The Entropy of Random-Free Graphons and Properties

HAMED HATAMI 1† and SERGUEI NORINE 2‡

¹School of Computer Science, McGill University, Montreal, Canada (e-mail: hatami@cs.mcgill.ca)
²Department of Mathematics & Statistics, McGill University, Montreal, Canada (e-mail: snorin@math.mcgill.ca)

Received 17 July 2012; revised 11 April 2013; first published online 16 May 2013

Every graphon defines a random graph on any given number n of vertices. It was known that the graphon is random-free if and only if the entropy of this random graph is subquadratic. We prove that for random-free graphons, this entropy can grow as fast as any subquadratic function. However, if the graphon belongs to the closure of a random-free hereditary graph property, then the entropy is $O(n \log n)$. We also give a simple construction of a non-step-function random-free graphon for which this entropy is linear, refuting a conjecture of Janson.

2010 Mathematics subject classification: 05C99

1. Introduction

In recent years a theory of convergent sequences of dense graphs has been developed. One can construct a limit object for such a sequence in the form of certain symmetric measurable functions called graphons. Every graphon defines a random graph on any given number of vertices. In [5] several facts about the asymptotics of the entropies of these random variables are established. These results provide good understanding of the situation when the graphon is not 'random-free', but they say essentially nothing about random-free graphons. The purpose of this article is to study these entropies in the case of random-free graphons.

1.1. Preliminaries

For every natural number *n*, denote $[n] := \{1, ..., n\}$. In this paper all graphs are simple and finite. For a graph *G*, let V(G) and E(G), respectively, denote the set of the vertices

[†] Research supported by an NSERC and an FQRNT grant.

[‡] Research supported by an NSERC Discovery grant.

and the edges of G. Let \mathcal{U} denote set of all graphs up to isomorphism. Moreover, for $n \ge 0$, let $\mathcal{U}_n \subset \mathcal{U}$ denote the set of all graphs in \mathcal{U} with exactly *n* vertices. We will usually work with labelled graphs. For every $n \ge 1$, denote by \mathcal{L}_n the set of all graphs with vertex set [n].

The homomorphism density of a graph H in a graph G, denoted by t(H;G), is the probability that a random mapping $\phi : V(H) \to V(G)$ preserves adjacencies, *i.e.*, $uv \in E(H)$ implies $\phi(u)\phi(v) \in E(G)$. The *induced density* of a graph H in a graph G, denoted by p(H;G), is the probability that a random *embedding* of the vertices of H in the vertices of G is an embedding of H in G.

We call a sequence of finite graphs $(G_n)_{n=1}^{\infty}$ convergent if, for every finite graph H, the sequence $\{p(H;G_n)\}_{n=1}^{\infty}$ converges. It is not difficult to construct convergent sequences $(G_n)_{n=1}^{\infty}$ whose limits cannot be recognized as graphs, *i.e.*, there is no graph G with $\lim_{n\to\infty} p(H;G_n) = p(H;G)$ for every H. Thus naturally one considers $\overline{\mathcal{U}}$, the completion of \mathcal{U} under this notion of convergence. It is not hard to see that $\overline{\mathcal{U}}$ is a compact metrizable space which contains \mathcal{U} as a dense subset. The elements of the complement $\mathcal{U}^{\infty} := \overline{\mathcal{U}} \setminus \mathcal{U}$ are called graph limits. Trivially, a graph limit Γ is uniquely determined by the numbers $p(H;\Gamma)$ for all $H \in \mathcal{U}$.

Note that a sequence of graphs $(G_n)_{n=1}^{\infty}$ with $|V(G_n)| \to \infty$ cannot converge to a finite graph G, as p(H;G) = 0 for every graph H with |V(H)| > |V(G)|. Hence a sequence of graphs $(G_n)_{n=1}^{\infty}$ converges to a graph limit if and only if $|V(G_n)| \to \infty$ and $p(H;G_n)$ converges for every graph H.

