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Abstract
Mortality data are often classified by age at death and year of death. This classification results in a

heterogeneous risk set and this can cause problems for the estimation and forecasting of mortality.

In the modelling of such data, we replace the classical assumption that the numbers of claims follow

the Poisson distribution with the weaker assumption that the numbers of claims have a variance

proportional to the mean. The constant of proportionality is known as the dispersion parameter

and it enables us to allow for heterogeneity; in the case of insurance data the dispersion parameter

also allows for the presence of duplicates in a portfolio. We use both the quasi-likelihood and

the extended quasi-likelihood to estimate models for the smoothing and forecasting of mortality

tables jointly with smooth estimates of the dispersion parameters. We present three main

applications of our method: first, we show how taking account of dispersion reduces the volatility

of a forecast of a mortality table; second, we smooth mortality data by amounts, ie, when deaths

are amounts claimed and exposed-to-risk are sums assured; third, we present a joint model for

mortality by lives and by amounts with the property that forecasts by lives and by amounts are

consistent. Our methods are illustrated with data from the Continuous Mortality Investigation.
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1. Introduction

Modelling and forecasting mortality is a problem of fundamental importance to the actuary. Data

for this purpose come largely from two sources: (a) population mortality data available from either

the Human Mortality Database (2009) or government offices of statistics, (b) insurance data

collected and collated by some central agency. The Continuous Mortality Investigation (CMI) fulfils

this latter role in the UK. In both cases, data are generally available at the aggregate level, ie, deaths

and exposures are classified by age at death and year of death. This gives rise to two problems for

model building. For population data, the risk set for each age and year of death is heterogeneous

with respect to mortality since it contains smokers and non-smokers, different social classes, etc. For

insurance data, the risk set is subject to an additional source of heterogeneity: ‘deaths’ are claims on

policies, and exposed-to-risk is the number of policy-years lived. Very often, some policyholders

have more than one policy and so, for these policyholders, a single death gives rise to multiple

claims; this is known as the problem of duplicates. Ideally the data would be deduplicated,
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ie, policies held by a single life would be consolidated into a single policy; Richards (2008) describes

such a process. Unfortunately, such consolidation is not available for historical data such as

collected by the CMI. Further, deduplication does not address the problem of the heterogeneity

of mortality across the risk set.

Early work tackling the effect of duplicate policies on the estimates of mortality can be found in Seal

(1940), Daw (1946, 1951), Beard & Perks (1949), CMI Committee (1957, 1986), and elsewhere.

Forfar et al. (1988) allowed for the presence of duplicates by scaling the data by a factor known as

the ‘variance ratio’, a measure of the level of duplicate policies in the data. We refer to this approach

as the method of scaling and return to it later in the paper. This method is only available if the

variance ratios are known and in any case does nothing to address the more general problem of

heterogeneity. In an important paper, Renshaw (1992) showed that it is possible to make proper

adjustment for both duplicates and heterogeneity within the modelling process itself.

A frequent question is the following: does the existence of duplicates within a portfolio matter for

the estimation of mortality? At first sight, the answer might appear to be no, since the multiple

deaths in the numerator are balanced by the additional exposed-to-risk in the denominator. In

statistical terms, the estimate of mortality remains unbiased. However, the variance of such an

estimate is too small, since it is based on more deaths than we have actually observed (Forfar et al.,

1988). There are other more subtle consequences. The results of simulating portfolio experience

based on policies will be less volatile than they should be, since, for example, the lives with multiple

policies should take all their sums assured with them when they die, and not just part of them. More

formally, using the result from Shaked & Shanthikumar (1997) and Bäuerle (1997), who compared

random vectors with different levels of multiplicity, Denuit (2000) showed how the presence of

duplicates leads to a more dangerous portfolio in the supermodular sense.

A standard assumption is that the number of deaths/claims follows a Poisson distribution; see

Brouhns et al. (2002), Currie et al. (2004) and Cairns et al. (2009) for example. The Poisson

distribution has equal mean and variance but heterogeneity in general and the presence of duplicates

in particular will inflate the variance. Such inflation is known as over-dispersion (McCullagh &

Nelder, 1989; Renshaw, 1992). Using a Bayesian argument, Li et al. (2009) assumed that the force

of mortality follows a prior gamma distribution within each age/year cell from which it follows that

the number of deaths/claims has a negative binomial distribution with variance larger than the

mean, as required. Other approaches to the problem of over-dispersion can be found in Williams

(1982), Breslaw & Clayton (1993), Hinde & Demetrio (1998), for example. In this paper, we adopt

the two-stage joint-modelling of mean and dispersion through the extended quasi-likelihood, as

described in McCullagh & Nelder (1989, chap 10). Our reason for adopting the quasi-likelihood

approach (as opposed to the negative binomial approach of Li et al., 2009) is that it allows us to

remain within the exponential family, and, as a result, we can essentially adopt a generalized linear

model (GLM) approach to model building. Renshaw (1992) also used this approach in his paper on

the graduation of mortality data in the presence of duplicates. Our contribution is (a) to extend this

work to the smoothing and forecasting of 2-dimensional mortality tables, (b) to apply our method

to the modelling and forecasting of mortality data by amounts, and (c) to produce a joint model of

mortality by lives and amounts with the property that the forecasts by lives and amounts are

constrained to be parallel.

The plan of the paper is as follows: in section 2 we define our notation and describe the joint

estimation of regression and dispersion parameters with extended quasi-likelihood; in section 3
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we show how extended quasi-likelihood applies to P-splines, the smoothing method of Eilers &

Marx (1996); in section 4 we describe a technique for the adjustment for bias of the estimates of the

dispersion parameters. Applications of these methods are described in section 5: (a) we perform a

simulation exercise to demonstrate first the effect that over-dispersion has on the smoothing process

and second that our methods enable the true underlying smooth curve to be recovered more

appropriately; (b) we describe the modelling and forecasting of mortality tables first by lives and

then by amounts; (c) we discuss the consistent forecasting of mortality by both lives and amounts.

