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In this paper we study the existence, non-existence and simplicity of the first
eigenvalue of the perturbed Hardy—Sobolev operator —A — i(n —2)%(q/|z|?) under
various assumptions on the perturbation ¢. We study the asymptotic behaviour of
the first eigenfunction near the origin when the perturbation g is ¢ =, 0 < s < 1.
We will also establish the best constant in a Hardy—Sobolev inequality proved by
Adimurthi et al.

1. Introduction

Recall the Hardy—Sobolev inequality, which states that, for n > 3 and for every
u € HE(R™),

2
u
/ \w\2—§(n—2)2/ >0 (1.1)
R™ R™
1

(n — 2)? is the best constant in (1.1) and is never achieved. Recently, there has
been considerable interest in improving this inequality and one of the important
improvements obtained is by Brezis and Vazques [3]. They showed that if 2 is a
bounded domain with smooth boundary and 0 € (2, then there exists a constant

C' > 0 such that
2 1 2 u? 2
Q Q Q

holds for every u € H{(£2). Recently, Adimurthi et al. [1] have proved that if {2 is
as before and R > esupy, |z|, then there exists C' > 0 such that

2 2
Wg_ln_Qz/U_>C/“— 1.2/
/Q\ P =27 | om |z[2(log R/|[)? 1)

holds for every u € H}(£2). Furthermore, if A\(§2) denotes the best choice for C
in (1.2), then A(£2) is never achieved, i.e. the infimum in

2
AN$2) = inf {/ Vu2—ln—22/u—:/u2=1} 1.3
(2) u€H (2) (Z‘ | il ) ozl Jo (13)

© 2002 The Royal Society of Edinburgh

1021
https://doi.org/10.1017/50308210502000501 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210502000501

1022 Adimurthi and K. Sandeep

is never achieved for any domain {2, as before. This means that the following eigen-
value problem,
u
—Au—3i(n—2%— =X u in £,
u—3z(n—2) PFE

u>0 in §2, (1.4)

u € Hy(£2),
does not have a solution for A = A\(£2). Cabré and Martel considered the problem

—Au—3(n— 2)21/% =Au in £2,

u>0 in §2, (1.5)
u € Hy(2),

and showed that, for 0 < v < 1, it admits a solution u, corresponding to the
eigenvalue A, (2), and that when {2 is a ball centred at zero, u, behaves like
|| =2/2[=1+VI=V] pear zero.

Our interest in this direction is two fold. First, an existence/non-existence result
for a perturbed form of (1.4), and secondly, the asymptotic study of u, near the
origin, for general domain 2. Observe that (1.4) has a similar phenomenon, as in
the case of critical exponent problem, where the best Sobolev constant is never
achieved in any {2 # R™. Therefore, as in [2], our aim is to consider the perturbed
form of (1.4),

qu

E ‘2:/\u in £,

—Au—1(n—-2)>=—
u>0 in §2, (1.6)
u € Hy(2),

where 0 < ¢(z) < 1, and look for a necessary and sufficient condition on ¢ so
that (1.6) admits a solution. In this paper, we will give some conditions on ¢ that
assure the existence and non-existence of a solution to (1.6) and extend the result of
Cabré and Martel [5] regarding the asymptotic behaviour of u, to general domains.
Our work is motivated by the results of Brezis et al. [4] and the main results are
the following.

Let ¢ and n be such that

(Hy) 0<¢<1
(Hy) 7 >0, 7€ L>(2\ B(0,R)) VR > 0; and

(Hs) 2
limsup |z|? <log —> n(x) =0, n>=3,
z—0 x

1
|
2 2
limsupx2<log > (log(log >> n(z) =0, n=2.
z—0
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Consider the problem

u € H}(02).

For ¢ and 7 as before, define

Ag) = inf {/ Vu2—ln—22/ /nu2=1}. 1.7
(9) uwe HY(92) [Vl 4 ) Q\x\z 4

Note that, from (1.2"), A(q) > 0.
THEOREM 1.1. Letn >3 and q, n satisfy (H1)—(Hs). Then we have the following.

(1) Problem (Pq) has a solution for A = A(q), provided q satisfies
timint (log & ) (1 - g(z) > — (1.8)
iminf ( log — - —_— .
B RN I (n—2)?
(2) Problem (Pq) does not have a solution for any A € R if ¢ satisfies

2
sup <log ;) (1—-gq(z)) < ﬁ for some R > 0. (1.9)

0<|z|<R
(3) Problem (Pq) always admits a distribution solution that lies in Wol’p(_Q) for
every 1 < p < 2.
(4) Letq=v, 0 <v <1, and let  satisfy the stronger assumption

-1
1
lim sup || <log E > n(z) = 0.

z—0

Let u, be the solution to (Pq) corresponding to A = Av). Then there exist
C1 >0 and Cy > 0 such that

Cy < limi(r)lf || (n=2 /DN =VI=V]y ()

