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Every graphon defines a random graph on any given number n of vertices. It was known

that the graphon is random-free if and only if the entropy of this random graph is

subquadratic. We prove that for random-free graphons, this entropy can grow as fast as

any subquadratic function. However, if the graphon belongs to the closure of a random-free

hereditary graph property, then the entropy is O(n log n). We also give a simple construction

of a non-step-function random-free graphon for which this entropy is linear, refuting a

conjecture of Janson.

2010 Mathematics subject classification: 05C99

1. Introduction

In recent years a theory of convergent sequences of dense graphs has been developed.

One can construct a limit object for such a sequence in the form of certain symmetric

measurable functions called graphons. Every graphon defines a random graph on any

given number of vertices. In [5] several facts about the asymptotics of the entropies of

these random variables are established. These results provide good understanding of the

situation when the graphon is not ‘random-free’, but they say essentially nothing about

random-free graphons. The purpose of this article is to study these entropies in the case

of random-free graphons.

1.1. Preliminaries

For every natural number n, denote [n] := {1, . . . , n}. In this paper all graphs are simple

and finite. For a graph G, let V (G) and E(G), respectively, denote the set of the vertices
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and the edges of G. Let U denote set of all graphs up to isomorphism. Moreover, for

n � 0, let Un ⊂ U denote the set of all graphs in U with exactly n vertices. We will usually

work with labelled graphs. For every n � 1, denote by Ln the set of all graphs with vertex

set [n].

The homomorphism density of a graph H in a graph G, denoted by t(H;G), is the

probability that a random mapping φ : V (H) → V (G) preserves adjacencies, i.e., uv ∈ E(H)

implies φ(u)φ(v) ∈ E(G). The induced density of a graph H in a graph G, denoted by

p(H;G), is the probability that a random embedding of the vertices of H in the vertices

of G is an embedding of H in G.

We call a sequence of finite graphs (Gn)
∞
n=1 convergent if, for every finite graph H , the

sequence {p(H;Gn)}∞
n=1 converges. It is not difficult to construct convergent sequences

(Gn)
∞
n=1 whose limits cannot be recognized as graphs, i.e., there is no graph G with

limn→∞ p(H;Gn) = p(H;G) for every H . Thus naturally one considers U , the completion

of U under this notion of convergence. It is not hard to see that U is a compact metrizable

space which contains U as a dense subset. The elements of the complement U∞ := U \ U
are called graph limits. Trivially, a graph limit Γ is uniquely determined by the numbers

p(H; Γ) for all H ∈ U .

Note that a sequence of graphs (Gn)
∞
n=1 with |V (Gn)| → ∞ cannot converge to a finite

graph G, as p(H;G) = 0 for every graph H with |V (H)| > |V (G)|. Hence a sequence

of graphs (Gn)
∞
n=1 converges to a graph limit if and only if |V (Gn)| → ∞ and p(H;Gn)

converges for every graph H .

It is shown in [7] that every graph limit Γ can be represented by a graphon, which is

a symmetric measurable function W : [0, 1]2 → [0, 1]. The set of all graphons is denoted

by W0. Given a graph G with vertex set [n], we define the corresponding graphon WG :

[0, 1]2 → {0, 1} as follows. Let AG denote the adjacency matrix of G. Then WG(x, y) :=

AG(�xn�, �yn�) if x, y ∈ (0, 1], and if x = 0 or y = 0, set WG to 0. It is easy to see that if

(Gn)
∞
n=1 is a graph sequence that converges to a graph limit Γ, then for every graph H ,

p(H; Γ) = lim
n→∞

E

[ ∏
uv∈E(H)

WGn
(xu, xv)

∏
uv∈E(Hc)

(1 − WGn
(xu, xv))

]
,

where {xu}u∈V (H) are independent random variables taking values in [0, 1] uniformly, and

E(Hc) = {uv : u 	= v, uv 	∈ E(H)}. Lovász and Szegedy [7] showed that for every graph limit

Γ, there exists a graphon W such that, for every graph H , we have p(H; Γ) = p(H;W ),

where

p(H;W ) := E

[ ∏
uv∈E(H)

W (xu, xv)
∏

uv∈E(Hc)

(1 − W (xu, xv))

]
.