The paper ends with a short conclusion.

2. Model specification and estimation with quasi-likelihoods

Many models for mortality data are based on the Poisson distribution (Brouhns et al. 2002; Currie

et al. 2004; Cairns et al. 2009). This strong assumption fails to account for the over-dispersion that

is generally found in mortality data. The alternative assumption that the deaths follow the negative

binomial distribution, as used by Li et al. (2009), takes us outside the exponential family into a

less friendly environment for model building. We now describe estimation with extended quasi-

likelihood (McCullagh & Nelder, 1989, chap 10) which allows over-dispersion to be modelled

within the exponential family framework.

We suppose that we have independent observations Y 5 (Y1,y ,Yn)
0. In general the Yi can be counts but

we will restrict our description to the case when they are counts of deaths or claims. To simplify the

notation, we will not distinguish between random variables and their observations. We supposed that

these data can be partitioned into K classes C1;y; CK;K � n, in such a way that each class is

homogeneous (by homogeneous we mean that the level of dispersion within each class can be assumed

constant). For example, at one extreme ifK ¼ n then each count has its own dispersion parameter while

at the other extreme if K ¼ 1 then a single dispersion parameter applies to all counts. We will be

particularly interested in the intermediate case where the dispersion parameter is age dependent in a

mortality table; this is consistent with the approach of Forfar et al. (1988), Renshaw (1992) and Li et al.

(2009) who use age-dependent dispersion parameters. We will denote by fCk
the over-dispersion

parameter in the class Ck; we note in passing that fCk
could in theory be less than one, so this approach

can also deal with under-dispersion (which the negative binomial cannot). Let C ¼ fC1; . . . ; CKg denote

the set of classes and let j : f1; . . . ; ng ! C assign observations to classes.

We include dispersion in the model through the first and second moment assumptions

E Yi½ � ¼ mi; varðYiÞ ¼ fjðiÞ � uðmiÞ; i ¼ 1; . . . ; n; g ¼ g lð Þ ¼ Ba; ð2:1Þ

where l 5 (m1 ,y,mn)0, B is the regression matrix, a is the unknown vector of coefficients, y( � ) is the

variance function, g( � ) is the link function, g(l) 5 (g(m1) ,y, g(mn))0, and g is the linear predictor. The

case of a Poisson GLM is given by fj(i) 5 1, 8i, and y( � ) equal to the identity function. Further, in the

Poisson case we can fit the model with maximum likelihood; this requires the distribution that has

generated the data. Unfortunately, such a distribution is not available for (2.1). An alternative is the

quasi-likelihood framework of Wedderburn (1974), an extension of the familiar likelihood function

that allows estimation to take place in more general settings such as (2.1). Under model (2.1), the

quasi-likelihood (or more correctly the quasi-log-likelihood) of a single observation Yi is defined as

Qðmi;YiÞ � Qða;YiÞ � Qðg;YiÞ ¼
1

fjðiÞ

Z mi

Yi

Yi� t

uðtÞ
dt ¼ �

1

2fjðiÞ
di ð2:2Þ
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where

di ¼ � 2

Z mi

Yi

Yi� t

uðtÞ
dt ð2:3Þ

is the deviance component. The estimates of the dispersion parameters fj(i) are based on the di. (The

normal distribution is a well-known example here since when y(t) 5 1 we have di 5 (Yi 2 mi)
2, the ith

component of the residual sum of squares.) The quasi-likelihood of the sample Y is

Qðl;YÞ � Qða;YÞ � Qðg;YÞ ¼
Xn

i¼ 1

Qðmi;YiÞ: ð2:4Þ

If the dispersion parameters are known, the fitting of model (2.1) is reduced to the optimization of the

quasi-likelihood (2.4). However, since these parameters are generally unknown they also need to be

estimated. Thus we also need the derivative of Q to behave like a log-likelihood with respect to the

dispersion parameters, that is E @Q=@fu

� �
¼ 0 for all u 2 C. For this to be achieved, the quasi-likelihood is

usually adjusted (see Nelder & Pregibon, 1987) to the so-called extended quasi-likelihood Qþ as follows:

Qþða; b;YÞ ¼ Qða;YÞ þ f /ð Þ; / ¼ ðfC1
; . . . ;fCK Þ

0; ð2:5Þ

where f( � ) is some well chosen function. A simple candidate (that we use here) for f(/) is

� 1
2

P
log 2pfiwðYiÞ
� �

where w( � ) is any positive function.

If we set

du ¼

P
i2j� 1ðuÞ

di

nu
; where nu ¼ jj�1ðuÞj; 8u 2 C; ð2:6Þ

then, at the true value of l (McCullagh & Nelder, 1989, chap. 10),

E du½ � ’ fu; 8u 2 C: ð2:7Þ

We make two comments on (2.6). First, there is a possible confusion of notation; we have adopted

the convention that the suffix i, i 5 1,y, n, refers to observations, while the suffix u; u 2 C, refers to

classes. Second, with the normal distribution, du reduces to the familiar maximum likelihood

estimate of s2 in the class Cu.

