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Immiscible displacement in porous media is common in many practical applications.
Under quasi-static conditions, the process is significantly affected by disorder of the
porous media and the wettability of the pore surface. Previous studies have focused on
wettability effects, but the impact of the interplay between disorder and contact angle
is not well understood. Here, we combine microfluidic experiments and pore-scale
simulations with theoretical analysis to study the impact of disorder on the quasi-static
displacement from weak imbibition to strong drainage. We define the probability
of overlap to link the menisci advancements to displacement patterns, and derive
a theoretical model to describe the lower and upper bounds of the cross-over zone
between compact displacement and capillary fingering for porous media with arbitrary
flow geometry at a given disorder. The phase diagram predicted by the theoretical
model shows that the cross-over zone, in terms of contact angle range, expands as
the disorder increases. The diagram further identifies four zones to elucidate that the
impact of disorder depends on wettability. In zone I, increasing disorder destabilizes
the patterns, and in zone II, a stabilizing effect plays a role, which is less significant
than that in zone I. In the other two zones, invasion morphologies are compact and
fingering, respectively, independent of both contact angle and disorder. We evaluate
the proposed diagram using pore-scale simulations, experiments in this work and
in the literature, confirming that the diagram can capture the effect of disorder on
displacement under different wetting conditions. Our work extends the classical phase
diagrams and is also of practical significance for engineering applications.

Key words: porous media, microfluidics, capillary flows

1. Introduction
Fluid invasion into porous media to displace another immiscible fluid is an

important process in many practical applications, such as enhanced oil recovery
(Morrow & Mason 2001), geological carbon sequestration (Benson & Cole 2008),
groundwater contamination by non-aqueous liquids (Dawson & Roberts 1997) and the
design of fuel cells and microfluidic devices (Chapuis et al. 2008; Anderson, Zhang
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& Ding 2010; Lee et al. 2017). For such flow behaviour of multiple fluids with an
interface in porous media, the instability of the displacement front directly impacts
the oil recovery efficiency, the CO2 storage capacity and the rate of mass transfer
between phases. In enhanced oil recovery, due to the unstable water–oil displacement
front, water-flooding in natural reservoirs can produce only 10 %–20 % of the initial
oil in place (Van’t Veld & Phillips 2010). In geological CO2 sequestration, when
the injection of liquid CO2 stops and brine flows back to displace supercritical
CO2, the occurrence of fingering flow can significantly increase the efficiency of
storage by increasing interfacial area and improving capillary trapping as well as
dissolution trapping (Wang et al. 2012; Bachu 2015). Understanding and controlling
the immiscible fluid–fluid displacement in porous media is therefore critical for
optimizing fluid management.

The instability of the displacement front is a classic problem and continues to
be the focus of an enormous number of experimental, theoretical and numerical
studies over the past five decades (Saffman & Taylor 1958; Paterson 1981; Måløy,
Feder & Jøssang 1985; Lenormand, Touboul & Zarcone 1988; Dvraam & Payatakes
1995; Babchin et al. 2008; Cottin, Bodiguel & Colin 2011; Armstrong & Berg
2013; Bischofberger, Ramachandran & Nagel 2014; Hu et al. 2017b, 2018b; Singh
et al. 2017; Rabbani et al. 2018). When gravity can be neglected, the competition
between capillarity and viscous force controls the instability of the displacement front,
which results in the patterns ranging from capillary fingering to viscous fingering
to compact displacement (Lenormand et al. 1988; Zhang et al. 2011; Chen et al.
2017, 2018). This competing effect becomes more complicated when the wettability
and the disorder of porous media are both involved (Alava, Dubé & Rost 2004;
Singh et al. 2019). The wettability, denoted by the invading fluid contact angle θ ,
represents the affinity of fluid to the pore surface, which directly modifies the local
pore-filling events via changing capillary force governed by the Young–Laplace law
(Lenormand, Zarcone & Sarr 1983; Zacharoudiou et al. 2017) and thus impacts the
overall displacement patterns (Cieplak & Robbins 1988; Holtzman & Segre 2015). On
the other hand, the pore-scale disorder, λ, which represents the degree of randomness
of pore size (Chen & Wilkinson 1985), would also impact the local pore-filling paths
via changing the threshold capillary force that needs to be overcome by the pressure
drop. Therefore, the challenge in characterizing the competition between disorder
and wettability on the displacement patterns in porous media is how to link the
pore-filling events that highly depend upon capillary force to the non-local invasion
behaviour.

To unravel the fundamentals of fluid–fluid displacement processes in disordered
porous media under various wetting conditions, theoretical and experimental studies
have been conducted and are still on-going (Cieplak & Robbins 1988, 1990; Hecht &
Taitelbaum 2004; Cottin et al. 2011; Holtzman & Segre 2015; Trojer, Szulczewski &
Juanes 2015; Jung et al. 2016; Singh et al. 2017; Hu et al. 2018a). The pioneering
work that links the pore-filling events to the non-local fluid invasion was proposed by
Cieplak & Robbins (1988, 1990). They proposed three meniscus-motion modes (burst,
touch and overlap), able to satisfactorily capture the pore-scale fluid displacement, to
elucidate the wettability effect in disordered media, which are now widely recognized
(Jung et al. 2016; Singh et al. 2017). These works provide a basic understanding of
the wettability effect: namely that, as the pore surface becomes more wetting to the
invading fluid within the range of 45◦ < θ < 180◦, the displacement pattern becomes
more stable. The critical contact angle θc that separates the unstable from the stable
flow regimes is found to depend upon the porosity of the porous medium and the
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capillary number (Cieplak & Robbins 1988; Hu et al. 2018a). Given the coexisting
influence of wettability and disorder on local fluid displacement, this wettability
effect should vary with disorder; for instance, the critical contact angle θc varies with
disorder λ.

Although intensive research has focused on the effect of wettability on fluid
displacement, less progress has been made in examining how the competition between
pore-scale disorder and wettability controls the multiphase flow. In cases where the
wettability effect is isolated, previous studies have shown that decreasing disorder
stabilizes the displacement for both drainage and imbibition (Chen & Wilkinson
1985; King 1987; Toussaint et al. 2005) and that the disorder also modifies the
critical capillary number Cac corresponding to the cross-over from capillary to viscous
fingering (Yortsos, Xu & Salin 1997; Holtzman & Juanes 2010; Xu et al. 2014; Liu,
Zhang & Valocchi 2015b). Recently, a systematic study on the impact of disorder and
its coupling with wettability was conducted by Holtzman (2016). Based on scaling
analysis, Holtzman (2016) introduced a capillary number Ca∗ dependent on disorder
and contact angle to consider the competition between disorder and wettability effect,
showing that the critical capillary number Ca∗ decreases with increasing λ for the
range of Ca > 10−5. Holtzman (2016) also showed that in the slowest flow rate
considered (Ca≈ 10−5), higher disorder of the flow geometry would enhance overlap
events that smooth the local fluid–fluid interface, which is counter to the widely
recognized effect that higher disorder destabilizes displacement patterns (Koiller, Ji &
Robbins 1992). Given that, in the limit of quasi-static conditions, multiphase flow is
significantly affected by the flow geometry, these counteracting effects that stabilize
or destabilize would be amplified. Therefore, how the disorder impacts the quasi-static
displacement pattern depends on which one of these counteracting effects is dominant.
These effects can be clearly represented in a phase diagram in the θ–λ plane, which
has not yet been reported.

