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Every graphon defines a random graph on any given number n of vertices. It was known
that the graphon is random-free if and only if the entropy of this random graph is
subquadratic. We prove that for random-free graphons, this entropy can grow as fast as
any subquadratic function. However, if the graphon belongs to the closure of a random-free
hereditary graph property, then the entropy is O(nlogn). We also give a simple construction
of a non-step-function random-free graphon for which this entropy is linear, refuting a
conjecture of Janson.

2010 Mathematics subject classification: 05C99

1. Introduction

In recent years a theory of convergent sequences of dense graphs has been developed.
One can construct a limit object for such a sequence in the form of certain symmetric
measurable functions called graphons. Every graphon defines a random graph on any
given number of vertices. In [5] several facts about the asymptotics of the entropies of
these random variables are established. These results provide good understanding of the
situation when the graphon is not ‘random-free’, but they say essentially nothing about
random-free graphons. The purpose of this article is to study these entropies in the case
of random-free graphons.

1.1. Preliminaries

For every natural number n, denote [n] := {1,...,n}. In this paper all graphs are simple
and finite. For a graph G, let V(G) and E(G), respectively, denote the set of the vertices
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and the edges of G. Let U denote set of all graphs up to isomorphism. Moreover, for
n > 0, let U, = U denote the set of all graphs in & with exactly n vertices. We will usually
work with labelled graphs. For every n > 1, denote by £, the set of all graphs with vertex
set [n].

The homomorphism density of a graph H in a graph G, denoted by t(H;G), is the
probability that a random mapping ¢ : V(H) — V(G) preserves adjacencies, i.e., uv € E(H)
implies ¢(u)p(v) € E(G). The induced density of a graph H in a graph G, denoted by
p(H ; G), is the probability that a random embedding of the vertices of H in the vertices
of G is an embedding of H in G.

We call a sequence of finite graphs (G,);_; convergent if, for every finite graph H, the
sequence {p(H;Gy)};2, converges. It is not difficult to construct convergent sequences
(Gn)yy whose limits cannot be recognized as graphs, i.e., there is no graph G with
lim,_,, p(H; G,) = p(H ; G) for every H. Thus naturally one considers {, the completion
of U under this notion of convergence. It is not hard to see that I/ is a compact metrizable
space which contains I/ as a dense subset. The elements of the complement U* =1/ \ U
are called graph limits. Trivially, a graph limit I" is uniquely determined by the numbers
p(H;T') for all H € U.

Note that a sequence of graphs (G,);2; with |V (G,)| — oo cannot converge to a finite
graph G, as p(H;G) =0 for every graph H with |[V(H)| > |V(G)|. Hence a sequence
of graphs (G,);._; converges to a graph limit if and only if |V(G,)] — oo and p(H;G,)
converges for every graph H.

It is shown in [7] that every graph limit I" can be represented by a graphon, which is
a symmetric measurable function W : [0,1]> — [0,1]. The set of all graphons is denoted
by Wy. Given a graph G with vertex set [n], we define the corresponding graphon Wy :
[0,1]> — {0,1} as follows. Let Ag denote the adjacency matrix of G. Then Wg(x,y) ==
Ag([xn], [yn]) if x,y € (0,1], and if x =0 or y =0, set W to 0. It is easy to see that if
(Gy);; 1s a graph sequence that converges to a graph limit I', then for every graph H,

p(H;T) = ’}i_{gE[ IT We(xwx) I (1=We,(xwx))|,
~ Lwerem) weE(H¢)

where {x, }uerm) are independent random variables taking values in [0, 1] uniformly, and
E(H®) = {uv :u #+ v,uv ¢ E(H)}. Lovasz and Szegedy [7] showed that for every graph limit
I, there exists a graphon W such that, for every graph H, we have p(H;I') = p(H; W),
where

p(H: W) :=E{ I wex) [ 0=Wxwx)|.
ueE(H) weE(H®)

Furthermore, this graphon is unique in the following sense. For a measurable ¢ : [0,1] —
[0,1], define W o6 : [0,1]> = [0,1] as W o a : (x,y)— W(a(x),a(y)). Now if W; and W,
are two different graphons representing the same graph limit, then there exists a graphon
W and two measure-preserving maps a1,0; : [0,1] — [0, 1] such that

Wi=Woo;y and W,= W oo, (1.1)
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almost everywhere [4]. With these considerations, sometimes we shall not distinguish
between the graph limits and their corresponding graphons. We define the J; distance of
two graphons W; and W, as

01(W1, Ws) = inf [W — W o0y,

where the infimum is over all measure-preserving maps o : [0,1] — [0, 1].