It is shown in [7] that every graph limit Γ can be represented by a graphon, which is a symmetric measurable function $W : [0,1]^2 \to [0,1]$. The set of all graphons is denoted by W_0 . Given a graph G with vertex set [n], we define the corresponding graphon W_G : $[0,1]^2 \to \{0,1\}$ as follows. Let A_G denote the adjacency matrix of G. Then $W_G(x,y) :=$ $A_G(\lceil xn \rceil, \lceil yn \rceil)$ if $x, y \in (0,1]$, and if x = 0 or y = 0, set W_G to 0. It is easy to see that if $(G_n)_{n=1}^{\infty}$ is a graph sequence that converges to a graph limit Γ , then for every graph H,

$$p(H;\Gamma) = \lim_{n \to \infty} \mathbb{E} \left[\prod_{uv \in E(H)} W_{G_n}(x_u, x_v) \prod_{uv \in E(H^c)} (1 - W_{G_n}(x_u, x_v)) \right],$$

where $\{x_u\}_{u \in V(H)}$ are independent random variables taking values in [0, 1] uniformly, and $E(H^c) = \{uv : u \neq v, uv \notin E(H)\}$. Lovász and Szegedy [7] showed that for every graph limit Γ , there exists a graphon W such that, for every graph H, we have $p(H;\Gamma) = p(H;W)$, where

$$p(H;W) := \mathbb{E}\bigg[\prod_{uv \in E(H)} W(x_u, x_v) \prod_{uv \in E(H^c)} (1 - W(x_u, x_v))\bigg].$$

Furthermore, this graphon is unique in the following sense. For a measurable $\sigma : [0, 1] \rightarrow [0, 1]$, define $W \circ \sigma : [0, 1]^2 \rightarrow [0, 1]$ as $W \circ \sigma : (x, y) \mapsto W(\sigma(x), \sigma(y))$. Now if W_1 and W_2 are two different graphons representing the same graph limit, then there exists a graphon W and two measure-preserving maps $\sigma_1, \sigma_2 : [0, 1] \rightarrow [0, 1]$ such that

$$W_1 = W \circ \sigma_1$$
 and $W_2 = W \circ \sigma_2$, (1.1)

almost everywhere [4]. With these considerations, sometimes we shall not distinguish between the graph limits and their corresponding graphons. We define the δ_1 distance of two graphons W_1 and W_2 as

$$\delta_1(W_1, W_2) = \inf \| W_1 - W_2 \circ \sigma \|_1,$$

where the infimum is over all measure-preserving maps $\sigma : [0, 1] \rightarrow [0, 1]$.

A graphon W is called a *step-function* if there is a partition of [0, 1] into a finite number of measurable sets S_1, \ldots, S_n so that W is constant on every $S_i \times S_j$. The partition classes will be called the *steps* of W.

Let W be a graphon and $x_1, ..., x_n \in [0, 1]$. The random graph $G(x_1, ..., x_n, W) \in \mathcal{L}_n$ is obtained by including the edge ij with probability $W(x_i, x_j)$, independently for all pairs (i, j) with $1 \le i < j \le n$. By picking $x_1, ..., x_n$ independently and uniformly at random from [0, 1], we obtain the random graph $G(n, W) \in \mathcal{L}_n$. Note that for every $H \in \mathcal{L}_n$,

$$\mathbb{P}[G(n, W) = H] = p(H; W).$$

1.2. Graph properties and entropy

A subset of the set \mathcal{U} is called a graph class. Similarly, a graph property is a property of graphs that is invariant under graph isomorphisms. There is an obvious one-to-one correspondence between graph classes and graph properties and we will not distinguish between a graph property and the corresponding class. A graph class or property \mathcal{Q} is *hereditary* if, whenever a graph G has the property \mathcal{Q} , every induced subgraph of G also has \mathcal{Q} .

Let $Q \subseteq U$ be a graph class. For every n > 1, we denote by Q_n the set of graphs in Q with exactly *n* vertices. We let $\overline{Q} \subseteq \overline{U}$ be the closure of Q in \overline{U} .

Define the binary entropy function $h : [0,1] \mapsto \mathbb{R}_+$ as $h(x) = -x \log x - (1-x) \log(1-x)$ for $x \in (0,1)$ and h(0) = h(1) = 0 so that h is continuous on [0,1], where, here and throughout the paper, $\log(\cdot)$ denotes the logarithm to base 2. The entropy of a graphon W is defined by

Ent(W) :=
$$\int_0^1 \int_0^1 h(W(x, y)) \, dx \, dy.$$

Note that it follows from the uniqueness result (1.1) that entropy is a function of the underlying graph limit, and it does not depend on the choice of the graphon representing it. It is shown in [1] and Theorem D.5 of [6] that

$$\lim_{n \to \infty} \frac{\operatorname{Ent}(G(n, W))}{\binom{n}{2}} = \operatorname{Ent}(W), \tag{1.2}$$

where Ent(G(n, W)) is the usual entropy of the random variable G(n, W).

