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Clusters in dense-inertial granular flows
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In the dense-inertial regime of granular flow, the stresses scale inertially, but the flow
is dominated by clusters of particles. This paper describes observations of cluster
development in this regime. Clusters were seen to form for both elastic and inelastic
reasons: elastic when the shear rate pushes the particles together faster than the
contacts can elastically disperse them, and inelastic as large energy dissipation leads to
cluster formation. Furthermore, large particle surface friction leads to cluster formation
both for structural reasons, because it generates stronger clusters, and for energetic
reasons, as friction dissipates energy. However, the most intriguing result of this work
is that clusters appear to have little effect on the rheology of the dense inertial
regime, which suggests that one can model the dense inertial regime with entirely
collisional hard sphere models, and not have to worry about the complexities of
modelling clusters. But at the same time it presents a physical puzzle, as one would
normally expect the rheology to be strongly dependent on microstructural features
such as clusters, particularly as they present an elastic pathway for internal momentum
transport. There is no completely satisfying explanation for why the clusters can be
ignored, but two possibilities suggest themselves. Because the clusters are short-lived,
it is possible that they do not survive long enough to make a significant contribution
to the momentum transport. And it is also possible for the granular temperature that
governs transport between clusters to act as a rate-limiting bottleneck that is in overall
control of the momentum transport rate.
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1. Introduction
Dense-inertial flow describes a regime of granular flow in which globally the

material behaves inertially, but the particles exist not as individuals but in short-lived
clusters. (This regime was called the ‘inertial non-collisional’ regime by Campbell
(2002), a name that is more accurate than ‘dense-inertial’ but more awkward.) It is
a subregime of the inertial regime of granular flow. Broadly, granular flows can be
divided into elastic flows, which are dominated by force chains, and inertial flows,
which are not. The stresses in an elastic flow naturally scale with the interparticle
stiffness k as τd/k, where d is the particle diameter. Inertial flows demonstrate
Bagnold scaling, τ ∼ ρd2γ 2, where ρ is the particle density and γ is the shear
rate (Bagnold 1954). The elastic regime can be further subdivided into the elastic-
quasistatic subregime, in which the stresses are independent of shear rate, and the
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FIGURE 1. Inertially scaled yy stress, τyy/ρd2γ 2, as a function of the parameter k/ρd3γ 2.
One can clearly divide the flow into the elastic zones, which should plot with a slope near one,
and the inertial zones where the scaled stress is nearly constant. Here ε = 0.7, µ= 0.5.

elastic-inertial subregime, where the stresses increase linearly with the shear rate above
the quasistatic baseline. (There is no difference in the underlying physics of the two
subregimes, only that inertia effects are negligible in the elastic-quasistatic regime and
become noticeable in the elastic-inertial regime.) Likewise the inertial regimes can
be divided into the dense-inertial, dominated by clusters, and the inertial-collisional
regime, in which the particles interact collisionally.

Figure 1 shows the inertially scaled τyy stress as a function of k∗ = k/ρd3γ 2 from
a simple shear flow. (In this paper, x represents the main flow direction, y is the
direction of the velocity gradient, and z is the out-of-shear plane coordinate.) This
is similar to a plot in Campbell (2002), but is taken from simulations performed
for this paper and extends the Campbell (2002) data to much larger values of k∗. It
is easy to differentiate the elastic behaviour, with a slope near 1, and the constant
inertial region. (Note that ν = 0.58 is a transitional concentration and shows a slight
increase in τyy/ρd2γ 2 with k∗. This can be understood by examining time traces of the
instantaneous stress that show that force chains sporadically form at ν = 0.58, even at
the largest values of k∗ studied in this paper. Such a plot for the data in figure 1 can
be found in the supplementary material for this paper, available at journals.cambridge.
org/flm.) The inertial regions where τyy/ρd2γ 2 encompass both the dense-inertial and
inertial-collisional regimes. (A referee requested that the various stress ratios, τxy/τyy,
τyy/τxx and τzz/τxx, be included in the paper: these can be found in the Appendix.)