Furthermore, this graphon is unique in the following sense. For a measurable σ : [0, 1] →
[0, 1], define W ◦ σ : [0, 1]2 → [0, 1] as W ◦ σ : (x, y) �→ W (σ(x), σ(y)). Now if W1 and W2

are two different graphons representing the same graph limit, then there exists a graphon

W and two measure-preserving maps σ1, σ2 : [0, 1] → [0, 1] such that

W1 = W ◦ σ1 and W2 = W ◦ σ2, (1.1)
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almost everywhere [4]. With these considerations, sometimes we shall not distinguish

between the graph limits and their corresponding graphons. We define the δ1 distance of

two graphons W1 and W2 as

δ1(W1,W2) = inf ‖W1 − W2 ◦ σ‖1,

where the infimum is over all measure-preserving maps σ : [0, 1] → [0, 1].

A graphon W is called a step-function if there is a partition of [0, 1] into a finite number

of measurable sets S1, . . . , Sn so that W is constant on every Si × Sj . The partition classes

will be called the steps of W .

Let W be a graphon and x1, . . . , xn ∈ [0, 1]. The random graph G(x1, . . . , xn,W ) ∈ Ln is

obtained by including the edge ij with probability W (xi, xj), independently for all pairs

(i, j) with 1 � i < j � n. By picking x1, . . . , xn independently and uniformly at random

from [0, 1], we obtain the random graph G(n,W ) ∈ Ln. Note that for every H ∈ Ln,

P[G(n,W ) = H] = p(H;W ).

1.2. Graph properties and entropy

A subset of the set U is called a graph class. Similarly, a graph property is a property

of graphs that is invariant under graph isomorphisms. There is an obvious one-to-one

correspondence between graph classes and graph properties and we will not distinguish

between a graph property and the corresponding class. A graph class or property Q is

hereditary if, whenever a graph G has the property Q, every induced subgraph of G also

has Q.

Let Q ⊆ U be a graph class. For every n > 1, we denote by Qn the set of graphs in Q
with exactly n vertices. We let Q ⊆ U be the closure of Q in U .

Define the binary entropy function h : [0, 1] �→ R+ as h(x) = −x log x − (1 − x) log(1 −
x) for x ∈ (0, 1) and h(0) = h(1) = 0 so that h is continuous on [0, 1], where, here and

throughout the paper, log(·) denotes the logarithm to base 2. The entropy of a graphon

W is defined by

Ent(W ) :=

∫ 1

0

∫ 1

0

h(W (x, y)) dx dy.

Note that it follows from the uniqueness result (1.1) that entropy is a function of the

underlying graph limit, and it does not depend on the choice of the graphon representing

it. It is shown in [1] and Theorem D.5 of [6] that

lim
n→∞

Ent(G(n,W ))(
n
2

) = Ent(W ), (1.2)

where Ent(G(n,W )) is the usual entropy of the random variable G(n,W ).

A graphon is called random-free if it is {0, 1}-valued almost everywhere. Note that

a graphon W is random-free if and only if Ent(W ) = 0, which by (1.2) is equivalent

to Ent(G(n,W )) = o(n2). Our first theorem shows that this is sharp in the sense that the

growth of Ent(G(n,W )) for random-free graphons W can be arbitrarily close to quadratic.
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Theorem 1.1. Let α : N → R+ be a function with limn→∞ α(n) = 0. Then there exists a

random-free graphon W such that Ent(G(n,W )) = Ω(α(n)n2).

A graph property Q is called random-free if every W ∈ Q is random-free. Our next

theorem shows that in contrast to Theorem 1.1, when a graphon W is the limit of a

sequence of graphs with a random-free hereditary property, then Ent(G(n,W )) cannot

grow faster than O(n log n).

Theorem 1.2. Let Q be a random-free hereditary property, and let W be the limit of a

sequence of graphs in Q. Then Ent(G(n,W )) = O(n log n).