Here, we aim to propose a phase diagram of quasi-static fluid displacement to
elucidate how the competing effects between disorder and wettability control the
fluid invasion pattern in porous media. It remains a great challenge to propose such
a phase diagram because the number of arrangements of posts (or flow geometry)
within disordered porous media can be infinite for any given disorder λ, because the
radius of posts ri can take any values following an assumed probability distribution,
such as ri ∼ U[(1 − λ)r̄, (1 + λ)r̄], where U denotes the uniform distribution, r̄ is
a constant and λ is the disorder of the porous medium (Chen & Wilkinson 1985;
Holtzman & Segre 2015). For the classic and widely used phase diagram (Lenormand
et al. 1988), the boundaries that separate the different flow regimes can be uniquely
determined from the given flow rate and fluid properties within a specific flow
geometry. However, because of the infinite flow geometries, the lower and upper
bounds, rather than the specific boundaries, are established to separate the different
flow regimes in the θ–λ plane. The zone bounded by the lower and upper limits
provides the first identification of displacement patterns. This is very important
because the statistical parameters, such as porosity, average particle/pore sizes and
disorder, etc., are always easy to obtain for porous media. The flow regimes can then
be easily determined via our phase diagram using these statistical parameters rather
than the details of pore structure, which are difficult to obtain.

We combine microfluidic experiments, numerical simulations and theoretical
analysis to describe the displacement patterns as a function of disorder and contact
angle. We fabricate microfluidic chips with four different disorders and image the
fluid displacement under extremely slow flow conditions with a microscope and a
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FIGURE 1. (Colour online) Microfluidic experimental set-up. (a) Schematic diagram of
the microfluidic–microscopy system. (b,c) The flow geometry of the microfluidics is
constructed by placing non-overlapping and variable-sized posts (ri) on a triangular lattice
with a spacing a = 250 µm, composed of 987 posts. The radii of the posts follow a
uniform distribution. The length (L), width (W) and depth (D0) of the microfluidics are,
respectively, 10 mm, 5 mm and 40 µm. (d–g) Four microfluidics set-ups are fabricated
with disorder λ= 0, 0.1, 0.2 and 0.3. The throat size distributions of the flow geometries
with four disorders are, respectively, presented on the right side of panels (d–g). The
porosity φ and the average throat size d̄ for all of the microfluidics are nearly the same,
i.e. φ = 0.55 and d̄= 75 µm.

complementary metal oxide semiconductor (CMOS) camera (§ 2.1). We develop a
pore-scale numerical procedure originally proposed by Cieplak & Robbins (1988,
1990) to consider the rectangular geometry and constant-flow-rate conditions (§ 2.2).
Based on experimental observations and numerical simulations (§ 3.1), we determine
the flow regimes in the θ–λ plane for the flow geometries of the microfluidic chips
(§ 3.2). Further, from the viewpoint of probability (§ 3.3.1), we derive a theoretical
model that corresponds to the lower and upper bounds of flow regimes, and then
propose a phase diagram in terms of disorder and wettability (§ 3.3.2). Finally,
the proposed phase diagram is evaluated by extensive numerical simulations, our
microfluidic experiments and other existing experimental results (§ 3.3.3).

2. Materials and methods
2.1. Experimental section

2.1.1. Microfluidic visualization system
We designed a microfluidic visualization system to perform fluid displacement

experiments (figure 1a). The experimental set-up consists of a microfluidic flow
cell, an imaging system and a syringe pump (Harvard Apparatus 70C3007). The
syringe pump is used to control the flow rate. The imaging system, connecting
to a computer, consists of an inverted microscope (Carl Zeiss, Observer Z1.m)
that records images at the pore scale via a charge-coupled device (CCD) camera
(Carl Zeiss, AxioCam MRc5), and a CMOS camera (Manta G-1236C, AVT) to
record images of the entire domain of the microfluidics with a spatial resolution
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of 39.0 µm pixel−1. The microscope includes a reflecting light objective (Epiplan
5×/0.13 W0.8′′, working distance = 20.5 mm) to visualize the fluid distribution
within the range of 1.5 mm × 1.2 mm with a spatial resolution of 2.0 µm pixel−1.
The entire experimental set-up is maintained at room temperature (20± 0.5 ◦C).

2.1.2. Microfluidic fabrication
We fabricate the microfluidics with polydimethylsiloxane (PDMS) (Sylgard 184,

Dow-Corning, USA). First, we construct the flow geometry of the microfluidics
by placing non-overlapping and variable-sized posts on a triangular lattice with a
spacing a = 250 µm (figure 1b,c). The post radius ri follows a uniform distribution
ri ∼ U[(1 − λ)r̄, (1 + λ)r̄], where r̄ is the average radius, r̄ = 87.5 µm. The
manufacturing resolution is 1 µm, and thus the roughness of post surfaces is
approximately 1 µm. Four flow geometries are generated with λ = 0, 0.1, 0.2
and 0.3 (figure 1d–g). Then, we generate the corresponding silicon masters using
conventional photolithography techniques, including (1) spin-coating a negative
photoresist (SU8-2035, MicroChem, USA) to achieve a film thickness of 40 µm
onto a 4′′ silicon wafer at 2000 revolutions per minute for 30 s, and (2) exposing the
photoresist to ultraviolet (UV) light with a photomask to generate the patterned silicon
master. Finally, we obtain a PDMS patterned plate by pouring PDMS onto the silicon
master, and then create a microfluidic flow cell by bonding this PDMS patterned
plate with a smooth PDMS plate using a Plasma Cleaner (PDC-002, Harrick Plasma,
USA). Four different patterns of microfluidics (figure 1d–g), composed of 987 posts,
are generated. The pore volumes (PV) of the four microfluidics are almost the same,
PV = 1.1 µl, and the porosity is φ = 0.55. We calculate the spatial correlation length
of the flow geometry. Since the posts are located on triangular lattices, the correlation
lengths for the microfluidics are the same, i.e. lc = 1.3a.