A graphon W is called a step-function if there is a partition of [0, 1] into a finite number
of measurable sets Sj,...,S, so that W is constant on every S; x S;. The partition classes
will be called the steps of W.

Let W be a graphon and xi,...,x, € [0,1]. The random graph G(xi,...,x,, W) € L, is
obtained by including the edge ij with probability W(x;,x;), independently for all pairs
(i, j) with 1 <i < j < n. By picking xi,...,x, independently and uniformly at random
from [0, 1], we obtain the random graph G(n, W) € L,. Note that for every H € L,

P[G(n,W)=H] = p(H; W).

1.2. Graph properties and entropy

A subset of the set U is called a graph class. Similarly, a graph property is a property
of graphs that is invariant under graph isomorphisms. There is an obvious one-to-one
correspondence between graph classes and graph properties and we will not distinguish
between a graph property and the corresponding class. A graph class or property Q is
hereditary if, whenever a graph G has the property Q, every induced subgraph of G also
has Q.

Let Q@ = U be a graph class. For every n > 1, we denote by 9, the set of graphs in Q
with exactly n vertices. We let Q = U be the closure of Q in I{.

Define the binary entropy function h : [0,1] — Ry as h(x) = —xlogx — (1 — x)log(1 —
x) for x € (0,1) and h(0) = h(1) =0 so that h is continuous on [0, 1], where, here and
throughout the paper, log(-) denotes the logarithm to base 2. The entropy of a graphon
W is defined by

1 1
Ent(W) ::/0 /o h(W (x,y))dxdy.

Note that it follows from the uniqueness result (1.1) that entropy is a function of the
underlying graph limit, and it does not depend on the choice of the graphon representing
it. It is shown in [1] and Theorem D.5 of [6] that

fim ERLG0 1)
e (2)

where Ent(G(n, W)) is the usual entropy of the random variable G(n, W).

A graphon is called random-free if it is {0, 1}-valued almost everywhere. Note that
a graphon W is random-free if and only if Ent(W) =0, which by (1.2) is equivalent
to Ent(G(n, W)) = o(n?). Our first theorem shows that this is sharp in the sense that the
growth of Ent(G(n, W)) for random-free graphons W can be arbitrarily close to quadratic.

= Ent(W), (1.2)
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Theorem 1.1. Let o : N — R, be a function with lim,_,, a(n) = 0. Then there exists a
random-free graphon W such that Ent(G(n, W)) = Q(a(n)n?).

A graph property Q is called random-free if every W € Q is random-free. Our next
theorem shows that in contrast to Theorem 1.1, when a graphon W is the limit of a
sequence of graphs with a random-free hereditary property, then Ent(G(n, W)) cannot
grow faster than O(nlogn).

Theorem 1.2. Let Q be a random-free hereditary property, and let W be the limit of a
sequence of graphs in Q. Then Ent(G(n, W)) = O(nlogn).

Remark. We defined G(n, W) as a labelled graph in £,. Both Theorems 1.1 and 1.2 remain
valid if we consider the random variable G,(n, W) taking values in U, obtained from
G(n, W) by forgetting the labels. Indeed, Ent(G,(n, W)) = Ent(G(n, W)) — Ent(G(n, W) |
G,(n,W)) and Ent(G(n, W) | G,(n, W) = H) = O(nlogn) for every H € U,. It follows that

Ent(G(n, W)) — O(nlogn) < Ent(G,(n, W)) < Ent(G(n, W)).

2. Proof of Theorem 1.1

A bigraph is a bipartite graph with a specified bipartition. For every positive integer
m, let F,, denote the unique bigraph ([m], [2"], E) with the property that the vertices in
[2™] all have different sets of neighbours. The transversal-uniform graph Gy is the unique
graph (up to an isomorphism) with vertex set N which satisfies the following property.
The vertices are partitioned into sets {4;}2, with log|4;| = Z;;ll |A;_1]. There are no
edges inside the A;, and for every i, the bigraph induced by (Ui;llA j»Ai) is isomorphic to
lei:l Al

Let Z = {I;}ien be a partition of [0,1] into intervals. We define its corresponding
transversal-uniform graphon Wr by assigning weights |I;|/|A4;] to all the vertices in 4; in
the transversal-uniform graph Gy described above. More precisely, we partition each I;
into |A4;| equal size intervals (corresponding to the elements in 4;), and mapping all the
points in each of these subintervals to its corresponding vertex in A;. This measurable
surjection 7z : [0,1] — N, together with the transversal-uniform graph described above,
defines the transversal-uniform graphon Wz by setting

