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Thermodynamic processes in dusty plasma
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Here, we propose a thermodynamic model for dusty plasma, where the dust is confined
in a small volume within a large plasma background by external fields. In this model,
the parameters of dust, e.g. Helmholtz energy, pressure, entropy and enthalpy, etc. can
be calculated for given dust density and temperature. The model is solved analytically
in the mean field (gaseous) limit and various processes associated with the gaseous
phase of dust, e.g. adiabatic/isothermal/constant internal energy expansion/compression,
specific heat, free expansion within the plasma background, and the dispersion of novel
acoustic waves are studied. Some predictions of the model, e.g. electrostatic pressure of
the dust and the isothermal equation of state, have been earlier verified in experiments and
numerical simulations. The model is compared with an earlier thermodynamic model of
dusty plasma proposed by Hamaguchi and Farouki.
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1. Introduction

One of the features of dusty plasma, which distinguishes it from the ordinary three
component plasma, is that due to the heavy mass of the dust, there is a vast separation
of time scales in the dynamics of the dust and that of the background plasma. This vast
separation of time scales has an interesting consequence that the dust component can be
confined in a state of thermodynamic equilibrium in a small volume within a sufficiently
large plasma background, by external fields. This remarkable feature is shared by only
one other system, i.e. non-neutral plasma which is confined in the state of thermodynamic
equilibrium by external magnetic fields (Davidson 1990). In this paper, we construct a
general thermodynamical model of dusty plasma where the dust is confined in a small
volume within a sufficiently large plasma background, by external fields. The model is
solved analytically in the mean field limit and various processes for the gaseous phase
of dust, e.g. isothermal/adiabatic/constant internal energy expansion/compression, free
expansion of dust, specific heat and dispersion of acoustic waves, etc. are studied.

While defining thermodynamic processes in dusty plasma, the role of plasma
background must be carefully examined. The reason for this is that in these plasmas, the
dust component is coupled with the background electrons and ions through quasi-neutral
electric fields. Thus, when the dust component is compressed/expands or moves, for
example in dust acoustic wave (DAW) or shocks, then the background plasma is also
perturbed. The extra heat energy generated due to such perturbations of the background
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plasma must be properly accounted for while defining thermodynamic processes in dusty
plasma. A somewhat truncated version of this model was described earlier to show the
interconversion of plasma heat into work and vice versa via cold dust (Avinash 2010a,b;
Avinash & Kaw 2014). However, since the dust temperature Td was taken to be zero in the
model, the thermodynamic processes involving the dust internal energy, pressure, enthalpy
and other related thermodynamic parameters could not be described properly. In this paper,
the thermodynamic model with finite dust temperature is discussed.

Hamaguchi & Farouki (1994) and Farouki & Hamaguchi (1994) in their seminal works,
have also proposed a thermodynamic model of dusty plasma to calculate dust correlation
effects and the solid–liquid melting boundary. In this model, the dust and the plasma
background occupy the same volume. The negative charge of the dust is confined or
neutralized by the cohesive plasma background. This, however, is not realistic. In dusty
plasma experiments the dust is confined in a small volume within the plasma with the help
of external electrostatic (ES) fields (Barkan & Merlino 1995; Trottenberg, Block & Piel
2006; Pilch et al. 2007; Thomas 2010). Our model takes into account this confinement
of dust within the background plasma. There are some other important differences in
the results of our model and those of the Hamaguchi–Farouki (HF) model which will
be discussed later in the paper.

2. General formulation of the model

Our model consists of an ensemble of Nd identical point dust particles carrying a
constant negative charge qd, having pressure and temperature Pd, Td, respectively. The dust
cloud is assumed to be confined in a small volume Vd by external fields Pext(Pd = Pext),
within a weakly coupled, statistically averaged, plasma background, having Ne and Ni
numbers of electrons and ions, in volume V where V � Vd. Typically, in experiments
Vd/V ≈ 10−3−10−5 (Trottenberg et al. 2006; Fisher et al. 2013) which justifies the
assumption of small Vd in the present model.

The electron and ion temperatures are denoted by Te and Ti, respectively. In thermal
equilibrium the electron and the ion densities are given by Boltzmann’s relations ni =
n0exp(−qϕ/Ti), ne = n0exp(qϕ/Te) where ϕ is the electrostatic potential within the dust
cloud. Sufficiently away from the cloud ϕ → 0 and ni = ne = n0. It should be noted that
this assumption is asymptotically valid in the limit Vd/V → 0, i.e. in the limit of dust
cloud embedded in an asymptotically infinite plasma background. Another point to be
noted is that the volume V and Vd can be varied independently in the present model,
which is consistent with dusty plasma experiments (Barkan & Merlino 1995; Trottenberg
et al. 2006; Pilch et al. 2007; Thomas 2010). This is different from the HF model where
the dust density is assumed to be proportional to the average plasma density (Farouki &
Hamaguchi 1994). In the last section, and further in appendix B, we will discuss these
issues and the relationship of the present model and the HF model in detail.