2.1.3. Experimental procedure
Given that the pore surface of microfluidics is hydrophobic, for the purpose of

imbibition experiments using the water–air fluid pair, the invading fluid of air is
the wetting phase and the degassed water is the defending (non-wetting) phase. We
measure the contact angle between water and air on the smooth PDMS plate with a
Drop Shape Analyzer (DSA25; Krüss), and the average invading fluid (air) contact
angle is θ = 67◦. The water is dyed with a light-absorbing dye (Carmine, Wilton)
at 0.2 wt.% concentration to increase the signal intensity between the two phases.
To conduct a weak imbibition experiment, we first fully saturate the microfluidic
with the withdraw mode of the syringe pump at a constant flow rate of 1 µl min−1

via the flow path D → B → A for 5 min (figure 1a). Afterwards, the three-way
valve B is switched to C, and the system is equilibrated at 20 ◦C for 15 min. After
that, imbibition processes are initiated. Air is injected into the microfluidic at the
extremely slow flow rate of 0.025 µl min−1 with the withdraw mode of the pump
via the flow path C→B→A. Images of invasion morphology for the entire domain
of the microfluidic are recorded at 10 frames min−1 with the CMOS camera until
the invading fluid reaches the outlet. Higher-resolution images of fluid distributions
at the pore scale are also recorded with the microscope. The above procedures are
applied to the microfluidics with λ= 0, 0.1, 0.2 and 0.3, and each disorder condition
is repeated four times, with a total of 16 imbibition experiments. Each microfluidic is
used only for one time. The procedure for image post-processing has been reported
in the previous study (Hu et al. 2017b). To confirm that the flow-rate condition
corresponds to the quasi-static state, we calculate the capillary number Ca, which is
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widely used to quantify the relative effect of viscous to capillary forces (Lenormand
et al. 1988; Zhang et al. 2011; Chaudhary et al. 2013; Geistlinger et al. 2015).
Here, Ca is calculated by Ca = viµi/σ , where vi = Q/Ac, Q = 0.025 µl min−1, Ac
is the cross-sectional area of the inlet, Ac = W × D0 = 5 mm × 40 µm (figure 1b),
µi= 1.83× 10−5 kg m−1 s−1 and σ = 7.25× 10−2 N m−1. Thus, the capillary number
under such flow-rate conditions is Ca= 4.2× 10−10, which generally corresponds to
the quasi-static condition.

2.2. Numerical simulation
We develop the model of Cieplak & Robbins (1988, 1990) to simulate the quasi-static
fluid–fluid displacement processes, starting with the basic modes for menisci motion
in § 2.2.1 and the numerical implementation in § 2.2.2.

2.2.1. Modes for menisci motion
Cieplak & Robbins (1988, 1990) introduced three basic modes for menisci motion,

i.e. burst, touch and overlap. These modes, able to capture the local fluid displacement,
are fundamental to the pore-scale numerical simulation for fluid inversion into porous
media, and also the basis for the derivation of the phase diagram in this work.
From geometry analysis, we can obtain the onsets of burst, touch and overlap for
non-uniform post arrangements.

The burst event occurs when no stable arc can exist in the current post arrangement
with contact angle and local pressure drop. As the local pressure drop increases, the
radius of curvature decreases. Once the radius of curvature reaches its minimum,
an infinitesimal increment of pressure drop would cause the invading fluid to burst
into the adjacent pores, also known as Haines jump (Berg et al. 2013). Thus, the
critical radius of curvature, Rb, for the occurrence of the burst mode corresponds to
its minimum. As shown in figure 2(a), based on geometry analysis (see § A.1), we
have

burst: Rb =
−b1 +

√
b2

1 − 4a1c1

2a1
, (2.1)

where a1, b1 and c1 are the coefficients given in table 1 and (A 3).
For the touch event, the radius of curvature continues to decrease and then touches

the edge of the nearest post before reaching its minimum (figure 2b). Again, based
on geometry analysis on figure 2(b) (see § A.2), the condition for the occurrence of
touch is given as

touch: Rt =
−b2 +

√
b2

2 − 4a2c2

2a2
, (2.2)

where a2, b2 and c2 are the coefficients given in table 1 and (A 6).
Note that during numerical simulation, one needs to identify which mode occurs

first. Hecht & Taitelbaum (2004) showed that the effect of the order of occurrence
for the three basic modes on the multiphase flow is not very important. Holtzman &
Segre (2015) check for the burst first and then check for the touch and overlap events,
which is employed in this study. As shown in figure 2(c), we consider a specific fluid
reconfiguration in which the point A is located on O1O2 and the arc BC touches the
nearest post, indicating that there is a critical radius of curvature corresponding to the
two modes. To determine the order of occurrence of the two modes, we determine the
critical radius Rc,

Rc =

√
1
2 a2 +

1
2(r

2
1 + r2

2)+ R2
b − (r1 + r2)Rb cos θ − r3, (2.3)
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FIGURE 2. (Colour online) The geometry to calculate to radii of curvature of the menisci
for the three basic modes as introduced by Cieplak & Robbins (1988). (a) Burst. The
onset of a burst event corresponds to the state that for the minimum radius of curvature
(the maximum capillary force) no stable meniscus can exist in such an arrangement of
the posts. (b) Touch. The occurrence of touch means that the meniscus has touched the
edge of the nearest post before the radius of curvature reaches its minimum. (c) The order
of occurrence for burst and touch before determining overlap. (d) Overlap. Two menisci
merge into one at the location of the three-phase contact line. The arrow indicates the
direction of menisci motion, and the red arc indicates the fluid–fluid interface.

where Rb is the critical radius given by (2.1). If Rb < Rc, then the burst has occurred
before the arc has touched the nearest post (touch). Conversely, if Rb > Rc, then the
touch has occurred before the burst.

The overlap mode involves two neighbouring menisci merging into a new one at
the three-phase contact point or at the fluid–fluid interface (Primkulov et al. 2018;
Singh et al. 2019). Primkulov et al. (2018) have shown that for larger post–post
spacing with θ > 110◦, the percentage of overlap events will be underestimated when
considering the two menisci merging at the three-phase contact point. We check the
two treatments, and the results show that the difference in the probability of overlap
(see (3.3)) is no more than 0.05. Here, as shown in figure 2(d), we consider the
former case that is widely used (Koiller et al. 1992; Holtzman & Segre 2015). For
this post arrangement, the overlap will occur if η2+ η3 > 6 O1O2O3. Through geometry
analysis (see § A.3), we have the condition

overlap : η2(r1, r2, R, θ)+ η3(r2, r3, R, θ)> φ0, (2.4)
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Modes Coefficients

a1 =
2
a2
(r1 − r2)

2cos2θ − 2

Burst b1 = 2(r1 + r2) cos θ −
2
a2
(r1 − r2)

2(r1 + r2) cos θ

c1 =
a2

2
+

1
2a2

(r2
1 − r2

2)
2
− r2

1 − r2
2

a2 = 4r2
3 + 4cos2θ(r2

1 + r2
2 − 4r1r3)+ 4r3 cos θ(r2 + r1)− 3a2

Touch b2 = 2a2(r1 cos θ + r2 cos θ − 2r3)+ 2r1 cos θ(r2
2 + r2

3 − 2r2
1)