< limsup |z|((*=2/D0=VI=Vy ()

z—0

/N

Cs
and
lim sup \x\(("_2)/2)[1_ v I_V]H\Vul,(x)\ < Oy

z—0

REMARK 1.2. By taking

C
- §>0, R> ,
(log R/ [2])7 sup fa!
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we can see that the problem

—Au—— 22L—/\u——n—22C+ in 2,
=2 oE (= ) O tog R/lal)?
u>0 in §2,
uEH&(Q)

has a solution if and only if 0 < § < 2 or § = 2 and C > 3/(n — 2)%
When n = 2, the corresponding Hardy—Sobolev inequality is given by

2
>0 ——— : .
/Q |Vu|* > C/Q PEYIIGIE dz Yue Hy(£2), (1.10)

where R > esup,c{|z|}. In general, we have, in R Vu € Wy (£2),

/Q Val* > ("; 1>n/0 \x\"(lo‘g‘;/\x\)n’ (1.11)

where (2 is a domain in R” containing the origin and R > e*/" sup,coflz|}. Asin
the higher-dimensional case, we can get the following improvement in (1.11). Let {2
be as before, R > esup,co{|z|} and Ry > (e)?™sup, o {|z|}. Then there exists
a constant C' > 0 such that

[y = (452) |, e
p ) Jo T tog R

Jul” /
+C/ﬂ |z["(log R/|z])" (log(log Ri/|x]))" (1.11)

(see [1,6] for details (in these references, R is taken to be Ry, but it can be easily
modified as (1.11))).

Regarding (1.11), we have the following result.
THEOREM 1.3. ((n — 1)/n)™ is the best constant in (1.11) and is never achieved.

REMARK 1.4. As a consequence of theorem 1.3, we obtain the best constant in (1.2”)
as C' = 1.
Next we consider the two-dimensional analogue of (Pg),

1 qu
4 |z|*(log R/|z|)?
u > 0’ (Pq)

u € Hy(9),

—Au — = Aju in {2,

where R > esup,co{|z|}. We also define A(¢) in this case as

R R A TR o Y AT S

Again, A(¢g) > 0, thanks to (1.11').
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THEOREM 1.5. Letn =2 and q, n satisfy (H1)—(Hs). Then we have the following.

(1) Problem (P,) has a solution for A = \(q), provided q satisfies

2
11m1nf<log <log =z >> (1 —g(x)) > 3. (1.13)
(2) Problem (P,) does not have a solution for any X € R if q satisfies
2
sup <log <log >> (1 —gq(z)) <3 for some Ry > 0. (1.14)
0<|z|<R1 ‘ ‘

(3) Problem (P,) always admits a distribution solution that lies in Wol’q(_Q) for
every 1 < g < 2.

4) Letq=v, 0 <v <1 and let n satisfy the stronger assumption
Ui

—1
1
lim sup |z| <log<log E >> n(xz) = 0.
z—0

Let u, be the solution to (P,) corresponding to X\ = A\(v). Then there exist
Cy > 0 and Cy > 0 such that

[—14+vI=7]/2

< T 1
Cy < hgn_}(r)lf(log x> uy, ()
R [—1+y/T=7]/2
< limsup <log —> uy ()
z—0 ‘Z“
<G (1.15)
and
R [-1+vT=7]/2
limsup(log —> |z||Vu, (z)| < Cs. (1.16)
x—0 x

Finally, we have the following result, which establishes the simplicity of the first
eigenvalue of (Py) and (Pg).

THEOREM 1.6. Let §2 be a bounded domain with smooth b_oundary, let q, n sat-
isfy (Hi) and (Hz) and let ui,us € HY(£2) solve (Py) (or (P,) when n = 2), with
A= A(q). Then uy = muq for some m > 0.

REMARK 1.7. As in [4], we can extend our results to more general equations of the

form
—div(pVu) — 2(n — 2)2 \qP = Anu, (1.17)
where p and ¢ satisfy, p € C%(£2), p > 0 in 2 and
|z|? 2 q
0<Q =—=———=2pAp—|V —-=<1
Q pg(n_Q)g( pAp — |Vpl|*) ’
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This follows since if u satisfies (1.7), then v = ,/pu satisfies

—Av — —(n —2)2 ‘QP = %v

REMARK 1.8. In the sequel, we will extend our results to the p-Laplacian.

2. Preliminary lemmas

We start with a few lemmas needed in the construction of sub and supersolutions.
Here we like to mention that Chaudhuri [6] has used a test function similar to the
one used in lemma 2.1 to prove some non-existence results.

LEMMA 2.1. Letn > 3 and

)
1
u(z) = |z| (=D (log— |, 0<s<1, JeR.
||

Then
(i) for0 < R<1,u€ HY(B(R)) ifand only if s<1 ors=1and § < —%

(i) forxz #0,

L PO d(n—2)(s—1) (6 —-1)
Proof. By direct calculation, for z # 0,
Uy B 0
Vi) = g | 4020~ e

Hence u € H*(B(R)) if and only if

1\20
/ \x\_("_2)5_2 (log—> < o0
B(R) |z|

and this happens if and only if s <1 or s =1 and 6 < —%. This proves (i).
Differentiating again, we obtain

d%u u 1 )
2t = |20~

0 x?
log 1/|z|

> [%(n—2>s+

z|?
x?

i(n—2)s+

5 2
log 1/|z|

) x? }
? L(log1/[z[)? fa?

