotation comes out to be:

1TSt2 = St2
∫ −π

π

[
1
φ̇3

j0

(
dφj

dt

)2

St

− 1
φ̇2

j0

(
dφj

dt

)
St2

]
, (5.20)

where (dφj/dt)St is given by (5.6). Starting from (5.4), the final expression for
(dφj/dt)St2 valid for arbitrary C is very lengthy. Owing to the sign of the O(St)
drift, for long times, one only needs the limiting form relevant for a tumbling mode
(θj =π/2,C=∞). This is significantly simpler and given by:(

dφj

dt

)
St2
=Hp

1(ξ0) cos 2φj +Hp
2(ξ0) cos 4φj +Hp

3(ξ0) cos 6φj, (5.21)

where

Hp
1(ξ0)=− (16ξ 4

0 − 16ξ 2
0 + 5)(ξ̄ 2

0 ξ0 + (1− ξ 4
0 ) coth−1 ξ0)

2

3200ξ 2
0 (2ξ 2

0 − 1)3
, (5.22)
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Hp
2(ξ0)= (ξ̄

2
0 ξ0 + (1− ξ 4

0 ) coth−1 ξ0)
2

400(ξ0 − 2ξ 3
0 )

2
, (5.23)

Hp
3(ξ0)=−3(ξ̄ 2

0 ξ0 + (1− ξ 4
0 ) coth−1 ξ0)

2

3200ξ 2
0 (2ξ 2

0 − 1)3
. (5.24)

Using (5.21)–(5.24) in (5.20), the change induced by particle inertia in the period
of rotation of a tumbling prolate spheroid is given by:

1TSt2 = St2 π[2ξ0(ξ̄0 − ξ0)+ 1][(1− ξ 4
0 ) coth−1 ξ0 + ξ 3

0 − ξ0]2
100ξ 2

0 (2ξ 2
0 − 1)

. (5.25)

The analysis in the earlier section also shows that, at O(St), inertial persistence
leads to a shift in the locations of the angular velocity extrema relative to those for
the original Jeffery orbit. The angular displacements are of O(Ω(φm)τp), τp = I/L(2)
being the inertial relaxation time that governs the persistence of the angular velocity.
Here, Ω(φm) is the angular speed at the extremum, I is the (non-dimensional)
equatorial moment of inertia relevant to the tumbling mode, while L(2) is the
aspect-ratio scale for the test-torque coefficient. In the near-sphere limit, the angular
displacements are O(St) for both the maxima and minima, while for the slender-fibre
limit, the test-torque coefficient is O[ln(ξ0 − 1)]−1, and these displacements are
O[St(ξ0− 1) ln(ξ0− 1)] and O[St(ξ0− 1)2 ln(ξ0− 1)] for the maxima (φm=π/2, 3π/2)
and minima (φm = 0, π), respectively. This O(St) alteration in the angular velocity
profile does not, however, change the period due to the antisymmetry of the angular
acceleration profiles in the compressional and extensional quadrants of the Jeffery
orbit. At O(St2), this antisymmetry is broken, with the result that the decrease in
the traversal time of the extensional quadrants is greater than the corresponding
increase in the compressional quadrants, leading to a net decrease in the period of
rotation. For a near-sphere, this reduction in period is smaller than expected owing
to a cancellation at O(St2ξ−2

0 ); (5.25) gives −St2(π/(450ξ 4
0 )). For a slender fibre,

the changes in angular velocity over the meridional portion of the trajectory (the
non-aligned phase) govern the reduction in period. The O(St) angular acceleration of
a non-aligned slender fibre combines with a moment of inertia of O(ξ0 − 1), leading
to a change in angular velocity of St (ξ0 − 1) ln(ξ0 − 1). An analogous argument
implies that the change in angular velocity at O(St2) is St2(ξ0 − 1)2[ln(ξ0 − 1)]2,
which then gives the aspect-ratio scaling for the reduction in the period; the limiting
form of (5.25) gives −St2(π/25)(ξ0 − 1)2[ln(ξ0 − 1)]2.

It turns out that the minimum and maximum angular velocities in the tumbling
mode are unaltered at O(St). Starting from (5.21), one obtains the following
expressions, to O(St2), for the angular velocity extrema:

Ωmax =− ξ 2
0

2ξ 2
0 − 1

+ St2 ξ
2
0 [−ξ 3

0 + ξ0 + (ξ 4
0 − 1) coth−1 ξ0]2

400(2ξ 2
0 − 1)3

, (5.26)

Ωmin =− ξ̄ 2
0

2ξ 2
0 − 1

− St2 ξ̄
8
0 [ξ0 − (ξ 2

0 + 1) coth−1 ξ0]2
400ξ 2

0 (2ξ 2
0 − 1)3

. (5.27)

The corrections to the time period, maximum and minimum angular velocities are
plotted as a function of the prolate spheroid eccentricity (e = 1/ξ0) in figure 4. The
effect of particle inertia is to make the angular velocity extrema approach each other,
consistent with the general notion of an inertial resistance to angular acceleration
(for large St, the particle begins to rotate with a constant angular velocity of 4π in
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FIGURE 4. The O(St2) corrections to the time period and the angular velocity extrema,
as a function of ξ0, for a prolate spheroid in the tumbling mode.

the flow–gradient plane (Lundell 2011)). Although the changes in the maxima and
minima are of opposite signs, the correction to time period is negative for all ξ0,
implying that the time period decreases at O(St2). This decrease is consistent with
recent simulations (Mao & Alexeev 2014), although a quantitative comparison is not
possible due to the simulations being carried out for much larger St. A couple of
points are in order before moving on to an analysis of fluid inertial effects. The
expression for (dφj/dt)St2 , valid for arbitrary C, in (5.20), shows that particle inertia
acts to decrease the period of rotation for arbitrary C. Further, since the analysis does
not explicitly depend on the disturbance velocity field, it can easily be generalized
to an arbitrary axisymmetric particle, provided one uses the appropriate moment of
inertia tensor, and the geometric aspect ratio is replaced by the effective aspect ratio
(as obtained from the Jeffery rotation period; see Bretherton (1962)).

6. The orbital drift due to fluid inertia: hollow spheroids (St= 0, Re� 1)

At O(Re), the general form for the rates of change of θj and φj are identical to those
at O(St), that is, (5.5) and (5.6) in § 5.1, with Re now replacing St, and with differing
expressions for the aspect-ratio-dependent functions now denoted by the superscript
‘f ’. The forms of these functions, for arbitrary ξ0, are given in the subsections that
follow. Knowing these, the resulting change in orbit constant in a single Jeffery period
may be determined as before using (5.19), with the expressions for the Ii and Ji being
the same as those in § 5.1.

6.1. The O(Re) orbital drift for prolate spheroids
The aspect-ratio-dependent functions appearing in the fluid inertial analogues of (5.5)
and (5.6) are given by:

Ff
1(ξ0)= (ξ 2

0 (−648ξ 12
0 + 1350ξ 10

0 − 5571ξ 8
0 + 11 841ξ 6

0 − 9269ξ 4
0 + 2263ξ 2

0 + 6)

− 27ξ 2
0 (24ξ 8

0 − 14ξ 6
0 − 19ξ 4

0 + 16ξ 2
0 − 3)ξ̄ 8

0 coth−1(ξ0)
4
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+ 9ξ0(288ξ 12
0 − 564ξ 10

0 − 20ξ 8
0 + 799ξ 6

0 − 743ξ 4
0 + 261ξ 2

0 − 29)ξ̄ 4
0 coth−1(ξ0)

3

+ ξ0 (2592ξ 14
0 − 7020ξ 12

0 + 13 932ξ 10
0 − 21 123ξ 8

0 + 14 255ξ 6
0 − 577ξ 4

0

− 2711ξ 2
0 + 652) coth−1 ξ0 − 3 (1296ξ 16

0 − 4320ξ 14
0 + 5346ξ 12

0 − 1477ξ 10
0

− 4260ξ 8
0 + 6116ξ 6

0 − 3492ξ 4
0 + 849ξ 2

0 − 58) coth−1(ξ0)
2)

× (480ξ 2
0 (−1+ 2ξ 2

0 )
3(−3ξ 2

0 + 3ξ̄ 2
0 ξ0 coth−1 ξ0 + 2)

× (−3ξ 3
0 + 5ξ0 + 3ξ̄ 4

0 coth−1 ξ0)((3ξ 2
0 − 1) coth−1 ξ0 − 3ξ0))

−1 (6.1)

Ff
2(ξ0)=− (ξ̄ 2

0 (−9ξ 9
0 + 30ξ 7

0 − 115ξ 5
0 + 90ξ 3

0 − 12ξ0

+ 9ξ̄ 8
0 (ξ

2
0 + 1)ξ 2

0 coth−1(ξ0)
3 − 3ξ̄ 4

0 (9ξ
6
0 − 10ξ 4

0 − 17ξ 2
0 + 14) ξ0 coth−1(ξ0)

2

+ (27ξ 10
0 − 87ξ 8

0 + 133ξ 6
0 − 33ξ 4

0 − 52ξ 2
0 + 12) coth−1 ξ0))

× (40(ξ0 − 2ξ 3
0 )

2(−3ξ 2
0 + 3ξ̄ 2

0 ξ0 coth−1 ξ0 + 2)

× (−3ξ 3
0 + 5ξ0 + 3ξ̄ 4

0 coth−1 ξ0))
−1 (6.2)

Ff
3(ξ0)=− (ξ 2

0 (378ξ 10
0 + 801ξ 8

0 − 4731ξ 6
0 + 5551ξ 4

0 − 2369ξ 2
0 + 342)

− 27ξ 2
0 (6ξ

6
0 + ξ 4

0 − 4ξ 2
0 + 1)ξ̄ 8

0 coth−1(ξ0)
4 + 9ξ0 (12ξ 10

0 + 28ξ 8
0 − 201ξ 6

0

+ 273ξ 4
0 − 147ξ 2

0 + 27) ξ̄ 4
0 coth−1(ξ0)

3 + (−972ξ 13
0 − 324ξ 11

0 + 7365ξ 9
0

− 10 409ξ 7
0 + 5143ξ 5

0 − 847ξ 3
0 + 44ξ0) coth−1 ξ0 + 3 (216ξ 14

0 − 378ξ 12
0

+ 109ξ 10
0 − 412ξ 8

0 + 1204ξ 6
0 − 1028ξ 4

0 + 311ξ 2
0 − 22) coth−1(ξ0)

2)

× (480ξ 2
0 (−1+ 2ξ 2

0 )
3(−3ξ 2

0 + 3ξ̄ 2
0 ξ0 coth−1 ξ0 + 2) (−3ξ 3

0 + 5ξ0

+ 3ξ̄ 4
0 coth−1 ξ0)((3ξ 2

0 − 1) coth−1 ξ0 − 3ξ0))
−1 (6.3)

Ff
4(ξ0)=−2Ff

5(ξ0)=−2Ff
6(ξ0)= Ff

3(ξ0) (6.4)

Gf
1(ξ0)= (ξ 2

0 (81ξ 10
0 − 414ξ 8

0 + 1074ξ 6
0 − 1162ξ 4

0 + 479ξ 2
0 − 54)

+ 9ξ 2
0 (9ξ

6
0 − 7ξ 2

0 + 2)ξ̄ 8
0 coth−1(ξ0)

4 − 3ξ0 (108ξ 10
0 − 246ξ 8

0 + 69ξ 6
0

+ 167ξ 4
0 − 129ξ 2

0 + 23) ξ̄ 4
0 coth−1(ξ0)

3 + (−324ξ 13
0 + 1566ξ 11

0

− 3309ξ 9
0 + 3133ξ 7

0 − 1023ξ 5
0 − 79ξ 3

0 + 36ξ0) coth−1 ξ0

+ (486ξ 14
0 − 2214ξ 12

0 + 3819ξ 10
0 − 2568ξ 8

0 − 222ξ 6
0 + 1036ξ 4

0 − 355ξ 2
0

+ 18) coth−1(ξ0)
2) (40(ξ0 − 2ξ 3

0 )
2(−3ξ 2

0 + 3ξ̄ 2
0 ξ0 coth−1 ξ0 + 2)

× (−3ξ 3
0 + 5ξ0 + 3ξ̄ 4

0 coth−1 ξ0)((3ξ 2
0 − 1) coth−1 ξ0 − 3ξ0))

−1 (6.5)

Gf
2(ξ0)= (−ξ 2

0 (27ξ 10
0 − 180ξ 8

0 + 204ξ 6
0 + 68ξ 4

0 − 133ξ 2
0 + 18)

− 9ξ 4
0 (3ξ

4
0 + 2ξ 2

0 − 1)ξ̄ 8
0 coth−1(ξ0)

4 + 3ξ0 (36ξ 10
0 − 78ξ 8

0 + 73ξ 6
0 − 69ξ 4

0

+ 35ξ 2
0 − 5) ξ̄ 4

0 coth−1(ξ0)
3 + ξ0 (108ξ 12

0 − 630ξ 10
0 + 1041ξ 8

0 − 617ξ 6
0

+ 115ξ 4
0 − 29ξ 2

0 + 12) coth−1 ξ0 + (−162ξ 14
0 + 810ξ 12

0 − 1551ξ 10
0

+ 1600ξ 8
0 − 1054ξ 6

0 + 448ξ 4
0 − 97ξ 2

0 + 6) coth−1(ξ0)
2)

× (40(ξ0 − 2ξ 3
0 )

2(−3ξ 2
0 + 3ξ̄ 2

0 ξ0 coth−1 ξ0 + 2) (−3ξ 3
0

+ 5ξ0 + 3ξ̄ 4
0 coth−1 ξ0)((3ξ 2

0 − 1) coth−1 ξ0 − 3ξ0))
−1 (6.6)

Gf
3(ξ0)= (ξ 2

0 (378ξ 10
0 + 801ξ 8

0 − 4731ξ 6
0 + 5551ξ 4

0 − 2369ξ 2
0 + 342)

− 27ξ 2
0 (6ξ

6
0 + ξ 4

0 − 4ξ 2
0 + 1)ξ̄ 8

0 coth−1(ξ0)
4 + 9ξ0 (12ξ 10

0 + 28ξ 8
0

− 201ξ 6
0 + 273ξ 4

0 − 147ξ 2
0 + 27) ξ̄ 4

0 coth−1(ξ0)
3 + (−972ξ 13

0
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− 324ξ 11
0 + 7365ξ 9

0 − 10 409ξ 7
0 + 5143ξ 5

0 − 847ξ 3
0 + 44ξ0) coth−1 ξ0

+ 3 (216ξ 14
0 − 378ξ 12

0 + 109ξ 10
0 − 412ξ 8

0 + 1204ξ 6
0 − 1028ξ 4

0

+ 311ξ 2
0 − 22) coth−1(ξ0)

2
) (120ξ 2

0 (2ξ
2
0 − 1)3

× (−3ξ 2
0 + 3ξ̄ 2

0 ξ0 coth−1 ξ0 + 2)(−3ξ 3
0 + 5ξ0 + 3ξ̄ 4

0 coth−1 ξ0)

× ((3ξ 2
0 − 1) coth−1 ξ0 − 3ξ0))

−1 (6.7)

Gf
4(ξ0)=−Gf

3(ξ0). (6.8)

The near-sphere limits of the above functions (ξ0→∞) are given by:

Ff
1(ξ0)≈ 11

280ξ 2
0
, Ff

2(ξ0)≈− 37
840ξ 2

0
, Ff

3(ξ0)≈− 163
31 360ξ 4

0
(6.9a−c)

1
71

Gf
1(ξ0)= 1

3
Gf

2(ξ0)≈ 1
840ξ 2

0
, Gf

3(ξ0)≈ 163
7840ξ 4

0
, (6.10a,b)

and the slender-fibre limits (ξ0→ 1) are given by:

Ff
1(ξ0)=−Ff

3(ξ0)≈− 7
240[log(ξ0 − 1)− log 2+ 3] , (6.11)

Ff
2(ξ0)≈− 2

5(ξ0 − 1), (6.12)

Gf
1(ξ0)=−Gf

2(ξ0)=−3
7

Gf
3(ξ0)≈ 1

20[log(ξ0 − 1)− log 2+ 3] . (6.13)

The inertial drift evaluated using the above near-sphere and slender-fibre asymptotes
above are compared with the earlier analytical results of Subramanian & Koch (2005)
and Subramanian & Koch (2006b) in appendix D.