A graphon is called *random-free* if it is $\{0,1\}$ -valued almost everywhere. Note that a graphon W is random-free if and only if Ent(W) = 0, which by (1.2) is equivalent to $Ent(G(n, W)) = o(n^2)$. Our first theorem shows that this is sharp in the sense that the growth of Ent(G(n, W)) for random-free graphons W can be arbitrarily close to quadratic. **Theorem 1.1.** Let $\alpha : \mathbb{N} \to \mathbb{R}_+$ be a function with $\lim_{n\to\infty} \alpha(n) = 0$. Then there exists a random-free graphon W such that $\operatorname{Ent}(G(n, W)) = \Omega(\alpha(n)n^2)$.

A graph property Q is called *random-free* if every $W \in \overline{Q}$ is random-free. Our next theorem shows that in contrast to Theorem 1.1, when a graphon W is the limit of a sequence of graphs with a random-free *hereditary* property, then Ent(G(n, W)) cannot grow faster than $O(n \log n)$.

Theorem 1.2. Let Q be a random-free hereditary property, and let W be the limit of a sequence of graphs in Q. Then $Ent(G(n, W)) = O(n \log n)$.

Remark. We defined G(n, W) as a *labelled* graph in \mathcal{L}_n . Both Theorems 1.1 and 1.2 remain valid if we consider the random variable $G_u(n, W)$ taking values in \mathcal{U}_n obtained from G(n, W) by forgetting the labels. Indeed, $\operatorname{Ent}(G_u(n, W)) = \operatorname{Ent}(G(n, W)) - \operatorname{Ent}(G(n, W) \mid G_u(n, W))$ and $\operatorname{Ent}(G(n, W) \mid G_u(n, W) = H) = O(n \log n)$ for every $H \in \mathcal{U}_n$. It follows that

 $\operatorname{Ent}(G(n, W)) - O(n \log n) \leq \operatorname{Ent}(G_u(n, W)) \leq \operatorname{Ent}(G(n, W)).$

2. Proof of Theorem 1.1

A bigraph is a bipartite graph with a specified bipartition. For every positive integer m, let F_m denote the unique bigraph $([m], [2^m], E)$ with the property that the vertices in $[2^m]$ all have different sets of neighbours. The transversal-uniform graph G_U is the unique graph (up to an isomorphism) with vertex set \mathbb{N} which satisfies the following property. The vertices are partitioned into sets $\{A_i\}_{i=1}^{\infty}$ with $\log |A_i| = \sum_{j=1}^{i-1} |A_{i-1}|$. There are no edges inside the A_i , and for every i, the bigraph induced by $(\bigcup_{j=1}^{i-1} A_j, A_i)$ is isomorphic to $F_{\sum_{i=1}^{i-1} |A_i|}$.

Let $\mathcal{I} = \{I_i\}_{i \in \mathbb{N}}$ be a partition of [0, 1] into intervals. We define its corresponding transversal-uniform graphon $W_{\mathcal{I}}$ by assigning weights $|I_i|/|A_i|$ to all the vertices in A_i in the transversal-uniform graph G_U described above. More precisely, we partition each I_i into $|A_i|$ equal size intervals (corresponding to the elements in A_i), and mapping all the points in each of these subintervals to its corresponding vertex in A_i . This measurable surjection $\pi_{\mathcal{I}} : [0, 1] \to \mathbb{N}$, together with the transversal-uniform graph described above, defines the transversal-uniform graphon $W_{\mathcal{I}}$ by setting

$$W_{\mathcal{I}}(x, y) = \begin{cases} 1 & \text{if } \pi_{\mathcal{I}}(x)\pi_{\mathcal{I}}(y) \in E(G_U), \\ 0 & \text{if } \pi_{\mathcal{I}}(x)\pi_{\mathcal{I}}(y) \notin E(G_U). \end{cases}$$