Remark. We defined G(n,W ) as a labelled graph in Ln. Both Theorems 1.1 and 1.2 remain

valid if we consider the random variable Gu(n,W ) taking values in Un obtained from

G(n,W ) by forgetting the labels. Indeed, Ent(Gu(n,W )) = Ent(G(n,W )) − Ent(G(n,W ) |
Gu(n,W )) and Ent(G(n,W ) | Gu(n,W ) = H) = O(n log n) for every H ∈ Un. It follows that

Ent(G(n,W )) − O(n log n) � Ent(Gu(n,W )) � Ent(G(n,W )).

2. Proof of Theorem 1.1

A bigraph is a bipartite graph with a specified bipartition. For every positive integer

m, let Fm denote the unique bigraph ([m], [2m], E) with the property that the vertices in

[2m] all have different sets of neighbours. The transversal-uniform graph GU is the unique

graph (up to an isomorphism) with vertex set N which satisfies the following property.

The vertices are partitioned into sets {Ai}∞
i=1 with log |Ai| =

∑i−1
j=1 |Ai−1|. There are no

edges inside the Ai, and for every i, the bigraph induced by (∪i−1
j=1Aj, Ai) is isomorphic to

F∑ i−1
j=1 |Aj |.

Let I = {Ii}i∈N be a partition of [0, 1] into intervals. We define its corresponding

transversal-uniform graphon WI by assigning weights |Ii|/|Ai| to all the vertices in Ai in

the transversal-uniform graph GU described above. More precisely, we partition each Ii
into |Ai| equal size intervals (corresponding to the elements in Ai), and mapping all the

points in each of these subintervals to its corresponding vertex in Ai. This measurable

surjection πI : [0, 1] → N, together with the transversal-uniform graph described above,

defines the transversal-uniform graphon WI by setting

WI(x, y) =

{
1 if πI(x)πI(y) ∈ E(GU),

0 if πI(x)πI(y) 	∈ E(GU).

Note that by construction WI has the following property. Let s < k be positive integers,

and x1, . . . , xs ∈ ∪i<kIi belong to pairwise distinct intervals in I . For every f : [s] → {0, 1},
we have

P[∀i, WI(xi, y) = f(i) | y ∈ Ik] =
1

2s
,
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where y is a random variable taking values uniformly in [0, 1]. It follows that for every

graph H on s vertices,

P[G(x1, . . . , xs,WI) = H | ∀i, xi ∈ Iki] =
1

2(s2)
, (2.3)

where x1, . . . , xs are now i.i.d. random variables taking values uniformly in [0, 1], and

k1, . . . , ks are distinct natural numbers.

We translate (2.3) into a lower bound on (conditional) entropy of transversal-uniform

graphons. First we need a simple lemma.

Lemma 2.1. Let WI be a transversal-uniform graphon, and let φ : [n] → [0, 1] be a uni-

formly random map. For every ρ : [n] → N, we have

Ent(G(φ(1), . . . , φ(n),WI) | πI ◦ φ = ρ) �
(

|Im(ρ)|
2

)
.

Proof. Pick a set of representatives K ⊆ [n] so that ρ|K : K → Im(ρ) is a bijection.

Equation (2.3) implies that for every graph H with V (H) = K ,

P[G(φ(1), . . . , φ(n),WI)[K] = H | πI ◦ φ = ρ] =
1

2(|Im(ρ)|
2 )

.

Therefore,

Ent(G(φ(1), . . . , φ(n),WI) | πI ◦ φ = ρ) � Ent(G(φ(1), . . . , φ(n),WI)[K] | πI ◦ φ = ρ)

=

(
|Im(ρ)|

2

)
.

In the proof of Theorem 1.1 below we will make use of the following well-known

inequality about conditional entropy. For discrete random variables X and Y ,

Ent(X | Y ) :=
∑

y∈supp(Y )

P[Y = y]Ent(X | Y = y) � Ent(X). (2.4)

Proof of Theorem 1.1. For every positive integer k, define

gk := max{{2k+5} ∪ {n | α(n) > 2−2k−9}}.

The numbers gk are well-defined, as the condition limn→∞ α(n) = 0 implies that the set

{n | α(n) > 2−2k−9} is finite. Define the sums Gk :=
∑k

i=1 gk , and set βi = 1
gk2k

for all the gk

indices i ∈
(
Gk−1, Gk

]
. Let I = {Ii}i∈N be a partition of [0, 1] into intervals with |Ii| = βi,

and let WI be the corresponding transversal-uniform graphon.