The normalized change in the drift constant (1Cf ) is plotted as a function of C in
figure 5 for various aspect ratios. 1Cf is positive for all aspect ratios and for all values
of C. Fluid inertia therefore causes a prolate spheroid to drift towards the tumbling
mode starting from an arbitrary initial orientation. For a near-sphere, 1Cf reduces to:

lim
ξ0→∞

1Cf = 11πC
70ξ 2

0
, (6.14)

at leading order and, for a slender fibre, one obtains:

lim
ξ0→1

1Cf =−
√

2πC
15(ξ0 − 1)1/2 ln(ξ0 − 1)

. (6.15)

These expressions motivate the normalizations used in figure 5. The factor ξ 2
0 in the

near-sphere limit is identical to that for particle inertia, as would be expected since
an inertial drift in either case would scale with the square of the eccentricity. In
the limit of a slender fibre, the inertial terms may be linearized at leading order,
being proportional to the leading-order Stokes disturbance field of O[ln(ξ0 − 1)]−1

associated with the axisymmetric extensional component of the simple shear (given
by (3.7) in § 3). The resulting inertial angular velocity is Re · O[ln(ξ0 − 1)]−1. Over
the O(ξ0 − 1)−1/2 Jeffery period, this leads to an angular displacement and a 1Cf of
O[(ξ0−1)−1/2/ ln(ξ0−1)], as in (6.15). Recall from § 5.1 that 1Cp∼ (ξ0−1)3/2 ln(ξ0−
1), so 1Cf � 1Cp, and fluid inertia is dominant for ξ0 → 1. In other words, one
requires an asymptotically large density ratio of St/Re ∼ O[1/((ξ0 − 1) ln(ξ0 − 1))]2
for particle inertia to influence the inertial drift of a slender fibre.
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FIGURE 5. The drift due to fluid inertia, as characterized by the normalized change in
the orbit constant in a single Jeffery period, Re−1(1Cf /(C2 + 1)), plotted as a function
of C/(C+ 1), for a prolate spheroid; C/(C+ 1) = 0 and C/(C+ 1) = 1 correspond to
the log-rolling and tumbling modes, respectively. (a) Uses the additional normalization
factor of ξ 2

0 , so the drift remains finite in the near-sphere limit (ξ0→∞). (b) Uses the
normalization factor (ξ0− 1)1/2 ln(ξ0− 1), to render the drift finite in the slender-fibre limit
(ξ0→ 1).

6.2. The O(Re) orbital drift for oblate spheroids

The functions, Ff
i (ξ0) and Gf

i (ξ0), for an oblate spheroid are obtained from those for
a prolate spheroid in the usual manner. The flat-disk limits of the resulting functions
are given by

Ff
1(ξ0)≈− 29

480 , Ff
2(ξ0)≈− 1

20 , Ff
3(ξ0)≈− 11

480 , (6.16a−c)

Gf
1(ξ0)≈ 3

40 , Gf
2(ξ0)≈ 1

40 , Gf
3(ξ0)≈ 11

120 . (6.17a−c)

To calculate 1Cf , aside from the aspect-ratio-dependent functions given above, one
also needs to replace the integrals Ii and Ji by their oblate analogues. The 1Cf for
an oblate spheroid is plotted against C in figure 6. In contrast to the particle inertia
case (see figure 3), the near-sphere normalization alone is not sufficient for an oblate
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Near-sphere
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Flat disk

(a)

(b)

(c)

FIGURE 6. The drift due to fluid inertia, as characterized by the normalized change in
the orbit constant in a single Jeffery period, Re−1(1Cf /(C2 + 1)), plotted as a function
of C/(C+ 1), for an oblate spheroid; C/(C+ 1) = 0 and C/(C+ 1) = 1 correspond to
the spinning and the tumbling modes, respectively. (a) Uses the additional normalization
factor of ξ 2

0 , so the drift remains finite in the near-sphere limit (ξ0→∞). (b) Uses the
normalization factor (ξ0 − 1)1/2, to render the drift finite in the flat-disk limit (ξ0→ 1).
(c) Magnified view highlighting the shift in the repeller location with changing ξ0.
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spheroid. The inertial angular velocity approaches a finite O(Re) value independent
of aspect ratio in the flat-disk limit, and this leads to 1Cf ∼ Re · O(ξ0 − 1)−1/2 for
ξ0→ 1 owing to the diverging Jeffery period. The differing scalings for particle and
fluid inertia imply that the density ratio St/Re must become asymptotically large,
of O(ξ0 − 1)−1/2 (although still far smaller than the corresponding prolate estimate),
before particle inertia can begin to exert an influence on the orientation distribution
of flat disks. Figure 6 includes separate plots of 1Cf with the near-sphere and the
flat-disk normalizations.

From the plots in figure 6, we note that, unlike a prolate spheroid, 1Cf is no
longer single-signed. Now, 1Cf must certainly be negative, for all values of C, for a
near-sphere, as is implied by the prolate–oblate transformation and a 1Cf of O(ξ−2

0 ).
This remains true for aspect ratios greater than approximately 0.142 (ξ0 ≈ 1.01), and
such oblate spheroids drift towards a steady spinning mode starting from any initial
orientation. For aspect ratios smaller than this critical value, the 1Cf curves cross the
C-axis, so the drift becomes positive beyond a critical value of C (say, C∗). C∗ is
a function of ξ0, and equals ∞ for an oblate spheroid with the critical aspect ratio
(0.142), decreasing to

√
35 in the limit ξ0→ 1. For a flat disk, 1Cf is given by:

lim
ξ0→1

1Cf = π(7+C2 − 7(1+C2)1/2)

15
√

2C(ξ0 − 1)1/2
= π(
√

1+C2 − 1)(
√

1+C2 −
√

1+C∗2)

15
√

2C(ξ0 − 1)1/2
.

(6.18)

The movement of C∗ towards its limiting value in the range 1 < ξ0 < 1.01 is
highlighted by the magnified view in figure 6. As the aspect ratio decreases below
0.142, a pair of repellers (which are Jeffery orbits at this order of approximation)
bifurcate from the tumbling orbit, separating the unit sphere into distinct basins of
attraction. The region on the unit sphere between the repelling orbits, extending
across the plane of symmetry of the ambient shear, corresponds now to orientations
that asymptote towards a tumbling mode, while the region around the vorticity axis
enclosed by each of the repellers corresponds to orientations that asymptote towards a
steady spinning mode. With decreasing aspect ratio, the two repelling orbits flatten out
into increasingly thin ellipses centred about the gradient–vorticity plane. Eventually,
in the flat-disk limit, the repellers reduce to a pair of arcs (with an angular extent
of approximately 161◦) on the great circle in which the gradient–vorticity plane
intersects the unit sphere. As a result, a flat disk, like a prolate spheroid, approaches
a tumbling mode from almost any initial orientation (except for a set of measure zero
corresponding to the repellers). This happens despite the movement of C∗ towards a
finite limiting value (from ∞ to

√
35) for ξ0→ 1. This is because, as noted earlier

in § 4, for sufficiently thin oblate spheroids, the orbit constant is appropriately defined
as C = (ξ 2

0 − 1)−1/2 tan θj cos φj, so that for a given Jeffery orbit to remain bounded
away from the gradient–vorticity plane as ξ0 → 1, C must diverge as (ξ0 − 1)−1/2;
in other words, Jeffery orbits corresponding to any finite C in the flat-disk limit
(including the C∗ = √35, the zero crossing of the 1Cf curve for a flat disk) must
collapse onto the gradient–vorticity plane (the angular extent of the resulting arc is
C/
√

1+C2, and with C = C∗, this gives 161◦ as mentioned above). To illustrate the
approach of the 1Cf zero crossing towards C = 0 for a flat disk, the fluid inertial
drift is plotted against the rescaled orbital coordinate C(ξ 2

0 − 1)1/2/(1+C(ξ 2
0 − 1)1/2)

in figure 7. Figure 8 illustrates the repelling (Jeffery) orbits starting from the equator
of the unit sphere (C =∞), and moving towards smaller C values with decreasing
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FIGURE 7. (a) Magnified view of the drift for the oblate spheroid plotted against a
rescaled orbital coordinate shown in (b). The cross-over point shifts towards zero with
decreasing aspect ratio.

aspect ratio. Figure 9 shows the nature of the finite-Re spiralling trajectories of the
orientation vector on either side of these repellers. The emergence of the repellers may
also be interpreted as a subcritical pitchfork bifurcation (figure 10), with 1/C being
the relevant coordinate, and the spheroid aspect ratio being the relevant parameter. For
aspect ratios less than 0.142, the tumbling orbit is a local attractor bounded by a pair
of unstable solutions (repeller). The coalescence of the three (two unstable and one
stable) solutions, at the critical aspect ratio, renders the tumbling orbit unstable, and
the system migrates to a distant equilibrium (the spinning mode). In the vicinity of the
critical aspect ratio, the repeller locations are given by 1/C∗ =±1.48(ξ0 − 0.142)1/2.

6.3. Drift due to fluid and particle inertia: role of the particle-to-fluid density ratio
(St/Re= ρp/ρf )

For a neutrally buoyant spheroid, the inertial drift is given by (5.19), but with the
aspect-ratio-dependent functions now being the sums of the F( f )

i (ξ0) [G( f )
i (ξ0)] and the

F(p)
i (ξ0) [G(p)

i (ξ0)]. The drifts for neutrally buoyant prolate and oblate spheroids are
plotted against the normalized orbit constant in figures 11 and 12, respectively. These
curves closely resemble those in figures 5 and 6, showing that fluid inertia dominates
the inertia of the particle for most aspect ratios. Accordingly, the critical aspect ratio
at which (1Cf +1Cp) first changes sign (for C→∞) is only slightly altered from
the original value, 0.142, for hollow oblate spheroids (fluid inertia acting alone), to
0.137 for a neutrally buoyant oblate spheroid.

The effect of density ratio (St/Re) is best illustrated for small aspect-ratio oblate
spheroids, since the particle inertial (single signed) and fluid inertial (zero crossing
for aspect ratios below a critical value) drift curves are distinct in character in this
case. As St/Re increases from 0, for a fixed aspect ratio below 0.142, one expects
the location of the repeller to move towards the tumbling orbit, and 1C to eventually
become single-signed. This is shown in figure 13 for an oblate spheroid with an aspect
ratio of 0.032 (ξ0 = 1.001); the St and Re here vary from 0 to 0.15 (St∗) and 0.0033
(Re∗), respectively, the maximum values being chosen so as to make the particle
and the fluid inertial drifts of the same order. The actual drift is proportional to
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(c) (d)

FIGURE 8. The repeller orbit location for various aspect ratios. As the aspect ratios
decreases below 0.142 (ξ0 = 1.01) a repeller orbit (denoted by thick black lines) emerges
from C/(C + 1) = 1 (the tumbling orbit). With further decrease in the aspect ratio, the
repeller progressively shrinks, collapsing into the vicinity of the gradient–vorticity plane
in the flat-disk limit.

X X

Y

Y

Z Z

Tumbling

Spinning

Repeller orbits

(a) (b)

FIGURE 9. The nature of the spiralling trajectories on either side of the repeller is shown
for a pair of aspect ratios. For the purpose of illustration, a large Stokes number (St= 0.8)
is chosen.

(1 − α)Re∗1Cf + αSt∗1Cp, with the value of α fixing the ratio St/Re. It is worth
noting that, even for the chosen small aspect ratio, the drift becomes single-signed
only at St/Re ≈ 75. Since both particle and fluid inertia induce a drift in the same
direction for a prolate spheroid, one expects no qualitative changes in the drift
curve with varying St/Re. Hence, in figure 14, we have plotted separately the
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FIGURE 10. The oblate spheroid orientation dynamics from a dynamical systems
perspective: a subcritical pitchfork bifurcation at an aspect ratio of 0.142 (ξ0 = 1.01).

normalized fluid and particle inertial drifts for a prolate spheroid of aspect ratio 4 to
again reinforce the dominance of fluid inertia. The peak drift values are 0.238 and
0.0058 for the particle and fluid inertia cases (attained at C values of 1.20 and 1.10
respectively), implying that particle inertia begins to control the inertial drift of the
prolate spheroid of aspect ratio 4 only when the density ratio exceeds approximately
41. Thus, for a prolate spheroid of any reasonable aspect ratio and a density ratio of
order unity, the drift is controlled by fluid inertial forces, and it is only for gas–solid
systems that particle inertia becomes significant.

The above fact needs particular emphasis in light of the recent comments of
Aidun and co-workers (Rosen et al. 2014), which might in turn might be due to
the incorrect fluid inertial analysis of Subramanian & Koch (2006b) that predicted a
nearly spherical prolate particle to drift towards the vorticity axis (see appendix D).
For instance, it has been emphasized on more than one occasion by Rosen et al.
(2014) that the initial tumbling phase (for small Re) arises due to centrifuging effects
associated with particle inertia, and fluid inertial effects act in opposition to this
tendency, leading to subsequent bifurcations at higher Re to log-rolling and kayaking
modes. The authors also attempt to rationalize the results of some early experiments
by Mason and co-workers (Karnis, Goldsmith & Mason 1963), who found cylindrical
particles to apparently conform to the minimum dissipation hypothesis for Re< 10−6.
The present analysis, reinforced by figure 14, shows that this is clearly not true, and
it is almost entirely due to fluid inertia alone that a prolate spheroid of any reasonable
aspect ratio, suspended in a liquid, approaches the tumbling mode for small Re.

7. The rheology of a dilute suspension of neutrally buoyant spheroids
In this section, we determine the shear viscosity of a dilute suspension of non-

Brownian neutrally buoyant spheroidal particles as a function of the particle aspect
ratio. The contribution of the particulate phase to the averaged suspension stress may
be written as 〈σ p

ij 〉 = n〈Sij〉, where, in the infinitely dilute limit, the stresslet, Sij, is
that associated with an isolated torque-free spheroid immersed in an ambient linear
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FIGURE 11. The drift due to fluid and particle inertia for a prolate (neutrally
buoyant) spheroid, as characterized by the normalized change in the orbit constant in a
single Jeffery period, Re−1((1Cf +1Cp)/(C2 + 1)), plotted as a function of C/(C+ 1);
C/(C+ 1) = 0 and C/(C+ 1) = 1 correspond to the log-rolling and tumbling modes,
respectively. (a) Uses the additional normalization factor of ξ 2

0 , so that the drift remains
finite in the near-sphere limit (ξ0 → ∞). (b) Uses the normalization factor (ξ0 −
1)1/2 log(ξ0 − 1) such that the drift remains finite in the slender rod limit (ξ0→ 1). The
contribution due to fluid inertia dominates particle inertia for all aspect ratios.

flow. This stresslet is a function of the instantaneous spheroid orientation p, and the
angled brackets therefore denote an average over the relevant orientation probability
density. Thus, 〈Sij〉 is given by:

〈Sij〉 =
∫
Ω(p) dp

∫
Sp

1
2

[
σikxjnk + σjkxink − 2

3
δij(σlkxlnk)

]
dA, (7.1)

where Sp denotes the surface of the spheroid. For finite Re (= St), as originally shown
by Batchelor (1970b), the suspension stress contains additional terms involving both
the particle phase acceleration and the fluid phase velocity fluctuations, and these
have been shown to lead to a non-Newtonian rheology even for suspensions of
spherical inclusions (Lin et al. 1970; Subramanian et al. 2011). However, these
effects scale with Re, and become vanishingly small for Re→ 0. Thus, for small but
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FIGURE 12. The drift due to fluid and particle inertia for an oblate (neutrally
buoyant) spheroid, as characterized by the normalized change in the orbit constant in a
single Jeffery period, Re−1((1Cp +1Cf )/(C2 + 1)), plotted as a function of C/(C+ 1);
C/(C+ 1) = 0 and C/(C+ 1) = 1 correspond to the spinning and tumbling modes,
respectively. The plot uses the additional normalization factor of ξ 2

0 , so the drift remains
finite in the near-sphere limit (ξ0→∞).
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FIGURE 13. (it a) Magnified view close to the tumbling orbit of the combined drift due
to particle and fluid inertia plotted for various values of the ratio St/Re with 0 6 St 6
St∗ = 0.15 and 0 6 Re 6 Re∗ = 0.0033 for ξ0 = 1.001 shown in (b).

finite Re, the dominant effect of inertia is an indirect one in terms of determining
the steady-state orientation probability density (and thereby, the shear viscosity).
As shown in §§ 7.1 and 7.2, this steady-state probability density is independent of
Re, and this indirect effect of inertia on the rheology is therefore of order unity.
Note that the steady-state orientation distribution is set up by the weak inertial
drift determined in previous sections, with or without Brownian diffusion, on an
asymptotically long time scale. In the absence of Brownian motion, this time scale
is O(Re−1); in the presence of Brownian motion, this time scale continues to be the
relevant one for prolate spheroids and oblate spheroids greater than the critical aspect
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FIGURE 14. The drifts due to fluid and particle inertia are plotted for a prolate spheroid
of aspect ratio 4.

ratio (0.137). For thinner oblate spheroids, the orientation distribution set up by the
bidirectional inertial drift is sensitive to the initial orientation distribution, and the
eventual initial-condition-independent steady state is set up by weak Brownian motion
on an exponentially long time scale (∝exp[Re Per]).