The dust and the plasma are usually immersed in the background gas filling the plasma
chamber. The collisions of the electrons, the ions and the dust with neutral atoms of
the back ground gas help to regulate the temperatures of the dust and the plasma. Thus, the
neutral background acts as the heat bath (Quinn & Goree 2000a). In dusty plasmas, the
dust is heated by a number of processes, e.g. Brownian motion due to the neutral gas,
fluctuations due to the electric field or the dust charge and it is cooled mainly due to the
drag by neutrals (Quinn & Goree 2000a). The typical dust neutral collision frequency νdn
(∝Pg neutral gas pressure) in dusty plasma experiments ranges from a few Hz at low gas
pressures to ≥100 Hz at high pressures (Quinn & Goree 2000b). Thus, if τp > τdn (τp
is the time scale of the thermodynamic process and τdn = 1/νdn is the time scale of the
dust neutral collision), which would typically be true in experiments with high neutral
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pressure (100–200 mTorr), then in such cases, the dust is in good thermal contact with the
neutral bath. In this regime, the isothermal approximation for dust with Td ≈ Tn (Tn is the
temperature of neutrals) is appropriate (Thomas 2010). On the other hand, in experiments
with low neutral pressures and relatively rare collisions with neutrals (≤10 mTorr) τp
typically is less than τdn. In such cases, the thermal contact of dust with the neutral bath is
rather weak (Pilch et al. 2007). In this regime, the dust may be treated as isolated and an
adiabatic approximation with variable temperature for the dust is appropriate. The thermal
conductivity of electrons and ions in the background plasma is always very large. The ion
heat is lost mainly through collisions with neutrals or due to the diffusive losses to the
walls of the plasma vessel on time scale of approximately 1 to 10 μs. The electron heat is
lost on an even shorter time scale. Thus, for the plasma background, on the time scale τp,
we assume an isothermal approximation with fixed electron and ion temperature. Hence,
apart from the neutral background, the dust is also coupled to the plasma background, with
which it exchanges heat via electric fields.

We start our calculations by expressing the energy conservation for quasi-static (τp >
τrelax where τrelax is relaxation time scale) work done by Pext on Vd given by

�Qe + �Qi + �Qd = �U + Pd�Vd. (2.1)

In this equation �Qd = Td�Sd,�Qe = Te�Se,�Qi = Ti�Si where �Qd is the heat
exchanged with dust heat bath, while �Qi,�Qe denote the heat exchanged with the plasma
background and V is held constant. The entropies of the dust, electrons and ions are given
by Sd, Se and Si, respectively, and U is the internal energy of the composite system of the
dust and particles. The expressions for plasma entropies and U are given by (Hamaguchi
& Farouki 1994; Avinash 2010a)

U = 3
2
(NeTe + NiTi + NdTd) + 1

2

∫
ρϕ dV − q2

d

8πε0

Nd∑
j=1

∫
δ(r − rj)

|r − rj| dV, (2.2)

Sα = 3
2 Nα − ∫

V nα[(ln nα

3
α) − 1] dV


α =
(

h2

2πmαTα

)1/2

⎫⎬
⎭ , (2.3)

where α denotes electrons or ion, and ρ and ϕ are the local charge density and the
electrostatic potential, while h denotes the Planck constant. In the isothermal equilibrium
of the background and the approximation qφ/Tα < 1 (justified later), the electron
and ion densities are given by the linearized Boltzmann relations ni = n0(1 − qϕ/Ti),

ne = n0(1 + qϕ/Te). The ES potential ϕ in the dust cloud can be obtained by solving
the corresponding Poisson’s equation given by

ε0∇2ϕ = ρ = −qs

Nd∑
j=1

δ(r − rj) − ε0ϕ/λ2
d, (2.4)

where 1/λ2
d = (q2n0/ε0)(1/Te + 1/Ti), and we have substituted linearized Boltzmann

relations for electrons and ion densities. The solution of (2.4) is given by

ϕ = − qd

8πε0

∑
j

exp(−|r − rj|/λd)

|r − rj| , (2.5)

where the index j = 1 . . . Nd. As shown in appendix A (Hamaguchi & Farouki 1994;
Avinash 2010a) using (2.2)–(2.5) we derive the following expressions for the internal
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energy and the heat exchanged with the isothermal plasma background:

U = 3
2
(NdTd + NeTe + NiTi) − q2

dNdκd

8πε0
+ q2

d

8πε0

∑
i

∑
j	=i

exp(−|ri − rj|/λd)

|ri − rj|
− q2

d

16πελd

∑
i

∑
j	=i

exp(−|ri − rj|/λd),

(2.6)

TiSi + TeSe = 3
2
(NeTe + NiTi) −∑

α

TαNα[(ln n0Λ
3
α) − 1]

− q2
d

16πελd

∑
i

∑
j	=i

exp(−|ri − rj|/λd),

(2.7)

where κd = 1/λd and indices i, j = 1 . . . Nd. The second term on the right-hand side
of (2.7) is due to the uniform isothermal plasma background. The energy conservation
equation for the dust component can be constructed from (2.1) as

�Qd = Td�Sd = �Ud + Pd�Vd, Ud = U − TeSe − TiSi, (2.8a,b)

where Ud is the effective internal energy of the dust component. The expression for Ud
can be obtained by eliminating −(TiSi + TeSe) and U from (2.6) and (2.7) to give

Ud = 3
2
(NdTd) + q2

d

8πε0

∑
i

∑
j	=i

exp(−|ri − rj|/λd)

|ri − rj|
+∑

α

TαNα[(ln n0Λ
3
α) − 1] − q2

dNdκd

8πε0
.