+ 2r2 cos θ(r2
1 + r2

3 − 2r2
2)+ 2r3(2r2

3 − r2
1 − r2

2)

c2 = a2(a2
− r2

1 − r2
2 − r2

3)+
1
2 (r

2
1 − r2

2)
2
+

1
2 (r

2
1 − r2

3)
2
+

1
2 (r

2
2 − r2

3)
2

Overlap η2 = cos−1

(
r2 − R cos θ√

r2
2 + R2 − 2r2R cos θ

)
− cos−1

(
a2
+ r2

2 − r2
1 + 2(r1 − r2) cos θ

2a
√

r2
2 + R2 − 2r2R cos θ

)

η3 = cos−1

(
r2 − R cos θ√

r2
2 + R2 − 2r2R cos θ

)
− cos−1

(
a2
+ r2

2 − r2
3 + 2(r3 − r2) cos θ

2a
√

r2
2 + R2 − 2r2R cos θ

)

TABLE 1. Coefficients in (2.1), (2.2) and (2.4).

where the expressions for η2 and η3 are given in table 1 and (A 11)–(A 12), and R is
the radius of curvature for the burst or touch, depending on which mode occurs first.
If the burst occurs first, i.e. if Rb < Rc, then R = Rb; while if Rb > Rc, then R = Rt,
and φ0 is the angle of 6 O1O2O3. For the triangular lattice considered in this work
(figure 1c), φ0 is set as 120◦.

2.2.2. Numerical implementation
We develop the method of Cieplak & Robbins (1988, 1990) to consider a

rectangular domain with constant-flow-rate condition, different from the previous
modes, which are applicable for a circular domain and constant-pressure conditions
(Cieplak & Robbins 1990; Koiller et al. 1992). To reproduce the observed quasi-static
fluid displacement, we create an irregular rectangular two-dimensional (2-D) model
for the microfluidics (figure 1d–g). The inlet (the left side of figure 1b) is fixed with a
constant flow rate of Q0 = 0.025 µl min−1, and zero pressure and no-flow conditions
are, respectively, applied on the outlet (the right side) and the lateral boundaries (the
top and bottom sides). First, all of the pores are saturated with the defending fluid,
and the two rows of pores near the inlet are filled with the invading fluid. Then, the
Stokes-flow-based continuity equation is assembled for the system, i.e. Q=KP, where
Q is the vector of flux into the pores, P is the vector of pressure for each pore, and K
is the matrix that represents the conductance for adjacent pores of the system. After
solving the equation, i.e. P= K−1Q, the pressure for each pore is updated, and thus
the radius of curvature for all arcs. After that, the local pore-filling events, i.e. burst,
touch and overlap, are identified with (2.1), (2.2) and (2.4), to update the configuration
of menisci. Once the menisci advancements have been tracked, the conductance for
adjacent throats, K , is updated. Through repeating the above procedure until one
meniscus reaches the outlet, we can simulate the quasi-static fluid invasion processes
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in porous media. More details of the numerical implementation can be found in the
existing works (Holtzman & Segre 2015; Holtzman 2016).

Since the numerical method is developed for the 2-D system (figure 2), the fluid
advancements with three-dimensional (3-D) nature and the related mechanisms of
corner flow (Dong & Chatzis 1995; Weislogel & Lichter 1998), snap-off (Roof 1970)
and spreading of thin wetting films (Levaché & Bartolo 2014; Odier et al. 2017)
cannot be considered in numerical simulations. These important mechanisms would
dominate the displacement in the case of strong imbibition such as θ < 45◦ (Concus &
Finn 1969) or in the case of relatively high flow rate (Zhao, MacMinn & Juanes 2016;
Hu et al. 2018a). However, for the cases of quasi-static fluid displacement in the range
of θ > 45◦ considered in this work, the numerical model based on Cieplak & Robbins
(1988, 1990) is adequate for capturing the fluid invasion processes. The advantage
of the employed numerical model is its high computational efficiency compared with
other direct simulation techniques, such as the computational fluid dynamics (CFD)
method (Ferrari et al. 2015; Hu et al. 2017a) and lattice Boltzmann method (LBM)
(Liu et al. 2015a). For CFD and LBM, it is extremely expensive, requiring parallel
computing lasting for several weeks with 24–95 processors in clusters (Raeini, Bijeljic
& Blunt 2015), for simulating such quasi-static fluid displacement. The high efficiency
of the numerical method used in this work enables us to systematically investigate
the fluid displacement over a wide range of parameters that are difficult to achieve
in experiments.

3. Results and discussion
3.1. Impact of disorder on displacement patterns for weak imbibition

Figure 3 presents the observed and simulated displacement patterns in the case
of weak imbibition (θ = 67◦) from the initial state to the breakthrough time.
The experimental results (figure 3a,c,e,g) demonstrate that increasing disorder λ
destabilizes the immiscible two-phase flow. For uniform porous media (figure 3g),
a compact displacement is observed, but the front gradually becomes unstable as λ
increases. The destabilizing effect of the disorder can also be confirmed in terms of
the variations of the invading fluid saturation at the breakthrough time Sbr (figure 4a)
and the specific fluid–fluid interface length lnw (figure 4b), where lnw is defined by the
length of displacement front divided by the average pore throat, excluding the trapped
regions behind the front. As shown in figure 4, the measured saturation Sbr decreases
with the disorder λ, while the measured specific interface length lnw increases with λ.

The simulated invasion morphologies, shown in figure 3(b,d, f,h), are generally
consistent with the experimental results. Inspection of the local fluid distributions in
the marked regions (figure 3a,c,e,g) shows that the defending phase is trapped within
single or multiple pores. Although our numerical method is able to capture trapping
in fluid displacement (see figure 9d,e in § 3.3.3), the observed trapping behaviour in
microfluidics is not reproduced via simulations. The discrepancy is mainly attributed
to limited fabrication resolution, which induces roughness at the edges of posts of the
scale of 1 µm. From the theory of multiphase flow, for weak imbibition (θ = 67◦) in
uniform porous media under quasi-static conditions, all of the neighbouring menisci
would merge and the driving front should be flat, leading to 100 % of the defending
fluid being displaced, which can be well captured by the simulation (figure 3h).
For the experiment with λ = 0 (figure 3g), due to manufacturing precision limits,
slight changes in post thickness or radii introduce heterogeneity into a homogenous
sample (Borgman et al. 2017), which determines the invasion path and finally induces

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

50
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.504


Phase diagram of quasi-static displacement in porous media 457

¬ = 0.3

1 mm

Experiment Simulation

(Uniform)