Campbell (2002) found that the dense-inertial regime exists at large particle
concentrations (for uniformly sized spheres, at a solid fractions ν of 0.52–0.58) and
at moderate values of k∗, that is, towards the left side of the inertial region in the
curves in figure 1. Campbell (2002) detected that regime by measuring the average
contact time, tc, of the particles relative to the binary collision time, Tbc. In the systems
studied, the binary collision time is fixed, and the only way for contacts to exist longer
than a binary contact time is if at least one of the particles involved interacts with
a third particle before the contact breaks. In the dense-inertial regime, the average
contact lasted of the order of tens of binary contact times. On one hand this indicates
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significant simultaneous multiparticle contacts, and thus the existence of clusters of
particles. But on the other hand, it indicates that the clusters are very short-lived, with
lives of the order of 10 Tbc, and are thus very dynamic structures.

In inertial regimes, the stresses are independent of the stiffness k. In that case one
finds for a given material that any component of stress, τ = f (ν, ρ, d, γ ), dictating by
dimensional analysis that it must have the Bagnold scaling τ = f (ν)ρd2γ 2. This in
turn dictates that the apparent friction coefficient τxy/τyy (or for that matter any other
ratio of stresses) can only be a function of the solid concentration ν. Unfortunately the
functional dependence f (ν) must ultimately be determined empirically. But recently
(Midi 2004; da Cruz et al. 2005; Jop, Forterre & Pouliquen 2006; Forterre &
Pouliquen 2006; Pouliquen et al. 2006) it has been popular to invert this process. They
define a dimensionless ‘inertial number’ I = γ√ρ/P, where the pressure P is one-third
the trace of the stress tensor. Thus one can write that ν = f (I), and consequently
one can create a rheology where one writes τ = f (I)ρd2γ 2 and τxy/τyy = f (I). The
two stated advantages to rewriting Bagnold’s rheology in this form are that the
concentration ν is difficult to measure and also that the stresses are very sensitive
to ν when the flow is dense, magnifying any errors in its measurement. In addition
one can bypass the need for something akin to an equation of state to determine the
concentration ν. Also, it is assumed that as I goes to zero the system goes to the low-
stress critical state (the portion of the critical state curve where particle compressibility
is unimportant – see Campbell 2005), although that assumption introduces error, as
it ignores the intervening elastic-inertial regime (as again was shown in Campbell
2005). However, such a rheological model is only useful if one knows the pressure
P, otherwise one has an awkward rheology in which the stress is a function of itself
(for example, it would be difficult to apply the models to the controlled volume
flows studied in this paper where the pressure is determined by flow conditions and
cannot be a priori known). And therein lies the rub, as one can never really know
the pressure P a priori in a flowing granular material since the normal stresses
are anisotropic. Typically, when these models are applied, one substitutes one stress
component for the pressure P – usually the hydrostatic stress component, although,
technically, one needs to know the solid fraction to compute the hydrostatic stress.
If, as in this paper, one considers roughly uni-directional flows such as simple-shear,
chutes or landslides, then one typically has some knowledge of the τyy component,
as it must balance gravity or support a force applied at a boundary; but one has
little knowledge of the τxx and τzz stresses, which are self-equilibrated, and thus no
direct knowledge of the actual pressure. Now many of these models were based on
two-dimensional disc simulations, where reportedly τxx and τyy are within a few per
cent of each other. But the normal stress differences are much more significant for
three-dimensional flows of spheres. For example, in the studies performed for this
paper, τxx and τyy can differ by nearly 10 %, but τzz and τxx can differ by close to 30 %
and the degree of anisotropy depends largely on concentration and material properties.
(See the Appendix for stress ratio plots for the data shown in figure 1. See also the
supplementary information for normal stress ratios for different material parameters.)
And one cannot base a rheology on a single component of stress such as τyy in an
anisotropic system, as a simple axis rotation will change your ‘pressure’ and thus your
answer. Thus there are systemic errors at the core of these rheological models. Finally,
if there are deep flows with sidewalls present, the walls can frictionally support the
hydrostatic overburden in a manner that cannot be a priori predicted (Janssen 1895),
and one will not be able to determine the τyy stress even with full knowledge of the
solid concentration distribution: additional information such as the Janssen coefficients
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would be required to determine the pressure. This precludes, for example, the use
of these models for hoppers, still the most industrially relevant, unsolved problem in
granular flow. (For the record, Jop et al. 2006 modelled a chute with sidewalls, but
the depth of the flowing region was only ∼21 % of the wall separation, so Janssen
would have little effect.) So while measuring the solid fraction is difficult, it can in
principle be done non-intrusively. (For example, there is a long history of using MRI
in granular flows, starting with Nakagawa et al. 1993 and many other tomographic
methods are possible.) At the same time, it is hard to imagine any non-intrusive way
of measuring the three independent normal stresses required to accurately determine
the pressure. Thus, in the end, inertial number models are applicable to unbounded or
loosely bounded flows such as landslides or shallow chute flows, and even then one
must accept the systemic errors in their construction.