The instantaneous stresslet as a function of p may be written down from symmetry
arguments as:

Sij(p) = 3
2 D(p/o)

1 (ξ0)(Eklpkpl)(pipj − 1
3 δij)+D(p/o)

2 (ξ0) [(δik − pipk)Eklplpj

+ (δjk − pjpk)Eklplpi] +D(p/o)
3 (ξ0) [(δik − pipk)Ekl(δjl − plpj)

+ 1
2(Eklpkpl)(δij − pipj)], (7.2)

where the coefficients D(p/o)
1 , D(p/o)

2 and D(p/o)
3 , respectively, denote the aspect-ratio-

dependent strength of the stresslet singularities corresponding to the component flows
(axisymmetric, longitudinal and transverse extensions) that make up the ambient
simple shear in the body-fixed reference frame for prolate (p) and oblate (o) spheroids.
The number of coefficients (three) is fewer than the number of component flows
(five), since the axisymmetry of the spheroid implies identical responses to the two
longitudinal (u4s and u5s) and transverse extensional flows (u2s and u3s), which
combine to give the terms proportional to D2 and D3, respectively, in (7.2). For the
limiting case of a sphere, D(p/o)

1 =D(p/o)
2 =D(p/o)

3 = 20π/3, and (7.2) takes the familiar
form Sij = (20π/3)E ij which yields the Einstein coefficient. From Kim & Karrila
(1991), the expressions for the coefficients, translated to our notation, are given by:

D(p)
1 (ξ0)= 16π

9ξ 3
0 [(3ξ 2

0 − 1) coth−1 ξ0 − 3ξ0]
, (7.3)

D(p)
2 (ξ0)= 16πξ̄ 2

0

[3ξ 2
0 (1− 2ξ 2

0 )(2− 3ξ 2
0 + 3ξ0ξ̄

2
0 coth−1 ξ0)]

, (7.4)

D(p)
3 (ξ0)= 32πξ̄ 2

0

3ξ 3
0 (5ξ0 − 3ξ 3

0 + 3ξ̄ 4
0 coth−1 ξ0)

, (7.5)

D(o)
1 (ξ0)= 16π

9ξ 3
0 [(3ξ 2

0 − 2) cot−1 ξ̄0 − 3ξ̄0]
, (7.6)
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D(o)
2 (ξ0)= 16πξ̄0

[3ξ0(1− 2ξ 2
0 )(1− 3ξ 2

0 + 3ξ 2
0 ξ̄0 cot−1 ξ̄0)]

, (7.7)

D(o)
3 (ξ0)= 32π

3ξ0(−(2+ 3ξ 2
0 )ξ̄0 + 3ξ 4

0 cot−1 ξ̄0)
. (7.8)

The above expressions may also be obtained from the far-field limit (for ξ →∞)
of each of the component velocity fields (u1s − u5s), of the form (E i : xx)x/r5,
E i (i = 1–5) being the component rate-of-strain tensor (see (3.2)), with the constant
of proportionality, a function of ξ0, giving the ξ0-dependent stresslet coefficient.

The excess stress in a dilute suspension is therefore given by:

〈σ p
ij 〉 = nEkl

∫ {
3D(p/o)

1 (ξ0)

2
pkpl

(
pipj − 1

3
δij

)
+D(p/o)

2 (ξ0)[(δik − pipk)plpj + (δjk − pjpk)plpi]

+ D(p/o)
3 (ξ0)

[
(δik − pipk)(δjl − plpj)+ 1

2
pkpl(δij − pipj)

]}
Ω(p) dp, (7.9)

where the functional form of Ω(p) depends on ξ0 and Re Per. As mentioned in § 1, the
distribution of orientations along a Jeffery orbit is determined in the athermal limit,
even in the absence of interparticle hydrodynamic interactions, being given by the
inverse of the azimuthal component of the Jeffery angular velocity. In terms of φj,
the probability density along a Jeffery orbit is proportional to κ/(κ2 sin2 φj + cos2 φj)
for a spheroid. In (C, τ ) coordinates, Ω(p) may be written in the form f (C)g(C, τ ),
where the function g(C, τ ) corresponds to the aforementioned distribution of azimuthal
angles, and is given by:

g(C, τ )= 1
hChτ sin α

, (7.10)

and f (C) corresponds to the distribution of orientation across orbits. In (7.10),
hC(C, τ ) = θC and hτ (C, τ ) = (θ 2

τ + sin2 θφ2
τ )

1/2 are the diagonal elements of
the metric tensor, with the angle between the coordinate lines being given by
sin α = (φτ sin θ)/(θ 2

τ + sin2 θφ2
τ )

1/2. Thus, the sides of the elemental parallelogram
in the (C, τ ) system are hC dC and hτ dτ , the area of the parallelogram being
hChτ sin α dC dτ . The suffixes here denote derivatives with respect to the relevant
variables, which may be obtained using the expressions given in § 4; see appendix B.
Using (7.10), the excess stress due to the suspended particles may be written as:

〈σ p
ij 〉 = nEkl

∫ {
3D(p/o)

1 (ξ0)

2
pkpl

(
pipj − 1

3
δij

)
+D(p/o)

2 (ξ0)[(δik − pipk)plpj + (δjk − pjpk)plpi]

+ D(p/o)
3 (ξ0)

[
(δik − pipk)(δjl − plpj)+ 1

2
pkpl(δij − pipj)

]}
f (C)

hChτ sin α
dp, (7.11)

for the case of the spheroids, with f (C) being the only unknown. The orientation-
space integration element in (7.11) is left as dp, since it turns out that the integration
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is easiest in the usual spherical coordinates in the non-Brownian case (§ 7.1), while
the C–τ coordinate system is more convenient with the inclusion of weak Brownian
motion (§ 7.2), as is necessary for neutrally buoyant oblate spheroids with aspect ratios
less than 0.137 on account of the bifurcation in the orientation dynamics induced by
fluid inertia. The space-fixed form of the rate-of-strain tensor, E , is most convenient
for the rheology calculations based on (7.11).

7.1. The shear viscosity of a suspension of non-Brownian spheroids
While the distribution across Jeffery orbits is indeterminate in the Stokes limit,
accounting for the drift due to either particle or fluid inertia, and in the absence of
stochastic de-correlation mechanisms (of either a thermal or hydrodynamic origin),
must lead to a singular steady-state orientation distribution. For sufficiently long times,
the spheroids are confined to the tumbling and/or spinning modes, and Ω(p) must
therefore involve delta functions at either or both of θj = 0 and θj = π/2. Evidently,
only one of these delta functions is present when the drift is single-signed over the
entire unit sphere of orientations. As already seen, fluid inertia alone led to a change
in sign of the drift for oblate spheroids with aspect ratios smaller than 0.142. For
neutrally buoyant spheroids with Re = St, as seen in § 6.3, the drift arises from the
combined effects of particle and fluid inertia, and the single-signed drift regime for
oblate spheroids is then found to extend down to a slightly smaller aspect ratio of
0.137 owing to the O(St) component of the drift stabilizing the spinning mode. Note
that the drift is virtually unaltered close to the flat-disk limit, where the fluid inertial
contribution is greater than that due to particle inertia by a factor of O(ξ0− 1)−1/2; in
particular, the change in sign of the drift continues to occur at C∗ ≈√35 for ξ0→ 1.

As a result, for prolate spheroids of any aspect ratio:

Ω(p)=
ξ̄0ξ0δ

(
θj − π

2

)
2π sin θj(ξ

2
0 sin2 φj + ξ̄ 2

0 cos2 φj)
, (7.12)

and for neutrally buoyant oblate spheroids with aspect ratios greater than 0.137:

Ω(p)= δ(θj)

2π sin θj
. (7.13)

For neutrally buoyant oblate spheroids with aspect ratios less than 0.137:

Ω(p)= A1(C∗)δ(θj)

2π sin θj
+

ξ̄0ξ0

[
A2(C∗)δ

(
θj − π

2

)]
2π sin θj(ξ

2
0 cos2 φj + ξ̄ 2

0 sin2 φj)
, (7.14)

where the constants A1 and A2, in addition to depending on C∗ (and thereby on
the aspect ratio), are functions of the initial orientation distribution. This dependence
arises because the relative proportions of oblate spheroids asymptoting to the tumbling
and spinning modes depend on the number of particles located on either side of the
repeller (the Jeffery orbit with C=C∗(ξ0)) on the unit sphere at the initial instant. For
an initial isotropic distribution, for instance, A1 and A2 are, respectively, proportional
to the areas enclosed within and in between the pair of Jeffery-orbit repellers. Thus,
for non-Brownian neutrally buoyant oblate spheroids in the range of aspect ratios
(0, 0.137), the inertial suspension rheology, at leading order, still depends on the
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FIGURE 15. The intrinsic viscosity coefficient as a function of eccentricity for a dilute
suspension of neutrally buoyant prolate spheroids: scaled with nd3ξ 3

0 (a); scaled with
nd3ξ 2

0 (ξ
2
0 − 1)1/2/log κ (b).

initial state of the dilute suspension. While inclusion of weak inertial effects does
make the functional form of the steady-state orientation distribution determinate, in
that Ω(p) always consists of a pair of delta functions, the relative amplitudes of
these delta functions continues to depend on the initial distribution of orientations. In
what follows, for oblate spheroids in the above range of aspect ratios, we evaluate
the shear viscosity in the dilute regime assuming an initially isotropic orientation
distribution.

For the prolate case, using (7.12) in (7.11) with p= cosφj1′x+ sinφj1′y, one obtains:

〈σ p
ij 〉 = n

[
D(p)

2 (ξ0)+
(

3
2

D(p)
1 (ξ0)− 2D(p)

2 (ξ0)+ D(p)
3 (ξ0)

2

)
ξ0 ξ̄0

(ξ0 + ξ̄0)2
+
]

E ij. (7.15)

The rheology is evidently Newtonian. In terms of an effective viscosity µeff , we have
from (7.15) that (µeff − µ)/[(nL3)µ] = (1/2)(D(p)

2 (ξ0) + ((3/2)D(p)
1 (ξ0) − 2D(p)

2 (ξ0) +
(D(p)

3 (ξ0))/2)((ξ0 ξ̄0)/(ξ0 + ξ̄0)
2)) for a suspension of prolate spheroids at small but

finite Re. Figure 15(a) shows this intrinsic viscosity coefficient as a function of the
spheroid eccentricity. It is seen to vary from a value corresponding to the Einstein
coefficient (the value near 10 comes from the factor 4π/3 involved in the spherical
volume fraction) for a near-sphere to a vanishingly small contribution for a slender
spheroid. This happens due to a change in the scaling of (µeff − µ)/µ from O(nL3)
in the near-sphere limit to O(nL2b)/ ln κ in the slender-fibre limit; from (7.15),
limξ0→∞(µeff − µ)/µ= (10π/3)nL3 and limξ0→1(µeff − µ)/µ= (2π/(3 ln κ))nL2b. For
large aspect ratios (κ →∞), the dominant contribution to the averaged stresslet is
from non-aligned fibres, with the probability of such orientations only being O(κ−1).
From viscous slender body theory, the stresslet for a non-aligned fibre arises from
a linear force density of O[µγ̇L/ ln κ] acting with a moment arm of O(L) over
the length of the spheroid, and is O[µγ̇L3/ ln κ]. The resulting (dimensional) stress
is O(n) · O(κ−1) · O[µγ̇L3/ ln κ], leading to an effective viscosity (µeff − µ)/µ of
O[nL2b/ ln κ]. The stresslet for flow-aligned fibres is smaller than the non-aligned
contribution by O(κ−2 ln κ), and only contributes to a small correction of O(nLb2) to
the above estimate. Figure 15(b) uses the slender-fibre scaling above to obtain a finite
viscosity coefficient in the slender-fibre limit; note that the near-sphere asymptote is
zero in these units owing to the additional logarithmic factor involved. The scaling
of the intrinsic viscosity with aspect ratio, in the slender-fibre limit, is controlled by
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the anisotropy of orientations within a given Jeffery orbit, and thus, Leal and Hinch’s
(Leal & Hinch 1971) original calculation, involving the effect of weak Brownian
diffusion in setting up a steady smooth distribution across Jeffery orbits, also leads to
a viscosity coefficient of O[nL2b/ ln κ] for large aspect ratios, albeit with a different
O(1) coefficient.

For oblate spheroids with aspect ratios greater than 0.137, p= 1′z, and only the two
transverse planar extensions in (3.2) contribute to the rheology. Using (7.13), (7.11)
reduces to:

〈σ p
ij 〉 = nD(o)

3 (ξ0)E ij 1.01< ξ0 <∞. (7.16)

For oblate spheroids with aspect ratios smaller than 0.137, (7.14) is used in (7.11) to
obtain:

〈σ p
ij 〉 = n

[
D(o)

3 (ξ0)A1 +
(

D(o)
2 (ξ0)+

(
3
2

D(o)
1 (ξ0)− 2D(o)

2 (ξ0)+ D(o)
3 (ξ0)

2

)
ξ0 ξ̄0

(ξ0 + ξ̄0)2

)

× (1−A1)

]
E ij 1< ξ0 < 1.01. (7.17)

The area within a Jeffery orbit, with an orbit constant C, is given by 2π − 4κ(1 +
C2)−1/2Π [1 − κ2, −C2(κ2 − 1)/(1+C2)], and normalizing by the area of the unit
hemisphere, one obtains A1= 1− (2κ/π)(1+C2)−1/2Π [1− κ2,−C2(κ2 − 1)/(1+C2)]
and A2 = 1−A1 for an initially isotropic orientation distribution, Π(x, y) being the
complete elliptic function of the third kind (Gradshteyn & Ryzhik 2007). The intrinsic
viscosity coefficient, (µeff −µ)/[(nL3)µ] for a suspension of oblate spheroids, over the
entire range of eccentricities is plotted in figure 16(a). There is a kink (a discontinuity
in slope) in the curve at e≈ 0.99 due to the oblate spheroids transitioning from a pure
spinning mode to a weighted combination of spinning and tumbling modes. The part
of the viscosity curve for e> 0.9905 (aspect ratios smaller than 0.137) is plotted as a
discrete sequence of points because the relative proportions of spinning and tumbling
spheroids in this range of aspect ratios is a function of the repeller location C∗, and
this is found numerically from the zero crossing in a plot of 1C against C/(C + 1)
for a particular aspect ratio (similar to figure 6). Figure 16(b) shows a magnified view
of the aforementioned kink. Here, the curve corresponding to the pure spinning mode
is continued until e = 1 to emphasize the transition from spinning oblate spheroids,
of aspect ratio 0.137, at e = 0.9905, to tumbling flat disks at e = 1. Note that the
spinning-mode curve would terminate in a finite coefficient at e=1, since the viscosity
coefficient for spinning disks is O(nL3) as for spheres. The bifurcation at e= 0.9905,
however, implies that the viscosity coefficient at e = 1, arises almost entirely from
tumbling flat disks, and is asymptotically smaller than O(nL3). The appropriate scale
in the flat-disk limit may be obtained by noting that the averaged stresslet arises from
the combination of an O(µγ̇L3) stresslet associated with an O(κ) fraction of spinning
disks, and a comparable O(µγ̇ bL2) stresslet associated with disks that tumble in the
flow–gradient plane (unlike the prolate case, both aligned and non-aligned flat disks
end up contributing, at the same order, to the tumbling stress component). This leads
to an effective viscosity µeff − µ ∼ O(nbL2)µ in the flat-disk limit. Figure 17 plots
(µeff −µ)/[(nbL2)µ] as a function of the spheroid eccentricity, which leads to a finite
value in the flat-disk limit; the spinning-mode coefficient diverges as O(ξ0 − 1)−1/2

with this normalization. The viscosity coefficient for sufficiently thin oblate spheroids
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FIGURE 16. (a) Intrinsic viscosity coefficient as a function of eccentricity for a dilute
suspension of neutrally buoyant oblate spheroids (scaled with nd3ξ 3

0 ). An initial isotropic
orientation distribution is assumed while calculating the viscosity for aspect ratios less
than the critical aspect ratio (0.137). The dotted line denotes the viscosity coefficient for
these viscosity ratios. (b) Magnified view of the viscosity coefficient transitioning from
the spinning to the tumbling asymptote close to the flat-disk limit.