In
cr

ea
sin

g 
di

so
rd

er
 ¬

0

0.1

0.2

Start Breakthrough
Flow direction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 3. (Colour online) The observed (a,c,e,g) and simulated (b,d, f,h) invasion
morphologies at the time of breakthrough when the invading fluid reaches the outlet of the
microfluidic flow cell. The disorder λ increases from the bottom to top rows, with λ= 0
(g,h), λ= 0.1 (e, f ), λ= 0.2 (c,d) and λ= 0.3 (a,b). The red colour is the invading phase
and the blue colour is the defending phase. To show the evolution of the displacement
front, the dark red represents the initial stage whereas the light red indicates the late
time. There are 987 posts in the microfluidics used in the experiments and simulations.
We isolate the effect of porosity φ, and the values of porosity for all microfluidics are
nearly the same, i.e. φ = 0.55.

trapping (Geistlinger et al. 2015). Therefore, in comparison with the experimental
results (figure 4), higher saturation Sbr and lower interface length lnw are obtained in
the simulation for λ= 0 and for the relatively uniform porous medium (λ= 0.1). The
relative percentage errors of saturation and interface length are, respectively, 21.3 %
and −21.6 % for λ = 0 and 21.8 % and −16.9 % for λ = 0.1. When λ increases up
to 0.2 and 0.3, the simulated saturation Sbr and interface length lnw are closer to
the measurements, with the relative percentage errors decreasing to 4.8 % and 5.2 %
(λ= 0.2) and 5.2 % and 10.3 % (λ= 0.3). The reason is that, as previously indicated,
for more highly disordered porous media, the disorder dominates the fluid invasion
over the roughness of post edges at small scale.
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FIGURE 4. (Colour online) Comparison between experimentally measured and numerically
simulated results for (a) the invading fluid saturation Sbr and (b) the specific fluid–fluid
interface length lnw at the time of breakthrough for different disorders. For the
measurements, the data points (solid circles) indicate the average values of four replicate
experiments, and the error bars indicate standard deviations.

The trapping behaviour in disordered porous media can be reproduced with
simulation in the case of λ = 0.25 and θ = 75◦ (see figure 9d) but cannot be
reproduced in the disordered microfluidics used in experiments (λ= 0.1, 0.2, 0.3 and
θ = 67◦), which means that systematic comparison of the trapped defending fluids
between experiments and simulations under various disorders and wetting conditions
needs to be conducted. Nevertheless, comparison between experiments and simulations
mentioned above shows that the 2-D numerical simulations can generally reproduce
the invasion morphology observed in the microfluidics and can capture the impact of
disorder on quasi-static displacement patterns for weak imbibition.

3.2. Link pore-filling events to displacement pattern
The pore-scale fluid displacement directly determines the displacement patterns. To
obtain further insight into the disorder effect, using the microscope we randomly
select the fields of view in the microfluidics with λ= 0 and λ= 0.3, and record the
pore-scale images for local fluid advancements. As shown in figure 5, we observe that,
for uniform porous media, the menisci (labelled with 1 and 2) advance from t1 to t3
and finally merge into a single meniscus at t4, known as overlap (see figure 2d), which
stabilizes the fluid–fluid interface. In disordered media, however, the menisci (1 and 2)
cannot merge, because r4 is very large so that the meniscus 1 touches its edge and
finally induces a volume of defending fluid to be trapped within the pore throat.
Quantitatively, the observed coalescence of neighbouring menisci (figure 5a) suggests
that the conditions for the occurrence of overlap expressed by (2.4) are satisfied in
the uniform porous media with θ = 67◦, while this condition is not satisfied in the
non-uniform post arrangement in figure 5(b). As the number of overlap events in the
porous media increases, the displacement pattern becomes more stable.

To link the advancements of menisci to the displacement patterns, we calculate the
probability of overlap, Pov, by traversing through all of the post arrangements shown
in figure 2(d). The probability, Pov, is defined as Pov=Nov/N, where Nov is the number
of post arrangements for which the overlap event occurs ((2.4) is satisfied), and N is
the total number of post arrangements. If Pov = 1, overlap occurs for all of the post
arrangements, indicating that the displacement is compact. For Pov = 0, no overlap
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FIGURE 5. (Colour online) The pore-scale images for local fluid displacement with the
inverted microscope in the (a) uniform and (b) disordered microfluidics at t1, t2, t3 and t4,
where the time interval between t2 and t1, and between t3 and t2 is 1t= t3− t2= t2− t1=

5 min, and that between t4 and t3 is 50 s. The arrow indicates the direction of menisci
motion and the red dashed line indicates the fluid–fluid interface. The light colour is the
invading phase whereas the dark colour is the defending phase. The solid phase (posts)
is also shown with dark colour but can be distinguished by its edge (circumference).

occurs and burst dominates the displacement, and the pattern is capillary fingering.
For the cross-over between compact displacement and capillary fingering, 0<Pov < 1.
Thus, we relate the probability of overlap, Pov, to the displacement patterns. Holtzman
& Segre (2015) performed scaling analysis of viscous and capillary forces and found
that the compact displacement only requires 40 %–50 % of overlap events, which
is different from the threshold (Pov = 1) in this work. This is due to the different
definitions between the probability and the percentage for overlap events. In the work
of Holtzman & Segre (2015), the percentage of overlap events is calculated by the
ratio of the number of overlaps to all instability events determined from numerical
simulations. However, in this work, the probability of overlap Pov is determined
from geometry analysis (without numerical simulations), which means that all of
the post arrangements are considered even if some of them are not occupied by the
invading fluid. Under quasi-static conditions where the fluid invasion is significantly
affected by the geometry, this treatment is reasonable and the relationship between
Pov and displacement patterns will be evaluated in § 3.3.3. Recently, Wang et al.
(2019) introduce an indicator, i.e. capillary index Ic, to represent the collaborative
effect of disorder and wettability. Based on the variation of fluid–fluid interface
length with the invading fluid saturation, they report that Ic > 0.5 corresponds to the
stable displacement and fingering occurs for Ic 6 0.5. Note that trapping of defending
fluid is also important during the immiscible displacement and would significantly
affect the displacement pattern/efficiency. However, under quasi-static displacement
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FIGURE 6. (Colour online) (a) The domains of capillary fingering, compact displacement
and the cross-over between them in the θ–λ plane for four specific flow geometries with
λ = 0, 0.1, 0.2 and 0.3. For each flow geometry, the blue diamonds are the critical
contact angle below which the probability of overlap Pov is 1.0, whereas the blue squares
correspond to the critical contact angle above which the probability of overlap is 0. The
red circles indicate the experimental conditions. (b) The variation of the probability of
overlap Pov with the disorder λ for the contact angle of pore surface of the microfluidics,
i.e. θ = 67◦. The open red star in (a) and (b) indicates the points that separate the stable
displacement and the cross-over when the disorder λ increases.

conditions, trapping is closely related to the probability of overlap, Pov. When
the dynamic effect is absent, smaller Pov indicates a larger number of intermittent
advancements of menisci at different locations, resulting in a larger trapped volume of
the defending fluid (Holtzman & Segre 2015), and then destabilizes the displacement
front. Therefore, the trapping is implicitly considered in our work.