(2.9)

From (2.8a,b), the corresponding expressions for Helmholtz energy, pressure, entropy and
enthalpy of the dust component can be calculated as

Fd = (Ud − TdSs), Pd = − ∂F
∂Vd

∣∣∣∣
Td

, Sd = −∂Fd

∂Td

∣∣∣∣
Vd

, Hd = (Ud + Pd Vd).

(2.10a–d)
From these expressions the thermodynamic variables of the dust can be calculated as
follows. The effective internal energy of the dust Ud can be obtained from (2.9). The free
energy Fd can be directly obtained from Ud by integrating the thermodynamic relation
Ud/T2

d = −∂/∂Td(Fd/Td). From Fd, the pressure, the entropy and the enthalpy of the dust
can be calculated from (2.10a–d). Typically, these quantities will have the usual thermal
component and an excess XES due to electrostatic contributions. Since the last two terms
in (2.9) depend on Te, Ti and V , which are constant, hence Ud = Ud(Td, Vd). Thus Ud and
its XES can be calculated for given values of dust density and temperature from Molecular
Dynamic (MD) simulations involving dust particles alone (Farouki & Hamaguchi 1994;
Hamaguchi & Farouki 1994). In the next section, we show that in the thermodynamic
limit, XES can be calculated analytically.

In the present model, the assumptions of constant dust charge qd and qϕ/Te, qϕ/Ti < 1
used in the linearization of the Boltzmann response are valid in the limit qdnd/2qn0 < 1
(Havnes et al. 1987; Goertz 1989), which is well-satisfied for typical dusty plasma
experimental parameters. The dust temperature Td, on the other hand, is limited by the
dust confinement. In dusty plasma experiments, the dust is electrostatically confined
in a parabolic potential well ϕExt ∝ r2, which is nearly zero in the centre and rises
monotonically to value ϕE at the edge of the confinement at r = rE. Hence the condition
for the confinement of dust in the ES potential well is Td < qdϕE.
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3. Mean field limit

In the mean field limit, the dust is in the rare density gaseous phase. In this phase, the
correlations are exponentially weak and the dust can be smeared out into a homogenous
uncorrelated fluid. As will be shown shortly, in this limit there is a mean electrostatic
field within the dust cloud. The mean field limit is given by qd → 0, Nd → ∞, qdNd 	= 0
and the double summation is replaced by smooth integrations as

∑
i

∑
j = ndNd

∫
dVd in

(2.6) and (2.7). Carrying out double summations according to this prescription we obtain
(Avinash 2010a)

q2
d

8πε0

∑
i

∑
j	=i

exp(−κd|ri − rj|)
|ri − rj| = q2

d

16πε0

∑
i

∑
j	=i

κdexp(−κd|ri − rj|)

= q2
dN2

d

q2n
TeTi

Vd(Te + Ti)
.

(3.1)

Thus the dust internal energy, in the thermodynamic limit, is given by

Ud = 3
2

NdTd + q2
dN2

d TeTi

q2nVd(Te + Ti)
+
∑

α

TαNα[(ln n0Λ
3
α) − 1], (3.2)

where n = 2n0 is the pristine plasma density. In (3.2), the second term is due to the mean
ES field in the dust cloud. Thus, in the thermodynamic limit, though the correlations are
weak, dust particles still interact through the mean ES field. This is different from ideal
gas where particles do not interact at all.

Substituting Ud in the thermodynamic relation Ud/T2
d = −∂/∂Td(Fd/Td) and

integrating gives the Helmholtz free energy, pressure, entropy of the dust as

Fd = TdNd[ln(ndΛ
3
d) − 1] + q2

dN2
d TeTi

q2nVd(Te + Ti)
+
∑

α

TαNα[(ln n0Λ
3
α) − 1], (3.3)

Pd = NdTd

Vd
+ q2

dN2
d TeTi

q2nV2
d (Te + Ti)

, Sd = 3
2 Nd − Nd[ln(ndΛ

3
d) − 1]. (3.4a,b)

In (3.4a), the second term gives the excess pressure PES due to mean electric fields in the
confined dust cloud. This electrostatic pressure PES (Avinash 2010a,b) can be dominant
for typical experimental parameters.

The dust pressure Pd was experimentally measured by Fisher et al. (2013). The value of
Pd was found to be much greater than the thermal pressure ndTd. In fact, the experimentally
measured value of Pd was found to be within a factor of order unity of the value predicted
by the ES part of total pressure PES given in (3.4a). The ES dust pressure PES was further
confirmed in the experiments by Williams (2019) and MD simulations (Shukla et al. 2017).
From (3.4b) it is seen that in the gaseous limit, the ES contributions to the dust entropy
are zero.

4. Thermodynamic processes

In this section we define thermodynamic processes, specific heat, dispersion of acoustic
waves and free expansion involving dust.