For the purpose of this paper, a cluster is defined as a network of particles through
which, at any instant, one can move between any two member particles by following
a path across interparticle contacts. Clusters have been studied in other ways, for
example, Lois, Lemaitre & Carlson (2007a,b) tried to examine the effects of clustering
through force correlations, although their approximate simulation method does not
handle elastic contacts between particles and thus precludes the type of clusters seen
in this paper. But here we just consider them to be a network of contacts without
worrying about how those contacts are loaded. These are not to be confused with
the inelastic clusters that form at small particle concentrations, such as those first
observed by Hopkins & Louge (1991), as those clusters are simply regions of large
particle concentration and the particles are often not in contact (although, as we shall
see, the inelasticity of the contacts also plays a role in the formation of dense-inertial
clusters). To avoid confusion, Hopkins & Louge clusters will henceforth be referred to
as ‘assemblies’.

Clusters form when k∗ = k/(ρd3γ 2) is small, implying either a small stiffness k or
a large shear rate γ (and if k∗ is small enough, the clusters may form into force
chains). At large k∗, large stiffness k or small shear rate γ , particles interact mostly by
binary collisions. Now one expects that the formation of clusters will have a profound
impact on the rheology of the system. In particular, within a cluster, momentum can
travel elastically through the deformation of the elastic contacts. Free particles transmit
momentum through collision and must cross the interparticle separation before they
can pass on their momentum by collisions, but particles in a cluster need only move
the small distance required to elastically deform the contact. Thus one expects that
momentum will be transported much more quickly and efficiently through the cluster
than between clusters or between free particles, and cluster formation will have a
strong effect on the overall rheology. But, as shall be shown, that is not the case.

2. Computer simulation
This study was performed using a standard soft-particle DEM simulation of the

type originally developed by Cundall & Strack (1979). (See Campbell 2006b for
a discussion of granular simulation methods.) To form a nearly perfect shear flow,
the particles are confined in a control volume bounded by Lees–Edwards boundary
conditions (Lees & Edwards 1972). In this scheme, a central control volume is
surrounded by periodic images of itself in all directions, ±x, ±y and ±z. The periodic
images above and below in the y-direction are set in motion relative to the central
control volume to induce a shear rate γ , with the mean velocity in the x-direction
and vorticity pointing in the z-direction. This simulates an infinite shear flow with
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no boundaries to distort the flow field. The contact model mirrors that of Cundall
& Strack (1979) using a linear spring with stiffness, k coupled with a dashpot with
associated constant D in the normal direction. Such a configuration corresponds to a
unique coefficient of restitution for binary collisions, ε, which Campbell (2002) has
shown to properly scale the dissipation in the problem. In the tangential direction
a second spring with stiffness k (using the same spring constant in the normal and
tangential directions allows k to be a unique scale of the simulation) is coupled with a
frictional slider with associated coefficient µ. The basic simulation is identical to that
used by Campbell (2002) and the reader is directed there for more information.

The unique part of this simulation is a cluster detection algorithm. This is difficult
to implement for Lees–Edwards boundaries as a cluster may cross the periodic
boundaries of the simulation and re-enter the control volume at another location. It
is also possible for a cluster to wrap around and connect with itself. In such a case
the cluster is, in effect, infinitely long, as it crosses all the periodic images extending
out to infinity. Such infinite clusters turn out to be quite common at the concentrations
studied here and, as shall be shown, are true percolations that are independent of
control volume size, at least for control volumes larger than 20× 20× 20 particles. In
effect they are nascent force chains. Campbell (2003) shows that unloaded force chains
are unstable, so that in effect force chains can only practically end at a boundary
that applies a load to the chain; as a Lees–Edwards configuration effectively has no
boundaries, this requires that a stable force chain must be infinitely long and close
upon itself. However, the infinite clusters that form here are unstable, despite their
length, probably because they do not have enough support from surrounding particles
to keep the clusters from buckling.

