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Nonlinear modeling of InP devices for

W-band applications
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A recently proposed technique for the distributed modeling of extrinsic parasitic effects in electron devices is used for the very
first time in conjunction with a lumped equivalent circuit model for the intrinsic device.

Nonlinear modeling of 0.1 wm InP HEMTs for W-band applications is considered here, leading to extremely accurate
predictions of harmonic distortion and power added efficiency at the fundamental frequencies of 27 and 94 GHz.

The distributed parasitic network is identified through accurate electromagnetic simulations up to the upper frequency
limit of the millimeter-wave band (300 GHz), while standard pulsed 1/V and S-parameter measurements up to 67 GHz

are used for the identification of the intrinsic device model.
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. INTRODUCTION

Many applications have recently emerged in the W-band, such
as automotive collision-prevention systems, communication
satellites, radiometry, and radio-astronomy systems.

These and other applications require electron devices
capable of operation at very high frequencies. InP-based
HEMTS represent a typical example of devices with operation
capability at W-band. In fact, they have been successfully
employed for both low-noise and high-power applications at
these frequencies [1-3]. InP-based devices exhibit higher
gain, higher cutoff frequency, lower source resistance, higher
maximum current densities, and higher substrate thermal
conductivity compared to similar transistors based on GaAs
technology [4, 5].

Accurate small- and large-signal characterizations and
modeling are thus required in this frequency range for the
optimal design of W-band system components [6, 7].
Unfortunately, the frequency limits of the measurement
instrumentation lead to the need for nonlinear models that
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are also capable of good extrapolations of the electrical
characteristics with respect to the identification frequency
range. For instance, the accurate prediction of device behavior
under strong nonlinear operation at 94 GHz, besides requir-
ing very good prediction capability at the fundamental
frequency (which, in the present case, lies in the extrapolation
region), also depends on a reasonable (at least physical) beha-
vior at the second and third harmonics (188 and 282 GHz,
respectively).

From this point of view, the intrinsic device model should
guarantee physical frequency extrapolations of differential
parameters. Classic equivalent circuit models [8-12] tend to
respect this constraint, and therefore are a potentially good
candidate for accurate predictions at extremely high
frequencies.

However, the prediction accuracy in this range of frequen-
cies also strongly depends on the modeling of the extrinsic
parasitic network, since distributed effects and coupling
phenomena may strongly affect the transistor performance.
Such a behavior is not easily described by standard lumped
parasitic elements identified through optimization-based
[13-15] or direct extraction techniques [16-19]. Either dis-
tributed effects should be taken into account in the device
model or rather complicated structures have to be considered
[20-24].

In this paper, a distributed parasitic network description
based on electromagnetic (EM) simulation is adopted and
used in conjunction with a classical nonlinear equivalent
circuit approach in order to model a 0.1 pm InP HEMT for
W-band applications. The distributed modeling of the extrin-
sic parasitic network is described in section II, together with
the identification procedure of the intrinsic equivalent-circuit
model. The model, identified on the basis of EM simulations,
pulsed I/V characteristics, and small-signal S-parameter
measurements up to 67 GHz, is then validated in section III.
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Small-signal extrapolation up to 300 GHz and experimental
validation under large-signal operation at 27 and 94 GHz
fully outline the model prediction capabilities.

II. INP DEVICE VIODELING

The modeled device is a 0.1 wm InP HEMT having a total gate
width of 8o wm (two gate fingers). It exhibits state-of-the-art
performances, thanks to the large band-gap InP channel
associated with the optimized gate recess process on the
composite barrier. Details on the device process and fabrica-
tion are reported in [5], while the device layout, which is in
coplanar waveguide technology, is shown in Fig. 1.

The approaches adopted for the identification of the
extrinsic parasitic network as well as for the intrinsic device
modeling are described in the following.

A) Compact distributed modeling of the
extrinsic parasitic network

To accurately model all the possible parasitic effects that may
occur at W-band frequencies, a distributed approach is
adopted here for the extraction of the extrinsic parasitic
network, instead of identifying conventional topologies
based on lumped elements.

The distributed description of the parasitic network is
obtained through accurate EM simulation of the device
passive structure shown in Fig. 1.

According to [20-23], the active region of the electron
device is partitioned in two elementary intrinsic devices
(EIDs), each of them placed in the middle of the gate
fingers. Access points for the EIDs are defined in the EM
simulation by using the internal ports provided by commercial
software [25, 26].