4.1. Isothermal process
In the case where the time scale of the dust process (e.g. expansion/compression), τP
is larger than the dust neutral collision time scale τdn, the dust is strongly coupled with
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FIGURE 1. Isothermal process (solid), adiabatic (dash) and constant internal energy (dot-dash)
processes of dusty plasma in the Pd − Vd plane for Γ0 = 1, κ0 = 1.5, Γ ∗

0 = 0.2. In the limit of
small Vd all the three processes become identical with Pd ∝ 1/V2

d .

neutrals. In this case, the dust temperature Td is regulated by the neutral bath and can be
taken to be constant Td0(≈Tn). This would typically be true in experiments with high gas
pressure (Thomas 2010). Thus, in the high gas pressure regime, the equation of state is
given by

Pd = NdTd0

Vd
+ q2

dN2
d TeTi

q2n(Te + Ti)V2
d
. (4.1)

In this case, the thermal energy of the dust component 3NdTd0/2 is constant. However,
the internal energy Ud which contains ES contributions as well, and is defined in
(3.2), is not constant. Processes where Ud is constant will be defined later. For
quasi-static expansion/contraction of the dust volume �Vd, the energy conservation can
be re-expressed as Td�Sd + �(TiSi + TeSe) = Pd�Vd, which shows that the heat taken
from the plasma bath maintains an isothermal background with given electron and
ion temperatures. The dust then expands/compresses at constant Td in this isothermal
background. The change in the dust entropy is given by �Sd = nd�Vd while the
change in the plasma entropy (ES part), in the simple case where Te = Ti = T is �S =
q2

dn2
d�Vd/2q2n. In terms of coupling parameters Γ0, κ0 which, for given Nd, are related

to the two constants Td0, Vdo by the relations Γ0 = q2
d/4πε0a0Td0, κ0 = a0/λd where a0 =

(3Vd0/4πNd)
1/3, the equation of state is given by

P̄d = 1
V̄d

+ 3
2

Γ0

κ2
0

1
V̄2

d

, (4.2)

where we have normalized pressure with nd0Td0 and Vd by Vd0. In the weak correlation
regime the ratio of the ES potential energy to the average kinetic of dust is given by Γ ∗

0 =
Γ0exp(−κ0) < 1. In figure 1 we show a dust isotherm for Γ0 = 1, κ0 = 1.5, Γ ∗

0 = 0.2.
The isothermal equation of state given in (4.2) has been verified in recent MD simulations
(Shukla et al. 2017). In the large Vd, limit, P̄d ∝ 1/V̄d as an ideal gas, however, for smaller
dust clouds where ES pressure dominates, P̄d ∝ 1/V̄2

d .

4.2. Adiabatic process
In the case where the expansion/compression time scale of dust τP is smaller than the
dust neutral collision time scale τdn, the thermal contact of the dust with neutrals is
weak. In these cases the dust can regarded as isolated with constant entropy (�Sd = 0).
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This would typically be true in experiments with low neutral gas pressure (Pilch et al.
2007). As stated earlier, the heat exchanges involved in local plasma perturbations must be
taken into account while defining thermodynamic processes in our model. Accordingly,
we define the quasi-static adiabatic process involving dust as ‘the expansion/compression
processes involving isolated dust that take place in an isothermal plasma background
of given temperature’. Hence, in this process, while the dust is isolated and its entropy
remains constant in expansion/compression, the background plasma is not and its entropy
changes. The equation of state for this process can be calculated from the equation
0 = �Ud + Pd�Vd. Eliminating Ud and Pd via (3.4a) we obtain the equation �Td/Td =
−(2/3)�Vd/Vd which can be integrated to give TdV2/3

d = const., (like an ideal gas).
Eliminating Td using this relation in the expression for Pd in (3.4a) finally gives the
adiabatic equation of state for gaseous dust in terms one arbitrary constant C (and given
Te and Ti) as

Pd = C

V5/3
d

+ q2
dN2

d TeTi

q2n(Te + Ti)V2
d
. (4.3)

The adiabat/isentrope Pd = Pd(Vd) can be plotted in the Pd − Vd plane where C is
determined by any point Pd0, Vdo (alternately Td0, Vdo) on the adiabat. In terms of coupling
parameters Γ0, κ0, defined earlier, the equation of state can be expressed thus

P̄d = 1

V̄5/3
d

+ 3
2

Γ0

κ2
0

1
V̄2

d

. (4.4)

In figure 1 we show a dust adiabat for Γ0 = 1, κ0 = 1.5, Γ ∗
0 = 0.2. If the dust volume

expands against external pressure from V̄d1 → V̄d2, then the work done is

W̄ = 3
2

(
1

V̄2/3
d1

− 1

V̄2/3
d2

)
+ 3

2
Γ0

κ2
0

(
1

V̄d1
− 1

V̄d2

)
. (4.5)

This equation shows that in expanding from V̄d1 → V̄d2, dust does extra work (second
term) compared with the corresponding ideal gas. The extra work is done by the ES
pressure to extract requisite amount of heat from the plasma background to maintain
uniform electron and ion temperatures. The changes in entropies of electrons and ions
�Se,�Si can be calculated from expressions of electrons and ion entropies given in (2.3).
In the simple case where Te = Ti = T , the change in the ES part of the total plasma entropy
is given by �S = q2

dn2
d�Vd/2q2n.

4.3. Constant internal energy process
In addition to the two processes described above, we can define an additional new process
where the internal energy of dust Ud is constant. This process will take place under the
condition when the dust neutral collision time scale is of the same order as the time scale
of the process, i.e. τdn ≈ τp. Under this condition, the rate at which the dust exchanges
heat with the dust heat bath is equal to the work done by/on the dust against the external
pressure so that �Qd = Pd�Vd and �Ud = 0 in (3.2). The equation of state for this
process can be calculated by using (3.2), (3.4a) and the condition �Ud = 0, and is given
by

Td = Td0 − 2q2
dNdTeTi

3q2nVd(Te + Ti)
, Pd = NdTd0

Vd
+ q2

dN2
d TeTi

3q2V2
d n(Te + Ti)

. (4.6a,b)

Thus, in the constant Ud process, the dust temperature increases on expansion
and decreases on compression. This is an interesting and somewhat counterintuitive
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consequence which can be verified experimentally. However, the pressure, as usual,
decreases with the volume as in the case of isothermal processes, except for a factor of
1/3 in the second term. In figure 1 we show the Pd − Vd plot for constant Ud process.
The change in the plasma entropy, as in earlier cases, is given by �S = q2

dn2
d�Vd/2q2n,

while the change in the dust entropy is given by �Sd = (1 + 3Γ/2κ2)nd�Vd. In the large
V̄d limit, the effects due to the mean field vanish and the constant Ud process becomes
identical to isothermal process and �Sd = nd�Vd.