The cluster detection algorithm is largely a problem of bookkeeping. All the
members of a cluster are stored in linked lists. Each particle is associated by a pointer
with its cluster. The process begins with particle one. All the particles with which it
is in contact are designated as members of its cluster, and so is every particle with
which those neighbours are in contact. In this way a cluster is built up. Sometimes
a contact will be found with a particle that already inhabits another cluster; then the
two clusters are actually one and are merged together. When a contact occurs across
a periodic boundary, the information is stored that the new particle is in a different
periodic image from the first particle identified in the cluster. In this way a cluster
can cross many periodic images as it is built up. In doing so, it is possible for the
cluster to encounter a particle that is already a member of the cluster, but in a different
periodic image. In that case the cluster has closed on itself and is considered infinitely
long.

3. Results
Figure 2 shows some pictures of large clusters taken from a simulation at a solid

fraction ν = 0.54 and k/ρd3γ 2 = 105, ε = 0.7, µ = 0.5. These pictures show only
the particles in a single cluster, and all other particles have been removed from the
picture. Note that these clusters cross the periodic boundaries of the control volume,
sometimes several times. For visualization purposes, they have been unwrapped so that
they may be viewed as if the periodic boundaries do not exist. However, each particle
appears only once in each picture, even if the cluster is infinite. If the cluster were
infinite, then each particle actually appears infinitely many times in the cluster, but by
limiting each particle to only a single appearance, the cluster appears comprehensible
although finite. But figure 2 does indicate the wide variety of cluster shapes that can
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(a) (b)

(c) (d)

FIGURE 2. Some snapshots of a cluster within a shear flow at ν = 0.54 and k/ρd3γ 2 = 105.
The cluster has been unwrapped where it crosses periodic boundaries to show how it
would look in a larger setting. All other particles have been removed from the image. This
visualization was made using Particlevis, (Wassgren & Sarkar 2007).

appear within the simulations. However, these clusters are very short-lived. As each
contact lasts for only a few binary contact times, and clusters may contain thousands
of simulated particles, the clusters noticeably change over a simulation time step. As
such they are extremely dynamic structures. Videos of the clusters in action have been
uploaded as supplementary material to this paper. Those videos show the progression
of a single ‘cluster’, although making the video entailed identifying a single ‘cluster’
as it evolves from time step to time step, gathering and shedding large groups of
particles. For the purpose of the video, all the clusters in the simulation are assessed
at each time step, and the cluster in a subsequent time step is chosen to be the cluster
with the most particles in common with the cluster at the previous time step. The four
pictures shown in figure 2 are taken from one of the videos, and from that point of
view represent the evolution of a single cluster.

Figure 3 shows the probability of a cluster containing N particles. These were all
taken from 1000-particle simulations, so the maximum value for N is 1000. On the
other side, the smallest ‘cluster’ size is two, indicating a binary or collisional contact.
Naturally there will always be more binary clusters than large clusters, as obviously
a thousand particle systems can only accommodate a single 700-particle cluster but at
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FIGURE 3. For caption see next page.

the same time more than a hundred binary clusters. Thus the probability of finding
a large cluster is much smaller than the probability of finding a binary cluster, but
while the probability of a large cluster is small, such clusters contain the majority of
the particles in the simulation and thus are still most important in the internal force
transmission. Many of the figures are divided into two peaks, one at the left side
of the graph with a maximum for binary clusters, and the other for infinite clusters.
Figure 4 shows the individual peaks in detail. The hump at large particle numbers
represents infinite clusters and the small number peak represents binary and finite
clusters. Remember that to make an infinite cluster only requires the cluster to close
on itself through the periodic boundaries of the system, so that in a 10 × 10 × 10
system, it is possible to generate an infinite cluster with as few as 10 particles. Thus
it is not strange to see infinite clusters with a wide range of particle numbers. (Most
of the data in this paper are taken from much larger simulations, but 1000-particle
simulations are shown here, as the larger the simulation the larger the space between
the peaks, making it hard to discern the finite peak. As will be shown, there is little
quantitative difference between these 1000-particle and larger simulations.)