Consider a sufficiently large n ∈ N, and let k ∈ N be chosen to be the maximal k such

that 2k+4 � n and α(n) � 2−2k−7. We have n < 2k+5 or α(n) > 2−2k−9. Therefore n � gk by

the definition of gk . Let φ : [n] → [0, 1] be random and uniform. By Lemma 2.1, for any

fixed ρ : [n] → N, we have

Ent(G(φ(1), . . . , φ(n),WI)|πI ◦ φ = ρ) �
(

|Im(ρ)|
2

)
.
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Thus

Ent(G(n,WI)) � Ent(G(n,WI)|πI ◦ φ) � P
[
|Im(πI ◦ φ)| � n2−k−2

](n2−k−2

2

)
. (2.5)

Define the random variable X := |Im(πI ◦ φ) ∩ (Gk−1, Gk]| � |Im(πI ◦ φ)|. We have

E[X] =
∑

i∈(Gk−1 ,Gk]

P[φ−1(Ii) 	= ∅] =
∑

i∈(Gk−1 ,Gk]

(1 − (1 − βi)
n)

= gk

(
1 −

(
1 − 1

gk2k

)n)
� n2−k−1,

where we used the fact that gk2
k � 2n and that (1 − x)n � 1 − nx + n2x2 � 1 − nx/2 for

x ∈ [0, 1/2n]. As the events φ−1(Ii) 	= ∅ and φ−1(Ij) 	= ∅ are negatively correlated for i 	= j,

we have Var[X] � E[X]. Hence by Chebyshev’s inequality

P
[
|Im(πI ◦ φ)| � n2−k−2

]
� P

[
X � n2−k−2

]
� 1 − P

[
|X − E[X]| � E[X]

2

]

� 1 − 4Var[X]

E[X]2
� 1 − 4

n2−k−1
� 1

2
.

Substituting in (2.5), we obtain

Ent(G(n,WI)) � 1

2

(
n2−k−2

2

)
� n22−2k−7 � α(n)n2,

as desired.

3. Proof of Theorem 1.2

Lovász and Szegedy [8] obtained a combinatorial characterization of random-free hered-

itary graph properties. To state this result it is convenient to distinguish between bipartite

graphs and bigraphs. A bipartite graph is a graph (V , E) whose node set has a partition

into two classes such that all edges connect nodes in different classes. A bigraph is a

triple (U1, U2, E) where U1 and U2 are finite sets and E ⊆ U1 × U2. So a bipartite graph

becomes a bigraph if we fix a bipartition and specify which bipartition class is first and

second. On the other hand, if F = (V , E) is a graph, then (V , V , E ′) is an associated

bigraph, where E ′ = {(x, y) : xy ∈ E}.
If G = (V , E) is a graph, then an induced sub-bigraph of G is determined by two (not

necessarily disjoint) subsets S, T ⊆ V , and its edge set consists of those pairs (x, y) ∈ S × T

for which xy ∈ E (so this is an induced subgraph of the bigraph associated with G).

For a bigraph H = (U1, U2, E) and a graphon W , analogous to the definition of the

induced density of a graph in a graphon, we define

pb(H;W ) = E

⎡
⎢⎢⎣ ∏
u∈U1 , v∈U2

uv∈E

W (xu, yv)
∏

u∈U1 , v∈U2

uv∈(U1×U2)\E

(1 − W (xu, yv))

⎤
⎥⎥⎦,
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where {xu}u∈U1
, {yv}v∈U2

are independent random variables taking values in [0, 1] uni-

formly. Now we are ready to state Lovász and Szegedy’s characterization of random-free

graph properties.

Theorem 3.1 ([8]). A hereditary graph property Q is random-free if and only if there exists

a bigraph H such that pb(H;W ) = 0 for all W ∈ Q.

The following lemma is due to Alon, Fischer and Newman (see [2, Lemma 1.6]).

Lemma 3.2 ([2]). There is an absolute constant C for which the following is true. Let k

be a positive integer and let δ > 0 be a small real. For every graph G, either there exists

a step-function graphon W ′ with r �
(
k
δ

)Ck
steps such that δ1(WG,W

′) � δ, or for every

bigraph H on k vertices pb(H;W ) �
(
δ
k

)Ck2

.