4.4. Specific heat of dust
The specific heats of the dust at constant volume and constant pressure are defined as

CVd = ∂Qd

∂Td

∣∣∣∣
Vd

, CPd = ∂Qd

∂Td

∣∣∣∣
Pd

. (4.7a,b)

Eliminating �Qd from (2.8a,b) and using (3.2) and (3.4a,b) we get

CVd = 3Nd/2, CPd = 3Nd/2 + NdTd

Vd

∂Vd

∂Td

∣∣∣∣
Pd

. (4.8a,b)

Eliminating the partial derivative in (4.8a,b) using (3.4a) we finally obtain the specific
heat at constant pressure and the ratio of two specific heats γ as

CPd = 3
2

Nd + Nd(
1 + 3Γ

2κ2

) , γ = 1 + 2/3(
1 + 3Γ

2κ2

) . (4.9a,b)

Equation (4.9a,b) shows that γ is no longer constant but a function of dust volume and
temperature. In the ideal gas or weak coupling limit (�→ 0, κ → ∞), γ = 5/3.

In addition to the two types of specific heats defined in (4.7a,b), we can define a third
type of specific heat, i.e. the specific heat at constant internal energy CUd defined as

CUd = ∂Qd

∂Td

∣∣∣∣
Ud

= Pd
∂Vd

∂Td

∣∣∣∣
Ud

, (4.10)

where we have used �Qd = Pd�Vd for constant Ud. This specific heat has no ideal gas
analogue, though it may have a real gas analogue. Evaluating the partial derivative and
substituting for pressure from the condition in (4.6a,b), we get

CUd = 3Nd

2

(
2κ2

3Γ
+ 1

)
. (4.11)

In the limit �→ 0, κ→ ∞, CUd → ∞.

4.5. Dust acoustic waves
The dust acoustic waves (DAW) are analogues of ion acoustic waves in electron–ion
plasma where the inertia is due to the dust mass and the screening is due to electrons and
ions. The dispersion relation of these waves can be obtained directly by using equation of
states, derived above, in the fluid equations.

The total pressure of the dust Pd, which is the sum of the kinetic and the ES pressure,
drives acoustic modes in dusty plasma. The dispersion of these acoustic modes driven by

https://doi.org/10.1017/S0022377820001154 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001154


Thermodynamic processes in dusty plasma 9

the total dust pressure is governed by following set of fluid equations:

ρd
dvd

dt
= −∇(Pd),

∂ρd

∂t
+ ∇ · ρdvd = 0, Pd = cnγ

d + q2
dTeTi

q2n(Te + Ti)δ
n2

d. (4.12a–c)

In these equations, Pd is the local dust pressure which is the sum of the dust kinetic
and the ES pressure and ρd, vd, are the local dust mass density and the fluid velocity,
respectively. In (4.12c), γ = 5/3 for adiabatic processes, γ = 1 for isothermal or constant
Ud processes, δ = 1 for adiabatic or isothermal processes and δ = 3 for constant internal
energy processes. Performing standard linearization of these equations about a uniform
and static equilibrium and using plane wave solutions where ∇ = ik, ∂/∂t = −iω in
(4.12a–c), (ω and k are the frequency and the wave vector of DAW) we obtain following
dispersion relation of acoustic waves:

ω2

k2
= C2

DAW =
[
γ Td

md
+ 2q2

dndTeTi

q2nmd(Te + Ti)δ

]
. (4.13)

In the low neutral gas pressure regime (νdn/ω � 1), γ = 5/3 and δ = 1 in (4.13) which
corresponds to the adiabatic DAW; in the high neutral gas pressure regime (νdn/ω � 1),
γ = 1 and δ = 1 which corresponds to the isothermal DAW. While in the intermediate
neutral gas pressure regime (νdn/ω ≈ 1), γ = 1, δ = 3 which corresponds to a new mode,
i.e. the constant internal energy DAW.

As stated before, in DAW, the inertia is due to dust mass while the screening is due
to both electrons and ions. In the usual dispersion relation of ion acoustic modes in
electron–ion plasma given by ω2/k2 = C2

IA = (γ Ti + Te)/mi, the inertia is due to ions
and the screening is due to electrons. If we consider screening due to electrons in the
dispersion relation of DAW given in (4.13) by taking Ti � Te and the inertia due to ions
by replacing dust with ions, i.e. qd → qi = q, md → mi, nd → ni, Td → Ti, 2ni ≈ n (n is
plasma density of electron–ion plasma) the dispersion relation of DAW in (4.13) reduces
to the dispersion relation of ion acoustic given above.