0 0.2 0.4 0.6 0.8 1.0 0.970 0.975 0.980 0.985 0.990 0.995 1.000
0

10

20

30

40

10

20

30

40

Spinning

Spinning

Tumbling

e e

In
tr

in
si

c 
vi

sc
os

ity

Sphere Flat disk

(a) (b)

FIGURE 17. (a) Intrinsic viscosity coefficient as a function of eccentricity for a
dilute suspension of neutrally buoyant oblate spheroids presented in figure 16, is now
appropriately rescaled in the flat-disk limit (scaled with nd3ξ 2

0 (ξ
2
0 − 1)1/2). (b) Magnified

view of (a).

is again controlled by the anisotropy of orientations within a given Jeffery orbit, and
the effects of weak Brownian motion, although resulting in a different distribution
across Jeffery orbits, lead to a similar scale in the flat-disk limit (Leal & Hinch
1971).

Apart from the kink at e = 0.9905 discussed above, there are two points worth
noting in figure 17. The first is that the intrinsic viscosity curve corresponds to a
steady-state orientation distribution. Within the framework of an orbital drift, the
time required to attain such a steady state diverges in the flat-disk limit owing to
the diverging Jeffery period; recall that the Jeffery period is 2π((κ2 + 1)/κ) and is
O(κ−1) for κ → 0. Note, however, that the orbital drift interpretation, that assumes
the inertial trajectory to be a tightly wound spiral, becomes increasingly restrictive
for both large and small aspect ratios (see § 8). Notwithstanding this restriction, the
viscosity coefficient, plotted for any finite time, will deviate from the steady-state
plot for sufficiently thin oblate spheroids, asymptoting to a (frozen-in-time) isotropic
orientation distribution at e= 1. For longer times, this deviation from the steady-state
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curve will occur at progressively smaller aspect ratios. The second feature is the
difference between the value of the intrinsic viscosity coefficient at e = 1, and that
corresponding to a suspension consisting only of tumbling flat disks (indicated by the
horizontal dashed line in figure 17(b)). This jump comes from the implicit assumption
of an infinite suspension for which a statistical description, in terms of an orientation
probability density, is appropriate. For any finite-sized system, there will be a small
enough aspect ratio when the area within the Jeffery repeller, corresponding to
C∗ = √35, is small enough that the number of spheroid orientations in this tiny
region of the unit sphere is of order unity, and a probabilistic description is no longer
valid. Below such an aspect ratio, the viscosity coefficient will approach the lower
value corresponding to the pure tumbling mode (again of O(nbL2)). Said differently,
the jump in the viscosity coefficient at e = 1 is an artefact of the thermodynamic
limit.

7.2. The rheology of a suspension of oblate spheroids with aspect ratio less than
0.137: the role of weak Brownian motion

In this section, in an effort to resolve the indeterminacy in the steady-state rheology
that arose in § 7.1 for oblate spheroids with aspect ratios less than 0.137, we include
the effects of weak Brownian motion (large but finite rotary Péclet number Per). As
will be seen below, Brownian motion together with the inertial drift does lead to a
steady state independent of initial conditions. To examine this steady state, we write
down the governing drift–diffusion equation for the orientation probability density:

∇p · (ṗΩ)= 1
Per
∇2

pΩ. (7.18)

The left-hand side denotes the convection of Ω with ṗ = ṗjeff + Re ṗi, where ṗjeff
is the Stokesian rate of change of orientation along a Jeffery orbit, and ṗi denotes
the inertial drift with components both along and perpendicular to the Jeffery orbits.
The orientational Laplacian on the right-hand side denotes the Brownian motion of
p on the unit sphere. The (C, τ ) coordinate system is most convenient for solving
(7.18), since in this coordinate system, ṗjeff has only a τ component, and determines
only the orientation distribution along any Jeffery orbit (g(C, τ ) as given by (7.10)),
while the distribution across orbits ( f (C) in (7.11)) emerges from a one-dimensional
drift–diffusion balance, in the C coordinate, between inertial convection and Brownian
diffusion. The nature of this reduced distribution, f (C), is controlled by the parameter
Re Per, which determines the relative magnitudes of inertial drift and thermal diffusion.
While § 7.1 dealt with the case Re Per =∞, the focus here is on the (singular) nearly
athermal limit Re Per � 1. The additional contribution to the suspension stress (the
so-called Brownian or diffusion stress) is asymptotically small in this limit, and the
suspension stress is still given by n〈Sij〉, as in § 7.1.

To obtain the governing equation for f (C), we again follow Leal & Hinch (1971),
and integrate (7.18) over the area enclosed by a single Jeffery orbit (2πA1, as defined
in § 7.1): ∫

A1

Re∇p · (ṗΩ) dS= 1
Per

∫
A1

∇2
pΩ dS. (7.19)

Application of the divergence theorem leads to:∫
C1

Re(ṗi · nj)Ω dl= 1
Per

∫
C1

nj · ∇pΩ dl, (7.20)
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where the term involving the Jeffery convection integrates to zero. Here, C1 is the
Jeffery orbit with orbit constant C, dl= hτ dτ being the arclength element along this
orbit, and nj is the unit vector, in the tangent plane of the unit sphere, and normal
to this Jeffery orbit. We now write the inertial drift in (C, τ ) coordinates as ṗi =
uicĈ + uiτ τ̂ , with Ĉ = 1θ and τ̂ tangent to the Jeffery orbit. Using τ̂ · nj = 0 and
Ĉ · nj = sin α, and the definition of the gradient operator (see appendix B 6), (7.20)
becomes

Re Per

∫ 2π

0
uic sin αΩ hτ dτ =

∫ 2π

0

(
hτ

hC sin α
∂Ω

∂C
− cot α

∂Ω

∂τ

)
dτ . (7.21)

Using Ω(C, τ )= f (C)g(C, τ ), with g(C, τ ) given by (7.10), (7.21) becomes:[
Re Per

∫ 2π

0

uic

hC
dτ −

∫ 2π

0

(
hτ

hC sin α
∂g
∂C
− cot α

∂g
∂τ

)
dτ
]

f (C)

=
(∫ 2π

0

1
h2

C sin2 α
dτ
)

df
dC
. (7.22)

Expectedly, (7.22) is a τ -averaged drift–diffusion equation where the drift includes
both the inertial contribution and a Brownian contribution that arises due to the
curvature and non-orthogonality of the (C, τ ) coordinates. Now, uic/hC = dC/dt,
and the inertial drift term in (7.22) may be written as

∫ 2π

0 (dC/dt) dτ , which, from
(5.17), equals (1Cp +1Cf )κ/(κ

2 + 1) for neutrally buoyant spheroids. This is just
the dimensionless Jeffery-orbit-averaged drift velocity, of a neutrally buoyant oblate
spheroid, with the distance (across Jeffery orbits) measured in units of C and time
measured in units of the inverse shear rate. The expressions for 1Cp and 1Cf , as
functions of the aspect ratio (or ξ0), have already been given in §§ 5.1 and 6.2,
respectively. Defining 1Co(C; κ)= (1Cp +1Cf )κ/(κ

2 + 1), (7.22) takes the form:

χ1
df
dC
=
(

Re Per1Co

π
− χ2

C

)
f , (7.23)

where χ1(C; κ) = ((κ2 + 1/κ2) + C2(7/2 + 1/(4κ2) + κ2/4) + C4(κ2 + 1)) and χ2 =
(−(κ2 + 1)/κ2 + C2(6 − (7/2 + 1/(4κ2) + κ2/4)) + 2C4(κ2 + 1)) are obtained by
evaluating the τ -integrals in (7.22). Equation (7.23) can readily be integrated formally
to obtain:

f (C)=N exp
[∫ C (Re Per1Co(C′; κ)

π
− χ2(C′; κ)

C′

)
1

χ1(C′; κ) dC′
]
, (7.24)

where N is a normalization constant determined from the constraint
∫∞

0 f (C) dC =
1/4π. Since (7.24) is the solution of a drift–diffusion balance in one dimension, it is
an equilibrium distribution with the flux being zero at every point along the C-axis,
the no-flux conditions at the boundary conditions (one of them at infinity) being
automatically satisfied. In this sense, the solution is analogous to the much simpler
Gaussian equilibrium for a Brownian particle in a bounded harmonic potential
(Wax 2013). Interpreting (7.24) within the framework of the harmonic potential
problem, the equivalent C-dependent potential for the present case is given by
U(C) = Re Per

∫ C
(1Co(C′; κ)/π − χ2(C′; κ)/(Re PerC′))(1/χ1(C′; κ)) dC′ where,
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FIGURE 18. The C-dependent potential for an oblate spheroid of aspect ratio 0.0135 is
plotted against C/(C+ 1) for various values of Re Per.

unlike the harmonic oscillator case, U(C) also incorporates the C-dependence of the
diffusivity in (7.23); (Re Per)

−1 is the dimensionless temperature. Figure 18 shows
a plot of U(C) against C/(C + 1), for different Re Per, for an oblate spheroid of
aspect ratio 0.0135. In the limit Re Per = 0, the potential has only one minimum,
corresponding to Brownian motion alone, and this is located close to the tumbling
mode. But, as the value of Re Per increases, the inertial drift towards the spinning
mode (for C< C∗ with C∗ ≈ 6.07 for an aspect ratio of 0.0135) causes the potential
to become a bistable one with a second shallow minimum developing in the vicinity
of the spinning mode. Note that the minima of the bistable potential, for any finite
Re Per, are not exactly at C = 0 and C = ∞ due to the presence of an additional
Brownian drift component; such a coincidence occurs only at Re Per = ∞. The
bistable nature of U(C) implies that f (C) will have a pair of peaks corresponding
to the two minima, and this is borne out in the plots that follow. It is worth noting
that, although the U(C) minimum and the f (C) maximum (see below), in the vicinity
of C = 0, appear quite shallow, they would be much sharper in terms of the actual
angular coordinates since, as already mentioned, close to the flat-disk limit, all the
finite-C Jeffery orbits are squished to within an asymptotically small interval in the
vicinity of the gradient–vorticity plane (figure 8).

For Re Per= 0, (7.23) reduces to the equation solved by Leal & Hinch (1971), who
analysed the effect of Brownian motion alone in determining f (C). The deviation
in f (C) from the ‘Leal–Hinch distribution’ due to the emergence of an inertial
drift, for moderate Re Per, is shown in figure 19, again for an oblate spheroid
with aspect ratio 0.0135. Figure 20 shows the normalized f (C) for much larger
values of Re Per for four different aspect ratios in the range 0.011–0.0135 (the
purely Brownian Leal–Hinch curve is also shown for comparison in each figure).
One expects to obtain bimodal distributions over some range of large Re Per
values owing to the bidirectional inertial drift for aspect ratios less than 0.137;
the original delta functions used in § 7.1, for the rheology calculation, will now
be smoothed by Brownian motion into finite peaks with a small spread that varies
in some inverse proportion with Re Per. The precise scaling of the spinning and
tumbling peak widths may be found from the asymptotic forms of the drift and
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FIGURE 19. The f (C) for an oblate spheroid of aspect ratio 0.0135 is plotted against
C/(C+ 1) for moderate values of Re Per. The Leal–Hinch distribution corresponds to
Re Per = 0.

diffusivity coefficients for small and large C. For C→ 0, 1Co ≈ πC/30 and (7.23)
takes the form (1/f )(df /dC) = C((Re Perκ

2)/30) + 1/C, implying a spinning peak
width of O(1/

√
Re Perκ2); for C → ∞, 1Co ≈ πC/6 and (7.23) takes the form

(1/f )(df /dC) = (1/C3)((Re Per)/6) − 2/C, implying a tumbling peak width of
O(1/
√

Re Per). The smoothing effect of Brownian motion is, of course, expected, and
is of a relatively minor significance in the rheological context, since the regularization
of the delta functions only leads to a vanishingly small correction to the steady-state
shear viscosity for Per → ∞. This has, for instance, been done in the context of
particle inertia by Einarsson et al. (2014) with St Per being the relevant parameter.

The non-trivial effect of Brownian motion is in determining the ratio of the
tumbling-to-spinning peak amplitude, which, in sharp contrast to § 7.1, is now
independent of initial conditions. This independence is evident from (7.24), where the
ratio of tumbling-to-spinning peak amplitudes is proportional to the exponential of the
difference in the corresponding potentials (Umin(C/(C+ 1)→ 1)−Umin(C/(C+ 1)→
0)). Figure 20 shows that this ratio crosses unity, as the aspect ratio decreases
from 0.137 and approaches zero, implying a transition from a dominance of spinning
oblate spheroids to tumbling oblate spheroids. For really large values of Re Per,
this transition occurs at approximately an aspect ratio of 0.0126 (notice the shift in
dominant peak from the spinning to the tumbling one at Re Per = 200 000, as one
changes the aspect ratio from 0.0127 to 0.0124); this may also be seen from the
relative depths of the two minima of U(C) for Re Per→∞. In the athermal limit of
interest here, the difference between potential minima is enormously magnified by the
factor Re Per, and a change in sign of U(∞)−U(0) implies, for long enough times, a
transition from a suspension of spinning spheroids to one of tumbling spheroids. The
interval of aspect ratios over which such a transition (spinning → tumbling) occurs
(with decreasing aspect ratio) must scale inversely with Re Per, implying that the
intrinsic viscosity coefficient, in the limit Re Per→∞, must undergo a jump at the
critical aspect ratio of 0.0126 from a large O(nL3) value to a much smaller O(nL2b)
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FIGURE 20. The f (C) for different aspect ratios (a) 0.0124; (b) 0.0127; (c) 0.011
and (d) 0.0135 is plotted against the orbital coordinate for various values of Re Per
(0–2000 000). As RePr increases, for aspect ratios less than 0.0126, the probability leaks
towards the tumbling mode, and for aspect ratios greater than 0.0126, the leak is towards
the spinning mode.

value. Figure 21 evaluates the viscosity coefficient with an O(nL2b) normalization
using an orientation distribution given by (7.13) above this critical aspect ratio, and
the oblate analogue of (7.12) below it. Note that the aforementioned critical aspect
ratio differs from the critical value of 0.137 found in the absence of Brownian motion
(Re Per=∞), implying the singular role of Brownian motion; the viscosity coefficient
now varies smoothly across the earlier critical value. This singular effect of thermal
forces is contingent on taking the limit t→∞ before Re Per→∞, thereby allowing
even weak Brownian motion to act over an asymptotically large period of time (this
ordering of limits is in the same sense as that in the original Leal–Hinch analysis
(Leal & Hinch 1971), except that Per is now replaced by Re Per).