Hence

L TR Sn=2s=1) | 561
Au(z) = F{Z(H—Q) s(s —2)+ Tog 1/]7] + (logl/x)J.
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This proves the lemma. O
Next we will prove a two-dimensional version of lemma 2.1.

LEMMA 2.2. Letn =2 and
5 5
1 R 2
u(x) = (10g£> (log<log—>> ., R>0, 0,6, €R.
|| ||
Then

(i) for 0 < Ry < e 'R, u € HY(B(Ry)) if and only if 61 < & or 61 = 4 and
52 < -4

(ii) for0 < |z| <e 'R,

AU(Z‘) = 01 (51 — 1) +

55(26, — 1) 5y(85 — 1) }

|z[?(log R/|])? { log(log /[]) (10g(10gR/\w\))(222'

Proof. By direct calculations, we obtain

61—1 d2 d2—1
Vu(z) = — | log — i 01| log logE + 02| log logE 2
|z El || xzf?
Hence
/ IVul? < 0o
B(R)

R1 R 251—2 R 262d7’
[ (s3] (elio)) 5
0 T T

is finite, and this happens if and only if §; < % or 41 = % and 0y < —%. This
proves (i).
Differentiating again, we obtain

if and only if

<

2

s E o] o (o)
ps (10g<1°g R)fz_l} (ﬁ B Qw_xi>
) o)
- + 62 (26, — 1) (1°g (1°g % >§
+82(02 1>(10g(1°g£>>52 } ;

_ u |: 52(251 — ) 52 52 — 1) j|
|z[?(log R/|])? log(log R/|z[) ~ (log(log R/|x[))

This proves the lemma. O

d1(01— 1)+
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LEMMA 2.3. Letn >3 and v(z) = |2|*®), where
a(@)=45n-2)[-1+VI—s|+z[=a+z], 0<s<L.
Then
(i) for0 < R < 0o, v € HY(B(R));
(ii) forx #0,

nt(n—1logla)  (n—2ao

Av(z) = v(z) (

] |2
22 1
+(10g‘1“)2+ (CVO_._‘;L'D + (CVO_._‘:L") og\x\ ) (23)
] ]
Proof. We have
v(z) = 2|
Taking logs, we obtain
logv = a(z)log|z|.
Also,
Viegv = Vv (2.4)
v
and
Av  |Vol?
Al = — — . 2.5
oo =20 (2.5)
Combining (2.4) and (2.5), we obtain
Av = v[Alogv + |Vlogv|?]. (2.6)
Now
x x x
Vlogv = log|z|Va(z) + Of(x)W = (log \x\)m + (a0 + W)W (2.7)
and
- 1)1 -2
Aloge = 1+ (1= Dloglal) (1= 2o 28)

] x|

Hence (i) follows from (2.4) and (2.7). Now, substituting (2.7) and (2.8) in (2.6),
we obtain

Ap — | (= Dlogla])  (n—2ao

(o0 + [2)? | 2(e0 + |a]) log ||
— +
|| ||

This proves (ii) and hence the lemma. O
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Again, we have the two-dimensional version of lemma 2.3.
LEMMA 2.4. Let n =2 and v(z) = (log R/|z|)*®), where
a@)=21—-VI-s]—|z|=ao— |z, 0<s<l, R>0.
Then
(i) for0 < Ry < e 'R, ve HYB(Ry));

(i) forxz #0,
o2 = vl at —ap B log(log R/|z|) .
0(e) = o) oo ~ Ao 29)

where o(1) goes to zero as |z| — 0.

logv = a(z) <log <log %) >

Proof. We have

By direct calculation,

o [loslogR/ls) ___afa)
vios g e AT 210
S —log(log R/|z|) 2 B a(x)
Blos g Fog R/ ePoifiay? M
Hence, substituting (2.10) and (2.11) in (2.6), we obtain
Av = v[Alogv + |Vlogv|?]
— o(x) [ —log(log R/|x|) 2 B a(z)
] || |z[(log R/|z[)  |z[*(log R/|x[)?
R\Y . (a@)?  2a(x)(log(log R/|z)
+ (loe{1o0 7)) + Foing e + 2 ToCog 74

@800 les(log B )

=260 gy — 4+ oE R
This proves (2.9) and hence the lemma. O

LEMMA 2.5. Let R>1 andn > 2. Then

. . n—1Y
inf { |Vu|™ // < — ), (2.12)
weWy ™ (B(1)) B(l) B(1) \95\ (log R/|z|)™ n

where B(1) is the unit ball in R™.

Proof. For 0 <l < 1and (n—1)/n < 4§ <1, define

|z <1,

log R/1) — (lo R‘s, 0< <
I < < 1.