In dusty plasma experiments, DAW has been observed over a wide range of frequencies
and neutral gas pressures. For example, in a 3PDX device (Thomas 2010), DAWs in the
range from 7 Hz to 120 Hz were observed. The dust particle velocity distribution function
was observed to be close to Maxwellian during the wave motion (Fisher & Thomas 2010;
Thomas 2010), justifying the quasi-static assumption. The neutral pressure in this device
was 72 mTorr and the corresponding dust neutral collision frequency was νdn ≈ 75 Hz.
Then, in this experiment, waves observed in the range ω < 75 Hz will correspond to
isothermal DAW, waves with ω > 75 Hz will correspond to Adiabatic DAW, while waves
with ω in the range ≈75 Hz will correspond to constant internal energy DAW as discussed
here. Thus it should be possible to identify the constant Ud DAW in this experiment which
has the novel and distinctive feature that in crests dust will be cooler and trough it will be
hotter.

4.6. Free expansion of dust
In dusty plasma, the hydrodynamic free expansion of Coulomb balls and dust clouds
(starting from an equilibrium state) has been examined via MD simulations (Piel &
Goree 2013) and analytically using fluid equations (Ivlev 2013). In experiments (Barkan
& Merlino 1995; Antonova et al. 2012), free expansion of dust in dusty plasma has been
studied in the afterglow phase of the discharge. In this phase, the confining fields are
removed by switching off the anode voltage causing the background plasma to decay.
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The MD simulations show that at low gas pressure, the background plasma decays rapidly
removing the shielding and the cloud explodes due to bare Coulomb repulsion. In contrast,
at high gas pressure, the dust cloud expands gradually under the shielded Yukawa repulsion
(Ivlev et al. 2003; Saxena, Avinash & Sen 2012) and may fission eventually (Merlino et al.
2016).

Here, in the last part of our paper, we describe the free, non-quasi-static expansion
of isolated gaseous dust in a confined and steady isothermal plasma background. This
is different from the free expansion of dust in an unconfined and decaying plasma
background of the afterglow phase mentioned above. The non-quasi-static expansion is
governed by the equation �Qd = �Ud + Pext�Vd. Since the dust is isolated �Qd = 0 and
is allowed to expand freely, Pext = 0. Hence the condition for free expansion is given by
Ud = const. and the variation of temperature with volume is given by (4.6a), i.e.

Td = Td0 − 2q2
dNdTeTi

3q2nVd(Te + Ti)
. (4.14)

This is an irreversible process hence the entropy increases. If the dust expands freely
from state (Td1, Vd1) → (Td2, Vd2) then the change in entropy is calculated by putting a
reversible path between the two states. It is identical to change in entropy of the constant
internal energy process and is given by �Sd = (1 + 3Γ/κ2)nd�Vd. In the ideal gas limit
(�→ 0, κ → ∞), �Sd = nd�Vd. Of course, as opposed to the constant internal energy
process, the work done by dust in free expansion is zero. Since the dust is isolated, the free
expansion must occur on time scale faster than the dust neutral time scale, i.e. τp � τdn,
which will be typically true at low neutral pressure. This neutral pressure condition is
similar to the adiabatic process, however, the difference in the two processes is that for
free expansion Pext = 0, while for adiabatic processes Pext = Pd. To calculate the rise in
dust temperature for typical dusty plasma experimental parameters, we express (4.14) in
the following dimensionless form:

T̄d = 1 + 2Zdp
3

T̄eT̄i

(T̄e + T̄i)
(1 − n̄d). (4.15)

In this equation, the dust temperature, electron and ion temperature are all normalized
with initial dust temperature Td0, the dust density by the initial dust density nd0, Zd =
qd/q and, p is given by p = Zdnd0/n. Typical parameters of dusty plasma experiments are
Te ≈ 3 eV, Ti ≈ 0.025 eV, n ≈ 5 × 1013 m−3, nd ≈ 5 × 109 m−3, Td ≈ 100 eV, while for
micron sized dust Zd ≈ 3 × 103 (Thomas 2010). Then, if we take the values of dust and
plasma density given above as initial values, and if in the experiment the dust volume
increases (freely) by two times so that n̄d = 1/2, then Td = 1.15 in (4.15), i.e. the dust
temperature increases by 15 % of its initial value. In some dusty plasma experiments higher
ion temperatures, Ti ≈ 0.1 eV, are reported (Trottenberg et al. 2006). In such cases dust
temperature increases by 50 %, i.e. T̄d = 1.5 for n̄d = 1/2.

The reason for heating of dust particles in free expansion is the repulsive nature of the
interparticle force. In free expansion of isolated dust particles, the positive potential energy
decreases which is converted into thermal energy. The reverse would be true in cases of
attractive force between particles. This is similar to the case of free expansion of real gases
(sometimes called Joule expansion) where heating observed above inversion temperature
Tinv is attributed to the repulsive part, and cooling below Tinv is attributed to the attractive
part of the Lennard–Jones potential (Goussard & Roulet 1993). For example, hydrogen
gas with low inversion temperature (∼ 200 K) shows heating on free expansion at normal
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temperatures. For purely repulsive potential like the present case of negatively charged
dust, Tinv → 0, and temperature always increases in free expansion.

In the case of Joule–Thompson effect as well, where the gas is throttled through a
constricted passage, the heating observed in the case T > Tinv is due to the repulsive part
of the interparticle force. In a separate paper, we will consider a Joule–Thompson-like
throttling experiment for dusty plasma where dust particles are electrostatically throttled
through a negatively biased mesh. This is expected to further enhance the dust temperature
increase.