With that in mind, it is easier to understand figure 3. Figure 3(a) shows a purely
elastic case, ν = 0.60, in which the particles are locked in force chains. In that
case the chains appear as infinite clusters consisting of nearly every particle in the
simulation. The dense-inertial regime enters at ν = 0.58 with a broadening of both the
infinite cluster and finite cluster peaks. The peaks merge at ν = 0.54 and the infinite
cluster peak has entirely disappeared as a separate entity by ν = 0.52; however, even
without a distinct peak, infinite clusters were still observed during the simulation down
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FIGURE 3. For caption see next page.

to ν = 0.50. The only case without infinite clusters is ν = 0.45, which is rheologically
a purely collisional flow; but even there, clusters of up to 11 particles were observed
during the course of the simulation.

It is convenient to divide the clusters into three categories: binary clusters
(indicating collisional interactions), finite but non-binary clusters, and infinite clusters.
As this paper concerns rheology, a rheological quantity will be used to evaluate the
effects of clusters. Figure 5 shows the fraction of τyy stress which is supported by
clusters of each type for a variety of solid concentrations. For small k∗ = k/ρd3γ 2 the
stress is entirely supported by infinite clusters. This is interesting because, comparing
figure 5(b) to the corresponding figure 3(c), only ∼40–90 % of the particles (with
a peak at 70 %) inhabit infinite clusters, yet they support 100 % of the stress, thus
demonstrating the importance of clusters in determining the overall rheology. For
larger k∗ infinite clusters decrease in importance. There is an intermediate range where
finite clusters are important. Then, at large k∗, collisions (i.e. binary clusters) dominate
the rheology. The dependence on k∗ can be understood from the various interpretations
of the parameter in Campbell (2002, 2005). One of those interpretations characterizes
k∗ as a flow time scale (the shear rate 1/γ ) divided by an elastic time scale, such
as the binary collision time Tbc, the time for elastic forces to break a contact. Thus,
at small k∗, the particles are being pushed together by the shear rate relatively fast
compared to the time that elastic forces break them apart, making it easier for clusters
to form. But at large k∗ the opposite is true, and elastic forces break the clusters
before they can form. Thus infinite clusters dominate at small k∗ and binary collisions
dominate at large k∗.
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FIGURE 3. The fraction of clusters consisting of N particles. Panel (a) shows a purely elastic
flow while (g) is rheologically purely collisional (although clusters of up to 12 particles were
observed during the course of the simulation).

At this stage, tests were performed on the effect of control volume size. One might
expect infinite clusters to form more readily in smaller control volumes, but the effect
is at best weak. One of these tests is shown in figure 5(b), which compares the results
from simulations sized 10×10×10 particle spacings (1000 particles) up to 25×25×25
particle spacings (15 625 particles). All the control volume sizes have very similar
results, but the infinite/finite cluster transition moves slightly for simulations smaller
than 20 × 20 × 20 particles. As a result, 20 × 20 × 20 simulations are used for the
rest of the data presented here. (Size tests were performed for all four concentrations
shown in figure 5. Only the ν = 0.56 case is shown, both because all the extra lines
tend to confuse the graphs and because ν = 0.56 will be the benchmark concentration
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FIGURE 4. The division of the data in figure 3(c) into (a) binary and finite clusters and
(b) infinite clusters.

used for the following figures.) These results indicate that the infinite clusters are true
percolations and not an effect of control volume size. But note that the small effect
observed is the opposite of what one would expect. One would assume that infinite
clusters would form more readily for smaller control volumes, but these data indicate
the opposite, as decreasing the control volume size moves the infinite/finite transition
to the left, indicating that finite, not infinite, clusters appear more readily in smaller
systems. Also note that the finite/binary transition is independent of control volume
size.

Naturally one expects clusters to be more important at the larger solid
concentrations, and from that point of view, figure 5 must come as no surprise.
Increasing the concentration ν shifts the infinite/finite and finite/binary transitions
towards larger values of k∗ = k/ρd3γ 2. The most interesting part of these data is the
behaviour of the finite non-binary clusters, which grow in both importance and range
in k∗ at the smaller concentrations.