1 if nz(x)nz(y) € E(Gu),
WI(X, J/) = .
0 if nz(x)nz(y) ¢ E(Gu).
Note that by construction Wy has the following property. Let s < k be positive integers,
and xi,...,x; € Uitl; belong to pairwise distinct intervals in Z. For every f : [s] — {0,1},
we have

1
P[Vlr WI(xiay) = f(l) | ye Ik] = Ea
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where y is a random variable taking values uniformly in [0, 1]. It follows that for every
graph H on s vertices,

1
20)°
where xi,...,x; are now iid. random variables taking values uniformly in [0,1], and
ki,...,ks are distinct natural numbers.

We translate (2.3) into a lower bound on (conditional) entropy of transversal-uniform
graphons. First we need a simple lemma.

P[G(x1,...,x5, Wz) =H | Vi, x; € I;] = (2.3)

Lemma 2.1. Let Wz be a transversal-uniform graphon, and let ¢ : [n] — [0, 1] be a uni-
formly random map. For every p : [n] — N, we have

Ent(G($(1),...,p(n), Wz) | nz 0 = p) > (Ilm(p))

2

Proof. Pick a set of representatives K = [n] so that p|g : K — Im(p) is a bijection.
Equation (2.3) implies that for every graph H with V(H) =K,
1
P[G(¢(1),...,¢(n),W7)[K] =H [ nz 0 = p] = NGD}
Therefore,

Et(G(9(1)..... §(n), Wa) | 7z 0§ = p) > Ent(G(¢(1)..... o(n). Wo)K] | nz 0 § = p)
_ (um(p)) -
).

In the proof of Theorem 1.1 below we will make use of the following well-known
inequality about conditional entropy. For discrete random variables X and Y,

Ent(X | Y):= Y P[Y =y]Ent(X | Y =y) < Ent(X). (2.4)
y€esupp(Y)

Proof of Theorem 1.1.  For every positive integer k, define
g = max{{2"1 U {n | a(n) > 273,

The numbers g; are well-defined, as the condition lim,_., «(n) = 0 implies that the set
{n | a(n) > 2729} is finite. Define the sums Gy := S~ g, and set f§; = gﬁ for all the g
indices i € (Gk,l,Gk]. Let Z = {I;}ien be a partition of [0, 1] into intervals with |I;| = f8;,
and let Wz be the corresponding transversal-uniform graphon.

Consider a sufficiently large n € N, and let k € N be chosen to be the maximal k such
that 257* < n and a(n) < 2727 We have n < 253 or a(n) > 272, Therefore n < g by
the definition of g;. Let ¢ : [n] — [0, 1] be random and uniform. By Lemma 2.1, for any
fixed p : [n] — N, we have

Ent(G(¢(1),..., p(n), Wr)|nz o p = p) > (Ilm(pn)

2
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Thus

—k—
Ent(G(n, Wr)) > Ent(G(n, Wr)|nz o ¢) = P[[Im(rz o ¢)| = n2 2] (”2 ) 2). (2.5)

Define the random variable X := |Im(nz o ¢) N (Gi—1, Gi]| < |Im(nz o ¢)|. We have

EX]= > Plp'Un#01= > (1—(1—8))

i€(Gp—1,Gk] i€(Gk—1,Gk]

1 n
(1= )
8k

where we used the fact that g;2¢ > 2n and that (1 —x)" < 1 —nx +n?x> < 1 —nx/2 for
x € [0,1/2n]. As the events ¢~ (I;) # 0 and ¢~'(I;) # 0 are negatively correlated for i # j,
we have Var[X] < E[X]. Hence by Chebyshev’s inequality

E
P[Im(nz o ¢)| = n2* 2] > P[X >n27" 2] > 1— ]P’[|X —E[X]| > %
| 4Var[X] < 4 < 1
~ EX]2 = w2 k172
Substituting in (2.5), we obtain
1 /272 2—2k—17 2
Ent(G(n, W1)) > 3 ) >n2 > a(n)n”,
as desired. |

3. Proof of Theorem 1.2

Lovasz and Szegedy [8] obtained a combinatorial characterization of random-free hered-
itary graph properties. To state this result it is convenient to distinguish between bipartite
graphs and bigraphs. A bipartite graph is a graph (V, E) whose node set has a partition
into two classes such that all edges connect nodes in different classes. A bigraph is a
triple (Uy, Uy, E) where Uy and U, are finite sets and E = Uy x U,. So a bipartite graph
becomes a bigraph if we fix a bipartition and specify which bipartition class is first and
second. On the other hand, if F = (V,E) is a graph, then (V,V,E’) is an associated
bigraph, where E' = {(x,y) : xy € E}.