5. Summary and discussions

In this paper, we have proposed a thermodynamic model of dusty plasma for the case
where dust is confined in a small volume within a large plasma background by external
fields. The model takes into account the heat exchanged with the plasma background
during the quasi-static motion of the dust. It is solved analytically in the mean field limit
and various processes of gaseous phase of dust, e.g. adiabatic, isothermal and constant
internal energy expansion/contraction, specific heat, dispersion of acoustic waves and free
expansion of dust in the plasma background are studied.

Next, we compare our model with the HF model. The basic difference in the two
models is due to the difference in the dust charge neutralization by the uniform
plasma background. In the HF model where Vd/V = 1, the dust charge is completely
neutralized by the uniform plasma background. In the present model where Vd/V � 1,
the neutralization of dust charge by the plasma is vanishingly small. This is reflected in
two different charge densities used in the HF and the present model. To show this we start
with the charge density of the HF model given by (appendix B)

ρ = −qd

Nd∑
i=1

δ(r − ri) + qd(ni − ne) − ε0ϕ/λ2
d, (5.1)

where n̄α = (1/V)
∫

nα dV = Nα/V (α represents electrons and ions). Using overall charge
neutrality in V , i.e. qdNd = q(Ni − Ne) we may express (5.1) in the form

ρ = −qd

Nd∑
i=1

δ(r − ri) + qdnd
Vd

V
− ε0ϕ/λ2

d. (5.2)

From this common expression, we can obtain charge densities of both models as follows.
In case V = Vd, we obtain the charge density of HF model. Further, using

∫
V ρ dV = 0, we

can show that the first term cancels with the second, implying thereby that the dust charge
is completely neutralized (or confined) by the second term due to the uniform plasma
background and the mean ES potential ϕ̄ is zero; there is no need of external confinement.
In contrast, in case if we take the limit of large plasma volume, i.e. Vd/V → 0, (for given
qdnd), then the second term in (5.2) drops out and we obtain the charge density of the
present model given in (2.4). In this case the neutralization of dust charge by the uniform
plasma background is asymptotically small. Further, in the dust cloud there is a non-zero
mean ES potential given by ϕ̄ = −qdndλ

2
d/ε0. This negative potential tries to expel dust

particles from Vd requiring an external field for the dust confinement. Substituting ϕ̄ =
−qdndλ

2
d/ε0 in PES = ε0ϕ̄

2/2λ2
d (Avinash 2010b) we obtain the ES part of the total dust

pressure PES given by the second term in (3.4a). If we retain small terms of order Vd/V ,
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HF model Present model

Plasma and dust in the same volume Vd/V = 1 Dust volume much smaller than plasma
volume Vd/V � 1

No external confinemen Dust confinement within the plasma by
external fieldDust confined by the neutralizing plasma

background
ES field and the ES pressure zero in the mean

field limit
Mean ES field and pressure finite in the

mean field limit
Dust pressure is purely thermal Dust pressure is the sum of thermal and ES

contributions
Dust and the plasma density can be varied

independentlyDust density proportional to plasma density

TABLE 1. Comparison of the present model with the HF model.

then PES is given by (appendix B)

PES = q2
dN2

d TeTi

q2nV2
d (Te + Ti)

(
1 − Vd

V

)
. (5.3)

From the above discussion it follows that the HF model is valid in the limit Vd/V → 1
while the present model is valid in the limit Vd/V → 0. In dusty plasma experiments
Vd/V ≈ 10−3 to 10−5 (Barkan & Merlino 1995; Trottenberg et al. 2006; Pilch et al.
2007; Thomas 2010) hence neutralization of the dust charge by the plasma background
is vanishingly small and an external field is used in these experiments for the dust
confinement.

The expressions for the Helmholtz free energy, the dust internal energy and the dust
pressure of HF model, in the mean field limit, are obtained in appendix B and are given by

Fd = TdNd[ln(ndΛ
3
d) − 1] +

∑
α

TαNα[(ln n0Λ
3
α) − 1], (5.4)

Ud = 3
2(NdTd) +

∑
α

TαNα[(ln n0Λ
3
α) − 1], (5.5)

Pd = NdTd

Vd
= ndTd. (5.6)

Clearly, in the HF model, the ES contributions are zero in the mean field limit, i.e. the
mean field limit contains only thermal terms; ES contributions arise solely due to finite
dust correlation effects. In contrast, in our model given in (2.3) and (2.4), thermodynamic
parameters have a dominant ES contribution even in absence of dust correlations (or in the
mean field limit).

The ES part of the dust pressure PES has been measured in experiments (Fisher et al.
2013; Williams 2019) where, especially for smaller clouds, it is found to be substantially
greater than the thermal dust pressure predicted by the HF model in (5.6). In fact, it is
of the same order as the pressure predicted by our model in (3.4a) which has substantial
ES contribution (Fisher et al. 2013). Additionally, in the HF model the dust density is
assumed to be proportional to average plasma density for which there is no experimental
justification. In experiments, dust and plasma density can be varied independently
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(Barkan & Merlino 1995; Thomas 2010) as in our model. In table 1 we show the
comparison of the two models.