Note that by construction $W_{\mathcal{I}}$ has the following property. Let s < k be positive integers, and $x_1, \ldots, x_s \in \bigcup_{i < k} I_i$ belong to pairwise distinct intervals in \mathcal{I} . For every $f : [s] \to \{0, 1\}$, we have

$$\mathbb{P}[\forall i, \ W_{\mathcal{I}}(x_i, y) = f(i) \mid y \in I_k] = \frac{1}{2^s},$$

where y is a random variable taking values uniformly in [0, 1]. It follows that for every graph H on s vertices,

$$\mathbb{P}[G(x_1,...,x_s,W_{\mathcal{I}}) = H \mid \forall i, \ x_i \in I_{k_i}] = \frac{1}{2\binom{s}{2}},$$
(2.3)

where x_1, \ldots, x_s are now i.i.d. random variables taking values uniformly in [0, 1], and k_1, \ldots, k_s are distinct natural numbers.

We translate (2.3) into a lower bound on (conditional) entropy of transversal-uniform graphons. First we need a simple lemma.

Lemma 2.1. Let $W_{\mathcal{I}}$ be a transversal-uniform graphon, and let $\phi : [n] \to [0,1]$ be a uniformly random map. For every $\rho : [n] \to \mathbb{N}$, we have

$$\operatorname{Ent}(G(\phi(1),\ldots,\phi(n),W_{\mathcal{I}}) \mid \pi_{\mathcal{I}} \circ \phi = \rho) \geqslant \binom{|\operatorname{Im}(\rho)|}{2}.$$

Proof. Pick a set of representatives $K \subseteq [n]$ so that $\rho|_K : K \to \text{Im}(\rho)$ is a bijection. Equation (2.3) implies that for every graph H with V(H) = K,

$$\mathbb{P}[G(\phi(1),\ldots,\phi(n),W_{\mathcal{I}})[K] = H \mid \pi_{\mathcal{I}} \circ \phi = \rho] = \frac{1}{2^{\binom{|\operatorname{Im}(\rho)|}{2}}}$$

Therefore,

$$\operatorname{Ent}(G(\phi(1),\ldots,\phi(n),W_{\mathcal{I}}) \mid \pi_{\mathcal{I}} \circ \phi = \rho) \ge \operatorname{Ent}(G(\phi(1),\ldots,\phi(n),W_{\mathcal{I}})[K] \mid \pi_{\mathcal{I}} \circ \phi = \rho)$$
$$= \binom{|\operatorname{Im}(\rho)|}{2}.$$

In the proof of Theorem 1.1 below we will make use of the following well-known inequality about conditional entropy. For discrete random variables X and Y,

$$\operatorname{Ent}(X \mid Y) := \sum_{y \in \operatorname{supp}(Y)} \mathbb{P}[Y = y] \operatorname{Ent}(X \mid Y = y) \leqslant \operatorname{Ent}(X).$$
(2.4)

Proof of Theorem 1.1. For every positive integer k, define

$$g_k := \max\{\{2^{k+5}\} \cup \{n \mid \alpha(n) > 2^{-2k-9}\}\}.$$

The numbers g_k are well-defined, as the condition $\lim_{n\to\infty} \alpha(n) = 0$ implies that the set $\{n \mid \alpha(n) > 2^{-2k-9}\}$ is finite. Define the sums $G_k := \sum_{i=1}^k g_k$, and set $\beta_i = \frac{1}{g_k 2^k}$ for all the g_k indices $i \in (G_{k-1}, G_k]$. Let $\mathcal{I} = \{I_i\}_{i\in\mathbb{N}}$ be a partition of [0, 1] into intervals with $|I_i| = \beta_i$, and let $W_{\mathcal{I}}$ be the corresponding transversal-uniform graphon.