Now, corresponding to the model (2.1) for the mean l, we model the dispersion parameters (for

sufficiently large K) with

hð/Þ ¼ �Bb ð2:8Þ

for some suitable link function h( � ) which we specify below. Within this setting, fitting model (2.1)

is reduced to the optimization of the extended quasi-likelihood (2.5) with respect to a and b

respectively. This optimization yields the inter-dependent equations

Xn

i¼1

yi� mi

fjðiÞuðmiÞ

@mi

@aj
¼ 0; j ¼ 1; . . . ; c; ð2:9Þ

X
u2C

nuðdu�fuÞ

f2
u

@fu

@bj

¼ 0; j ¼ 1; . . . ; �c; ð2:10Þ
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where c and �c are the lengths of a and b respectively. Equations (2.10) correspond to the quasi-

likelihood estimating equations based on independent responses du with E du½ � ¼ fu and

varðduÞ ¼ f2
u=nu. In the GLM setting, equations (2.10) are identical to the estimating equations

based on gamma responses du, with shape parameter nu and scale parameter fu/nu. The canonical

link for the gamma distribution is the negative inverse function (McCullagh & Nelder, 1989, chap. 2),

so we simplify (2.8) by specifying

du � Gamma nu;
fu

nu

� �
; u 2 C; hð/Þ ¼ �

1

/
¼ �Bb; ð2:11Þ

where the quotient sign is interpreted as element-by-element division. In the parametric setting, we

have generalized and unified the two-stage joint modelling of mean and dispersion described in

McCullagh & Nelder (1989, chap. 10), and used by Renshaw (1992) for graduation in life

insurance. However, mortality data often reveal complex patterns which suggest that a smoothing

rather than a parametric approach is more appropriate. In the next section, we extend the above

results to the P-spline method of Eilers & Marx (1996).

3. Extended quasi-log-likelihood and P-splines

We use the method of P-splines (Eilers & Marx, 1996) and so the regression matrices B and �B are

constructed from B-spline bases on the covariates, age at death and year of death. For a description

of P-splines from a statistical perspective as applied to modelling mortality see Currie et al. (2004);

Richards et al. (2006) and Richards & Currie (2009) contain descriptions of P-splines in an

actuarial context. The key idea is to overfit the data with rich bases of B-splines, and then apply

roughness penalties to the coefficients a and b to achieve smoothness; the roughness penalty on

b here assumes that the number of classes, jCj, is not too small. Combining the penalization with

the extended quasi-likelihood (2.5), we derive an optimal criterion, the penalized extended

quasi-likelihood,

QþP ðl;/Þ ¼ Qþðl;/Þ �
1

2
a0Pk1

aþ b0Pk2
b

� �
: ð3:12Þ

In (3.12), Pk1
¼ Pðk1;D1Þ and Pk2

¼ Pðk2;D2Þ are penalty matrices acting on a and b respectively;

here D1 and D2 are difference matrices (generally of order 2), and k1 and k2 are vectors of smoothing

parameters. The dimension of k1 depends of the structure of the data Y and the model matrix B

while that of k2 is a function of the structure of the Ck’s and the model matrix �B.

Optimizing QþP with respect to a yields the penalized iterative equation

B0
~
W/ Bþ Pk1

� �
â ¼ B0

~
W/

~z; ð3:13Þ

where
~
W/ represents the diagonal weight matrix in the quasi-likelihood model (2.1) based on the

response Y, and ~z is the associated working variable; here, a tilde refers to the current estimates, and

a hat refers to the updates. This form is similar to the penalized equation encountered in the

penalized GLM setting, the difference being that the dispersion parameters are involved in the

smoothing process through the weight matrix
~
W/, which is a function of the dispersion parameters.

Similarly, optimizing QþP with respect to b yields the penalized iterative equation

�B0
~
Wd

�Bþ Pk2

� �
b̂ ¼ �B0

~
Wd

~zd; ð3:14Þ
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where
~
Wd is the diagonal weight matrix in the GLM based on a gamma response

d ¼ ðdC1
; . . . ; dCK Þ

0, and ~zd is the corresponding working variable.

We note that equations (3.13) and (3.14) are the penalized versions of the scoring equations

corresponding to (2.9) and (2.10) but written in matrix form. The precise form of the weight

functions
~
W/ and

~
Wd depends on the form of the link functions g( � ) and h( � ).

For given values of the smoothing parameters k1 and k2, the estimation process consists of iterating

between (3.13) (the a-step) and (3.14) (the b-step) until convergence is achieved. For the estimation

of k1 and k2, we step outside the likelihood framework and use a model selection criterion. One

of the best known criteria is the Bayesian Information Criterion (BIC) (Schwarz, 1978) which

attempts to balance (a) fit as measured by the deviance with (b) model complexity as measured

by the effective dimension. Under the Poisson assumption, the BIC is given by:

BIC ¼ D þ logðnÞ � n ð3:15Þ

where D ¼
P

d̂i is the residual deviance, and v is the effective dimension of the model. For count data

such as Poisson, (3.15) is appropriate when the value of the dispersion is close to 1; however, if the

data are over(under)-dispersed, the deviance will tend to be large(small), with the result that the

deviance will also tend to be over(under)-weighted in (3.15). This implies that the effective dimension

will also tend to be large(small); we end up by under(over)-smoothing our data. We correct this

inappropriate weighting by adjusting the deviance in each class; this gives the scaled BIC:

BICs ¼
Xn

i¼1

d̂i

fjðiÞ
þ logðnÞ � n; ð3:16Þ

a generalization of the scaled criterion given by Heuer (1997). Clearly, if there is no over(under)-

dispersion in the data, then BIC and BICs are equivalent. Both BIC and BICs require a value for the

dimension of the fitted model. If the smoothing parameters are zero, then penalized regression reduces to

ordinary regression and the dimension of the model is the number of linearly independent columns in the

regression matrix; in our case, if B has c columns then the dimension of the model is c. With penalization

the flexibility of the model is reduced and so the dimension of the model is correspondingly reduced.

Following Ye (1998) and Ruppert et al. (2003), we approximate the effective dimension v by

n ¼ tr
@ gðl̂Þ

@ẑ

� �
¼ trðHÞ ð3:17Þ

where the hat-matrix H, which maps the working variable ẑ in (3.13) to the fitted value of the linear

predictor at convergence, is given by BðB0Ŵ/ Bþ Pk1
Þ
� 1

B0Ŵ/. Hence,

n ¼ tr½ðB0Ŵ/ Bþ Pk1
Þ
� 1B0Ŵ/ B� ð3:18Þ

¼ c � tr½ðB0Ŵ/ Bþ Pk1
Þ
� 1Pk1

�: ð3:19Þ

The second form (3.19) shows the reduction in the dimension of the model brought about by the

penalization. The complete estimation algorithm is as follows:

(i) initialize fu 5 1, 8u 2 C,
(ii) update l by solving (3.13) in a with k1 selected by minimizing (3.16),
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(iii) - if jCj is small, update the fu to their extended quasi-likelihood estimates given by (2.6),

- else, update / by solving (3.14) in b with k2 selected by minimizing (3.16),

(iv) repeat (ii) and (iii) until convergence is achieved.