If G=(V,E) is a graph, then an induced sub-bigraph of G is determined by two (not
necessarily disjoint) subsets S, T' = V, and its edge set consists of those pairs (x,y) € S x T
for which xy € E (so this is an induced subgraph of the bigraph associated with G).

For a bigraph H = (U1, U,,E) and a graphon W, analogous to the definition of the
induced density of a graph in a graphon, we define

PHW) =E| J[ Wy J[  0=Won)|,
ueUy,veU; ueUy,vel,
uweE we(Uy xUy)\E
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where {x,}ueu,»{Js}veu, are independent random variables taking values in [0,1] uni-
formly. Now we are ready to state Lovasz and Szegedy’s characterization of random-free
graph properties.

Theorem 3.1 ([8]). A hereditary graph property Q is random-free if and only if there exists
a bigraph H such that pP(H; W) =0 for all W € Q.

The following lemma is due to Alon, Fischer and Newman (see [2, Lemma 1.6]).

Lemma 3.2 ([2]). There is an absolute constant C for which the following is true. Let k

be a positive integer and let 6 > 0 be a small real. For every graph G, either there exists

a step-function graphon W' with r < (%)Ck steps such that 61(Wg, W') < 0, or for every
s

2
bigraph H on k vertices p’(H; W) > (E)Ck :

Every random-free graphon W can be approximated arbitrarily well in the §; distance
with Wg for some graph G, and furthermore, for every fixed H, the function p°(H,-)
is continuous in the J; distance. Thus Lemma 3.2 can be generalized to random-free
graphons.

Corollary 3.3. There is an absolute constant C for which the following is true. Let k be
a positive integer and let 0 > 0 be a small real. For every random-free graphon W, either
k

there exists a step-function graphon W' with r < (E)Ck steps such that 61(W,W') <6, or

2
for every bigraph H on k vertices p*(H; W) > (%)Ck .
Next we will prove two simple lemmas about entropy.
Lemma 3.4. Let uy and uy be two discrete probability distributions on a finite set Q. Then

|Ent(u1) — Ent(us)| < Q|h<|'u1_Q|/“‘2|1>.

Proof. Define 0log0 := lim,_,o xlog x = 0. By taking the derivative with respect to x, for
fixed d we see that (x + d)log(x + d) — xlog x is monotone for 0 < x < 1 — d. Therefore,
for x1,x, € [0,1] we have

|x21og x2 — x5 log x1| < max{—|x, — x| log[x2 — x1|, —(1 — [x2 — x1]) log(1 — |x2 — x1])}

< h(]x2 — x1]).
Thus
|[Ent(uy) — Ent(u)] = | > s (x)log 1 (x) — pa(x) log pa(x)
xeQ
1 — gz |
<Y () — o)) < |Q|h(19“ ,

xeQ | |

where the last inequality is by concavity of the binary entropy function h. U]
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Lemma 3.5. Let Wi and W, be two graphons, and let py and p, be the probability distri-
butions on L, induced by G(n, W) and G(n, W), respectively. Then

1 — a2l < 0281 (Wy, W).

Proof. Note that without loss of generality W; and W, can be replaced by equivalent
graphons so that 6{(Wy, W,) = |W; — W;|;. Let xi,...,x, be iid. uniform random
variables with values in [0, 1]. Let {e; i1 <i<j< n} be independent random variables
taking values in [0, 1] uniformly. Let G, G, be random graphs on [n] defined in the
following way. There is an edge between two vertices i < j in Gy if Wi(xi,x;) > €;; for
k =1,2. Note that G; and G,, respectively, have the same distributions as G(n, W;) and
G(n, W3). Thus

lur — wolli < 2P[Gy # Go] < E[Z |Wi(xi, x;) — Walxi, x )| < 2| Wy — Wl O
i#j

Proof of Theorem 1.2. Since Q is random-free, by Theorem 3.1, there exists a bigraph
H such that p°(H; W) =0 for all W € Q. Applying Corollary 3.3 with § = 1/n° shows
that there exists a step-function graphon W’ with n®!) steps satisfying |W — W'||; < 6.
Then, since |£,] < 2”2, Lemmas 3.4 and 3.5 imply