(log R/|z[)* — (log R)°, ||
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Then u is well defined, © = 0 on 9B(1) and

0< x| <,

07
Vet = {—6(logR/x)‘s_1($/x2)a I< e <1.

Hence, by the choice of §, u € W, " (B(1)). Now

1 loe R nd—n
/ |Vu|™ zwn_lén/ %dr
B(1) l

r

n néd—n+1
= wn_16— log — — (log R)™—"+1|. (2.13)
(nd —n+1) l

Here, w;,_1 denotes the surface area of an (n — 1)-dimensional sphere,

/ Jul
By |z[*(log R/|z[)"

(e - tonn)” [ o

n 1 d—n—30k
1 (n )
+w, § (_1)k (Z) (log R)ké/ ( og R/T) dr
k=0 !

T
B n (_1)k n s R né—kd—n+1
= W1 Z CEAY (log R)™ ( log 7
k=0
- (=D* n ks
1
+“’"—1k§ w1 &) le )
R nd—n—=ok+1
% |:<10g7> _ (log R)n5—n—5k+1j|

’I’L(S néd—n+1
= log —
Wn-1 {(n " 1)(n0 —n + 1) (Og ] >

n R nd—kd—n+1
+ Z Cy.i.5(log R)* <log 7)

k=1

+ Cy,5(log R)"‘S_"“},

(2.14)

where ¢, 5 and C,, s are finite constants bounded uniformly with respect to ¢ close
to (n — 1)/n. Now, from (2.13) and (2.14), we obtain

|ul”
Vu "//
J v 501y o Tog(log R/Ia)"
_(n—1 511 — log R ot
N n log R/1
+

~ IOgR néd—n+1 n ~ IOgR kdéq —1
<fecalagmm)  rnomlagmm) |

(2.15)
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where (:’n_,(;, én7k75 are finite constants bounded uniformly with respect to ¢ close
to (n—1)/n. Now, by choosing § close to (n —1)/n and then [ close to zero, we can
make the right-hand side of (2.15) as close as we want to ((n — 1)/n)™. This proves
the lemma. O

3. Proof of theorems

3.1. Proof of theorem 1.1

STEP 1 (existence). Let ¢ satisfy (1.8), 0 < s < 1 and A(sq), A(g) be as in (1.7).
Since the operator —A — 4(n — 2)%(sq/|z|?) defined on H{(£2) is coercive, there
exists us € Hg(£2) satisfying

SqUg .
—AUS - i(n - 2)2 \$\2 = A(Sq)/r](x)us m 'Q’
us >0 in §2, (3.1)

sl m2(2) = 1.

We will prove the existence of a solution to (P4) by showing that u, converges in
H{(£2) to uy (say) and uy satisfies (P;). We proceed as follows.

Let
1\ %
uzx-wwﬂé%—ﬂ ,
||

where &1 is chosen so that

401(61 + 1)

2
1
1 . _
5 <6; and llgl_}(r)lf<10g—> (1 —q(z)) > (n—2)2

]
Then, from (2.1), we obtain

~Au—t(n- 2)2% — Asq)(x)u
=i Y g 1))

- n@)mq)ﬁ(h}g%fﬂ
=0,

if |z| is small enough, because of the choice of 1, and (Hs). That is, there exists an
R > 0 such that B(R) C {2 and

qu

1 2
—Au —3(n—2) FE

— A(sg)n(z)u >0 in B(R). (3.2)

Now, using a standard elliptic estimate, we can find an M > 0 such that us < Mu
on |z| = R and Vs € (0,1). Let wy = uy — Mu. Then wl € H}(B(R)) and,
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from (3.1) and (3.2), we obtain

qu

2sqws = A(sg)n(z)ws < _%( —s)M(n — 2)2‘ 2 in B(R).

Testing the above relation against w}, we obtain

[ -do-ops [ o xeo [ nwy
B(R) B(R) || B(R)

—Aw, — (n -2)

+
<-l1—s)Mn-— 2)2/ % <0
B(R) ||
Hence, from the definition of A(sq), we get that the function
wl  in B(R),
We = .
0 in 2\ B(R),
is an eigenfunction of (3.1). Hence, by the strong maximum principle,
wi =0 in B(R),
ie.
us < Mu in B(R). (3.3)

Since us is bounded in Hg(£2), by passing to a subsequence if necessary, we may
assume that us converges to u; weakly in H}({2), strongly in L?(£2) and pointwise
almost everywhere in {2, as s — 1. We know from (3.3) that

2 2 2
2 < M?P— il 5 and / u_2 < 0
| || B(R) ||

Hence, by the dominated convergence theorem,

2 2
/%—)/% as s — 1 (3.4)
Q Q
/Qnui — /Qnu% as s — 1. (3.5)
Now, from (3.1), we have

[ 19 = 0= 2% [z ‘2 = o) | e (3.6)

and

Taking the limit as s — 1 in (3.6) and using (3.4), (3.5), the weak lower semiconti-
nuity of H}(£2) norm and the fact that A(sq) — A(g) as s — 1, we obtain

qu’
/Q\Vulﬁ_i(n—Q)z/ ‘; < q)/ 77“1-

Therefore, from the definition of A(g), we obtain
u?
vl = 3m=27 [ 2L <) [ e (3.7)
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Hence, from (3.4), (3.5), (3.6) and (3.7), we obtain
nU§}
0

2
: 2 _ 1) Ly _ 92 qus
lim Q\Vus\ _2%{4@ 2)3/‘ =
q’[L
~tn—2 [ T xo [ o
:/ ‘VU1‘2,
7

ie. us — uy in H}(£2) and lusllma 2y = llullgaey = us converges strongly in

H}(£2) to uy. Hence u; solves

_Aul (’I’L - 2)2 ‘ ‘2 = /\(Q)n(x)ul in 'Qa

up =0 in {2,
U € Hé(())

Also, by the strong maximum principle, u; > 0 in (2. This proves the first part of
theorem 1.1.