In our applications, we will refer to this algorithm as the full extended quasi-likelihood scheme.

4. Bias adjustment

We have already remarked after (2.6) that du reduces to the maximum likelihood estimate of s2 in

the normal distribution case. This estimate is biased downward and, in the same way, the maximum

extended quasi-likelihood estimate of the dispersion parameters also tends to be biased downward,

(see Figure 4). This stems from the fact that (2.7) holds only at the true value of l while l is

generally unknown. An alternative approach is to estimate l by maximizing criterion (3.12) as

before, ie, by solving the iterative equation (3.13), but to look for a different estimate for /. A

potential candidate (analogous to the unbiased estimate of s2 in standard normal regression) is the

bias corrected mean Pearson statistic in each class:

dn

u ¼
1

nu� nu

X
i2j� 1ðuÞ

Yi� m̂i

� �2

vðm̂iÞ
; u 2 C; ð4:20Þ

where nu is the contribution of the class u to the total dimension n. Intuitively, from (3.17), we

estimate the nu by

nu ¼
X

i2j� 1ðuÞ

@gðm̂iÞ

@ẑi
¼

X
i2j� 1ðuÞ

Hii; u 2 C: ð4:21Þ

If the number of classes, K, is small then fu is estimated by dn
u; otherwise, we proceed as follows.

Instead of relying on the (penalized) extended quasi-likelihood of model (2.1) to estimate /, we

assume a full quasi-likelihood framework for the ‘observations’ dn
¼ ðdn

C1
; . . . ; dn

CK Þ
0:

E dn

u

� �
¼ fu; varðdn

uÞ ¼ t� vnðfuÞ; 8u 2 C; hð/Þ ¼ �
1

/
¼ �Bb: ð4:22Þ

We then denote by Q1 and Q2 the quasi-likelihood of models (2.1) and (4.22) respectively, and by

BICs1 and BICs2 the associated scaled BIC. Conditional on /, we penalize Q1 in a to get Q1P
, and

conditional on a, we penalize Q2 in b to get Q2P
. The estimation algorithm becomes:

(i) initialize fu 5 1, 8u 2 C,
(ii) update l by optimizing Q1P

in a with k1 selected by minimizing BICs1,

(iii) - if jCj is small, update the components of / to their Pearson estimates given by (4.20),

- else, update / by optimizing Q2P
in b with k2 selected by BICs2,

(iv) repeat (ii) and (iii) until convergence is achieved.

In our applications, we will refer to this algorithm as the bias corrected scheme.
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5. Applications

We apply our methods to two CMI data sets, the male assured lives data set where age at death runs

from 40 to 90 and year of death from 1950 to 2006, and the male pensioner data where age at death

runs from 10 to 108 and year of death from 1983 to 2006; the pensioner data are available both by

lives and amounts. To be consistent with the actuarial literature, from now on l will represent a

force of mortality instead of a mean, as in the previous sections. The applications we consider

assume an over-dispersed Poisson model with a systematic structure (as the case may be) for the

dispersion parameters. In section 5.1, through a simulation, we illustrate how over-dispersion

affects the smoothing process and how the use of the two schemes presented in the previous section

leads to improved estimates. In section 5.2, we use both schemes to fit the 2-dimensional mortality

surface and we illustrate the effect of over-dispersion on the extrapolated trends and confidence

bands. In section 5.3, we show that both schemes can be used directly (without the need of prior

scaling, as in Forfar et al., 1988) to handle the high level of over-dispersion such as encountered in

mortality data by amounts. Lastly, in section 5.4 we consider the joint modelling and forecasting of

mortality by lives and amounts; here, we will be concerned to produce consistent forecasts from the

two data sets.

5.1. A simulation exercise

We conduct a simulation exercise with two aims: first, to illustrate how dispersion affects the

smoothing process and second, to show how the use of the bias corrected scheme (as well as the full

extended quasi-likelihood scheme) gives rise to an improved estimate of the true mortality curve.

The simulation exercise will be split into two parts: first, a portfolio without duplicates, and second,

one with duplicates.

5.1.1. A simulation exercise without duplicates
Figure 1 shows log mortality for years 1950 to 2005 for a male aged 75 from the CMI assured lives

data set. For the purpose of these simulation exercises, we suppose that underlying log mortality

follows the fitted quadratic curve shown, ie, log mt 5 Q(t) where t is year. We now suppose that we

1950 1960 1970 1980 1990 2000

CMI assured lives: male, aged 75

Year

lo
g(

m
or

ta
lit

y)

−3.6

−3.4

−3.2

−2.6

−2.8

−3.8

−3.0

Figure 1. Observed mortality (>>>) for CMI assured lives, males age 75, together with fitted
quadratic curve.
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have central exposure Ec
t ¼ 1000 at each year t and suppose that the number of deaths (claims)

come from the Poisson distribution: Dt � P Ec
t exp½QðtÞ�

� �
. We simulate from this model and

estimate the underlying mortality curve using P-splines with a cubic B-spline basis with c 5 13

B-splines in the basis, second-order penalty and smoothing parameter chosen by minimizing BIC.

This exercise is repeated 2000 times.