Every random-free graphon W can be approximated arbitrarily well in the δ1 distance

with WG for some graph G, and furthermore, for every fixed H , the function pb(H, ·)
is continuous in the δ1 distance. Thus Lemma 3.2 can be generalized to random-free

graphons.

Corollary 3.3. There is an absolute constant C for which the following is true. Let k be

a positive integer and let δ > 0 be a small real. For every random-free graphon W , either

there exists a step-function graphon W ′ with r �
(
k
δ

)Ck
steps such that δ1(W,W ′) � δ, or

for every bigraph H on k vertices pb(H;W ) �
(
δ
k

)Ck2

.

Next we will prove two simple lemmas about entropy.

Lemma 3.4. Let μ1 and μ2 be two discrete probability distributions on a finite set Ω. Then

|Ent(μ1) − Ent(μ2)| � |Ω|h
(

‖μ1 − μ2‖1

|Ω|

)
.

Proof. Define 0 log 0 := limx→0 x log x = 0. By taking the derivative with respect to x, for

fixed d we see that (x + d) log(x + d) − x log x is monotone for 0 � x � 1 − d. Therefore,

for x1, x2 ∈ [0, 1] we have

|x2 log x2 − x1 log x1| � max{−|x2 − x1| log |x2 − x1|,−(1 − |x2 − x1|) log(1 − |x2 − x1|)}
� h(|x2 − x1|).

Thus

|Ent(μ1) − Ent(μ2)| =

∣∣∣∣∑
x∈Ω

μ1(x) log μ1(x) − μ2(x) log μ2(x)

∣∣∣∣
�

∑
x∈Ω

h(|μ1(x) − μ2(x)|) � |Ω|h
(

‖μ1 − μ2‖1

|Ω|

)
,

where the last inequality is by concavity of the binary entropy function h.
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Lemma 3.5. Let W1 and W2 be two graphons, and let μ1 and μ2 be the probability distri-

butions on Ln induced by G(n,W1) and G(n,W2), respectively. Then

‖μ1 − μ2‖1 � n2δ1(W1,W2).

Proof. Note that without loss of generality W1 and W2 can be replaced by equivalent

graphons so that δ1(W1,W2) = ‖W1 − W2‖1. Let x1, . . . , xn be i.i.d. uniform random

variables with values in [0, 1]. Let {εij : 1 � i < j � n} be independent random variables

taking values in [0, 1] uniformly. Let G1, G2 be random graphs on [n] defined in the

following way. There is an edge between two vertices i < j in Gk if Wk(xi, xj) � εij for

k = 1, 2. Note that G1 and G2, respectively, have the same distributions as G(n,W1) and

G(n,W2). Thus

‖μ1 − μ2‖1 � 2P[G1 	= G2] � E

[∑
i	=j

|W1(xi, xj) − W2(xi, xj)|
]

� n2‖W1 − W2‖1.

Proof of Theorem 1.2. Since Q is random-free, by Theorem 3.1, there exists a bigraph

H such that pb(H;W ) = 0 for all W ∈ Q. Applying Corollary 3.3 with δ = 1/n5 shows

that there exists a step-function graphon W ′ with nO(1) steps satisfying ‖W − W ′‖1 � δ.

Then, since |Ln| � 2n
2
, Lemmas 3.4 and 3.5 imply

|Ent(G(n,W ′)) − Ent(G(n,W ))| � 2n
2

h

(
n2δ

2n
2

)

= −2n
2

(
n2δ

2n
2 log

(
n2δ

2n
2

)
+

(
1 − n2δ

2n
2

)
log

(
1 − n2δ

2n
2

))

� n4δ + n2δ(−2 log n − log δ) + 2n
2 · 2

n2δ

2n
2 = o(1).

Since W ′ is random-free and it has nO(1) steps, |supp(G(n,W ′))| = nO(n). Consequently

Ent(G(n,W ′)) = O(n log n).