By traversing through all of the post arrangements and checking the conditions of
basic modes given by (2.1), (2.2) and (2.4), we calculate the variation of Pov with
contact angle θ (45◦<θ < 180◦) for the four microfluidics with λ= 0, 0.1, 0.2 and 0.3.
Then, we can obtain the critical contact angle below which Pov is 1.0 (diamonds in
figure 6a), and another critical contact angle above which Pov is 0 (squares). Thus,
as shown in figure 6(a), three zones of compact displacement (Pov = 1), capillary
fingering (Pov = 0) and the cross-over between them (0<Pov < 1) are bounded by the
two polylines constructed with these critical contact angles (diamonds and squares).
The variation of Pov with λ for the experimental conditions can also be directly
obtained when θ is fixed as 67◦.

Figure 6(a) elucidates the impact of disorder not only in weak imbibition but also
in the full range of drainage. Our experimental conditions in weak imbibition are
also presented in figure 6 for a comparison purposes. As λ increases from 0 to 0.3,
the displacement pattern shifts from compact displacement to the cross-over at the
critical disorder (λ = 0.151). The observed destabilizing effect of disorder can be
quantified by the probability Pov (figure 6b). We observe that Pov = 1 in the zone
of compact displacement (λ 6 0.151), and that Pov decreases as λ > 0.151 for the
cross-over. Figure 6(a) also shows that, for θ > θc, increasing disorder would stabilize
the displacement patterns, and the underlying mechanism will be discussed in § 3.3.2.

3.3. Phase diagram
Section 3.2 demonstrates that the zones of different displacement patterns in the θ–λ
plane are bounded by the contours of Pov=1 and Pov=1. The boundaries that separate
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the different flow regimes are calculated based on the geometry analysis for specific
flow geometry with a given λ (0, 0.1, 0.2 and 0.3). Given the infinite flow geometries
for a given λ, there are infinite boundaries for displacement flow regimes. In this
section, we derive a theoretical model for describing the lower and upper bounds for
the compact displacement and capillary fingering in the θ–λ plane.

3.3.1. Probability of overlap for an arbitrary geometry
We first redefine the probability of overlap Pov for an arbitrary geometry with a

given λ. Since the radii of posts follow a uniform distribution, i.e. ri∼U[(1−λ)r̄, (1+
λ)r̄], the probability density function f (r) for the uniform distribution is given by

f (r)=


1

2λr̄
, r ∈ [(1− λ)r̄, (1+ λ)r̄],

0, otherwise.
(3.1)

Based on probability theory, the probability of picking a three-post arrangement
(r1, r2 and r3) out of the geometry with 987 posts for a given λ is

f123(r1, r2, r3)=


1

(2λr̄)3
, (r1, r2, r3) ∈G,

0, otherwise,
(3.2)

where G is a bounded closed region expressed by G = {(r1, r2, r3); (1 − λ)r̄ 6 ri 6
(1 − λ)r̄, i = 1, 2, 3.} with its volume being (2λr̄)3. According to the condition for
the occurrence of overlap (2.4), the probability of overlap for an arbitrary geometry
with a given λ can be written as

Pov =

∫∫∫
G∩Gov

1
(2λr̄)3

dr1 dr2 dr3, (3.3)

where Gov is the region in which the overlap occurs, depending upon λ and θ ,
expressed by

Gov(λ, θ)= {(r1, r2, r3) : η2(r1, r2, r3; λ, θ)+ η3(r1, r2, r3; λ, θ)> 2π/3}, (3.4)

where r1, r2, r3 and η2, η3 are variables in the three-post arrangement shown in
figure 2(d).

By (3.3), we calculate Pov as a function of disorder and contact angle, as presented
in figure 7(a). The contours of Pov are employed to classify the different flow regimes
for an arbitrary geometry with a given λ. Figure 7(a) shows that the flow regimes of
compact displacement and capillary fingering are separated by the boundary curves of
θCD(λ) and θCF(λ) in the θ–λ plane. The boundary curve θCD(λ) is the lower bound
of the contact angles below which the probability of overlap Pov is 1.0 (compact
displacement), whereas the curve θCF(λ) corresponds to the upper bound of the contact
angles above which the probability of overlap is 0 (capillary fingering). The area
bounded by the two curves is the cross-over zone from capillary fingering to compact
displacement. Thus, a phase diagram of the quasi-static fluid displacement pattern with
disorder and contact angle can be straightforwardly established when the boundary
curves are determined.
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FIGURE 7. (Colour online) (a) Phase diagram of quasi-static immiscible displacement
in the θ–λ plane with λ ranging from 0 to λmax = a/r̄ − 1 (corresponding to the state
of posts overlapping), and with θ ranging from 45◦ to 180◦. The probability of overlap
Pov is presented with red colour for a higher value and with blue colour for a lower
value. The probability of overlap Pov as a function of θ and λ is used to classify the
different displacement patterns, i.e. Pov = 1 for stable displacement, Pov = 0 for capillary
fingering and 0 < Pov < 1 for the cross-over between them. The thick curves of θCD(λ)
and θCF(λ) are the lower and upper bounds of the cross-over zone from capillary fingering
to compact displacement. (b–d) Determination of the curves of θCD(λ) and θCF(λ). Each
curve, θi(λ), corresponding to a post arrangement with constant ratios among the three
radii, describes the critical θ below which no overlap occurs and above which burst occurs.
Based on geometry analysis of sampling points, the curves θCD(λ) and θCF(λ), respectively,
correspond to the post arrangements given in (c) and (d).

3.3.2. Phase diagram
To derive the analytical (or semi-analytical) solutions for the boundary curves

of θCD(λ) and θCF(λ), we perform geometry analysis on a larger number of post
arrangements according to the conditions of the occurrence of overlap (2.4). We
consider 100× 135 intervals in the θ–λ space of [0, λmax] × [45◦, 180◦], and consider
100×100×100 intervals for the bounded closed region G. Thus, a total of 1.35×1010

sampling post arrangements are analysed. Figure 7(b) presents a series of curves from
geometry analysis. Each curve, θi(λ), corresponds to the critical contact angle for a
post arrangement with constant ratios among the three radii. Below θi(λ) no overlap
occurs and above it burst occurs. Thus, as shown in figure 7(b), the left envelope
of these curves indicates that overlap unconditionally occurs in its left area, whereas
overlap never occurs and burst dominates the displacement in the right side of the
right envelope. The two envelopes have the same physical meanings as those of
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θCD(λ) and θCF(λ) shown in figure 7(a). Interestingly, we find that the two envelopes
respectively correspond to the two post arrangements given in figures 7(c) and 7(d),
which can be used to derive analytical (or semi-analytical) solutions of θCD(λ) and
θCF(λ).