With Poisson errors we have f5 1. For each simulation i, i 5 1,y , 2000, we compute the mean

square error

MSE ¼
1

n

Xn

1

ðlog m̂t � logmtÞ
2
¼

1

n

Xn

1

ðlog m̂t �QðtÞÞ2; ð5:23Þ

an overall measure of the quality of the fit, and we also compute the bias corrected Pearson estimate

f̂i of f using (4.20). The mean of the MSEs (over the 2000 simulations) was 0.00168.

We now perform a second round of smoothing for each of our 2000 simulations; for the ith

simulation, we set f ¼ f̂i and re-estimate the force of mortality with the penalized iterative

equation (3.13) and select the smoothing parameter with the scaled BIC defined in (3.16). The mean

of the MSEs was very little changed at 0.00170.

In conclusion, since the quasi-likelihood generalizes the usual likelihood approach, the MSEs

obtained with the two approaches are essentially equal, even when the Poisson assumption does

hold. In the next section we discuss the situation when the presence of duplicates systematically

introduces over-dispersion into the problem. Here we will see a much stronger effect of over-

dispersion, and both the bias corrected and the full extended quasi-likelihood schemes outperform

the likelihood approach.

5.1.2. A simulation exercise with duplicates
In the previous section we considered a portfolio of 1000 distinct policyholders in each year, where

each policyholder was exposed to risk for one year. Now we consider males aged 75 again, but

we suppose that we have a portfolio of 1000 policies in each year made up as follows: we have

200 policyholders with a single policy, 150 policyholders with two policies, 100 policyholders with

three policies and 50 policyholders with four policies. Hence, we have 500 distinct policyholders

(classified into four categories) with a total of 1000 policies, an average of two policies per

policyholder. If Ct is the number of claims observed in year t, we have E ½Ct� ¼ 1000mt and

var(Ct) 5 2500mt; thus the (theoretical) dispersion parameter is f5 2.5 in each year, ie, the variance

of claim numbers has been inflated by a factor of 2.5. Finally we suppose that a policyholder in year

t is subject to the same (quadratic) mortality as in the previous section and we repeat the previous

simulation exercise for each category of policyholder.

The black colour in Figure 2 shows the MSEs for each simulation based on the penalized likelihood

with Poisson errors. The mean of the MSEs was 0.00843 (compared to 0.00168 without

duplicates); the presence of over-dispersion has had a negative impact on the smoothing process. We

perform a second round of smoothing with the estimated values of the f’s incorporated into the

estimation. The red colour in Figure 2 shows the MSEs after this second round of smoothing; the

mean of the MSEs was 0.00428, a drop of almost 49%. The mean of the estimated f̂’s (over the

2000 simulations) was 2.4; this is in agreement with the (theoretical) value f5 2.5.
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The effective dimension of the fitted model gives another perspective on the effect of over-

dispersion. Ignoring over-dispersion gave a mean effective dimension of 7, well in excess of 3, the

true dimension of the model, while including over-dispersion reduced the mean effective dimension

to 3.44. In general (by examining (3.13) and (3.16)), the flexibility of the fitted curve is reduced by

the inclusion of over-dispersion parameters into the estimation process. This has important

consequences for forecasting where less volatile curves lead to more stable forecasts.

5.2. Modelling and forecasting over-dispersed mortality tables

Here we consider the problem of modelling and forecasting a mortality table. For illustration, we

use the CMI assured lives data with ages 40 to 90 and years 1950 to 2006.

5.2.1. Model specification
We use 2-dimensional P-splines. Details of this method from an actuarial perspective can be found

in Richards et al. (2006) but, in brief, it consists of supposing at age x in year t that

Model 1 : Dx;t � PðEx;t � mx;tÞ; logðlÞ ¼ ðBt 	 BxÞa ð5:24Þ

where Bx and Bt are 1-dimensional cubic B-spline bases along age and year respectively, and
N

is the

Kronecker product; here Dx,t is the number of deaths/claims and Ex,t is the central exposed-to-risk

at age x in year t. Smoothness is then achieved by penalizing the regression coefficients separately in

the age and year directions, that is, the vector of smoothing parameters k1 (see equation (3.12)) is a

2-dimensional vector: k1 ¼ ðl1;x; l1;tÞ
0, where l1,x and l1,t quantify the amount of smoothing in the

age and year directions respectively. The penalization not only gives a smooth mortality surface but

also allows forecasting to take place as described by Currie et al. (2004).

Here we are interested in incorporating over-dispersion into the 2-dimensional smoothing process in

the same fashion as the 1-dimensional case just considered; in other words, we are interested in the

effects of replacing the Poisson assumption with a first and second moment assumption, as in (2.1).

A starting model is to assume an over-dispersed Poisson model with a common over-dispersion
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Figure 2. Mean square error, MSE, with duplicates and f5 1 (JJJ). Mean square error, MSE, with
duplicates and f set to f̂ ( ).
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parameter for all observations:

Model 2 : E Dx;t

� �
¼ Ex;t � mx;t; varðDx;tÞ ¼ f� E Dx;t

� �
; logðlÞ ¼ ðBt 	 BxÞa: ð5:25Þ

Note that (5.25) is a special case of model (2.1), in which all the observations are assumed to belong

to the same class; the variance function is the identity. The structure of the over-dispersion here is

very simple, but it is useful for understanding the effect of the dispersion parameters on the

smoothing process. A refinement of Model 2 is to allow the dispersion to be age dependent, that is

Model 3 : E Dx;t

� �
¼ Ex;t � mx;t; varðDx;tÞ ¼ fx � E Dx;t

� �
; logðlÞ ¼ ðBt 	 BxÞa; ð5:26Þ

once again, (5.26) is a special case of model (2.1), where the dispersion classes C comprise the

observations of the same age, and the variance function is the identity. Renshaw (1992) presented an

age dependant dispersion parameter model for graduation in life insurance. We extend Renshaw’s

work to two dimensions with the possibility of a general smooth structure for the dispersion

parameters (as suggested by Renshaw); furthermore we consider forecasting and discuss the effect of

over-dispersion on the associated confidence bands.