Consider a sufficiently large $n \in \mathbb{N}$, and let $k \in \mathbb{N}$ be chosen to be the maximal k such that $2^{k+4} \leq n$ and $\alpha(n) \leq 2^{-2k-7}$. We have $n < 2^{k+5}$ or $\alpha(n) > 2^{-2k-9}$. Therefore $n \leq g_k$ by the definition of g_k . Let $\phi : [n] \to [0, 1]$ be random and uniform. By Lemma 2.1, for any fixed $\rho : [n] \to \mathbb{N}$, we have

$$\operatorname{Ent}(G(\phi(1),\ldots,\phi(n),W_{\mathcal{I}})|\pi_{\mathcal{I}}\circ\phi=\rho) \geqslant \binom{|\operatorname{Im}(\rho)|}{2}$$

Thus

522

$$\operatorname{Ent}(G(n, W_{\mathcal{I}})) \ge \operatorname{Ent}(G(n, W_{\mathcal{I}})|\pi_{\mathcal{I}} \circ \phi) \ge \mathbb{P}\big[|\operatorname{Im}(\pi_{\mathcal{I}} \circ \phi)| \ge n2^{-k-2}\big]\binom{n2^{-k-2}}{2}.$$
 (2.5)

Define the random variable $X := |\text{Im}(\pi_{\mathcal{I}} \circ \phi) \cap (G_{k-1}, G_k]| \leq |\text{Im}(\pi_{\mathcal{I}} \circ \phi)|$. We have

$$\mathbb{E}[X] = \sum_{i \in (G_{k-1}, G_k]} \mathbb{P}[\phi^{-1}(I_i) \neq \emptyset] = \sum_{i \in (G_{k-1}, G_k]} (1 - (1 - \beta_i)^n)$$
$$= g_k \left(1 - \left(1 - \frac{1}{g_k 2^k}\right)^n \right) \ge n 2^{-k-1},$$

where we used the fact that $g_k 2^k \ge 2n$ and that $(1-x)^n \le 1-nx+n^2x^2 \le 1-nx/2$ for $x \in [0, 1/2n]$. As the events $\phi^{-1}(I_i) \ne \emptyset$ and $\phi^{-1}(I_j) \ne \emptyset$ are negatively correlated for $i \ne j$, we have $\operatorname{Var}[X] \le \mathbb{E}[X]$. Hence by Chebyshev's inequality

$$\mathbb{P}\big[|\mathrm{Im}(\pi_{\mathcal{I}} \circ \phi)| \ge n2^{-k-2}\big] \ge \mathbb{P}\big[X \ge n2^{-k-2}\big] \ge 1 - \mathbb{P}\bigg[|X - \mathbb{E}[X]| \ge \frac{\mathbb{E}[X]}{2}\bigg]$$
$$\ge 1 - \frac{4\mathrm{Var}[X]}{\mathbb{E}[X]^2} \ge 1 - \frac{4}{n2^{-k-1}} \ge \frac{1}{2}.$$

Substituting in (2.5), we obtain

$$\operatorname{Ent}(G(n, W_{\mathcal{I}})) \geq \frac{1}{2} \binom{n2^{-k-2}}{2} \geq n^2 2^{-2k-7} \geq \alpha(n)n^2,$$

as desired.

3. Proof of Theorem 1.2

Lovász and Szegedy [8] obtained a combinatorial characterization of random-free hereditary graph properties. To state this result it is convenient to distinguish between bipartite graphs and bigraphs. A *bipartite* graph is a graph (V, E) whose node set has a partition into two classes such that all edges connect nodes in different classes. A *bigraph* is a triple (U_1, U_2, E) where U_1 and U_2 are finite sets and $E \subseteq U_1 \times U_2$. So a bipartite graph becomes a bigraph if we fix a bipartition and specify which bipartition class is first and second. On the other hand, if F = (V, E) is a graph, then (V, V, E') is an associated bigraph, where $E' = \{(x, y) : xy \in E\}$.

If G = (V, E) is a graph, then an induced sub-bigraph of G is determined by two (not necessarily disjoint) subsets $S, T \subseteq V$, and its edge set consists of those pairs $(x, y) \in S \times T$ for which $xy \in E$ (so this is an induced subgraph of the bigraph associated with G).

For a bigraph $H = (U_1, U_2, E)$ and a graphon W, analogous to the definition of the induced density of a graph in a graphon, we define

$$p^{\mathsf{b}}(H;W) = \mathbb{E}\left[\prod_{\substack{u \in U_1, v \in U_2 \\ uv \in E}} W(x_u, y_v) \prod_{\substack{u \in U_1, v \in U_2 \\ uv \in (U_1 \times U_2) \setminus E}} (1 - W(x_u, y_v))\right],$$

where $\{x_u\}_{u \in U_1}, \{y_v\}_{v \in U_2}$ are independent random variables taking values in [0,1] uniformly. Now we are ready to state Lovász and Szegedy's characterization of random-free graph properties.