For the boundary curve of θCF(λ), the related post arrangement (figure 7d) shows
that the three radii reach their minimum and that the burst occurs for the two menisci.
Based on geometry analysis (§ B.1), we derive the analytical solution for θCF(λ) as

θCF(λ) : λ= 1− l̄−1

([
f1(θ)

f2(θ)

]2

+
f1(2θ)− 3

f2(θ)
+ 1

)−1/2

, (3.5a)

with

f1(θ)=
√

3 sin θ − 3 cos θ, (3.5b)
f2(θ)= 4 cos2 θ − 1, (3.5c)

where l̄= 2r̄/a.
Similarly, the boundary curve of θCD(λ) can be determined by geometry analysis

on the post arrangement in figure 7(c). It denotes that the radius of post 3 reaches its
minimum while the other two posts have their maximum radii. The burst occurs for
the meniscus connecting posts 2 and 3 and later the two menisci merge into a new one
(overlap). Again, based on geometry analysis (§ B.2), we derive the semi-analytical
solution for θCD(λ):

θCD(λ) : g4Θ
4
+ g3Θ

3
+ g2Θ

2
+ g1Θ + g0 = 0, (3.6a)

with

Θ =
l̄ cos θ (1− λ2 l̄2)+

√
λ2 l̄4f4(θ)− l̄2[ f4(θ)+ λ2] + 1

2(1− λ2 l̄2 cos2 θ)
, (3.6b)

g4 = f 2
3 (2θ), (3.6c)

g3 =−2f3(2θ)f3(θ)(1+ λ)l̄, (3.6d)
g2 =

[
f 2
3 (θ)+

1
2 f3(2θ)

]
(1+ λ)2 l̄2

− 1, (3.6e)

g1 = (1+ λ)l̄
[
cos θ − 1

2(1+ λ)
2 l̄2f3(θ)

]
, (3.6f )

g0 =
1
4(1+ λ)

2 l̄2
[

1
4(1+ λ)

2 l̄2
− 1
]
, (3.6g)

f3(θ)=
√

3 sin θ + cos θ, (3.6h)
f4(θ)= sin2 θ + λ2 cos2 θ. (3.6i)

Finally, we derive the analytical (or semi-analytical) solutions of the upper and
lower bounds (in terms of contact angle θ ) of the cross-over zone for porous media
with arbitrary flow geometry at a given disorder λ. As shown in (3.5) and (3.6), only
one parameter, l̄= 2r̄/a, is included in the theoretical model.

The phase diagram predicted by the theoretical model is also presented in
figure 7(a), which describes the cross-over from capillary fingering to compact
displacement in disordered porous media from weak imbibition (θ = 45◦) to strong
drainage (θ = 180◦). The cross-over zone denoted by the contact angle range of
[θCD(λ), θCF(λ)] expands as the porous medium becomes more disordered, with a
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FIGURE 8. (Colour online) The disorder effect on fluid invasion depends not only
on contact angle, but also on the compactness represented by l̄ or porosity φ = 1 −
(π/(2

√
3))l̄2. (a) Four zones are defined in the l̄–θ plane. For zone I and zone IV, the

displacement patterns are respectively compact and unstable, independent of disorder λ. In
zone II, increasing the disorder λ destabilizes the displacement front, and the mechanism is
well described by the pore-scale images recorded with microscopy (figure 5). For zone III,
increasing the disorder λ stabilizes the displacement front, and the mechanism is shown
in panel (b).

single point located at the critical contact angle θc for uniform porous media and
approaching the maximum of [θCDM, θCFM] at λmax. Here, θCDM is the minimum of
θCD; θCFM is the maximum of θCF; and λmax is the maximum disorder corresponding
to the state of post overlapping. The phase diagram also elucidates that the impact of
disorder on the displacement pattern depends on the wettability, as further illustrated
in figure 8. From figure 8, θCDM, θc and θCFM vary with the compactness of the
porous medium that is represented by l̄ (= 2r̄/a) or porosity φ (= 1− (π/(2

√
3))l̄2),

and the critical contact angle θc decreases with φ or r̄, consistent with the previous
numerical results (Koiller et al. 1992).

Figure 8 further indicates that the wettability-dependent disorder impact on
quasi-static displacement can be represented with four zones, i.e. zone I, zone II,
zone III and zone IV. For zone I (θ < θCDM) and zone IV (θ > θCFM), the patterns are
respectively compact and unstable, independent of disorder λ. In zone II, increasing
the disorder λ destabilizes the displacement front, which has been well investigated in
the previous studies (Koiller et al. 1992; Yortsos et al. 1997; Toussaint et al. 2005;
Holtzman & Juanes 2010; Xu et al. 2014; Holtzman 2016), and the mechanism is
well described by the pore-scale images recorded with microscopy (figure 4). For
zone III, however, increasing the disorder λ stabilizes the displacement front, and
the mechanism is given in figure 8(b). In this zone, two competing mechanisms are
responsible for the disorder effect. On the one hand, for a given contact angle θ

(θc < θ < θCFM), burst dominates the fluid displacement, destabilizing the fluid–fluid
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interface. On the other hand, as the porous medium becomes more disordered, overlap
may occur to stabilize the interface (figure 8b). The latter would gradually become a
dominant mechanism as λ gradually increases, leading to a stabilizing effect.

Holtzman (2016) also investigated the effect of the disorder on displacement
patterns. For the microfluidics in Holtzman (2016), l̄ = 0.54, and the corresponding
θc is 87◦ (obtained from figure 8a). The numerical results in Holtzman (2016)
showed that, for θ = 90◦, i.e. in zone III, increasing disorder would destabilize the
displacement front, which is inconsistent with our work. This is attributed to the
dynamic effect involved in the study of Holtzman (2016) (Ca = 1.4 × 10−5). The
dynamic effect would enhance the number of fingers, destabilize the displacement
front, and finally enhance trapping, which is amplified when increasing disorder
(Holtzman 2016). In other words, when the capillary force plays a role in multiphase
flow, increasing disorder would significantly enhance trapping, which dominates the
mechanism shown in figure 8(b), and finally destabilizes the displacement front. This
destabilizing effect due to the role of viscous force is not considered in this work.
Under quasi-static conditions, however, the effect of disorder and wettability can be
well captured by the probability of overlap, which will be evaluated via simulations
and experimental results shown in § 3.3.3.

3.3.3. Evaluation
Given that the pore-scale simulations can generally capture the impact of

disorder on the quasi-static displacement as discussed in § 3.1, the pore-scale
simulations enable us to evaluate the proposed phase diagram of quasi-static fluid
displacement with a larger range of disorder and contact angle that cannot be
achieved in microfluidic experiments. We perform pore-scale numerical simulations
with 45◦6 θ 6 180◦ and 06 λ6 0.4, and consider 243 points of [θ, λ]. For each point,
10 geometries are generated independently. In total, we simulate 2430 computational
cases. We evaluate the phase diagram with invading fluid saturation Sbr and specific
fluid–fluid interface length lnw at the time of breakthrough, as presented in figure 9.
The dots represent the average values for Sbr and lnw from the 10 simulated cases.
From figure 9(a,b) we see that the theoretical model (3.5) and (3.6) well predicts the
regimes of capillary fingering (figure 9e), compact displacement (figure 9c) and the
cross-over zone (figure 9d) in the θ–λ plane. Figure 9(d,e) also shows the defending
fluid trapped within single or multiple pores in disordered porous media, indicating
that the numerical method is able to capture the trapping behaviour in multiphase
flow.