STEP 2 (non-existence). We will prove the non-existence by contradiction. Let ¢
satisfy (1.9) and assume that (P,) has a solution u; € H{}(£2), for some A. Then,
by Hardy’s inequality (1.1), A is greater than or equal to zero. We claim that there
exist m > 0 and R > 0 such that

1\-1/2
uy > mlz| (=272 <log E > in B(R).

This gives a contradiction, since, by Hardy’s inequality,

u? 1 1\
—2 € L*(B(R)), but / |z| " (log—> = 0.
|| B(R) ||

Proof of claim. We cannot use |z|~("=2/2(log 1/|z|)~/? as a test function because
it is not in H'(B(R)), for any R > 0. So, for s > 1, let us define

—s/2
bula) = laf 0202 (g )
X

Let R be as in (1.9). Then ¢ € H'(B(R)) and, using (2.1), we obtain

qos
|2[?

— 1(p—9)2 bs — alz o ’ (s +2)
=100 =2 i (iog 1/7a])2 {“ a ”(lg > n —2)2}“' (3.8)

Now, using the strong maximum principle, we can find an m > 0 such that

—A¢s — 2(n—2)°

up = me, onlr|]=R forl<s<2.
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Let ¢s = m¢s — ui. Then ¢ € Hi (B(R)) and, by (3.8) and (P,),

— A, — 1(n —2)? “1;72 <0 in B(R).

Testing the above relation against ¥}, we obtain

s

[ -dmeop [ AR
B(R) B(r) |7l

Therefore,

/ ‘vw+‘2 < l(n _ 2)2/ Q(¢3)2
B(R) 3 * B(R) |2[?

e[
(n=2) /B(R> EE

<

=

Hence, by Hardy’s inequality,

(w—%— 2
/ Tyt = i(n—2>2/ s )
B(R) B(R) ||

and this implies 97 = 0 in B(R), because equality is never achieved in Hardy’s
inequality, i.e.

u; = m¢s in B(R) Vse (1,2).

Taking the limit as s — 1, we obtain
1\ 2
uy = m|z|" (=272 <log z > in B(R).

This proves the claim and hence the second part of theorem 1.1. O

STEP 3 (existence of W,” solution). Let 0 < v < 1 and v, satisfy (P,,), with

fQ v2 = 1. As mentioned before, v, exists because —A - %(n —2)2(vq/|z|?) is coer-

cive on H}(£2). We will show that v, — vy in Wy P(£2) ¥p < 2. First, we will prove
the following estimates on vy and Vuy.
Fix 0 such that 0 < § < 1. Then there exists an R > 0 such that, for v € (%, 1),

&
1
vnglx_(("_2)/2)”<log—> in B(R), (3.9)
X
1 &
|V, | < My|a|~((n=2)/2v= 1<1og > in B(R), (3.10)

where M; and M are constants independent of v.
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Proof of (3.9). Let &, = |z|~("=2/2¥(log 1/|2|)°. Then, for R small enough, we
have, from (2.1),

- a6 - 3 - 2B awang,
& dn—2)(1-v) (19
Tz In-2%w2-v—q)+ log 1/ * (log 1/|z[)? ~Alg)lel

>0 inB(R) Vve(0,1).

Fix R > 0 such that the above relation holds and then, using the elliptic estimate,
choose M; > 0 so that z, = u, — M1&, < 0 on |z| = R for % < v < 1. Then
zb € HY(B(R)) and

—Az, — i(n— 2)21/‘(12‘; - Mvg)nz, <0 in B(R).
x
Then, as before, we obtain
+12
o< [ vsp—do-2w [ L2 e [ <o
B(R) B(R) |z| B(R)

This shows that the function
7 27 in B(R),
710 in 2\ B(R)

is an eigenfunction of —A — %(n — 2)2v(q/|z|?) = An. Hence, by the strong maxi-
mum principle, z; = 0 in 2, i.e. zF = 0 in B(R). This proves (3.9). |

Proof of (5.10). To prove our estimate on |Vuvs|, we proceed as in [4]. Fix
z € B(3R), where R is as in (3.9). Let r = 3|z| and define

O,(y) = v, (z+ry), yeB(1).
Then v, satisfies
_Aﬁu (y) =Cy (y){}u (y) in B(l)a

where |c,(y)] < C Vy € B(1) and v € (3,1) and C is independent of z. Hence, by
the standard elliptic estimate,