Theorem 3.1 ([8]). A hereditary graph property Q is random-free if and only if there exists a bigraph H such that $p^{b}(H; W) = 0$ for all $W \in \overline{Q}$.

The following lemma is due to Alon, Fischer and Newman (see [2, Lemma 1.6]).

Lemma 3.2 ([2]). There is an absolute constant *C* for which the following is true. Let *k* be a positive integer and let $\delta > 0$ be a small real. For every graph *G*, either there exists a step-function graphon W' with $r \leq \left(\frac{k}{\delta}\right)^{Ck}$ steps such that $\delta_1(W_G, W') \leq \delta$, or for every bigraph *H* on *k* vertices $p^b(H; W) \geq \left(\frac{\delta}{k}\right)^{Ck^2}$.

Every random-free graphon W can be approximated arbitrarily well in the δ_1 distance with W_G for some graph G, and furthermore, for every fixed H, the function $p^b(H, \cdot)$ is continuous in the δ_1 distance. Thus Lemma 3.2 can be generalized to random-free graphons.

Corollary 3.3. There is an absolute constant *C* for which the following is true. Let *k* be a positive integer and let $\delta > 0$ be a small real. For every random-free graphon *W*, either there exists a step-function graphon *W'* with $r \leq \left(\frac{k}{\delta}\right)^{Ck}$ steps such that $\delta_1(W, W') \leq \delta$, or for every bigraph *H* on *k* vertices $p^b(H; W) \geq \left(\frac{\delta}{k}\right)^{Ck^2}$.

Next we will prove two simple lemmas about entropy.

Lemma 3.4. Let μ_1 and μ_2 be two discrete probability distributions on a finite set Ω . Then

$$|\operatorname{Ent}(\mu_1) - \operatorname{Ent}(\mu_2)| \leq |\Omega| h\left(\frac{\|\mu_1 - \mu_2\|_1}{|\Omega|}\right).$$

Proof. Define $0 \log 0 := \lim_{x \to 0} x \log x = 0$. By taking the derivative with respect to x, for fixed d we see that $(x + d) \log(x + d) - x \log x$ is monotone for $0 \le x \le 1 - d$. Therefore, for $x_1, x_2 \in [0, 1]$ we have

$$\begin{aligned} |x_2 \log x_2 - x_1 \log x_1| &\leq \max\{-|x_2 - x_1| \log |x_2 - x_1|, -(1 - |x_2 - x_1|) \log(1 - |x_2 - x_1|)\} \\ &\leq h(|x_2 - x_1|). \end{aligned}$$

Thus

$$|\operatorname{Ent}(\mu_{1}) - \operatorname{Ent}(\mu_{2})| = \left| \sum_{x \in \Omega} \mu_{1}(x) \log \mu_{1}(x) - \mu_{2}(x) \log \mu_{2}(x) \right|$$
$$\leqslant \sum_{x \in \Omega} h(|\mu_{1}(x) - \mu_{2}(x)|) \leqslant |\Omega| h\left(\frac{\|\mu_{1} - \mu_{2}\|_{1}}{|\Omega|}\right),$$

where the last inequality is by concavity of the binary entropy function h.

Lemma 3.5. Let W_1 and W_2 be two graphons, and let μ_1 and μ_2 be the probability distributions on \mathcal{L}_n induced by $G(n, W_1)$ and $G(n, W_2)$, respectively. Then

$$\|\mu_1 - \mu_2\|_1 \leq n^2 \delta_1(W_1, W_2).$$

Proof. Note that without loss of generality W_1 and W_2 can be replaced by equivalent graphons so that $\delta_1(W_1, W_2) = ||W_1 - W_2||_1$. Let x_1, \ldots, x_n be i.i.d. uniform random variables with values in [0, 1]. Let $\{\epsilon_{ij} : 1 \le i < j \le n\}$ be independent random variables taking values in [0, 1] uniformly. Let G_1, G_2 be random graphs on [n] defined in the following way. There is an edge between two vertices i < j in G_k if $W_k(x_i, x_j) \ge \epsilon_{ij}$ for k = 1, 2. Note that G_1 and G_2 , respectively, have the same distributions as $G(n, W_1)$ and $G(n, W_2)$. Thus

$$\|\mu_1 - \mu_2\|_1 \leq 2\mathbb{P}[G_1 \neq G_2] \leq \mathbb{E}\left[\sum_{i \neq j} |W_1(x_i, x_j) - W_2(x_i, x_j)|\right] \leq n^2 \|W_1 - W_2\|_1.$$