Finite dust correlation effects are contained in the double summation term of the
effective dust internal energy expression given in (2.9). In the present paper we have
appropriately approximated the double summation term to construct the thermodynamic
limit of dusty plasma. A theory of finite correlation effects, e.g. melting/freezing phase
transitions, sound propagation in correlated medium etc. can be constructed analytically
by suitable approximation of the double summation term or by calculating this term via
MD simulations. This will be the subject of future publications.
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Appendix A. Derivation of internal energy

The expression for the composite internal energy of the system of plasma and dust is
given by

U = 3
2
(NeTe + NiTi + NdTd) + 1

2

∫
ρϕ dr − q2

d

8πε0

Nd∑
j=1

∫
δ(r − rj)

|r − rj| dr, (A 1)

where ρ and ϕ are given by

ρ = −qs

Nd∑
i=1

δ(r − ri) − ε0ϕ/λ2
d, ϕ = − qd

8πε0

∑
j

exp(−|r − rj|/λd)

|r − rj| . (A 2a,b)

Eliminating ρ and ϕ through (A 2) in the second term of (A 1), and performing the
integration with delta function (after subtracting the singular term) we obtain

U = 3
2
(NdTd + NiTi + NeTe) −

(
q2

dNdκd

8πε0

)
+
[

q2
d

8πε9

∑
i

∑
j	=i

(
exp(−κd|ri − rj|)

|ri − rj|
)]

− ε0κ
2
d

2

∫
ϕ2d3r. (A 3)

To evaluate the last integral in (A 3), we eliminate ϕ in the ϕ2 integral in (A 3) by (A 2b),
which gives

ε0κ
2
d

2

∫
ϕ2d3r = ε0κ

2
d

2

(
qd

4πε0

)2 ∫ ∑
i

exp(−κd|r − ri |)
|r − ri|

∑
j

exp(−κd|r − rj|)
|r − rj | d3r.

(A 4)
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The integral is evaluated using spherical polar coordinates (Avinash 2010a) to give

∑
i

∑
j

∫
exp(−κd|r − ri|)

|r − ri|
exp(−κd|r − rj|)

|r − rj| d3r = 2π

κd

∑
i

∑
j

′
exp(−κd|ri − rj|).

(A 5)
Eliminating the integral in (A 3) using (A 4) and (A 5) gives the (2.6) of the main text.

To derive (2.7) of the text, we start with expression of electron and ion entropy in (2.3)
of the text and eliminate the electron and ion densities through linearized Boltzmann
response. The resulting expression is expanded in powers of qϕ/Te ≈, qϕ/Ti < 1 and
terms proportional to ϕ2 are retained to obtain following expression (Hamaguchi &
Farouki 1994):

TeSe + TiSi = 3
2

∑
α

NαTα −
∑

α

TαNα(ln nΛ3
α − 1) − ε0κ

2
d

2

∫
ϕ2 d3r. (A 6)

Eliminating the last integral in (A 6) through (A 4) and (A 5) we obtain (2.7) of the main
text.

Appendix B. Homogenous limit of the Hamaguchi–Faouki model

In the HF model the background electron–ion plasma and dust particles occupy the same
volume V.

The linearized Boltzmann response of HF model is given by nα = n̄α(1 − qαϕ/Tα)
where n̄α = (1/V)

∫
nα dV = (Nα/V),

∫
ϕ dV = 0 and α denotes ions or electrons. With

this linearized response, and using the overall charge neutrality in V given by qdnd =
q(n̄i − n̄e), the net charge density is given by

ρ = −qd

Nd∑
i=1

δ(r − ri) + qdnd − ε0ϕ/λ2
d. (B 1)

The corresponding expression for the dust internal energy Ud of the HF model, without
periodic boundary condition terms, is given by eliminating ρ from (B 1) in (2.2) of the
text, which gives

Ud = 3
2
(NdTd) + q2

d

8πε0

∑
i

∑
j

exp(−|ri − rj|/λd)

|ri − rj| +
∑

α

TαNα[(ln n0Λ
3
α) − 1]

− q2
dN2

d TeTi

q2Vd(Te + Ti)
− Ndq2

dκd

8πε0
. (B 2)

The second last term (which is absent in our model) arises due to qdnd in (B 1). It
corresponds to a cohesive field in the uniform plasma background which, as stated earlier,
neutralizes or confines the negative dust charge. If now we take the homogenous limit in
(B 2), then the second term cancels with the second last term. The corresponding
expressions for Ud and the Helmholtz free energy in the homogenous limit, which now
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contain only thermal terms, are

Ud = 3
2(NdTd) +

∑
α

TαNα[(ln n0Λ
3
α) − 1], (B 3)

Fd = TdNd[ln(ndΛ
3
d) − 1] +

∑
α

TαNα[(ln n0Λ
3
α) − 1], (B 4)

where α denotes electrons and ions. The dust pressure is given by

Pd = NdTd

Vd
. (B 5)

To obtain PES with small corrections of order Vd/V � 1, we calculate ϕ̄ from (5.2),
retaining the Vd/V corrections (middle term) to give

ϕ̄ = −qdndλ
2
d

ε0

(
1 − Vd

V

)
. (B 6)

It has been shown earlier that PES can be obtained directly from the expression PES =∫
qdnd dϕ̄ (Avinash 2010b). Eliminating qdnd in the integral from (B 6) we obtain

PES = q2
dN2

d TeTi

q2nV2
d (Te + Ti)

(
1 − Vd

V

)
, (B 7)

where we have eliminated Debye length using 1/λ2
d = (q2n0/ε0)(1/Te + 1/Ti).
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