IV, (0)] < Ci([|Du]lLo (B(1)) + [[AD || L (B (1))

<C
S CL(1+ O)owll Lo (B (1)),

where C} is independent of v and x. Writing V4, in terms of Vv, and using (3.9),
we obtain, for z € B(3R),
1V
Vo (o) < Mol -2/ (1og ).
T
This proves (3.10). O
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From the above two estimates (3.9) and (3.10), it follows that v, is bounded
in WO P(2) Vp € [1,2). Hence we Can find a subsequence v, — 1 such that v,
converges weakly to vy (say) in Wy P(£2) for all p € (1,2) and pointwise almost
everywhere. Also, by the standard elliptic estimate, we can assume that

v, —v; in CL_(2\0).

n

Let 1 < p < 2 and choose p; and ¢q; so that p1,¢1 > 1, pp1 <2 and 1/p1 +1/q1 = 1.
Then

1/p1 1/p1
/ (vu”+Wu”)<B(r)”‘h<</ ) +(/ v) )
B(r) B(r) B(r)

Combining this fact with the CL_(£2\0) convergence of U, to v1, we obtain
||vl,n||W1p — ||v1||W1 », and hence v, — vy strongly in WyP(£2). Since v,, sat-
isfies equatlon (P l,q) with [ v2 vy =1, passing to the limits as n — oo, we obtain

—Av; — %(n — 2)2‘ B = Ag)nv1 in £,

v1 20 in {2,

/vf:l.

Since [ v =1, v1 is not identically equal to zero. Hence, by the strong maximum
principle, v; > 0.

STEP 4 (asymptotic behaviour). Let 0 < v < 1 and u, be as in the statement of
theorem 1.1. Define ¢}, = ||~ 2=1H+VI=¥1/2 Then, from (2.1), it follows that

¢1
ki

Let 0 < R < dist(0,32). Choose C; > 0 so that u, > C1¢L on |z| = R. As before,
define

—A¢, — 3(n—2)*v

=0. (3.11)

w, = 01¢)11, — Uy.
Then w) € H}(B(R)) and

—Aw, — *(n— 2)2 E ‘2 = —-Av)nu, in B(R).

Hence

(wf)?
0</ \Vw:f\z—%(n—Q)%/ L
B(R) B(R) ||

=-\(v) N, W
B(R)

Therefore, w; = 0 in B(R), i.e.

C16! <u, in B(R),
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ie.

Cy < lim i(I)lf e e e T E B
Now, to prove the other inequality, we define
¢ () = |z,

where

a(a) = $(n— 2)[~1+ VI 7] +[a| = ap + lal.

Then, using identity (2.3), we obtain
%)

jz?
(2)

= ﬁ [—(ao +z])? = (n = 2)ag — 2(n — 2)%v

- A0~ 4 -2 ()67

n x((n - Dlog - —n> ~ Ja[2(log|«])?

1
+ 2|z|(ao + |2|) log —

=AWl

(2)
- r_ |:—(a(2) + (n - Q)CV() + %(n - 2)27/)

1 1
+ |z ((n —1)log — — n — 2ap + 2 log ?> - /\(I/)?].Z‘2j|

]
)

‘ ‘ [(1—0—(n—2)\/1—3)log p

>0 in B(R) for R small enough.

~ (n+2a0) - A(v)nx}

Now, by choosing Cy > 0 so that u, < 02(1)5,2) on |z| = R and proceeding exactly
as we did in the proof of (3.9), we obtain

< Cy0? in B(R),

i.e.
lim sup m(n—2)[1— v 1_”]/2ul,(x) < Cs.

z—0
Now we can estimate |Vu,(z)| for z near zero exactly, as in the proof of equa-
tion (3.10), using the fact that u, < 20 in B(R), to obtain

lim sup || (" =PO=VI=/241 gy, ()] < C3  for some C3 > 0.

z—0

This proves the fourth part of theorem 1.1 and hence theorem 1.1.

3.2. Proof of theorem 1.3

First note that if u € Wy"(B(R)), then the function up defined by ugp(z) =
u(Rx) is in WO "(B(1)) (when B(1) and B(R) denotes balls in R"™ with centre at
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zero and radius 1 and R, respectively) and

I G _ uml®
‘VU // = ‘VUR‘W
B(R) B(r) []"(log eR/[a])" B(l) s 2" (oge/la)”

This shows that the best constant in (1.11) is same for all balls B(R) and, from
lemma 2.5 and Hardy’s inequality (1.11), it is clear that this constant is (n—1)/n)".
This proves the theorems when (2 is a ball. Now consider the general case when (2
is not a ball. Let R be as in (1.11). Choose R; > 0 so that B(Ry) C {2. Then, by
using the scaling argument as before, we obtain

ul™
inf /Vu"// | }
ueW&"m){ V™[ ), Tertiog Ry
: I
inf { Vu"//
uewé’”(B(Rl)) B(R1 B(Ry) |z (log R/|])™

|u|™
inf { Vu"//
ueW&"<B<1>> B<1> B |7 (log(R/R1)/|z|)"

— 1
(n > because we can use (2.12), as R/R; is greater than one.