Proof of Theorem 1.2. Since Q is random-free, by Theorem 3.1, there exists a bigraph H such that $p^{b}(H; W) = 0$ for all $W \in \overline{Q}$. Applying Corollary 3.3 with $\delta = 1/n^{5}$ shows that there exists a step-function graphon W' with $n^{O(1)}$ steps satisfying $||W - W'||_{1} \leq \delta$. Then, since $|\mathcal{L}_{n}| \leq 2^{n^{2}}$, Lemmas 3.4 and 3.5 imply

$$\begin{aligned} |\operatorname{Ent}(G(n, W')) - \operatorname{Ent}(G(n, W))| &\leq 2^{n^2} h\left(\frac{n^2 \delta}{2^{n^2}}\right) \\ &= -2^{n^2} \left(\frac{n^2 \delta}{2^{n^2}} \log\left(\frac{n^2 \delta}{2^{n^2}}\right) + \left(1 - \frac{n^2 \delta}{2^{n^2}}\right) \log\left(1 - \frac{n^2 \delta}{2^{n^2}}\right)\right) \\ &\leq n^4 \delta + n^2 \delta(-2\log n - \log \delta) + 2^{n^2} \cdot 2\frac{n^2 \delta}{2^{n^2}} = o(1). \end{aligned}$$

Since W' is random-free and it has $n^{O(1)}$ steps, $|\operatorname{supp}(G(n, W'))| = n^{O(n)}$. Consequently $\operatorname{Ent}(G(n, W')) = O(n \log n)$.

4. Concluding remarks

(1) Note that if W is a random-free step-function, then $\operatorname{Ent}(G(n, W)) = O(n)$. In [6] it is conjectured that the converse is also true. That is, $\operatorname{Ent}(G(n, W)) = O(n)$ if and only if W is equivalent to a random-free step-function. The following simple example disproves this conjecture.

Let μ be the probability distribution on \mathbb{N} defined by $\mu(\{i\}) = 2^{-i}$. Consider the random variable $X = (X_1, \dots, X_n) \in \mathbb{N}^n$, where X_i are i.i.d. random variables with distribution μ . We have $\operatorname{Ent}(X_i) = \sum_{i=1}^{\infty} 2^{-i}i = 2$. Hence $\operatorname{Ent}(X) = \sum \operatorname{Ent}(X_i) = 2n$.

Partition [0,1] into intervals $\{I_i\}_{i=1}^{\infty}$, where $|I_i| = 2^{-i}$. Let W be the graphon that is constant 1 on $\bigcup_{i=1}^{\infty} I_i \times I_i$ and 0 everywhere else. Note that

$$\operatorname{Ent}(G(n, W)) \leq \operatorname{Ent}(X) \leq 2n.$$

Therefore G(n, W) has linear entropy.

It remains to verify that W is not equivalent to a step-function. This follows immediately from the fact that W has infinite rank as a kernel. It can also be verified in a more combinatorial way. A homogenous set of vertices in a graph H is a set of vertices which are either all pairwise adjacent to each other, or all pairwise non-adjacent. If W is equivalent to a step-function with k steps, then every $H \in \text{supp}(G(n, W))$ clearly contains a homogenous set of size at least n/k. On the other hand, if $H \in \mathcal{L}_{n^2}$ is a disjoint union of n complete graphs on n vertices, then the largest homogenous set in H has size n, but $H \in \text{supp}(G(n^2, W))$ by construction.