The aforementioned critical aspect ratio can also be calculated from the asymptotic
forms that the distribution, f (C), takes as C → ∞ and C → 0. In the latter case,
f (C) takes the form Ce[α4C2+Re Per(α5C2+α6)], and for C → ∞, f (C) takes the form
(1/C2) e[α1/C2+Re Per(α2/C2+α3)], where the αi are functions of the spheroid aspect ratio.
The ratio of the maxima of these two asymptotes must be equated to unity to
obtain the critical aspect ratio corresponding to the spinning–tumbling transition. This
gives α3= α6 at the leading order with corrections of O(1/(Re Per)). The aspect-ratio
functions, α3 and α6, are plotted in figure 22 for aspect ratios ranging from 0 to 0.136,
and the curves cross at the aspect ratio of 0.0126.

Starting from an arbitrary initial condition, the orientation probability density
evolves in a non-trivial fashion for Re Per � 1. The inertial drift must, on a shorter
time scale of O(Re−1γ̇ ) (the time required for a spheroid orientation to drift across
the unit sphere), lead to the establishment of the tumbling and spinning peaks
whose amplitudes depend on the initial orientation distribution as found in § 7.1.
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FIGURE 21. (a) Intrinsic viscosity for a suspension of Brownian oblate spheroids is
plotted as a function of the aspect ratio (scaled with nd3ξ 2
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jump from the spinning to the tumbling value at the critical aspect ratio of 0.0126.
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FIGURE 22. (a) The functions α3 and α6, in the large C and the small C asymptotic
forms of distribution are plotted against the aspect ratio in (a). The cross-over of the two
functions gives the critical aspect ratio. (b) Zoomed view of (a) which shows the crossing
of the functions at 0.0126.

The establishment of these peaks must then be followed by a process of ‘equilibration’
that involves the slow transfer of probability (of spheroid orientations) from the
tumbling to the spinning peak, or vice versa, depending on whether one is above or
below the aforementioned critical aspect ratio, leading to the peak ratio eventually
approaching an initial-condition-independent value. This second (slower) process may
be interpreted as an activated (barrier-hopping) process that requires an activation
energy of O(Re Per) corresponding to the potential maximum in figure 18, and the
classical analysis of Kramer in the context of reaction-rate theory implies that the
time scale for equilibration between the peak amplitudes would scale as exp[Re Per]
(Wax 2013). This is, of course, much longer than the O(Re−1) scale associated with
the inertial drift setting up the initial-condition-dependent peaks for large Re Per.
An analogy may also be drawn between the tumbling–spinning transition analysed
here and the coil-stretch transition in the polymer physics context, with the strain
rate replacing the aspect ratio as the relevant parameter (De Gennes 1974; Hinch
1974), and the tumbling and spinning modes corresponding, respectively, to the
coiled and stretched configurations, respectively. In the thermodynamic limit, and for
sufficiently long times, there must be a complete transition of all polymer molecules
from the coiled to the stretched configuration when a dilute polymer solution is
subjected to a supercritical extension rate (greater than a Deborah number of 1/2;
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Hsieh & Larson 2005). It is also, however, true that the importance of the so-called
coil-stretch hysteresis is precisely due to the long-lived metastable states (either the
coiled or the stretched configurations, depending on whether the extension rate is
above or below the critical value). For instance, as pointed out by Hinch (1974), a
weak subcritical flow can indeed maintain a stretched polymer molecule, although the
stretching would have originally required the imposition of a supercritical extension.
Based on this analogy with the coil-stretch transition, one expects a similar hysteresis
with regard to the tumbling and spinning modes in the present context. In other words,
for time scales much shorter than the peak-equilibration time above, both tumbling
and spinning modes are allowed configurations for oblate spheroids with aspect ratios
less than 0.137. The simpler spheroidal geometry also allows us to identify the basins
of attraction corresponding to the tumbling and spinning modes on the unit sphere;
the corresponding basins of attraction for the coiled and stretched states of a polymer
molecule in the absence of Brownian motion, although unphysical, would necessitate
examination of a much more complicated configuration space.

It again needs emphasis that, for any finite Re Per, there will be a non-trivial
distribution of spheroid orientations spread across the entire unit sphere. In the
athermal limit, however, the preponderance of spheroid orientations would be in
the vicinity of either the tumbling or spinning modes, whichever is stable in the
sense of corresponding to a lower potential. Thus, the primary effect of Brownian
motion, at leading order, is only in determining the relative stability of these modes;
the smoothing of the peaks, and the resulting finite spread of orientations, are
second-order effects that become vanishingly small for Per → ∞. It is especially
worth noting that, although the specific case of Brownian motion has been analysed
above in some detail, an alternate (weak) stochastic mechanism, in the presence of
a bidirectional inertial drift, should also lead to a unique steady-state orientation
distribution in a similar manner, although the existence of, and the actual value of a
critical aspect ratio, depends on the details of the mechanism. For instance, outside the
infinitely dilute limit, pair-hydrodynamic interactions would have the same qualitative
effect. For oblate spheroids, successive uncorrelated pair interactions would lead to
a relaxation process in orientation space similar to Brownian motion, although the
process is non-local owing to each pair interaction leading to, in general, a large
jump in orientation (these jumps become small, of O(ln κ)−1, and the associated pair
interactions are describable in terms of a hydrodynamic rotary diffusivity, only for
slender prolate spheroids (Rahnama et al. 1995). Thus, if hydrodynamically induced
orientation de-correlations were responsible for setting up a steady-state orientation
distribution, f (C) would be governed by a Boltzmann-like integro-differential equation
in the C-coordinate of the form:

∂f
∂t
+ ∂

∂C

(
Re Per1Co

π
f
)
+ f
τ [ f (C)] −

∫
dC′1K(C,C′ |C1,C′1)[ f (C1)f (C′1)]= 0 (7.25)

where both the relaxation time (which depends on f (C), and is O((nL3γ̇ )−1) in
the dilute limit of interest) and the kernel K(C, C′ | C1, C′1) depends on the details
of the pair-hydrodynamic interactions between spheroids (an unsolved problem). In
summary, although we have analysed specifically the role of weak Brownian motion
in eliminating the rheological indeterminacy associated with a dilute suspension
of oblate spheroids, with aspect ratios less than 0.137, one expects the proposed
scenario to remain qualitatively valid even outside the restricted regime considered.
A similar situation would prevail even at finite Re, and at higher volume fractions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.14


682 V. Dabade, N. K. Marath and G. Subramanian

until the inertial trajectory topology begins to differ qualitatively from that implied
by the O(Re) analysis here (due to, for instance, the inertial drift no longer being
bidirectional or from hydrodynamic fluctuations affecting the distribution of orientation
within a Jeffery orbit). The role of Brownian motion above will now be replaced
by hydrodynamic orientation fluctuations (at either zero or finite Re) with the single
dimensionless parameter governing the orientation distribution (and the rheology)
now being Re/nL3 (1/nL3 playing the role of Per, since the Brownian diffusion
time of O(D−1

r ) is now replaced by the time between successive pair interactions of
O[(nL3γ̇ )−1]).

8. Conclusions and future work
There have been a fair number of analytical and numerical investigations which

have examined the effects of both particle and fluid inertia on axisymmetric particles
in a simple shear flow. The analytical investigations have thus far mainly focused
on the first effects of inertia for slender fibres and nearly spherical particles; an
exception is the recent work of Einarsson et al. (2015b) which is discussed below.
In the present effort, using a novel spheroidal harmonics formalism (see § 3), we
have calculated the O(Re) and the O(St) corrections to the Jeffery angular velocity
for prolate and oblate spheroids of an arbitrary aspect ratio. The resulting inertial
angular velocity components are given by (5.5) and (5.6). The aspect-ratio-dependent
functions that appear in these equations are given by (5.7)–(5.12) for the case of
particle inertia, while the same functions for the fluid inertial case are given by
(6.1)–(6.8). The inertial drift is interpreted in terms of the change in orbit constant
over a single Jeffery period, 1C, and the plots for 1C for all relevant cases are
given in §§ 5.1 (particle inertia: prolate and oblate) and 6 (fluid inertia: prolate
and oblate). 1C is positive for a prolate spheroid, at both O(Re) and O(St), and
a prolate spheroid always drifts towards a tumbling mode. For an oblate spheroid,
1C is negative at O(St) for all aspect ratios, and at O(Re), for aspect ratios greater
than (approximately) 0.142. In all these cases, the oblate spheroid drifts towards a
spinning mode. For oblate spheroids with aspect ratios less than 0.142, the 1C curve,
at O(Re), exhibits a single zero crossing at C = C∗(ξ0). The change in sign implies
that the unit sphere is now divided into distinct basins of attraction corresponding
to the spinning and tumbling modes. With decreasing aspect ratio (below 0.142), the
basin of attraction corresponding to the tumbling mode expands, eventually filling up
the entire unit sphere in the flat-disk limit. Finally, in § 5.2, we extend the analysis
for particle inertia to O(St2), showing that there is a decrease in the period of rotation
at this order.

Although the predictions above are expected to be quantitatively accurate only in
the limit Re, St� 1, it would be interesting if future simulations, carried out at lower
values of Re and St, help delineate the precise regimes of validity for the theoretical
expressions obtained here. To account for non-trivial aspect-ratio-related factors
entering the particle inertia regime of validity, one may define an effective Stokes
number (S̄t) that is the ratio of the moment of inertia to the viscous torque coefficient,
given by (1/(20ξ0))Stξ̄ 2

0 (−ξ0+ coth−1ξ0(1+ ξ 2
0 )) and (1/20)Stξ̄0(−csc−1ξ0(−2+ ξ 2

0 )+
ξ̄0) for prolate and oblate spheroids, respectively. S̄t thus defined above is the true
measure of particle inertia, especially for extreme aspect ratios for which St based
on the length (dξ0) overestimates the inertia. The present analysis is then valid
when S̄t � 1 regardless of aspect ratio. With regard to fluid inertia, of particular
interest would be a simulation effort that continues the small-Re bifurcation found
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Inertial effects on the orientation of anisotropic particles in shear flow 683

here, for oblate spheroids, to Re values of order unity, and thereby establishes the
Re-interval over which the bifurcation persists as well as the Re-dependence of the
critical aspect ratio starting from its limiting value of 0.142 (for Re→ 0); this would
require simulating oblate spheroids having aspect ratios much smaller than those
considered earlier. The presence of multiple attractors at finite Re, with disjoint
basins of attraction, would again imply that stochastic orientation fluctuations, acting
over long times, dictate the steady-state rheology.

It is also worth mentioning that the interpretation in terms of an orbital drift at
O(Re) in § 6 is not a uniformly valid one. For any Re, however small, the change
in orbit constant due to the inertial drift, acting over a whole (or half) of a Jeffery
period, will eventually get to be large when the aspect ratio becomes sufficiently
small or large. From the limiting expressions obtained for 1C, it is seen that 1C
becomes O(1) when κ is O(Re−1 log Re) for prolate spheroids, and when κ is O(Re)
for oblate spheroids. This happens because the Jeffery rotation becomes arbitrarily
slow for large or small κ (being O(κ−2) and O(κ2), respectively, for a slender fibre
and a flat disk nearly aligned with the flow–vorticity and gradient–vorticity planes,
respectively), allowing inertia to act over a large time, and secondly because the
nearly meridional Jeffery orbits are closely bunched together in these regions. Under
these circumstances, the inertial trajectory of the spheroid is no longer a tightly
wound spiral with individual turns resembling Jeffery orbits. Rather, the trajectory
would consist of Jeffery orbits having a meridional character (corresponding to the
non-aligned phases) connected by phases dominated by inertia where the drift is
predominantly parallel to the flow–vorticity (slender fibre) or gradient–vorticity plane
(flat disk). While this may be done in principle, it would require a separate analysis.
The drift equation (5.19) is obtained from approximating the unsteady acceleration
term in (2.30) based on a rotational motion along Jeffery orbits, and this is no longer
valid for aligned particles that rotate across Jeffery orbits at leading order. This
in turn would mean that the orbital drift for such particles cannot be obtained by
integrating over τ at a constant C (as given by (5.17)), but has to be determined
by solving the governing equation for dC/dτ , with τ corresponding to the aligned
phase of the spheroid orbit. Note that, for such particles with extreme aspect ratios,
a modest Re is also sufficient to arrest particle rotation (as seen in the flow–gradient
plane), as first shown by Subramanian & Koch (2005).

We have used the phrase ‘the flat-disk limit’ several times in this paper to refer
to oblate spheroids of a vanishing aspect ratio. It is important here to reiterate
that this limit is specific to the spheroidal geometry considered here. Disk-shaped
particles, with edge profiles differing from that of a spheroid, exhibit a different
rotational behaviour in simple shear flow. It has been shown by Singh et al. (2014)
that the period of rotation of a disk-shaped particle, with a sufficiently blunt edge, is
asymptotically small in comparison to a spheroidal particle of the same aspect ratio;
for disk-shaped particles (κ→ 0), with edge profiles of the form (1− r2)α, the time
period is O(κ−1) for α > 1/4 (the spheroid corresponds to α= 1/2); but only diverges
as O(κ−3/4(1−α)) for κ → 0 and α < 1/4. The inertial drift for such particles would
evidently exhibit a different scaling with aspect ratio even in the limit that the aspect
ratio becomes vanishingly small.

Inertia eliminates the rheological degeneracy, associated with the existence of
Jeffery orbits in the Stokes limit, although the manner of elimination depends on
the aspect ratio for oblate spheroids. For neutrally buoyant prolate spheroids, and for
neutrally buoyant oblate spheroids with aspect ratios greater than 0.137, the inertial
drift leads to a singular orientation distribution localized at either the tumbling or the
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spinning mode, depending on whether 1C is positive (prolate) or negative (oblate).
In § 7.1, we calculate the associated intrinsic viscosity coefficients, in the absence of
Brownian motion, as a function of the particle aspect ratio (see (7.15) and (7.16) for
prolate and oblate spheroids, respectively) arising from the aforementioned singular
distribution. Weak Brownian motion only leads to asymptotically small corrections to
this estimate. In contrast, for oblate spheroids with aspect ratios smaller than 0.137,
the inertial drift acting alone leads to an initial-condition-dependent rheology, and it is
only with the inclusion of weak Brownian motion that a unique steady-state rheology
results. In § 7.1, we calculate the initial-condition-dependent intrinsic viscosity for
the non-Brownian case for an initial isotropic orientation distribution (see (7.17)).
In § 7.2, we analyse in some detail the steady-state distribution across Jeffery
orbits in the presence of weak Brownian motion, the inclusion of which implies
a dependence of the steady-state rheology on the parameter Re Per. Interestingly, the
steady-state Jeffery-orbit distribution may be interpreted in terms of a one-dimensional
drift–diffusion equilibrium along the orbit constant coordinate, with Re Per governing
the relative magnitudes of the convective and diffusive fluxes in orientation space.
This distribution has a bimodal character, with peaks corresponding to the tumbling
and spinning modes, for sufficiently large Re Per. For any finite Re Per, the shear
viscosity varies smoothly with changing aspect ratio of the oblate spheroid, but in
the limit Re Per→∞, the shear viscosity must exhibit a jump across a much smaller
(in relation to the non-Brownian value of 0.142) critical aspect ratio of 0.0126 owing
to a transition in the (limiting) orientation distribution from a delta function localized
at C = 0 (the spinning mode) to one localized at the tumbling mode (C = ∞). As
mentioned in § 7, we calculate here only the leading-order (indirect) effect of inertia
on the suspension rheology. For prolate spheroids, and oblate spheroids with aspect
ratios greater than 0.137, the direct effects of inertia enter at O(Re). Interestingly for
oblate spheroids with aspect ratios less than 0.137, the next correction to the drift
occurs at O(Re3/2), and this implies a larger O(Re1/2) correction to the leading-order
rheology.