/N

n

This, together with Hardy’s inequality (1.11), proves that the best constant in (1.11)
is ((n—1)/n)". Also, it follows from (1.11") that the best constant is never achieved.
This completes the proof of theorem 1.3.

3.3. Proof of theorem 1.5

This proof is very much similar to that of theorem 1.1. We will be using lem-
mas 2.2 and 2.4 in place of lemmas 2.1 and 2.3, respectively. We will be using the
same notations for sub and supersolutions.

STEP 5 (existence). Let ¢ satisfy (1.13), with A(g), A(sq) as defined in (1.12) and
R = sup, . o{|z|}e. As in the proof of theorem 1.1, choose u, € H{(£2) such that

1o dUs
][ (log R/|2])?
ug > 0,

—Aug — A(s@)nus in £2,

(3.12)
lusll a2y = 1.

We will prove the existence of a solution to (If”q) by showing that us — uq strongly

in HY(Q).
o= (o) (osony))

Let
where J is chosen so that § > % and

lim inf (log (log %) >2(1 —g(2) > 45(5 + 1).
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Then, for R small, from (2.2), we obtain in B(R)
1 qu

— A I P R O
1 u PR ) B 052
= TP R |~ Y Toglog Ryan)z A0l (1%”
> 0. (3.13)

Now, proceeding exactly as in the case of theorem 1.1, we obtain, for all s € (0, 1),
us < Mu in B(R) (3.14)

for some M > 0. Using the boundedness of u, in HE(§2), choose u; € H}(£2) such
that us (or a subsequence if necessary) converges to u; weakly in H{ (£2), strongly in
L?(£2) and pointwise almost everywhere in 2 as s — 1. Now, using the dominated
convergence theorem, and with the help of (3.14), we obtain

2 2
qus qu’l
— as s — 1 3.15
/, 2 (log R/J2]2 /. 2 (log BJ])? (3.15)
and
/ nu? — / nu?  as s — 1. (3.16)
(] (]

Now, multiplying (3.13) by us, integrating by parts and passing to the limit as
s — 1, and using (3.15) and (3.16) as in the case of n > 3, we obtain

hm \VUS\2—>/ |V |?,

and hence u; — u; strongly in Hg(£2). Now the existence of a solution to (P,) for
A = A(q) follows by passing to the limit as s — 1 in (3.12) and using the strong
maximum principle.

STEP 6 (non-existence). Let g satisfy (1.14) and assume that (P,) has a solution
u; € HE($2) for some A. Then, by Hardy’s inequality (1.10), A > 0. We claim that

> m (1o )”2(10g(10g R))‘“ in B(Ry)

for some m > 0, and R; > 0. This gives a contradiction because, by (1.10),
ug

|z[?(log R/|x])?

—1 —1
/ (log E) (log(log E)) || 2 = oo.
B(R1) |z| ||

Proof of claim. Define

€ L*(B(Ry)) for R <R,

but

Then, for Ry < R, ¢5 € H}(B(R1)).
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Let Ry > 0 be as in (1.14). We can assume that R; < R. Now, using (2.2), we
obtain in B(R1)

o s(s+2)
|z[2(log R/|x])? (log(log R/|x]))?

Now, choosing m > 0 such that u; > m¢, on |x| = R; for 1 < s < 2, and proceeding
as in the case of n > 3, we obtain

up = me¢s in B(Ry) Vse(1,2).

1 qobs

T e (log R/a])? =)=

1
_A¢s - - Z

Taking the limit as s — 1, we obtain

R\/2 RA\\L2
uy = <log > (log(log >> in B(Ry).

This proves our claim and hence the non-existence. O

STEP 7 (Existence of Wo solution). Let 0 < v < 1 and let v, satisfy (P,,) for
A = A(vg), with [, vZ =1. We will show that v, — v in WyP(2) ¥p < 2. First,
we will prove the following estimate on v, and Vuv,.

Fix 0 < § < 1. Then there exists an R; > 0 such that, for v € (%, 1),

v < (1og R)”/2(10g(10g )) in B(R,), (3.17)
|V, | < My|z|~ 1<1og R>V/2<log<log§>>5 in B(Ry), (3.18)

where M; and M are constants independent of v.

) = (1 e )V/z (tos {10 e ) )5

Then, for Ry small enough and v € (0,1), we have, from (2.2),

Proof of (5.17). Let

1 qgu
T Ve e
_ gl/ (1—1/)
~ TeP(log B/Ja])? {W ~V Ot g B

—6(1_6) — Xrvg)n|z)? (1o £2
" Tiogtog 7/l (1 gxﬂ

>0 in B(Ry).