(2) Theorem 1.2 shows that when W is a limit of a random-free hereditary property, then the entropy of G(n, W) is small. However, the support of G(n, W) can be comparatively large. For every $\epsilon > 0$, we construct examples for which $\log(|\operatorname{supp}(G(n, W))|) = \Omega(n^{2-\epsilon})$. Note that Theorem 1.2 implies that G(n, W) is far from being uniform on the support in these examples, as the entropy of a uniform random variable with support of size $2^{\Omega(n^{2-\epsilon})}$.

Let us now describe the construction. Fix a positive integer t, and let Q be the set of graphs that do not contain $K_{t,t}$ as a subgraph. Partition [0, 1] into intervals $\{S_i\}_{i=1}^{\infty}$ with non-zero lengths, and let $\{H_i\}_{i=1}^{\infty}$ be an enumeration of the graphs in Q. Define W to be the graphon that is 0 on $S_i \times S_j$ for $i \neq j$, and is equivalent to W_{H_i} (scaled properly) on $S_i \times S_i$. By construction p(H; W) > 0 if $H \in Q$. Thus $|\text{supp}(G(n, W))| \ge |Q_n|$. Since there exist $K_{t,t}$ -free graphs with $n^{2-2/t}$ edges (see, *e.g.*, [3, p. 316, Theorem VI.2.10]), we have $|Q_n| \ge 2^{n^{2-2/t}}$.

It remains to show that W is a limit of graphs in some random-free property. Unfortunately, $W \notin \overline{Q}$. We construct a larger random-free property Q' so that $W \in \overline{Q'}$, as follows.

Fix a bigraph *B*, so that the corresponding graph contains $K_{t,t}$ as a subgraph and is connected. Suppose further that no two vertices of *B* have the same neighbourhood. Note that such a bigraph trivially exists. For example, one can take $B = (V_1 \cup U_1, V_2 \cup U_2, E)$ so that V_1, U_1, V_2, U_2 are disjoint sets of size *t*, every vertex of V_1 is joined to every vertex of V_2 , and the edges between V_1 and U_2 , as well as the edges between U_1 and V_2 , form a matching of size *t*. Let $Q' \supseteq Q$ be the set of graphs not containing *B* as an induced sub-bigraph. Then Q' is random-free by Theorem 3.1, as $p^b(B, W') = 0$ for every $W' \in \overline{Q'}$.

Let r = |V(B)| and suppose that $G = G(x_1, x_2, ..., x_r, W)$ contains *B* as an induced subbigraph. Then there exists *i* so that $x_1, x_2, ..., x_r \in S_i$, as *G* is connected. It follows further that *G* is an induced subgraph of H_i , as no two vertices of *G* have the same neighbourhood. Thus *G* contains no $K_{t,t}$ subgraph, contradicting our assumption that *G* contains *B*. We conclude that $\sup(G(n, W)) \subseteq Q'$ for every positive integer *n*. By Lemma 2.6 of [7] the sequence $\{G(n, W)\}_{n=1}^{\infty}$ converges to *W* with probability one. Thus $W \in \overline{Q'}$, as desired.

Acknowledgement

The authors wish to thank the anonymous referee whose detailed comments greatly improved the exposition.

References

- Aldous, D. J. (1985) Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour XIII, 1983, Vol. 1117 of Lecture Notes in Mathematics, Springer, pp. 1–198.
- [2] Alon, N., Fischer, E. and Newman, I. (2007) Efficient testing of bipartite graphs for forbidden induced subgraphs. SIAM J. Comput. 37 959–976.
- [3] Bollobás, B. (1978) *Extremal Graph Theory*, Vol. 11 of *London Mathematical Society Monographs*, Academic Press.
- [4] Borgs, C., Chayes, J. and Lovász, L. (2010) Moments of two-variable functions and the uniqueness of graph limits. *Geom. Funct. Anal.* 19 1597–1619.
- [5] Hatami, H., Janson, S. and Szegedy, B. Graph properties, graph limits and entropy. In preparation.
- [6] Janson, S. Graphons, cut norm and distance, couplings and rearrangements. arXiv:1009.2376
- [7] Lovász, L. and Szegedy, B. (2006) Limits of dense graph sequences. J. Combin. Theory Ser. B 96 933–957.
- [8] Lovász, L. and Szegedy, B. (2010) Regularity partitions and the topology of graphons. In An Irregular Mind, Vol. 21 of Bolyai Soc. Math. Stud., pp. 415–446.