The EM simulation results in a six-port network, character-
ized by an admittance matrix Ygy [6 X 6]. Such a network
accounts for parasitic effects due to the gate and drain accesses
to the active area, for those along the device fingers and for
possible transverse couplings between fingers. A schematic

Device Passive Structure
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Fig. 1. Layout of the 2 x 40 wm InP HEMT (L = o.1 wm). The set-up of the
EM simulation is also shown. The extrinsic ports are defined for the CPW
modes excitation. Internal ports are used for the definition of the two EIDs.
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representation of this six-port parasitic description is shown
in Fig. 1, where V,, V,, I,, and I, are the phasors of extrinsic
gate-source and drain-source voltages and extrinsic gate and
drain currents, respectively. Analogously, V,, V,, Vi, Vg, L,
I, I, and I are the phasors of the EID voltages and currents
defined according to Fig. 1.

The distributed six-port parasitic network shown in Fig. 1
is adopted in [20, 21] for a fully distributed model of the
extrinsic parasitic effects, suitable for scalable linear device
modeling. Instead, an approach for the more general non-
linear case is proposed in [22]. According to this procedure,
a single equivalent intrinsic device (EqID) is introduced
in order to limit the computational cost during harmonic-
balance-based circuit analyses, otherwise extremely high
when adopting purely distributed “sliced” models [20, 21].
The approach [22] leads to the definition of a compact but
still distributed four-port parasitic network, described by an
admittance matrix Y¢ [4 X 4]. This can be obtained by con-
sidering any EID equal to each other (both from the geometri-
cal and electrical points of view) and equally excited. The
second hypothesis means that both attenuation and delay of
signals traveling across the fingers are assumed to be negli-
gible. This is quite reasonable in “well-designed” medium
power devices, since either non-uniform current densities
along the fingers or out-of-phase current combinations from
different device fingers would correspond to sub-optimal
device performance.

The hypothesis of “equally excited EIDs” can be relaxed by
introducing a multi-bias iterative procedure as shown in [23],
but the upper frequency limit of the identified compact dis-
tributed parasitic network is restricted by the maximum
frequency ratings of the adopted measurement system.

In the case of the InP device-under-test, we use the simpler
approach [22] for two reasons. First, owing to the symmetry of
the two-finger device, the same excitation is actually applied to
EID1 and EID2. Second, the EM simulation can be extended
at the upper mm-wave frequency limit (300 GHz), in order
to achieve better frequency extrapolation capabilities of the
final model.

By adopting the layout set-up shown in Fig. 1, the EM
simulation of the device passive structure is performed in
the frequency range from DC to 300 GHz. Because of the
planar structure of the device, a commercial 3D planar EM
simulator, such as [25, 26], is the best trade-off between
accuracy and simulation time.

According to [22], the six-port distributed parasitic
network in Fig. 1 (represented by the Yy matrix) is com-
pacted into a four-port description of parasitic effects, by
imposing

V.=V, =1,

V,=V, L=I, (1)
V=V, =Vs L/N=L=1I’
V4iV4:V6 14/N:I4216

where V;, I; (j = 1, .. ., 4) are the phasors of voltages and cur-
rents at the ports of the yet-unknown compact parasitic
network (see Fig. 2).

The admittance matrix Y of the compact distributed para-
sitic network can be evaluated on the basis of (1) after simple
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Fig. 2. Electron device model composed of the single, EqID and the compact
four-port distributed parasitic network directly identified from the
electromagnetic simulation through (2).

algebraic manipulation, through

Y1 Y12 Y1z + V15 Yis T V16
Va1 Vaa y13 +}/25 )/24 +}/26
Vi3 t V35t Vit Yzt
Ye = 1t Vs 2+ Vsa s
¢ T T V2T FTVs3 tVss  TVsat Vse
Yas T Vast  Yaa T Vast
1 + 1 2 + 2
Y e Yaa s tVss T Yos  TVes T Yes

()
where y; (i, j=1, ..., 2N + 2) are the elements of the
YEM matrix.

The adopted distributed description of the device parasitic
network is intrinsically fashioned for HB-based circuit simu-
lators, thus convergence problems may occur when time-
domain simulations are involved. However, either compact
lumped network synthesis techniques [27] or EM-based
lumped extrinsic parasitics identification procedures [28]
can be adopted in order to obtain a model fully compatible
with time-domain analysis.

B) Intrinsic device modeling

The conventional nonlinear model of the intrinsic device
shown in Fig. 3 is extracted. To this aim, standard pulsed
I/'V measurements are carried out in order to characterize
the low-frequency I/V behavior. Negligible thermal self-
heating effects and negligible dependence on quiescent con-
ditions are observed among different pulsed I/V curve sets.
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Fig. 3. Intrinsic device nonlinear model adopted for the EqID.
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Thus, a single look-up-table-based I/V characteristic, pulsed
from the nominal quiescent condition (V4= —0.3V;
Vao = 2 V), is used for the modeling of the nonlinear drain
current source I .