Figure 6 shows the effect of the coefficient of restitution ε. As can be seen, ε has
a strong effect and clusters form more readily when there is large dissipation, (when
ε is small). On one hand these results are not surprising, as in the inertial regimes,
where the system is no longer dependent on the interparticle stiffness, k, ε is the
dominant particle property as it governs the collisional dissipation rate. Thus, in a
purely collisional flow at fixed shear rate, ε is the largest factor in determining the
magnitude of the granular temperature and thus the internal transport rates. But when
it comes to cluster formation, both ε and k∗ affect cluster formation, suggesting a
combination of elastic and inelastic effects. (In addition, decreasing the coefficient of
restitution lengthens the collision time and slows the rate at which clusters break apart,
and thus affect cluster formation in a manner similar to reducing k∗. But that effect
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FIGURE 5. For caption see next page.

is probably small, as even decreasing ε to 0.1 only increases the binary contact time
by ∼10 % relative to ε = 1.0.) Note that changing ε moves both the infinite/finite and
finite/binary transitions by a large amount, which suggests that increasing the particle
energy by decreasing the dissipation breaks up clusters, whether they be infinite or
finite.

One has to wonder whether the effect of ε is the same as the collapse physics
that led to the inelastic assemblies, such as those first observed at relatively small
concentrations by Hopkins & Louge (1991). Indeed, the effect seems much the same.
They also saw that the smaller ε, the larger the assemblies. Furthermore, they found
that the larger the control volume, the larger the assemblies, which might possibly
be related to the slight movement of the infinite/finite transition with control volume
size in figure 5(b). But the physics are somewhat different. Remember that Hopkins &
Louge assemblies are regions of higher concentration, and their particles are generally
not in contact. It is a density instability, and at the high concentrations studied here,
there is simply no room for a density instability to form. They see larger assemblies
for larger control volumes simply because there is more room for them to grow. In
contrast, the infinite/finite cluster transition is a transition in interparticle connectivity,
not concentration and is relatively insensitive to control volume size. In addition, the
Hopkins & Louge assemblies affect the stresses, but as shall be seen, these clusters do
not.

Figure 7 shows the effect of surface friction µ. Increasing µ shifts both the
infinite/finite and finite/binary transitions to the right. Friction plays a dual role in
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FIGURE 5. The fraction of the τyy stress supported by infinite, finite non-binary, and
binary clusters for four different solid fractions: (a) ν = 0.58, (b) ν = 0.56, (c) ν = 0.54,
(d) ν = 0.52. Figure 5(b) shows a comparison of simulation sizes. For all, ε = 0.7 and
µ= 0.5.

the clustering process. One role is structural: the larger µ, the more force required
to move particles within the cluster and the stronger the clusters. But the other is
energetic: the larger µ, the larger the dissipation rate, and in that sense increasing µ
has a similar effect to decreasing ε.

4. The implications
This work has some surprising implications. Figure 1 indicates that the scaled stress

τyy/(ρd2γ 2) is independent of k∗ = k/ρd3γ 2 throughout the inertial regime. Suppose
one fixes ρ, d, and γ . Then, as long as we remain in the inertial regime, figure 1
tells us that τyy is fixed. But one can still increase k∗ by increasing the interparticle
stiffness k. Figures 5–7 then indicate that the system will go from one whose rheology
is dominated by infinite clusters to one whose rheology is dominated by binary
collisions, with no change in the numerical value of the stress. One goes from a
system where internally, momentum is transported by the deformation of interparticle
contacts and progresses at the sound speed of the material, to one in which the
transport is collisional and rate-limited by the granular temperature.

The confusion is somewhat compounded by figure 8, which shows time traces of
the stress for ν = 0.54 as the system transitions from elastic to collisional behaviour
with increasing k∗. The first figure for k∗ = 102 shows the characteristics of an elastic
system with a series of wide peaks. These peaks form as particles are forced together
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FIGURE 6. The fraction of the τyy stress supported by infinite, finite non-binary, and binary
clusters for three values of the coefficient of restitution ε: (a) ε = 0.1, (b) ε = 0.5, (c) ε = 1.0.
(The ε = 0.7 case can be seen in figure 5b.) For all, µ= 0.5 and ν = 0.56.

by the shear flow to form force chains, which are then rotated by the shear until
they collapse. As a result the widths of the peaks scale with the shear rate. At
the other end is the last plot for k∗ = 1013 which, according to figure 5(c), is
rheologically collisional. There the trace is dominated by collisional spikes whose
width is determined by the binary collision time, and is thus independent of the shear
rate. The transition between the two is quite smooth. One would be hard-pressed
looking at the second, k∗ = 104, plot to realize that there has been a transition from
elastic to inertial rheology: it is still dominated by the wide peaks reminiscent of
elastic behaviour. But then slowly the collisional spikes take over, although there is
still some evidence of the wide elastic peaks, even in the collisional k∗ = 1013 plot.
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FIGURE 7. The fraction of the τyy stress supported by infinite, finite non-binary, and binary
clusters for three values of the surface friction coefficient µ: (a) µ = 0.1, (b) µ = 0.3,
(c) µ= 1.0. (The µ= 0.5 case can be seen in figure 5b.) For all, ε = 0.7 and ν = 0.56.