[Ent(G(n, W')) — Ent(G(n, W))| < 2" h ( o )

o
2 (1% n*sé n?s ns
- (i) (125 e )
4 2 2 nzé
<n"d+n°6(—2logn—1logd)+2" -2 T o(1).
Since W' is random-free and it has n®1 steps, |supp(G(n, W'))| = n°™. Consequently
Ent(G(n, W')) = O(nlogn). ]

4. Concluding remarks

(1) Note that if W is a random-free step-function, then Ent(G(n, W)) = O(n). In [6] it is
conjectured that the converse is also true. That is, Ent(G(n, W)) = O(n) if and only if W
is equivalent to a random-free step-function. The following simple example disproves this
conjecture.

Let p be the probability distribution on N defined by u({i}) = 27". Consider the random
variable X = (X1,...,X,) € N", where X; are ii.d. random variables with distribution .
We have Ent(X;) = >_.2, 27'i = 2. Hence Ent(X) = ) Ent(X;) = 2n.

Partition [0, 1] into intervals {I;}*,, where |I;/ =27". Let W be the graphon that is
constant 1 on UZ,I; x I; and 0 everywhere else. Note that

Ent(G(n, W)) < Ent(X) < 2n.

Therefore G(n, W) has linear entropy.
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It remains to verify that W is not equivalent to a step-function. This follows immediately
from the fact that W has infinite rank as a kernel. It can also be verified in a more
combinatorial way. A homogenous set of vertices in a graph H is a set of vertices which
are either all pairwise adjacent to each other, or all pairwise non-adjacent. If W is
equivalent to a step-function with k steps, then every H € supp(G(n, W)) clearly contains
a homogenous set of size at least n/k. On the other hand, if H € L, is a disjoint union
of n complete graphs on n vertices, then the largest homogenous set in H has size n, but
H € supp(G(n>, W)) by construction.

(2) Theorem 1.2 shows that when W is a limit of a random-free hereditary property, then
the entropy of G(n, W) is small. However, the support of G(n, W) can be comparatively
large. For every e > 0, we construct examples for which log(|supp(G(n, W))|) = Q(n>~).
Note that Theorem 1.2 implies that G(n, W) is far from being uniform on the support in
these examples, as the entropy of a uniform random variable with support of size 2% ™)
is Q(n*>~°).

Let us now describe the construction. Fix a positive integer ¢, and let Q be the set of
graphs that do not contain K,, as a subgraph. Partition [0, 1] into intervals {S;}72, with
non-zero lengths, and let {H;}°, be an enumeration of the graphs in Q. Define W to be
the graphon that is 0 on S; x S; for i # j, and is equivalent to Wy, (scaled properly) on
S; x ;. By construction p(H; W) > 0 if H € Q. Thus |supp(G(n, W))| > |Q,|. Since there
exist K, ,-free graphs with n”~%/* edges (see, e.g., [3, p. 316, Theorem VI.2.10]), we have
Qul =27

It remains to show that W is a limit of graphs in some random-free property.
Unfortunately, W ¢ Q. We construct a larger random-free property Q' so that W € Q/,
as follows.

Fix a bigraph B, so that the corresponding graph contains K;; as a subgraph and is
connected. Suppose further that no two vertices of B have the same neighbourhood. Note
that such a bigraph trivially exists. For example, one can take B = (V; U Uy, V2 U Uy, E)
so that Vy, Uy, V», U, are disjoint sets of size t, every vertex of V; is joined to every vertex
of V>, and the edges between V| and U,, as well as the edges between U; and V>, form
a matching of size t. Let @ = Q be the set of graphs not containing B as an induced
sub-bigraph. Then Q' is random-free by Theorem 3.1, as p®(B, W') = 0 for every W' € Q..

Let r = |V(B)| and suppose that G = G(xy, x2,...,X;, W) contains B as an induced sub-
bigraph. Then there exists i so that x,x5,...,x, € S;, as G is connected. It follows further
that G is an induced subgraph of H;, as no two vertices of G have the same neighbourhood.
Thus G contains no K;,; subgraph, contradicting our assumption that G contains B. We
conclude that supp(G(n, W)) = Q' for every positive integer n. By Lemma 2.6 of [7] the
sequence {G(n, W)}, converges to W with probability one. Thus W € @', as desired.
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