Further device characterization is carried out by means of
standard CW S-parameter measurements in the frequency
range (0.5-67 GHz), over a dense bias grid (Ve = —0.8-0V,
step somV; Vy =o0-3 V, step 100 mV). Multi-frequency
closed-form de-embedding of the small-signal measurements
from the parasitic network (2) directly leads to the multi-bias,
multi-frequency linear model of the EqID of Fig. 2.

The bias-dependent gate-source and gate-drain capaci-
tances, Cg and Cgy, are obtained through a linear regression
of the imaginary parts of the multi-bias intrinsic
Y-parameters at relatively low frequency (0.5-10 GHz) [29].

All the nonlinear elements are nonlinearly controlled by
the voltage drop across the gate-source capacitance, Vg,
and the intrinsic drain-source voltage, V. The nonlinear
capacitive elements are also implemented as look-up table-
based components.

The remaining bias-independent elements Cy, R, R e, and
T are extracted by means of optimization procedures based on
the best fit of the measured intrinsic Y-parameters at the
nominal bias voltages (Vo = —0.3 V; V4o = 2 V). In particu-
lar, Cg is obtained from the fitting of the imaginary part of Y,,
in the frequency range o.5-10 GHz corresponding to an
almost quasi-static behavior, while Ry, Rog, and 7 are obtained
from the fitting up to 67 GHz.

s21

Fig. 4. Extrinsic S parameters at Vo, = —0.3 V and V4, = 2 V. Measurements
(circles) are up to 67 GHz, while model predictions (line) are extended up to
300 GHz.
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Fig. 5. Power gain and PAE measured at 27 GHz (circles).
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. SMALL-AND LARGE-SIGNAL
MODEL VALIDATION

The extrinsic S-parameters evaluated at the nominal bias point
(Vgo = —0.3 V5 V4o = 2 V) are compared with measurements
up to 67 GHz in Fig. 4. However, the model predictions are here
extended up to 300 GHz, in order to outline the device behavior
under frequency-extrapolated conditions. The combination of
an almost resistive intrinsic device (due to the equivalent
circuit approach) along with the physically consistent distribu-
ted description of the extrinsic parasitic network guarantees a
quite regular and reasonably expected device behavior, even
at the higher frequencies considered.

The model is further validated under large signal operation
by means of two different set-ups.

First, active load-pull measurements are carried out at
27 GHz, at different quiescent conditions and by adopting
near-optimal load impedances for maximum output power.
A standard 50 () source impedance is used at the input port.

Model predictions of power gain and power added effi-
ciency (PAE) versus input power are reported in Fig. 5 at
two different bias and loading conditions.

Finally, an innovative set-up for power measurements at
94 GHz is used in order to complete the model validation
[7]. This set-up consists of a diode IMPATT oscillator with
a nominal power of about 300 mW at 94 GHz (used as
microwave power source), a mechanical tuner to match the
device output, and three power-meters, which acquire the
injected/reflected power at the input and output device
ports. Harmonic distortion measurements are carried out at
two different bias points and with two different loading
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Fig. 6 Predicted Gp and PAE at 94 GHz (solid lines) compared with measurements (circles). (a) Vgo = —0.3, Vgo =2, 'L = —0.057 + j X 0.53,(b) Vo = —0.3,
Vio =2, L= —0.108 — jx 017, (c) Voo = —0.2, Vgo =2, 'L = —0.057 4 j x 0.53,and (d) Vg = —0.2, Vo =12, [ = —0.108 — j x 0.17.
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impedances, both selected near the optimal matching con-
dition for maximum output power.

Model predictions of power gain and PAE are compared
with measurements in Fig. 6. The accurate identification
and the consistent frequency extrapolation of the distributed
parasitic network play for sure an important role in obtaining
the good agreement achieved.

I'vV. CONCLUSION

A 0.1 pm InP HEMT for W-band applications is character-
ized and modeled. To this aim, an EM-simulation-based dis-
tributed description of the extrinsic parasitic network is
adopted in conjunction with a classic nonlinear equivalent
circuit approach for the intrinsic device.

Even though the identification is carried out on the basis
of small-signal S-parameters up to 67 GHz only, the model
provides very accurate harmonic distortion predictions at
94 GHz, mainly due to the physically consistent frequency
extrapolation guaranteed by the distributed parasitic network.

The obtained results prove that this model can be reliably
adopted in operations, where strong frequency extrapolation
is required.
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