This is very troubling to those of us who were taught that the rheology should be a
reflection of the micromechanics of the material. The results indicate that it should be
possible to analyse the flow for perfectly collisional systems at the rigid particle limit
and get an answer that is accurate for systems dominated by infinite clusters (and vice
versa). In other words, the physics can be all wrong, yet the answer is all right.

Yet at the same time it is clear that clusters do play a role in the internal momentum
transport. Comparing figures 3(c) and 5(b), one can see that 100 % of the stress
is supported by infinite clusters that comprise between only 40 % and 90 % of the
particles with a peak around 70 %; in such a case around 30 % of the particles play an
insignificant role in generating the stress. And at the other end, it is hard to imagine
how, in a thermalized collisional system within which particles are not in contact for
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FIGURE 8. Time-dependence of the inertially scaled yy stress, τyy/ρd2γ 2, versus time scaled
with the shear rate γ t, for ν = 0.54. Comparing with figures 1 and 5(c), one can see that,
rheologically, the top figure, k∗ = k/ρd3γ 2 = 102, is a purely elastic flow, the second figure,
k∗ = 104, is just beyond the transition from elastic to inertial behaviour, and the final figure,
k∗ = 1013, is a purely collisional flow.

longer than a collision time, that all the particles are not involved in generating the
stress. Thus the transport processes in infinite clusters must be different from those in
a collisional system, but both yield the same stress values.

As of this time, there is no answer to this puzzle. It would be nice if there
were some balance between the elastic sound speed and the granular temperature, so
that as one transitions from large clusters to collisional behaviour the transport rate
remains constant. But it is clear this is not the case. Note that one can interpret
k∗ = k/ρd3γ 2 as the ratio of the square of the sound speed (∼k/ρ d) to the granular
temperature (∼d2γ 2). (The relationship between the granular temperature and ∼d2γ 2

can be found in many places, for example Campbell 1989.) Thus, increasing k∗

increases the ratio of elastic sound speed to granular temperature so the ratio between
the two cannot approach a limiting value. One might think that increasing the sound
speed increases the elastic transport rate, but that is at best a small part of the problem
here, as increasing the sound speed by increasing k primarily causes the breakdown
of clusters and the transition to collisional behaviour, not an increase in elastic
transport rates.

Another possibility is that the short lifetime of a cluster limits the elastic transport.
Remember that a typical contact time in a cluster is a few binary collision times. As
far as a particle is concerned, its cluster must persist for at least the duration of its
contacts, so the lifetime of a cluster must be several binary contact times. The binary
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collision time is of the order of the time it takes an elastic wave to cross a particle.
Thus, a contact time of a few binary collision times indicates that momentum can
be transported only a few particle diameters before the cluster disintegrates (however,
that only limits the elastic transport – it does not eliminate it entirely – so it is
surprising there is still not some effect). One can imagine a situation where a particle
collides with a cluster, producing an elastic wave that travels relatively quickly down
the cluster until the cluster loses its integrity, after which the momentum is carried
relatively slowly away by the granular temperature. On the other hand, in a collision
momentum is elastically exchanged over the distance of the single particle diameter
between the impacting particle centres. Thus one would still expect an enhancement
due to the rapid elastic transport of stress, even if only for several particle
diameters.