5.2.2. Estimation
For models 1, 2 and 3, the space between knots was five years for both age and year, and the

smoothing parameters were chosen by minimizing the scaled BIC. In each case, the generalized

linear array representation (Currie et al. 2006) was used to speed up the computation. Forecasting

to 2050 was performed via the penalization by extending the basis in the year direction to 2050, as

described in Currie et al. (2004).

Model 1 was fitted as described in Currie et al. (2004), that is by the penalized GLM for D 5 (Dx,t)

with regression matrix B, offset log(E), E 5 (Ex,t), log link, Poisson error and penalty matrix Pk1
,

where

B ¼ Bt 	 Bx and Pk1
¼ k1;x Ict

	 D0xDx þ l1;t D0tDt 	 Icx
� ð5:27Þ

In (5.27), Dx and Dt are difference matrices of order 2 (Eilers & Marx, 1996) in the age and year

direction, cx and ct are the number of B-splines in the age and year direction (that is the number of

columns in Bx and Bt), and In is the n 3 n identity matrix.

Models 2 and 3 were each fitted with both the full extended quasi-likelihood and the bias corrected

schemes. In both schemes we applied the penalty matrix (5.27) to the coefficient a to achieve

smoothness. Model 2 (with a single dispersion parameter) does not require second stage smoothing;

we simply update the value of f either to its extended quasi-likelihood estimate or to its Pearson

estimate, as the case may be. In contrast, for Model 3, a second stage smoothing process was

implemented to get smooth estimates of the dispersion parameters. This second stage modelling

process is easier in the full extended quasi-likelihood scheme in comparison with the bias corrected

scheme, since the full extended quasi-likelihood scheme uses the gamma distribution (2.11) with

a known shape parameter, whereas the bias corrected scheme assumes a full extended quasi-

likelihood scheme (with an unknown dispersion parameter that needs to be estimated) based on the

bias corrected mean Pearson statistics (4.20); in the bias corrected scheme the variance function,

v*(fu), in (4.22) is set to f2
u=nu. In both cases, we have a 1-dimensional smoothing process in the
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age direction, and so k2 is reduced to a scalar, l2. Hence, we set the regression matrix �B and the

penalty matrix Pk2
to

�B ¼ Bx and Pk2
¼ l2D

0
xDx� ð5:28Þ

For both schemes, we have used the gamma canonical link function (that is the negative inverse) in

the smoothing of the dispersion parameters. Wherever needed, the convergence criterion was the

relative error between the current estimate and its update with a tolerance of 10 2 5.

5.2.3. Results and comments
The estimated forces of mortality obtained with the full extended quasi-likelihood scheme can

scarcely be distinguished by eye from those obtained with the bias corrected scheme, since the

difference between the estimated over-dispersion parameters from both schemes is not substantial;

see Figure 4 and Table 1. For precision however, all the graphics and most of the estimates discussed

in this section are those implemented with the bias corrected scheme.

Figure 3 shows the profile views for ages 45 and 70 which result from fitting Models 1 and 2; some

statistics are given in Table 1. Figure 4 shows the raw values and the smooth estimates of the fu’s

under Model 3. This graphic shows how the full extended quasi-likelihood scheme under-estimates

the dispersion parameters compared to the bias corrected scheme.

We make some comments on the results in Table 1. First, as measured by BICs, Model 2 gives a

much superior fit to the data compared to Model 1, with Model 3 a further improvement. Second,

the less flexible the fitted model, the larger the deviance; however, the deviance in Model 1 is

computed under the assumption that f5 1, and the relative increase in deviance from 4968 to 5076

as we go from Model 1 to Model 2 is more than compensated for by the additional variance of

Model 2 (as measured by its assumed over-dispersion parameter f̂ ¼ 1:76). Similar remarks apply

to Model 3 compared to Model 2. Third, Figure 3 does not include the output from Model 3; the

plotted lines for Model 3 are very close to those shown for Model 2, and we have chosen to omit

them; however, the difference between the two fitted models is clearly seen in Table 1.

There are two important conclusions to be drawn from this example: the first concerns the central

forecasts and the second the width of the confidence intervals. First, we consider the central

forecasts. The effective dimension of the model under the Poisson assumption is 46. If we include

Table 1. Comparative statistics for Models 1, 2 and 3. FEQS and BCS stand for the full extended quasi-

likelihood and the bias corrected schemes respectively.

Model 1
Model 2 Model 3

FEQS BCS FEQS BCS

k1 (228, 676) (277, 926) (278, 935) (295, 1077) (296, 1091)

/ 1 1.74 1.76 see Figure 4 see Figure 4

tr(H) 46 36 36 33 33

Deviance 4968 5073 5076 5118 5121

BICs 5333 3192 3158 2828 2796

Iterations 1 7 7 6 6
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the dispersion parameter in the estimation process, the effective dimension is reduced to 36 with

Model 2, and to 33 with Model 3; this corresponds to a more robust, ie, less volatile fit. In general,

this seems to us to be a desirable property for a forecast. Second, we consider the effect on the

confidence intervals. Taking account of the over-dispersion has led to narrower confidence intervals.

Why should this be? We argue as follows: smoothing is a compromise between (a) increasing

roughness, ie, improved fit to data and (b) increasing smoothness, ie, poorer fit to data. When we

include f we down-weight the fit to data (the deviance is increased from 4968 for Model 1 first to

5076 for Model 2, and then again to 5121 for Model 3) and so decrease the volatility of the fitted

model (the effective dimension is decreased first from 46 to 36 and then again to 33). The width of

the forecast confidence intervals reflects our faith in the selected model and we will have more faith

in the future direction of a forecast in a less volatile model; we conclude that the width of the

confidence interval will be decreased. Both of these effects can be seen in Figure 3.