Fix such an R;. Now, choosing M7 > 0 so that v, < M1&, on |z| = Ry forv € (%, 1),
and proceeding as in the case n > 3, we obtain

Uy < M1§V in B(Rl)
This proves (3.17). O
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Proof of (3.18). Let Ry > 0 be as in (3.18). Fix z € B(3R). Let r = 1|z| and
define
O (y) =vu(z +ry), y€ B(1).
Then, as in the proof of (3.10) we obtain for v € (%, 1)
[V, (0)] < Cl|0u |z~ (B(1))

where C is independent of v and z. Using (3.18) in the above estimate, we obtain

|V, ()] < Ma|z| ™" <log ‘R‘ >V/2 <log <log ‘R‘ > >5

for some Ms > 0. This proves (3.18). O

From the above two estimates (3.17) and (3.18), it follows that v, is bounded in
VVO1 P(£2) Vp € [1,2). Now, arguing exactly as in the case n > 3, we can show that,
for a subsequence of v converging to 1, v, — v1 (say) in W() (_Q) Vp € [1,2) and
vy is a distributional solution to our equation (IP’ ). This proves the third part of
theorem 1.5.

STEP 8 (asymptotic behaviour). Let 0 < v < 1 and wu,, be as in theorem 1.5. Define

[1—VT=7]/2
o = <1°g R>

Then, from (2.2), we have

¢1
—ApL —ty— ¥ —
* z?(log R/|z|)?
Let 0 < Ry < dist(0,042). Choosing C; > 0 such that u, > C1¢} on |z| = R,
and proceeding as in the case of n > 3, we obtain

Cl¢ U, in B(Rl)a

ie.

[—14+vI=7]/2
Cy hm 1nf <log z > uy, ().

1—-/1—v]/2—|z| o —|z|
o7(0) = (e R> = (e 5)

Then, from (2.9), we obtain, for R; small enough,
(2) ©
- v n¢)y
 TPlog R/ )

= ¢ {_(% —ap+3v) | log(log R/|x])
|z|?(log R/|x|)? ||

Now define

— A(z)(?)

(1 +0(1)) = Aw)n

= 612 |1+ o(1) 105 (108 15 ) = Awie]
>0 in B(R).
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Now fix R; small enough so that the above inequality holds and then choose Cs > 0
such that u, < 02(1)5,2) on |z| = R;. Proceeding as in the case n > 3, we obtain
u, < Cop?  in B(Ry),
ie.

R [—1+vI=7]/2
> uy(z) < Cy

lim sup <log W
x

z—0

This proves (1.15).
Now, estimating |Vu, (z)| as in the proof of (3.18) and using the above proved
estimate on u,, we obtain

[—14++/T=7]/2
lim sup (log ?> |z] - [Vu,(z)| < Cs
z—0

for some C5 > 0. This proves (1.16) and hence theorem 1.5.

3.4. Proof of theorem 1.6

We will prove the theorem when n > 3. For n = 2, the proof goes word by word.
Let w1, us be as in theorem 1.6. Then, by the strong maximum principle,

. Ouy/ov(x)
i oD (3:19)

and there exists a point xg € 042 such that
_ Ouy/0v(xg)

= 3.20
" D o0 (wo) (3:20)
We claim that u; = mus. Suppose not. Then the function u, defined as
U = Uy —musy,
is in H{(£2) and satisfies
1 2 qu .
—Au—3(n—2) oF = Mg)nu in £2. (3.21)

Since u is not identically equal to zero, at least one of u™ or «~ is not identically
equal to zero. Let it be ut. Then, testing (3.21) against v+, we obtain

vt —dm-22 [ L2 ) [t <o
. e .

Hence, from the definition of A(g), u™ satisfies

_Aut 1 _22£:,\ + in 0
ut —1(n )x‘2 (@nu™  in £,

uT >0 in 0,
ut € H}(02).

(3.22)
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Hence, by the strong maximum principle, v+ > 0 in {2, and consequently u =

u™ > 0 in £2. Similarly, when u~ is not identically equal to zero, we obtain u < 0 in
2. Thus we have either u > 0 or v < 0 in {2. Therefore, u or —u solves (P;). Again,
by the strong maximum principle, du/dv(x) is not zero for any z € 92. But we
have, from (3.20), du/dv(zg) = 0, which is a contradiction. Hence u; = musy and
finishes the proof of theorem 1.6.

References

1 Adimurthi, N. Chaudhuri and M. Ramaswamy. An improved Hardy—Sobolev inequality
and its applications. Proc. AMS 130 (2002), 489-505.

2 H. Brezis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving
critical exponents. Commun. Pure Appl. Math. 36 (1983), 437-477.

3 H. Brezis and J. L. Vazques. Blow-up solutions of some nonlinear elliptic problems. Revista
Mat. Univ. Complutense Madrid 10 (1997), 443-469.

4 H. Brezis, M. Marcus and I. Shafrir. Extremal functions for Hardy’s inequality with weight.
J. Funct. Analysis 171 (2000), 177-191.

5 X. Cabré and Y. Martel. Weak eigen functions for the linearization of external elliptic
problems. J. Funct. Analysis 156 (1998), 30-56.

6 N. Chaudhuri. PhD thesis, Indian Institute of Science (2001).

(Issued 18 October 2002)

https://doi.org/10.1017/50308210502000501 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210502000501