In § 7.2, although we discussed the Jeffery-orbit distribution, f (C), as a function
of Re Per, the resulting variation of the shear viscosity with aspect ratio was only
analysed in the limit Re Per→∞, corresponding to a singular orientation distribution.
It is, however, evident from figure 20 that this limit might only be achieved at very
large values of Re Per, especially for aspect ratios close to the critical value (0.0126),
and even for Re Per = 2000 000, f (C) is far from being singular especially for small
values of C. To get an idea of how large Re Per might become (even while Re remains
small), consider a thin oblate disk with an equatorial radius of 100 µm in an aqueous
solution, subjected to a shear flow of strength of O(102 s−1), the Re would be of
O(10−1) and the Per of O(108), which makes Re Per of O(107), which is an order
of magnitude greater than the Re Per in figure 20. So, a relevant question is, given
the results for the intrinsic viscosity coefficient obtained here, what is the implication
for the variation of the steady shear viscosity of a dilute suspension of spheroids, as
a function of a suitable non-dimensional shear rate, for different aspect ratios. The
detailed review by Brenner (1974) describes the variation of the intrinsic viscosity
coefficient for a non-interacting suspension of Brownian spheroids, as a function of
Per, in the inertialess limit (see figures 7 and 10 therein). As expected, for a general
complex fluid with an isotropic microstructure at equilibrium, the imposition of shear
and the resulting flow alignment of the spheroidal particles leads to a shear-thinning
rheology. More specifically, for a spheroid of a given aspect ratio, either prolate or
oblate, (µeff −µ)/µ decreases from a zero-shear-rate plateau of O(nL3), arising from
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a combination of the hydrodynamic and Brownian stress contributions for a nearly
isotropic orientation distribution, to a smaller O(nL2b) high-shear plateau, arising
solely from the hydrodynamic stress contribution associated with a flow-aligned
orientation distribution. The high-shear plateau values were first calculated by
Leal & Hinch (1971), numerically for arbitrary aspect-ratio spheroids (see Kim
& Karrila 1991), and analytically in the slender-fibre and flat-disk limits. These
plateaus correspond to the limit Per � 1, Re Per = 0 for spheroids with aspect ratios
of order unity. For extreme aspect ratios, a more stringent requirement arises from
the neglect of Brownian motion even close to the flow–vorticity (gradient–vorticity)
plane for slender fibres (flat disks) given by Per� κ3(κ−3),Re Per = 0 (Hinch & Leal
1972); this, so the orientation distribution along a Jeffery orbit is determined solely
by the Jeffery angular velocity with g(C, τ ) given by (7.10). The analysis here helps
extend the behaviour of the intrinsic viscosity coefficient beyond the ‘Leal–Hinch
plateaus’, as a function of Re Per, up until the point where Re ∼ O(1), Re Per→∞.
Said differently, the shear-thinning rheology of a dilute inertialess suspension of
spheroids is known up until a Per where a limiting Newtonian plateau results from
Brownian motion only determining the distribution of orientations across Jeffery
orbits. The viscosity versus shear rate curves given below, both the schematic and the
actual numerical calculations, start from this point and determine the non-Newtonian
rheology at higher Per due to the Jeffery-orbit distribution, as shown in § 7.2, being
determined by the competing effects of inertial and thermal forces.

As shown in figure 23, accounting for a non-zero Re Per will always lead to a
shear-thickening rheology (relative to the Leal–Hinch plateau) for prolate spheroids
owing to the drift towards the maximum dissipation (tumbling) orbit. The inertial
plateau for Re Per→∞ exceeds even the zero-shear plateau (Per→ 0) provided the
spheroid aspect ratio is less than 1.7. The behaviour for oblate spheroids depends on
the whether the aspect ratio is above or below 0.0126. In the former case, an overall
shear-thickening rheology (relative to both the zero-shear and Leal–Hinch plateaus)
results for sufficiently large Re Per, while for the latter case, the suspension continues
to shear thin even with the onset of inertia. Accordingly, figure 24 shows the viscosity
versus shear curves, corresponding to the two aspect-ratio groups, separating out in
the limit Re Per→∞, this being consistent with a jump in the shear viscosity in this
limit (see § 7.2). The actual plots of the intrinsic viscosity coefficient plotted against
Re Per are shown attached to the schematics in figures 23 and 24. These reveal the
scenario for oblate spheroids, with aspect ratios greater than 0.0126, to be a little
more complicated than that shown in the schematic, owing to the suspension first
shear thinning substantially with increasing Re Per, for aspect ratios just above the
critical value, before eventually shear thickening for sufficiently large Re Per. This
non-monotonicity arises because of an initial Brownian peak close to tumbling, and
the transition from this to a spinning peak with increasing Re Per; the transition
involves a sharpening of the tumbling peak (leading to shear thinning) prior to the
development of a spinning peak. A similar calculation for oblate spheroids with
smaller aspect ratios shows a monotonic shear thinning; the viscosity coefficient here
is plotted against Re Perκ

2, this being the actual ratio of drift to diffusion for κ� 1.
For the prolate case, the viscosity coefficient again rises monotonically to the inertial
high-shear plateau for all aspect ratios examined. For higher shear rates, Re would
be of order unity or larger, and the rheology will begin to be influenced by the
finite-Re bifurcations that have been identified in numerical simulations. Depending
on Re as well as the aspect ratio, the suspension can exhibit shear thickening as
well as shear-thinning behaviour (Rosen et al. 2015). It is important to note that the
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FIGURE 23. (a) Schematic of the expected variation of intrinsic viscosity for a suspension
of Brownian prolate spheroids. (b) Variation of the viscosity, scaled with nd3ξ 2

0 ξ̄0, with
Re Per. The dotted lines in (b) are the Re Per =∞ asymptotes.

presence of multiple attractors at finite Re would again point to the role of stochastic
orientation fluctuations in establishing a steady-state rheology.

Finally, we note that a very recent work (Einarsson et al. 2015a,b) has also
investigated the effect of weak fluid inertia on spheroidal particles of arbitrary
aspect ratio. The reciprocal theorem volume integral for the rate of change of the
orientation vector of the spheroid is written in a general tensorial form, and is
evaluated after applying symmetry arguments to reduce it to a set of four scalar
integrals. The authors investigate the stability of the spinning and tumbling modes
for both prolate and oblate spheroids and arrive at the same conclusions as the
present work with respect to the stability of the tumbling and log-rolling/spinning
modes. As explained above, the results of the present effort are based on a novel
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spheroidal harmonics formalism which is significantly broader in scope. As mentioned
in Dabade et al. (2015), this formalism, with the aid of addition theorems, may be
extended to multiple interacting spheroids. We provide closed-form expressions for
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the aspect-ratio-dependent functions present in the expressions for the inertial angular
velocities. Aside from detailed scaling arguments in all relevant asymptotic limits, the
effect of inertia is interpreted here in terms of a physically significant orbital drift.
Importantly, the consequences for a unique steady-state rheology are also explored.
For oblate spheroids, the interpretation in terms of an orbital drift competing with
thermal fluctuations may, in fact, be given a more profound interpretation. The small-C
and large-C orbits may be interpreted as orientationally ordered phases that determine
the two-phase envelope region (ending in a critical point) in a non-equilibrium phase
diagram. Here, the spheroid aspect ratio plays the role of a pressure, the normalized
orbit constant replaces the specific volume, and Re Per plays the role of an inverse
non-equilibrium temperature.

Appendix A. The Kushch and Chwang & Wu velocity fields

Herein, we show that the expressions for the disturbance velocity fields given in § 3,
in terms of the spheroidal vector harmonic functions, are identical to those derived
earlier by Chwang & Wu (1974, 1975) and Chwang (1975), using the method
of singularities, for a prolate spheroid of an arbitrary aspect ratio. We consider
the different canonical motions of the spheroid involved in the reciprocal theorem
formulation (axisymmetric, longitudinal and transverse extensional flows in the actual
problem and rotations in the test problem) in sequence.

A.1. Axisymmetric extensional flow
The method of singularities yields the following expression for the disturbance velocity
field due to a prolate spheroid with its major axis along the z-axis in an axisymmetric
extensional flow given by u∞(x)= 2z1z − x1x − y1y:

u′CW(x)= 1z2
[

2(α5 + 6β5)zB1,0 − (α5 + 4β5)(R1 − R2)

(
3+ a2e2

R1R2

)
+ α5aez

(
1
R2
+ 1

R1

)]
− (x1x + y1y)ρ

[
2(α5 + 6β5)

(
B1,0 − ae

(
1
R2
+ 1

R1

))
− 4β5

(
3z
(

1
R2
− 1

R1

)
+ (a2e2 − 3z2)B3,0

)]
, (A 1)

where α5 = e2/[6e− (3− e2) ln ((1+ e)/(1− e))] and β5 = (1− e2)/(4[6e − (3 − e2)

ln ((1+ e)/(1− e))]) and ρ2 = x2 + y2. Further, R2
1 = (z + d)2 + x2 + y2 =

d(ξ + η), R2
2 = (z − d)2 + x2 + y2 = d(ξ − η) and d2 = a2e2. The functions

Bm,n are defined via the recurrence relation Bm,n = −(dn−1/(m− 2))(1/Rm−2
2 +

(−1)n/Rm−2
1 ) + ((n− 1)/(m− 2))Bm−2,n−2 + zBm,n−1. Using this relation, and the

expressions for R1 and R2 above, in terms of the spheroidal coordinates, one finds
B1,0 = ln ((ξ + 1)/(ξ − 1)) and B3,0 = 2ξ/(d2(ξ 2 − 1)(ξ 2 − η2)). The axial component
of the disturbance field in (A 1) is given by:

u′CW
z = 2

[
2(α5 + 6β5)zB1,0 − (α5 + 4β5)(R1 − R2)

(
3+ a2e2

R1R2

)
+ α5aez

(
1
R2
+ 1

R1

)]
.

(A 2)
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Using e = 1/ξ0, and expressing α1 and β1 in terms of ξ0, and by expressing R1, R2
and B1,0 in terms of ξ , after some simplification one finds:

u′CW
z = −4d[

6ξ0 − (3ξ 2
0 − 1) ln

ξ0 + 1
ξ0 − 1

] [−η
2

(
2ξ 2

(ξ 2 − η2)
− ξ ln

ξ + 1
ξ − 1

)

− ηξ 2
0

2

(
3ξ ln

ξ + 1
ξ − 1

− 2
(

3+ 1
ξ 2 − η2

))]
. (A 3)

Next, using the expressions for the Ps
t and Qs

t , the terms in the above parentheses may
be written as:

−η
2

(
2ξ 2

(ξ 2 − η2)
− ξ ln

ξ + 1
ξ − 1

)
= dξη

(
η(ξ 2 − 1)
d(ξ 2 − η2)

∂

∂ξ
+ ξ(1− η2)

d(ξ 2 − η2)

∂

∂η

)
P0

1(η)Q
0
1(ξ),

−ηξ 2
0

2

(
3ξ ln

ξ + 1
ξ − 1

− 2
(

3+ 1
(ξ 2 − η2)

))
=−dξ 2

0

(
η(ξ 2 − 1)
d(ξ 2 − η2)

∂

∂ξ
+ ξ(1− η2)

d(ξ 2 − η2)

∂

∂η

)
P0

2(η)Q
0
2(ξ).


(A 4)

Reverting back to Cartesian derivatives and using the fact that ∂/∂z = ((ξ 2 − 1)η/
(d(ξ 2 − η2)))(∂/∂ξ) + ((1− η2)ξ/(d(ξ 2 − η2)))(∂/∂η) and substituting F0

1(ξ , η) =
P0

1(η)Q
0
1(ξ), one may write (A 3) as:

u′CW
z = −4d[

6ξ0 − (3ξ 2
0 − 1) ln

ξ0 + 1
ξ0 − 1

] [zD3(F0
1)− dξ 2

0 D3(F0
2)]. (A 5)

Now consider the radial component of (A 1), which is given by:

u′CW
ρ = −ρ

[
2(α5 + 6β5)

(
B1,0 − ae

(
1
R2
+ 1

R1

))
− 4β5

(
3z
(

1
R2
− 1

R1

)
+ (a2e2 − 3z2)B3,0

)]
. (A 6)

Using the expressions for the Ri and Bm,n in terms of the spheroidal coordinates, and
rewriting α5 and β5 in terms of ξ0, after some simplification one finds

u′CW
ρ = −d

√
ξ 2 − 1

√
η2 − 1[

6ξ0 − (3ξ 2
0 − 1) ln

ξ0 + 1
ξ0 − 1

] [ξ̄ 2
0

(
3 ln

ξ + 1
ξ − 1

− 2ξ(3(ξ 2 − η2)− 2)
(ξ 2 − η2)(ξ 2 − 1)

)

+ 2
(

ln
ξ + 1
ξ − 1

− 2ξ
(ξ 2 − η2)

)]
. (A 7)

Using the fact that x(∂/∂x) + y(∂/∂y) = ((ξ 2 − 1)(1− η2)/(ξ 2 − η2))(ξ(∂/∂ξ) −
η(∂/∂η)) and ρ = d

√
ξ 2 − 1

√
1− η2, one can simplify the coefficient of (ξ 2

0 − 1) in
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the above expression as follows:

−d
√
ξ 2 − 1

√
1− η2[

6ξ0 − (3ξ 2
0 − 1) ln

ξ0 + 1
ξ0 − 1

] [(ξ 2
0 − 1)

(
3 ln

ξ + 1
ξ − 1

− 2ξ(3(ξ 2 − η2)− 2)
(ξ 2 − η2)(ξ 2 − 1)

)]

= −4d[
6ξ0 − (3ξ 2

0 − 1) ln
ξ0 + 1
ξ0 − 1

] (−(ξ 2
0 − 1)

√
ξ 2 − 1

√
1− η2

ξ 2 − η2

)

×
(
ξ
∂

∂ξ
− η ∂

∂η

)
P0

2(η)Q
0
2(ξ),

= −4d[
6ξ0 − (3ξ 2

0 − 1) ln
ξ0 + 1
ξ0 − 1

] ( −(ξ 2
0 − 1)√

ξ 2 − 1
√

1− η2

)(
x
∂

∂x
+ y

∂

∂y

)
P0

2(η)Q
0
2(ξ)

= −4d[
6ξ0 − (3ξ 2

0 − 1) ln
ξ0 + 1
ξ0 − 1

] (−d(ξ 2
0 − 1)
ρ

)
(x1x + y1y)

(
∂

∂x
1x + ∂

∂y
1y

)
F0

2.

(A 8)

One can modify the coefficient multiplying 2 within the parentheses of expression
(A 7) using a substitution similar to what was as done in (A 4), and write the
following:

−d
√
ξ 2 − 1

√
η2 − 1[

6ξ0 − (3ξ 2
0 − 1) ln

ξ0 + 1
ξ0 − 1

] [2
(

ln
ξ + 1
ξ − 1

− 2ξ
(ξ 2 − η2)

)]

= −4d[
6ξ0 − (3ξ 2

0 − 1) ln
ξ0 + 1
ξ0 − 1

] [ρD3(F0
1)]. (A 9)

Combining (A 8) and (A 9) the total radial velocity is given by:

u′CW
ρ = −d

√
ξ 2 − 1

√
η2 − 1[

6ξ0 − (3ξ 2
0 − 1) ln

ξ0 + 1
ξ0 − 1

]
×
[
ρD3(F0

1)−
d(ξ 2

0 − 1)
ρ

(x1x + y1y)

(
∂

∂x
1x + ∂

∂y
1y

)
F0

2

]
. (A 10)

Summing the expressions in (A 5) and (A 10), gives us the following total disturbance
velocity field:

u′CW(x) = −4d[
6ξ0 − (3ξ 2

0 − 1) ln
ξ0 + 1
ξ0 − 1

]
×
[

xD3F0
1 − d

(
ξ 2

0 D3F0
21z + (ξ 2

0 − 1)
(
∂

∂x
1x + ∂

∂y
1y

)
F0

2

)]
, (A 11)

where D3 = ∂/∂z.
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From the spheroidal harmonics formalism, the disturbance velocity field is given by
(see (3.7)):

u′(x)= −2d
[Q1

1(ξ0)− ξ0Q1
2(ξ0)]S

(3)
2,0, (A 12)

where S(3)2,0, from (3.6) with t= 2, s= 0, is given by:

S(3)2,0 = e1[−(x− iy)D2F−1
1 − d(ξ 2

0 − 1)D1F0
2] + e2[(x+ iy)D1F1

1 − d(ξ 2
0 − 1)D2F0

2]
+ 1z[zD3F0

1 − dξ 2
0 D3F0

2]. (A 13)

Using the relations D1F1
1 =D3F0

1 , D2F−1
1 =−D3F0

1 , and the expressions for e1, e2, D1
and D2 in terms of 1x, 1y, ∂/∂x and ∂/∂y, the above expression, when substituted in
(A 12), reduces to (A 11).