5.3. Smoothing mortality data by amounts

We consider CMI male pensioner data. These data are available both by lives and by amounts from

1983 to 2006 and ages 10 to 108. For this exercise we consider separately the data for those

pensioners who are (a) age 65 and (b) age 73 (we will see below why we have chosen these ages).
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Let D 5 (D1,y , Dn)0 and E 5 (E1,y, En)0 denote the numbers of claims and central exposed-to-

risk, and let D½a� ¼ ðD½a�1 ;y;D½a�n Þ
0, E½a� ¼ ðE½a�1 ;y;E½a�n Þ

0 and l½a� ¼ ðm½a�1 ;y; m½a�n Þ
0 denote the amount

of pension of those that died, the amount at risk and the force of mortality (by amounts) for those

pensioners age 65 (or 73 as the case may be). For amounts data, the problem of duplicates arises

in two ways:

A: the original problem of duplicate policies in the portfolio, and

B: the much larger problem that amounts data by its very nature contains duplication on a grand

scale, since a single death, even of a pensioner with a single pension, generates not one but

multiple claims, namely the amount of pension at risk; see Forfar et al. (1988).

Figure 5 shows a plot of the observed log mortality by amounts, ie, log(D[a]/E[a]) (where the quotient

sign is interpreted as element-by-element division). We consider four approaches to smoothing the

observed mortality rates; these approaches reflect different attitudes to problems A and B.

(a) Assume D½a�i � P E½a�i � m½a�i

� 	
, (ie, ignore both A and B).

(b) Define A 5 E[a]/E, the mean amount at risk per life. Then the vector of raw mortalities by

amounts is

D½a�

E½a�
¼

D½a�=A

E½a�=A
¼

Dn

E
ð5:29Þ

where D* 5 D[a]/A. If all policies are for the same amount then D* 5 D so we assume

Dn

i � P Ei � m½a�i

� 	
; ðie; adjust for B by scaling but ignore AÞ:

This is the ‘method of scaling’ referred to in our introduction.

(c) Assume a quasi-likelihood framework for D½a�i , (ie adjust for A and B simultaneously by quasi-

likelihood):

E D½a�i

h i
¼ E½a�i � m½a�i ; var D½a�i

� 	
¼ f� E D½a�i

h i
:

This model is similar to that discussed by Renshaw & Hatzopoulos (1996).
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Figure 5. Various smooths of mortality by amounts.
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(d) Assume a quasi-likelihood framework for Dn
i , (ie adjust for B by scaling and for A by quasi-

likelihood):

E ½Dn

i � ¼ Ei � m½a�i ; var ðDn

i Þ ¼ f� E ½Dn

i �:

The smooth estimates which result from these four approaches are presented in Figure 5; various

summary statistics obtained with the bias corrected scheme are provided in Table 2. We comment

on each approach in turn. There are two serious objections to approach (a). Approach (a) is

equivalent to assuming that E½a�i , the amount at risk, corresponds to E½a�i independent lives, each with

an amount at risk of £1. Thus, over-dispersion is an essential part of model (a). Indeed, on

smoothing the age 65 data under model (a) we find (after the fitting) f̂ ¼ 2020 while f̂ ¼ 2471 at

age 73. An even more serious objection to model (a) is that it depends on the unit of currency

used to measure amounts. Simply by changing the units to hundreds of pounds, say, we alter the

amounts claimed and the amounts at risk. The consequence of model (a) is that the fitted curve

is substantially under-smoothed, since the exaggerated exposures force the fitted curve to follow

the data, as can be seen in both panels of Figure 5.

Approach (b) is an attempt to solve the problems with (a). We scale the amounts claimed and

the amounts at risk in such a way that the exposed-to-risk is once again measured in terms of

policyholders’ lives. Note that the problem with the units of currency is also solved by this scaling.

The effect of scaling varies with our two illustrative ages: there is little effect on the fitted smooth at

age 65 while at age 73 scaling results in a satisfactory smooth. There seems to be no clue in the

values of f̂ and l in Table 1 for these different behaviours, but we can remark from (3.13) that

a smoother curve results when the product of f̂ and l is large.

Approach (c) is very simple. We let the quasi-likelihood approach look after everything. We note

in particular that the problem with the units of currency disappears since if D
 ¼ D½a�=c and

E
 ¼ E½a�=c for some constant c then E ½D
i � ¼ E
i � m½a�i and var ðD
i Þ ¼ ðf=cÞ � E ½D
i � and the over-

dispersion parameter adjusts to take account of the change of currency. The estimated smooth

mortalities at both ages seem satisfactory. Approach (d) is a hybrid which combines the scaling

argument of approach (b) with the over-dispersion modelling of approach (c). Approaches (c) and

(d) give very similar results; see, for example, the values of tr(H) in Table 2.

We remark that the over-dispersion only approach in (c) is capable on its own of adjusting for

both the dispersion caused by amounts data per se and the ‘intrinsic’ dispersion caused by

heterogeneity and duplicate policies. Renshaw & Hatzopoulos (1996) use this partition of

Table 2. Estimates of the over-dispersion parameter f, the smoothing parameter l and the effective

dimension tr(H).

Age 65 Age 73

f̂ l tr(H) f̂ l tr(H)

Model (a) 2020 0.01 8 2471 0.037 8

Model (b) 1.4 0.1 6.8 1.43 6.1 5.55

Model (c) 3940 148 2.7 3078 5.8 5

Model (d) 2.2 110 2.8 1.37 7.1 5.25
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dispersion to calculate dispersion in their model for amounts data. Model (b) uses scaling to

adjust for the overdispersion caused by amounts data, but this is insufficient on its own and

further over-dispersion modelling, as in model (d), is required. Approach (d) also suffers from

the (possible) defect that it depends on a knowledge of the exposed-to-risk by lives; while this would

generally be available, approach (c) does not use this information.