The other possibility is that there is a rate-limiting bottleneck in the system. For
example, if one pictures the system as clusters sitting in a cloud of thermalized
particles, then the momentum transported through the cluster must ultimately be
carried away through the cloud by the granular temperature. Assuming once again
that the elastic transport through the cluster is faster than through the thermal cloud,
then the granular temperature becomes the rate-limiting factor. For the overall transport
rate to be constant, this picture would indicate that granular temperature should be
constant throughout the dense-inertial regime. If the rate-limiting effect is constant,
then the stresses can stay constant even though the internal structure is changing.
However, one must be careful in defining the granular temperature in systems filled
with clusters. (See Campbell 2006a for a discussion on what is and what is not
granular temperature.) One cannot simply define it as the deviation from the mean
velocity, as the particles in a cluster may undergo coordinated motions that may
deviate from the mean velocity of the system; but as these coordinated motions
do not induce collisions between particles, they do not drive the transport rate and
thus it is not technically a granular temperature (or it is, at least, not the granular
temperature that appears in kinetic theory models). In fact, in these systems granular
temperature can only be unambiguously defined for isolated particles (that is, particles
that for the moment, have no contacts with other particles) – and that fits perfectly
within the physical model of clusters embedded in a cloud of thermalized particles.
Figure 9 shows the isolated particle granular temperature scaled with the shear rate.
The results are somewhat interesting. In particular, each set of data shows a peak at
the point of transition from elastic to inertial behaviour. This suggests that at this
point granular temperature is being generated by the breakdown of force chains. But
for most of the inertial range T/d2γ 2 is approximately constant. (The one exception
is the ν = 0.58 data, but remember, as can be seen in figure 1, this exhibits some
transitional behaviour and is not entirely in the inertial regime.) Once again, if
one fixes γ and varies k then one can cross much of the range of the plot with
a constant granular temperature. This is supportive of the notion that the granular
temperature may be the rate-controlling parameter. However, the argument is far from
complete.

5. Conclusions
This paper has examined clusters, assemblies of contacting particles, formed in

dense-inertial granular flows. These flows behave inertially in the sense that the
stresses follow a Bagnold scaling, but internally are not collisional due to the existence
of the clusters. The cluster formation is a combination of both elastic and inelastic
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FIGURE 9. Inertially scaled isolated particle granular temperature, T/d2γ 2, as a function of
the elastic parameter k/ρd3γ 2. The peak in each curve corresponds to the transition from
elastic to inertial behaviour.

effects. Their elastic source is apparent as clusters appear at small values of the elastic
parameter k∗ = k/ρd3γ 2. Small k∗ implies small stiffness k or large shear rate γ , and
so that the shear rate pushes the particles together quickly relative to the rate at which
the elastic forces push them apart, thus forcing cluster formation. In the inelastic
sense, the larger the internal dissipation (the smaller the coefficient of restitution),
the more likely clusters are to form. Finally, large friction aids cluster formation
in two ways. On one hand, the larger the friction, the stronger the cluster. But at
the same time larger friction dissipates more energy and further promotes cluster
formation.

But there is a most surprising conclusion for this work. At fixed concentration
in the dense-inertial regime, the Bagnold scaled stress τ/ρd2γ 2 does not vary with
k/ρd3γ 2. If one fixes ρ, d, and γ , one fixes the stress, but can still move across
the range of k/ρd3γ 2 by varying the particle stiffness k. In doing so one moves
from a region where 100 % of the stress is supported by infinite clusters (which
involve only a fraction of the particles) to one that is entirely collisional without
changing the numerical value of the stress. This is of great value to modellers as
it allows one to model dense-inertial flows at the rigid particle limit, assuming only
collisional interactions and avoiding the difficulty of modelling clusters. (This does not
necessarily imply that dense-inertial flows can be modelled using current kinetic theory
methods as one must still include surface friction and reasonable dissipation in the
model. Also at these concentrations, one would expect stronger correlations between
the particle positions and velocities violating the assumptions of statistical randomness
inherent to kinetic theories.) But at the same time it is physically troubling, as one
expects that the microstructure should have a strong effect on the rheology, while here
it apparently does not.

It is far from clear why the clusters have so little effect on the rheology. One
possibility is that the clusters are so short-lived that they have little opportunity to
enhance the transport rates. But the most promising prospect is that the granular
temperature, which transports momentum both between clusters and away from broken
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µ= 0.5. The dashed lines indicate roughly the transition from elastic to inertial flow.

clusters, is acting as a rate-limiting bottleneck. This best indication of this is that under
the same conditions of fixed ρ, d and γ , the granular temperature is nearly constant
over the full range of k∗. But piecing together this puzzle will require more research.
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Appendix
A referee asked that the stress ratio data corresponding to figure 1 be included in

the paper. The author feels that to add these plots to figure 1 would distract from the
narrative of the paper, but is happy to include the figures: see figure 10. Note that
for the normal stress ratios, figure 10(b,c), τxx is used in the denominator because it
is usually the largest of the normal stress components. However, there are cases in
figure 10(b) for ν = 0.58 where τyy slightly exceeds τxx.
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