A.2. Longitudinal extensional flow
The method of singularities yields the following expression for the disturbance velocity
field due to a torque-free prolate spheroid placed with its major axis along the z-axis
in a longitudinal extensional flow given by u∞(x)= x1z + z1x:

u′CW(x) =
(
α3 − α′3 +

e2

2− e2
(α3 + α′3)

)
[(2A1 + A3)1z + 2ρeρB3,1]x

+ 4
(
β3 − β ′3 +

e2

2− e2
(β3 + β ′3)

)
∇[x(d2B3,1 − B3,3)], (A 14)

where α3 = 2e2(1− e2)[−2e+ ln ((1+ e)/(1− e))]/([−2e + (1 + e2) ln((1+ e)/
(1− e))][2e(2e2 − 3) + 3(1 − e2) ln ((1+ e)/(1− e))]), β3 = α3(1− e2)/(4e2),
γ3 = (1− e2)/[−2e+ (1+ e2) ln ((1+ e)/(1− e))], γ ′3 = γ3/(1− e2), α′3 = e2[−2e +
(1 − e2) ln ((1+ e)/(1− e))]γ ′3/[2e(2e2 − 3)+ 3(1− e2) ln ((1+ e)/(1− e))] and
β ′3 = (1− e2)[−2e+ (1− e2) ln ((1+ e)/(1− e))]γ ′3/(4[2e(2e2 − 3) + 3(1 − e2) ln
((1+ e)/(1− e))]). Writing the αi and βi in terms of ξ0, using A1 = 2ξ/(ξ 2 − η2),
A3 = (2ξ/(ξ 2 − 1)) ln ((ξ + 1)/(ξ − 1)) and expanding the Bm,n in terms of ξ the
disturbance velocity in (A 15) simplifies to:

u′CW(x) = 2ξ0(ξ
2
0 − 1)

(2ξ 2
0 − 1)

[
2(2− 3ξ 2

0 )+ 3ξ0(ξ
2
0 − 1) ln

ξ0 + 1
ξ0 − 1

]
×[x[(2A1 + A3)1z + 2ρeρB3,1] + (ξ 2

0 − 1)∇(x(d2B3,1 − B3,3))]. (A 15)

The z-component of the disturbance velocity in (A 15) is given by:

u′CW
z = 2ξ0(ξ

2
0 − 1)

(2ξ 2
0 − 1)

[
2(2− 3ξ 2

0 )+ 3ξ0(ξ
2
0 − 1) ln

ξ0 + 1
ξ0 − 1

]
×
[

x
(

2A1 + A3 + (ξ 2
0 − 1)

∂

∂z
(d2B3,1 − B3,3)

)]
. (A 16)
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One can verify that the term in the parentheses of (A 16) can be written as follows:

x
(

2A1 + A3 + (ξ 2
0 − 1)

∂

∂z
(d2B3,1 − B3,3)

)
= 2dξη

(
η(1− ξ 2)

(ξ 2 − η2)

∂

∂ξ
+ ξ(1− η

2)

(ξ 2 − η2)

∂

∂η

)
P1

1(η)Q
1
1(ξ)cos φ

− 2dξ 2
0

3

(
(ξ 2 − 1)η
d(ξ 2 − η2)

∂

∂ξ
+ (1− η2)ξ

d(ξ 2 − η2)

∂

∂η

)
P1

2(η)Q
1
2(ξ)cos φ. (A 17)

Reverting back to Cartesian derivatives and using the fact that ∂/∂z = ((ξ 2 − 1)η/
(d(ξ 2 − η2)))(∂/∂ξ) + ((1− η2)ξ/(d(ξ 2 − η2)))(∂/∂η), also noting that z = dξη
and Q1

2(ξ0) = (2(2− 3ξ 2
0 )+ 3ξ0(ξ

2
0 − 1) ln ((ξ0 + 1)/(ξ0 − 1)))/(2

√
(ξ 2

0 − 1)), the
z-component can be written as:

u′CW
z = 2dξ0

√
ξ 2

0 − 1
(Q1

2(ξ0)2ξ 2
0 − 1)

[
z
∂

∂z
P1

1Q1
1 cos φ − dξ 2

0

3
∂

∂z
P1

2Q1
2 cos φ

]
. (A 18)

We now match the reminder of the disturbance velocity u′CW(x)− u′CW
z 1z, which can

be written as follows:

u′CW(x)− u′CW
z 1z = 2ξ0

√
ξ 2

0 − 1
(2ξ 2

0 − 1)Q1
2(ξ0)

[
2x2B3,11x + 2xyB3,11y

+ (ξ 2
0 − 1)

(
∂

∂x
(xd2B3,1 − xB3,3)1x + ∂

∂y
(xd2B3,1 − xB3,3)1y

)]
.

(A 19)

We use the following formulae to simplify (A 19):

x2B3,1 = 2dη(η2 − 1) cos2 φ

(ξ 2 − η2)
= xd

∂

∂z
(P1

1Q1
1 cos φ),

xyB3,1 = 2dη(η2 − 1) cos φ sin φ
(ξ 2 − η2)

= yd
∂

∂z
(P1

1Q1
1 cos φ),

x(d2B3,1 − B3,3)=− 2
3 d2P1

2Q1
2 cos φ.


(A 20)

With these substitutions u′CW(x)− u′CW
z 1z simplifies to:

u′CW(x)− u′CW
z 1z = 2dξ0

√
ξ 2

0 − 1
(2ξ 2

0 − 1)Q1
2(ξ0)

[
x
∂

∂z
(P1

1Q1
1 cos φ)1x + y

∂

∂z
(P1

1Q1
1 sin φ)1y

− d(ξ 2
0 − 1)
3

(
∂

∂x
(P1

2Q1
2 cos φ)1x + ∂

∂y
(P1

2Q1
2 cos φ)1y

)]
. (A 21)

Summing up (A 18) and (A 21) we get the total disturbance velocity as:

u′CW(x) = 2dξ0

√
ξ 2

0 − 1
(2ξ 2

0 − 1)Q1
2(ξ0)

[
x
∂

∂z
(P1

1Q1
1 cos φ)− dξ 2

0

3

(
1z
∂

∂z

)
(P1

2Q1
2 cos φ)

− d(ξ 2
0 − 1)
3

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P1

2Q1
2 cos φ)

]
. (A 22)
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From the spheroidal harmonics formalism, the disturbance velocity field is given by
(see (3.13)):

u′(x)= 2dξ0

√
ξ 2

0 − 1
(2ξ 2

0 − 1)Q1
2(ξ0)

(S(3)2,1 − S(3)2,−1). (A 23)

Again, using the expressions for S(3)2,1 and S(3)2,−1 from (3.6), (A 23) can be written as:

u′(x) = 2dξ0

√
ξ 2

0 − 1
(2ξ 2

0 − 1)Q1
2(ξ0)

[
x
∂

∂z
(P1

1Q1
1 cos φ)1x − dξ 2

0

3

(
1z
∂

∂z

)
(P1

2Q1
2 cos φ)

− d(ξ 2
0 − 1)
3

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P1

2Q1
2 cos φ)

]
. (A 24)

Hence, the expressions in (A 24) and (A 22) are identical.
Similarly, one can show disturbance velocity field, due to a torque-free prolate

spheroid placed in a longitudinal extensional flow given by u∞(x) = y1z + z1y, is
given in terms of the following combination of vector spheroidal harmonics:

u′(x)= −i2dξ0

√
ξ 2

0 − 1
(2ξ 2

0 − 1)Q1
2(ξ0)

(S(3)2,1 + S(3)2,−1). (A 25)

Using the expressions for S(3)2,1 and S(3)2,−1 from (3.6), (A 25) simplifies to:

u′(x) = 2dξ0

√
ξ 2

0 − 1
(2ξ 2

0 − 1)Q1
2(ξ0)

[
x
∂

∂z
(P1

1Q1
1 sin φ)1x − dξ 2

0

3

(
1z
∂

∂z

)
(P1

2Q1
2 sin φ)

− d(ξ 2
0 − 1)
3

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P1

2Q1
2 sin φ)

]
. (A 26)

A.3. Transverse extensional flow
The method of singularities yields the following expression for the disturbance velocity
field due to a prolate spheroid with its major axis along the z-axis in a transverse
extensional flow given by u∞(x)= y1x + x1y:

u′CW(x) = 2α4[2xy B3,11z + 3xyρ(d2B5,0 − B5,2)eρ]
+ 2β4∇[3x y(d4B5,0 + B5,4 − 2d2B5,2)], (A 27)

where α4 = 2e2(1− e2)/[2e(3− 5e2)− 3(1− e2) log((1+ e)/(1− e))], β4 = ((1− e2)/
(4e2))α4, B3,0 = −2ξ/(d2(ξ 2 − 1)(η− ξ)(η+ ξ)), B3,1 = −2η/(d(ξ 2 − 1)(η − ξ)(η +
ξ)), B3,2 = ((ξ 2 − 1)(η2 − ξ 2) log ((ξ + 1)/(ξ − 1))− 2(η2ξ − ξ 3 + ξ))/((ξ 2 − 1)
(η − ξ)(η + ξ)), B5,0 = (−2η2(ξ 2 − 3)ξ − 6ξ 5 + 2ξ 3)/(3d4(ξ 2 − 1)2(η2 − ξ 2)3),
B5,4= (1/3)((2ξ(η6(5− 3ξ 2)+η4(9ξ 4− 15ξ 2+ 4)+η2(−9ξ 6+ 15ξ 4− 9ξ 2+ 3)+ 3ξ 8−
5ξ 6 + ξ 4 + ξ 2))/((ξ 2 − 1)2(η− ξ)3(η+ ξ)3) + 3 log ((ξ + 1)/(ξ − 1))) and B5,2 =
2ξ(2η4 + η2(3− 5ξ 2)− ξ 4 + ξ 2)/(3d2(ξ 2 − 1)2(η2 − ξ 2)3). Writing α and β in terms
of ξ0 the disturbance velocity field takes the form:

u′CW(x) = − (ξ0
2 − 1)3[2xy B3,11z + 3xyρ(d2B5,0 − B5,2)eρ]

2
(

4ξ0(5− 3ξ0
2)+ 6(ξ0

2 − 1)2 log
(
ξ0 + 1
ξ0 − 1

))
− (ξ0

2 − 1)2

−3ξ0
3 + 3(ξ0

2 − 1)2 coth−1(ξ0)+ 5ξ0
∇[3x y (d4B5,0 + B5,4 − 2d2B5,2)].

(A 28)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.14


694 V. Dabade, N. K. Marath and G. Subramanian

We observe that the terms in the square brackets of (A 28) can be written as follows:

2B3,1xy = dz
(
∂

∂x
(P1

1(η)Q
1
1(ξ) sin φ)+ ∂

∂y
(P1

1(η)Q
1
1(ξ) cos φ)

)
+ d2

12
∂

∂z
(P2

2(η)Q
2
2(ξ) sin 2φ), (A 29)

3xy(d2B5,0 − B5,2)= d
∂

∂x
(P1

1(η)Q
1
1(ξ) sin φ)+ d

∂

∂y
(P1

1(η)Q
1
1(ξ) cos φ) (A 30)

3xy(d4B5,0 + B5,4 − 2d2B5,2)= d2

3
P2

2(η)Q
2
2(ξ) sin 2φ. (A 31)

Rearranging the expression on the right-hand side of (A 28) by using expressions
in (A 30), (A 31) and (A 29) and defining K3 as 2d(1− ξ0

2)/(−3ξ0
3 + 3(ξ0

2 −
1)2 coth−1(ξ0)+ 5ξ0), the disturbance velocity field can be written as:

u′CW(x) = K3

(
(x1x + y1y + z1z)

(
∂

∂x
(P1

1(η)Q
1
1(ξ) sin φ)+ ∂

∂y
(P1

1(η)Q
1
1(ξ) cos φ)

)
+ d(ξ 2

0 − 1)
12

(
1x
∂

∂x
+ 1y

∂

∂y

)
(P2

2(η)Q
2
2(ξ) sin 2φ)

+ dξ 2
0

12
1z
∂

∂z
(P2

2(η)Q
2
2(ξ) sin 2φ)

)
. (A 32)

Using the expressions for S(3)2,2 and S(3)2,−2 from (3.6) and with some simplification of
K3, we see that:

u′(x)= 2idξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
(S(3)22 − S(3)2,−2). (A 33)

We see that the above expression (A 33) is the same as the disturbance velocity field
due to transverse extensional flow as given in (3.11), with prefactor (cos(θj) cos(2φj)/2)
due to the flow set to 1.

Similarly, one can show disturbance velocity field, due to a torque-free prolate
spheroid placed in a transverse extensional flow given by u∞(x) = −x1x + y1y, is
given in terms of the following combination of vector spheroidal harmonics:

u′(x)= −2dξ̄0

(3Q1
1(ξ0)− ξ0Q1

2(ξ0))
(S(3)22 + S(3)2,−2). (A 34)

A.4. Axisymmetric rotation about the symmetry axis of the spheroid
The method of singularities yields the following expression for the disturbance velocity
field due to a prolate spheroid with its major axis along the z-axis and rotating about
its axis of symmetry:

u′CW(x)= β0
1
ρ

(
(d− z)R1 + (d+ z)R2 + ρ2 log

(
R1 − z− d
R2 − z+ d

))
(− sin φ1x + cos φ1y),

(A 35)

where β0 = (1− ξ0
2)/((ξ0

2 − 1) log((ξ0 + 1)/(ξ0 − 1))− 2ξ0). The right-hand side of
(A 35) can be simplified by noting that R1 = d(ξ + η) and R2 = d(ξ − η), and this
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substitution gives us:

u′CW(x)=
d(ξ0

2 − 1)

√
1− η2

ξ 2 − 1
((ξ 2 − 1) coth−1(ξ)− ξ)

(ξ0
2 − 1) coth−1(ξ0)− ξ0

(− sin φ1x + cos φ1y), (A 36)

which is same as the velocity field obtained by simplifying the expression in equation
(3.36), derived using the spheroidal harmonics formalism.

The velocity fields for the two transverse rotations of a spheroid have already been
shown to be equivalent to those derived by Chwang and Wu in Dabade et al. (2015).