5.4. Joint modelling and forecasting of mortality by lives and by amounts

The CMI pensioner data consists of data on both lives and amounts. It seems natural to require

that forecasts of mortality based on the lives data should be consistent with forecasts based

on the amounts data. Yet, independent forecasts of mortality by lives and by amounts will

inevitably lead to inconsistencies, as illustrated in Figure 6. It is well known that mortality

by amounts is lighter than that by lives so we propose a joint model of mortality by lives and

amounts that has consistency built into the model. Our joint model is an additive model with

two components: the first component is a smooth 2-dimensional surface and the second

component is a smooth age dependent curve which is constant in time. Thus, the mortality surface

by lives sits on top of the mortality surface by amounts in such a way that the cross-sections in

time by age are parallel. This model was discussed in Currie et al. (2004) but the treatment there

used the Poisson assumption to model the lives data and the ‘method of scaling’ to model the

amounts data (described in (b) in the previous subsection). Here we use the full quasi-Poisson

assumptions as follows

E½D½a�x;t� ¼ E½a�x;t � m½a�x;t; var ðD½a�x;tÞ ¼ f½a�x;t � E½D½a�x;t�

E½D½l�x;t� ¼ E½l�x;t � m½l�x;t; var ðD½l�x;tÞ ¼ f½l�x;t � E½D½l�x;t�

(
ð5:30Þ

where the upper indexes ‘‘½l �’’ and ‘‘½a�’’ refer to the lives data and the amounts data respectively;

for instance, for the amounts data at age x in calendar year t, E½a�x;t is the exposure and

f½a�x;t is the dispersion parameter. Formulation (5.30) is quite general but here we will set

f½a�x;t ¼ f½a�x and f½l�x;t ¼ f½l�x , and then smooth these parameters across age as described in

sections 3 and 4. The joint aspect of the model is then constructed through the linear
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Figure 6. Profile view illustrating the crossing effect in the independent extrapolations of mortality
by lives and by amounts for CMI pensioners.

V. A. B. Djeundje and I. D. Currie

48

https://doi.org/10.1017/S1748499510000047 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499510000047


predictor as follows:

logðl½a�Þ ¼ ðBt 	 BxÞh

logðl½l�Þ ¼ ðBt 	 BxÞh þ ð1nt
	 BxÞd

(
ð5:31Þ

where nt is the number of years; that is, there is an underlying smooth surface, (Bt

N
Bx)h (viewed as

the reference surface and corresponding to the mortality surface by amounts). This surface drives an

important part of the common dynamism in the mortality by lives and by amounts; and then, the relative

variation between these two types of mortality is captured by the gap, ð1nt
	 BxÞd, which is smooth in

age and constant in time. Thus, our modelling of the gap with ð1nt
	 BxÞd is designed to achieve

flexibility in the age direction and parallelism in the time direction. One may argue that this is a strong

assumption but it is a convenient and simple approach if we wish to avoid any crossing effects in the

two extrapolated surfaces. Moreover, for the CMI data sets considered here, it produces satisfactory

results (as we report below) because the underlying dynamism of mortality by lives and amounts

supports such a model. Smoothness is obtained by applying the penalty in (5.27) on h and a penalty

similar to (5.28) on d.

We now define the joint vectors of the forces of mortality, l 5 vec(l[a], l[l]), and the coefficients,

a 5 vec(h, d); the linear predictor in (5.31) can then be expressed compactly as

logðlÞ ¼ Ba; with B ¼
Bt 	 Bx 0

Bt 	 Bx 1nt
	 Bx


 �
: ð5:32Þ

This compact formulation allows the joint model specified through (5.30) and (5.31) to be fitted

with both schemes presented earlier. An illustration of the result (for selected profile views) fitted

with the bias corrected scheme is displayed in Figure 7. An attractive point in this joint modelling

approach is that the order of the two types of mortality in the joint predictor (5.31) does not matter,

ie, flipping the two types of mortality will lead to the same fit. Indeed, the fitting here is not

sequential; the coefficients h and d in (5.31) are estimated simultaneously.

6. Concluding remarks

We have described a general class of models for count data which allows the joint modelling of

mean and dispersion effects through the extended quasi-likelihood. Renshaw (1992) was the first to
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apply this method to actuarial data and we have extended his work to models for 2-dimensional

data in age and time with general smooth functions for both the mean and dispersion surfaces.

Smoothing is accomplished with the penalized B-spline method of Eilers & Marx (1996) which fits

naturally into the generalized linear model framework. This enables more complex models such as

the joint model for lives and amounts to be formulated. This last model is computationally very

demanding since five smoothing parameters (two for the reference surface, one for the gap, and one

for each of the age-dependent dispersion parameters for lives and amounts respectively) must be

chosen in the context of a large regression model. The efficient array algorithms described in Currie

et al. (2006) enable these calculations to be performed; these algorithms impact on the

computations but not on model formulation.

Forfar et al. (1988, Sect. 17.2) used variance ratios to adjust for the presence of duplicate policies in

a portfolio. Renshaw (1992) realised that there is sufficient information in the claims data alone to

adjust for the presence of duplicates. This was a considerable advance since special investigations

needed to be conducted to determine such variance ratios. We have discussed models for the

smoothing and forecasting of mortality tables (by lives, by amounts, and by lives and amounts

jointly). These models make proper adjustment for the presence of duplicates in particular and

heterogeneity in general. An attractive feature of our models is that the treatments of mortality data

by lives and by amounts are formally the same; this emphasizes that amounts data is fundamentally

the problem of duplicates, a point originally made by Forfar et al. (1988, Sect. 16.4).

We close by mentioning a number of extensions to model (5.32). One possibility is a model to

produce consistent forecasts for more than two populations; one application of actuarial interest is

where claims are classified by age, year and duration of policy. A second possibility of interest in

demography is to generalize model (5.32) to enable comparisons of mortality between different

countries and/or different genders. In such cases, it may be of interest to allow the gap to vary not

only by age (as in our lives/amounts example) but also by year; some examples of these models are

given in Biatat & Currie (2010).
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