4. Concluding remarks

(1) Note that if W is a random-free step-function, then Ent(G(n,W )) = O(n). In [6] it is

conjectured that the converse is also true. That is, Ent(G(n,W )) = O(n) if and only if W

is equivalent to a random-free step-function. The following simple example disproves this

conjecture.

Let μ be the probability distribution on N defined by μ({i}) = 2−i. Consider the random

variable X = (X1, . . . , Xn) ∈ N
n, where Xi are i.i.d. random variables with distribution μ.

We have Ent(Xi) =
∑∞

i=1 2−ii = 2. Hence Ent(X) =
∑

Ent(Xi) = 2n.

Partition [0, 1] into intervals {Ii}∞
i=1, where |Ii| = 2−i. Let W be the graphon that is

constant 1 on ∪∞
i=1Ii × Ii and 0 everywhere else. Note that

Ent(G(n,W )) � Ent(X) � 2n.

Therefore G(n,W ) has linear entropy.
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It remains to verify that W is not equivalent to a step-function. This follows immediately

from the fact that W has infinite rank as a kernel. It can also be verified in a more

combinatorial way. A homogenous set of vertices in a graph H is a set of vertices which

are either all pairwise adjacent to each other, or all pairwise non-adjacent. If W is

equivalent to a step-function with k steps, then every H ∈ supp(G(n,W )) clearly contains

a homogenous set of size at least n/k. On the other hand, if H ∈ Ln2 is a disjoint union

of n complete graphs on n vertices, then the largest homogenous set in H has size n, but

H ∈ supp(G(n2,W )) by construction.

(2) Theorem 1.2 shows that when W is a limit of a random-free hereditary property, then

the entropy of G(n,W ) is small. However, the support of G(n,W ) can be comparatively

large. For every ε > 0, we construct examples for which log(|supp(G(n,W ))|) = Ω(n2−ε).

Note that Theorem 1.2 implies that G(n,W ) is far from being uniform on the support in

these examples, as the entropy of a uniform random variable with support of size 2Ω(n2−ε)

is Ω(n2−ε).

Let us now describe the construction. Fix a positive integer t, and let Q be the set of

graphs that do not contain Kt,t as a subgraph. Partition [0, 1] into intervals {Si}∞
i=1 with

non-zero lengths, and let {Hi}∞
i=1 be an enumeration of the graphs in Q. Define W to be

the graphon that is 0 on Si × Sj for i 	= j, and is equivalent to WHi
(scaled properly) on

Si × Si. By construction p(H;W ) > 0 if H ∈ Q. Thus |supp(G(n,W ))| � |Qn|. Since there

exist Kt,t-free graphs with n2−2/t edges (see, e.g., [3, p. 316, Theorem VI.2.10]), we have

|Qn| � 2n
2−2/t

.

It remains to show that W is a limit of graphs in some random-free property.

Unfortunately, W 	∈ Q. We construct a larger random-free property Q′ so that W ∈ Q′,

as follows.

Fix a bigraph B, so that the corresponding graph contains Kt,t as a subgraph and is

connected. Suppose further that no two vertices of B have the same neighbourhood. Note

that such a bigraph trivially exists. For example, one can take B = (V1 ∪ U1, V2 ∪ U2, E)

so that V1, U1, V2, U2 are disjoint sets of size t, every vertex of V1 is joined to every vertex

of V2, and the edges between V1 and U2, as well as the edges between U1 and V2, form

a matching of size t. Let Q′ ⊇ Q be the set of graphs not containing B as an induced

sub-bigraph. Then Q′ is random-free by Theorem 3.1, as pb(B,W ′) = 0 for every W ′ ∈ Q′.

Let r = |V (B)| and suppose that G = G(x1, x2, . . . , xr,W ) contains B as an induced sub-

bigraph. Then there exists i so that x1, x2, . . . , xr ∈ Si, as G is connected. It follows further

that G is an induced subgraph of Hi, as no two vertices of G have the same neighbourhood.

Thus G contains no Kt,t subgraph, contradicting our assumption that G contains B. We

conclude that supp(G(n,W )) ⊆ Q′ for every positive integer n. By Lemma 2.6 of [7] the

sequence {G(n,W )}∞
n=1 converges to W with probability one. Thus W ∈ Q′, as desired.
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