Appendix B. The C–τ coordinate system
The details of the (C, τ ) coordinate system are given below. The orbital coordinates

(C, τ ) are related to spherical coordinate angles, θj and φj, as C = tan θj(κ
2 sin2 φj +

cos2 φj)
1/2/κ and tan τ = 1/(κ tan φj). The Jeffery angular velocity components in the

(C, τ ) coordinate system are given by dC/dt = 0 and dτ/dt = κ/(κ2 + 1). The unit
vectors Ĉ and τ̂ are given by (∂ r̂/∂C)/|∂ r̂/∂C| and (∂ r̂/∂τ)/|∂ r̂/∂τ | respectively,
where r̂ is the unit radial vector in spherical coordinates (r̂ = sin θj cos φj1′x +
sin θj sin φj1′y + cos θj1′z). The metric factors hC and hτ are given by |∂ r̂/∂C| and
|∂ r̂/∂τ | respectively. Simplifying, one gets:

Ĉ= cos θj cos φj1′x + cos θj sin φj1′y − sin θj1′z = θ̂j, (B 1)

τ̂ =
∂θj

∂τ√(
∂θj

∂τ

)2

+
(
∂φj

∂τ

)2

sin2 θj

θ̂j +
∂φj

∂τ
sin θj√(

∂θj

∂τ

)2

+
(
∂φj

∂τ

)2

sin2 θj

φ̂j, (B 2)

hC = ∂θj

∂C
, (B 3)

hτ =
√(

∂θj

∂τ

)2

+
(
∂φj

∂τ

)2

sin2 θj, (B 4)

where θ̂j and φ̂j = − sin(φj)1′x + cos(φj)1′y are the polar and azimuthal unit vectors
in spherical coordinate system, and τ̂ is tangent to a Jeffery orbit. The (C, τ ) is a
non-orthogonal coordinate system and the angle(α) between the unit vectors Ĉ and τ̂
is given by:

cos α =
∂θj

∂τ√(
∂θj

∂τ

)2

+
(
∂φj

∂τ

)2

sin2 θj

. (B 5)

The τ̂ can then be written as cos α θ̂j + sin α φ̂j. The gradient operator in the (C, τ )
coordinate system is given by:

∇f =
(

1
hC sin2 α

∂f
∂C
− cot α

hτ sin α
∂f
∂τ

)
Ĉ+

(
1

hτ sin2 α

∂f
∂τ
− cot α

hC sin α
∂f
∂C

)
τ̂ . (B 6)
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The divergence operator in the (C, τ ) coordinate system is given by:

∇ · f = 1
hChτ sin α

∂

∂C

(
hτ sin αf · Ĉ

)
+ 1

hChτ sin α
∂

∂τ

(
hC sin αf · τ̂

)
. (B 7)

The unit normal vector to a Jeffery orbit (C= constant) is

n̂= sin α θ̂j − cos α φ̂j, (B 8)

which gives n̂ · τ̂ = 0 and n̂ · Ĉ = sin α. Recall that κ = ξ0/(ξ
2
0 − 1)1/2 for a prolate

spheroid and κ = (ξ 2
0 − 1)1/2/ξ0 for an oblate spheroid.

Appendix C. The expressions for the functions Ii and Ji in (5.19)

I1 = 2π (C 1)
I2 = 2π(κ − 1)(κ + 1)−1 (C 2)

I3 = 2π(2((C2 + 1)(C2κ2 + 1))−1/2 − 1) (C 3)
I4 = 2π(κ − 1)2(κ + 1)−2 (C 4)

I5 + I6 = −
(

4π
(

2κ2
(

3
√
(C2 + 1)(C2κ2 + 1)− 8C2 − 6

)
+ 4κ

√
(C2 + 1)(C2κ2 + 1)+

√
(C2 + 1)(C2κ2 + 1)

+ 4(4C2 + 1)κ3
√
(C2 + 1)(C2κ2 + 1)

+ κ4
(√

(C2 + 1)(C2κ2 + 1)− 16(C4 +C2)− 2
)
− 2
))

×
(
(κ2 − 1)2

√
(C2 + 1)(C2κ2 + 1)

)−1
(C 5)

J1 =π(κ − 1)(κ + 1)−1 (C 6)

J2 =−π
(
−4
√
(C2 + 1)(C2κ2 + 1)+C2(κ + 1)2 + 4

)
C−2(κ2 − 1)−1 (C 7)

J3 =π(κ − 1)2(κ + 1)−2 (C 8)

J4 = −2π
(

8C4κ3 +C2
(
(κ + 1)4 − 8κ2

√
(C2 + 1)(C2κ2 + 1)

)
− 4(κ2 + 1)

(√
(C2 + 1)(C2κ2 + 1)− 1

))
C−2(κ2 − 1)−2. (C 9)

Note that only I5 + I6 matters since Fp
5(ξ0)= Fp

6(ξ0) (see (5.10)) and Ff
5(ξ0)= Ff

6(ξ0)

(see (6.4)). Recall that κ = ξ0/(ξ
2
0 − 1)1/2 for a prolate spheroid and κ = (ξ 2

0 − 1)1/2/ξ0
for an oblate spheroid.

Appendix D. Comparison with previous analytical theories: the near-sphere and
flat-disk limits

In the following two subsections, we compare the limiting forms of (5.5) and (5.6)
with the aspect-ratio functions defined in §§ 5.1 and 6.1, in the limits ξ0 → 1 and
ξ0→∞, to the recent analytical results of Subramanian & Koch (2005, 2006b).

D.1. The slender-fibre theory of Subramanian & Koch (2005)
Subramanian & Koch (2005) obtained the O(Re) drift of a neutrally buoyant slender
fibre in simple shear flow, at leading logarithmic order in the aspect ratio, using
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viscous slender body theory. This was accomplished using a reciprocal theorem
formulation with the inertial drift, as in (2.19), being expressible in terms of a
volume integral of the inertial acceleration. Since the Stokes disturbance velocity
field is only O(ln κ)−1 for large aspect ratios, the inertial terms were linearized
to leading logarithmic order [O(Re/ ln κ)]. A convolution theorem was then used to
write this linearized inertial integral in terms of the corresponding Fourier transformed
velocity fields, which are much simpler in form. Further, the unsteady term (∂u′/∂t)
in Subramanian & Koch (2005) was evaluated in invariant terms, in space-fixed
coordinates, using the known expression for ṗ which, at leading logarithmic order in
the aspect ratio and in the absence of inertia, describes the meridional trajectories of
an infinitely thin fibre [ṗ=Γ · p− p (E : pp)]. In what follows, we examine briefly the
manner in which the slender-fibre drift of Subramanian & Koch (2005) emerges as
a special case of (2.30). With the Fourier transform in space-fixed coordinates (xsp)
defined as f̂ (k, t)= ∫ dxsp e−2πik·xsp f (xsp, t), application of the convolution theorem to
the volume integral in (2.25) gives:∫ [

∂u′(1)s

∂t
+ (Γ · x) · ∇u′(1)s + Γ · u′(1)s

+ u′(1)s · ∇u′(1)s +Ω t
jeff ∧ u′(1)s − (Ω t

jeff ∧ x) · ∇u′(1)s

]
· U(2) dV

=
∫

dk
[
F

(
∂u′(1)s

∂t
+Ω t

jeff ∧ u′(1)s − (Ω t
jeff ∧ x) · ∇u′(1)s

)
− (Γ †

· k) · ∇kû′(1)s + Γ · û′(1)s

]
· Û

(2)
(−k), (D 1)

where recall that u′(1)s is defined in a body-fixed coordinate system rotating with Ωb
and F denotes the Fourier transform of the bracketed expression. In (D 1), we have
neglected the O(ln κ)−2 nonlinear inertial term. Unlike the other terms, the Fourier
transform of the bracketed expression in (D 1) depends on the choice of space-fixed
(xsp) vis-a-vis body-fixed (x) coordinates. The relation between the disturbance velocity
fields in the two coordinate systems given by u′(1)s(sp)(xsp, t) = R(t) · u′(1)s (R†(t) · xsp, t),
with x = R† · xsp defining the space-fixed–body-fixed relation, and dR/dt = Ω t

jeff ∧ R
defining the rotation matrix that relates the space-fixed and body-fixed configurations
at time t. The space-fixed Fourier transform of the aforementioned combination of
terms may be written as:∫

dxsp e−2πik·xsp

[
∂u′(1)s

∂t
+Ω t

jeff ∧ u′(1)s − (Ω t
jeff ∧ x) · ∇u′(1)s

]
. (D 2)

In body-fixed coordinates, one obtains:∫
dx e−2πik(t)·x

[
∂u′(1)s

∂t
+Ω t

jeff ∧ u′(1)s − (Ω t
jeff ∧ x) · ∇u′(1)s

]
, (D 3)

=
∫

dx e−2πik(t)·x ∂u′(1)s

∂t
+Ω t

jeff ∧ û′(1)s − (Ω t
jeff ∧ k) · ∇kû′(1)s , (D 4)

with k(t)= R†(t) · k. We have used k(t)≡ k in the second and third terms since the
time dependence of the wavevector affects only the first term in (D 4). The first term
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may now be written in the form:∫
dx e−2πik(t)·x ∂u′(1)s

∂t
= d

dt

[∫
dx e−2πik(t)·xu′(1)s

]
+ k′(t) ·

∫
dx(2πix)e−2πik(t)·xu′(1)s ,

= dR†

dt
· û′(1)s(sp) + R†

·
∂û′(1)s(sp)

∂t

− d
dt
(R†(t) · k) ·

∂

∂k(t)

[∫
dx e−2πik(t)·xu′(1)s

]
. (D 5)

Using dR†/dt = −Ω t
jeff ∧ R†, and the coincidence of the space-fixed and body-fixed

coordinate systems at time t (so that R=R†= I), one may drop the additional subscript
′sp′, and (D 5) becomes:∫

dx e−2πik(t)·x ∂u′(1)s

∂t
= ∂û′(1)s

∂t
−Ω t

jeff ∧ û′(1)s + (Ω t
jeff ∧ k) · ∇kû′(1)s , (D 6)

so that ∫
dx e−2πik(t)·x

[
∂u′(1)s

∂t
+Ω t

jeff ∧ u′(1)s − (Ω t
jeff ∧ x) · ∇u′(1)s

]
= ∂û′(1)s

∂t
, (D 7)

and the Fourier-space integral in (D 1) takes the form:∫
dk

[
∂û′(1)s

∂t
− (Γ †

· k) · ∇kû′(1)s + Γ · û′(1)s

]
· Û

(2)
(−k), (D 8)

which is precisely the integral that yields the O(Re) drift for a neutrally buoyant fibre
in a simple shear flow. Substitution of the well-known expressions for the transformed
fields finally leads to the following orbit equations:

dθj

dt
=−7 cos θj sin2 φj cos2 φj sin3 θj

15 log(ξ0 − 1)
, (D 9)

dφj

dt
= (3− 7 cos 2φj) cos φj sin φj sin2 θj

30 log(ξ0 − 1)
, (D 10)

at leading logarithmic order. It is worth noting that, at O(ln κ)−1, the disturbance
velocity field contributing to the inertial drift only arises on account of the fibre
inextensibility, and therefore involves a response to the axisymmetric extensional
component of the ambient shear alone. The responses to the longitudinal extensional
components are smaller by O(ξ0 − 1)1/2, and those to the transverse extensional
components are smaller by O(ξ0 − 1). Thus, only one of the five canonical velocity
field components (u1s) detailed in § 3 contributes to the inertial drift. This must
remain true to all logarithmic orders, although Subramanian & Koch (2005) only
calculated the leading logarithmic order contribution. For slender spheroidal fibres,
the drift, to within algebraic errors in the aspect ratio, may be obtained by replacing
ln(ξ0 − 1) by [3− log(2)+ log(ξ0 − 1)] in (D 9) and (D 10) above. The results (D 9)
and (D 10) match those of Subramanian & Koch (2005) except for a factor of 1/8π,
which has been pointed out in Shin, Subramanian & Koch (2009).
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D.2. The near-sphere theory of Subramanian & Koch (2006b)
Subramanian & Koch (2006b) analysed the leading-order effects of both particle and
fluid inertia on the orientation of nearly spherical particles in simple shear flow. Their
result for the O(St) drift induced by particle inertia misses a factor of 1/2 in the
term multiplying cos(2φ) ((3.18) in Subramanian & Koch (2006b)). As seen from the
limiting cases considered above, notwithstanding the drift-reversal that occurs close
to the flat-disk limit, the direction of the drift of a near-sphere remains the same as
that for arbitrary aspect ratios. The authors found fluid inertia to cause a prolate near-
sphere to drift towards the vorticity axis at O(Re), with an oblate near-sphere doing
the opposite, both occurring on a time scale of O(εReγ̇ )−1; the parameter ε [=1/(2ξ 2

0 )]
is the deviation from sphericity with the near-sphere described by r= 1+ ε(−1+ pp :
nn). These contradict the results of the analysis given here, and are incorrect. As we
show below, the method proposed to calculate the O(Re) near-sphere drift is, however,
correct, and the error arose in the detailed calculation of the integrals.

The calculation of Subramanian & Koch (2006b) was again based on a generalized
reciprocal theorem formulation. While the actual problem was the free rotation of
a near-sphere in a simple shear flow, the test problem was not that of the same
near-sphere rotating in a quiescent fluid. To minimize the algebraic complexity, and
exploit the known results for the O(Re) velocity field around a sphere (Lin et al.
1970; Subramanian & Koch 2006a), the test velocity field was chosen as a composite
field, consisting of a rigid-body rotation within a fluid sphere circumscribing the
near-sphere, and a rotlet velocity field outside. Such a velocity field can only be
maintained by a distribution of forces localized on the surface of the fluid sphere,
and the stress field of the test problem is therefore no longer divergence-free (as
would be the case for the usual choice of the Stokesian rotation of a near-sphere).
The inertial correction to the Jeffery angular velocity involves two integrals, a surface
integral arising from the singular force field in the test problem (a delta function)
and a volume integral of the inertial forces similar to that in (2.30), and satisfies the
relation:

−3
∫

dΩ n∧ {u′(0)(n)+ εu′(1)(n)} − Re
∫

r∧ f
r3

dV = 0. (D 11)

Here, f denotes the inertial terms in the equations of motion, and the integral in
(D 11) is to be evaluated over the volume outside the near-sphere. The unknown
angular velocity enters via the disturbance velocity field (u′) in the surface integral –
for a sphere in Stokes flow,

∫
dΩ n ∧ u′(0)(n)= (8π/3)(Ω1 − (1/2)ε : Γ ), leading to

the well-known result of a sphere rotating at a rate commensurate with the ambient
vorticity. Since there is no O(Re) correction associated with a sphere in simple shear,
the inertial angular velocity correction must be O(εRe); further, from (5.14), it may
be shown that, for ξ0→∞, the inertial drift is determined, at O(ξ−2

0 ), by dθj/dt with
the O(Re) correction to dφj/dt coming in only at (ξ−4

0 ). There are three different
contributions at O(εRe). Two of these arise from the volume integral in (2.30);
the first one arises from integrating the exact inertial terms for a sphere over the
O(ε) annular volume between the near-sphere and the aforementioned circumscribing
fluid sphere, and its contribution to dθj/dt equals ∓(cos θj sin θj)/(120ξ 2

0 ); the second
arises from integrating the O(ε) terms in the inertial acceleration over the volume
exterior to the unit sphere, and this contribution equals ±(cos2 φj sin 2θj)/(56ξ 2

0 ). Both
these contributions are also present with the usual choice of test problem (a rotating
near-sphere) and, for reasons mentioned in § 2, may be evaluated from knowledge of
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the Stokesian fields. The third contribution that, with this usual choice, would arise
from integrating the O(ε) terms in the test velocity field with the inertial acceleration
for a sphere, is now contained in the surface integral in (D 11). The evaluation of
this surface integral requires knowledge of the O(Re) velocity field. But, following
Subramanian & Koch (2006b), it may be calculated knowing both u′ and ∇u′ for
a sphere, to O(Re) (Subramanian & Koch 2006a), and the relation (D 11) takes the
form:

−3
∫

dΩ n∧ {u′(0)(n)+ εu′(1)(n)}

=−8πΩ
(1)
1 + ε

π

480

[
−104

7
{2p∧ (Γ · E · p)+ 2(E · p)∧ (Γ · p)+ (ε : Γ )(E : pp)}

− 616
7
{2p∧ (Γ †

· E · p)+ 2(E · p)∧ (Γ †
· p)+ (ε : Γ †)(E : pp)}

+ 792p∧ (Γ †
· Γ ) · p− 232p∧ (Γ · Γ †) · p

]
, (D 12)

in terms of the O(Re) inertial correction Ω
(1)
1 . Adding the three contributions, one

obtains: (
dθj

dt

)
Re

=± (33− 37 cos 2φj) sin 2θj

1680ξ 2
0

, (D 13)

with the plus sign corresponding to a prolate spheroid. This matches up exactly with
(5.5) on using the limiting forms of the fluid inertial aspect-ratio functions, Ff

i (ξ0), for
ξ0→∞.
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