Based on the simulation results in figure 9, we also present the details of disorder
impact on Sbr and lnw in zone II (figure 10a,b) and in zone III (figure 10c,d). As
in figure 9, in figure 10, the data points indicate the average values of 10 simulated
cases, and the error bars indicate standard deviations. The boundaries separating
different displacement patterns predicted by the theoretical model are also presented
with vertical lines. In zone II, increasing λ decreases Sbr and increases lnw, thus
destabilizing the displacement front ranging from compact to cross-over at the critical
disorder, λCD. In zone III, conversely, a stabilizing effect can be seen in which, as
λ increases, the displacement shifts fingering to cross-over at the critical disorder,
λCF, which supports the results in figure 8. Given that our numerical simulation can
describe the trapping during quasi-static immiscible displacement, the consistency
between simulations and the theoretical model indicates that the trapping can be
reasonably considered when using the probability of overlap to relate displacement
patterns, as discussed in §§ 3.2 and 3.3.2. Compared with zone II, however, in
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FIGURE 9. (Colour online) Evaluation of the proposed phase diagram with simulated
invading fluid saturation Sbr (a) and specific fluid–fluid interface length lnw (b) at the time
of breakthrough. The dots represent the average values for Sbr and lnw from 10 simulated
cases. These 10 geometries are generated independently at a given disorder λ. The
theoretical model predicts the cross-over from capillary fingering to compact displacement,
and the representative fluid invasion morphologies are shown in (c) compact displacement,
(d) cross-over and (e) capillary fingering. In (c–e), to show the evolution of displacement
front, the dark red represents the initial stage whereas the light red indicates the late time.

zone III, we observe that the variations of Sbr and lnw are insensitive to the change
in λ, and thus we can conclude that the impact of disorder on displacement patterns is
less significant for θc < θ < θCFM. Figure 10(e, f ) confirms that increasing θ decreases
Sbr and increases lnw for a porous medium with a given λ, thus destabilizing the
displacement from compact to cross-over to capillary fingering (Jung et al. 2016; Hu
et al. 2018a; Primkulov et al. 2018). The two critical contact angles θCD and θCF

predicted by the theoretical model well capture the boundaries among these three
flow regimes.

We also evaluate the phase diagram using experimental results. The experiments
in microfluidics with different disorders under different wetting conditions are quite
limited. Here, the experimental results in this work and the experiments conducted
by Jung et al. (2016) are employed to evaluate the proposed phase diagram. Given
that one parameter (l̄= 2r̄/a) is involved in the theoretical model (θCF(λ) and θCD(λ)),
the parameter l̄ needs to be determined. In this work, a= 250 µm, r̄= 78.5 µm and
hence l̄ = 0.628. The theoretical model is then presented in figure 11(a), which is
able to well capture the observed displacement patterns of cross-over (open circles)
and compact displacement (solid circles), respectively. We also present the boundary
curves for the four specific geometries (previously shown in figure 6a) in figure 11(a),
demonstrating that the cross-over zone determined via specific geometries is included
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FIGURE 10. (Colour online) Variations of invading fluid saturation Sbr (a,c,e) and specific
fluid–fluid interface length lnw (b,d, f ) with λ in zone II (a,b), i.e. θCDM <θ = 65◦<θc, with
λ in zone III (c,d), i.e. θc < θ = 85◦ < θCFM, and with θ for 45◦ < θ < 180◦ at λ = 0.2
(e, f ). The data points (squares) indicate the average values of 10 simulated cases, and the
error bars indicate standard deviations. The boundaries separating different displacement
patterns predicted by the theoretical model are also presented with vertical lines. (a,b) In
zone II, increasing λ decreases Sbr and increases lnw, thus destabilizing the displacement
front ranging from compact to cross-over at λCD. (c,d) In zone III, a stabilizing effect is
observed. The variations of Sbr and lnw are insensitive to the change in λ, indicating that
the impact of disorder on the displacement pattern is less significant. (e, f ) Increasing θ
decreases Sbr and increases lnw at λ= 0.2, thus destabilizing the displacement front, which
shifts from compact to cross-over to capillary fingering. The two critical contact angles
θCD and θCF separate these three flow regimes.
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FIGURE 11. (Colour online) Evaluation of phase diagram using the experimental results
in this work and the experiments by Jung et al. (2016). In this work, l̄ = 0.7 and θ =
67◦, and the theoretical model is then presented in (a), which is able to well capture
the observed displacement patterns of cross-over (open circles) and compact displacement
(solid circles), respectively. (b) In the experiments of Jung et al. (2016) with porosity φ=
0.85, the theoretical model predicts well the cross-over from the capillary fingering to
compact displacement as θ decreases from 150◦ to 45◦. (c) A microfluidic experiment with
φ = 0.7 is also adopted herein. The cross-over from fingering to compact displacement
is also captured by the theoretical model. In (b,c), the horizontal bars indicate standard
deviations of contact angle measurements.

in the cross-over zone predicted by the theoretical model. This is because the boundary
curves of θCDM and θCFM represent the lower and upper bounds for the cross-over
zone for an arbitrary geometry with a given disorder. Jung et al. (2016) conducted
slow immiscible displacement in disordered microfluidics to investigate the wettability
effect. For the microfluidics with porosity φ= 0.85, r= r̄= 16 µm and 21 µm6 d 6
65 µm, the parameter l̄ can be estimated with φ = 1− (π/2

√
3)l̄2
= 0.4067 and the

disorder λ is determined as λ= (dmax− dmin)/(4r̄)= 0.6875. As shown in figure 11(b),
the theoretical model predicts well the cross-over from capillary fingering to compact
displacement as θ decreases from 150◦ to 45◦. For another microfluidic with φ = 0.7
(figure 11c), r = r̄ = 16 µm and 14 µm 6 d 6 40 µm, l̄ is determined as 0.5751
and λ = (dmax − dmin)/(4r̄) = 0.4063. The theoretical model again captures well the
cross-over from fingering to compact displacement for a given disorder.
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4. Conclusions
We study the competing effect of disorder and wettability on the quasi-static fluid

displacement in porous media by combining microfluidic experiments and pore-scale
simulations with theoretical analysis. Through microfluidic experiments, we show that
increasing disorder destabilizes the invasion morphologies at weak imbibition and the
underlying mechanism at the pore scale can be well recorded with the microscope. We
develop the numerical method originally proposed by Cieplak & Robbins (1988, 1990)
to consider the rectangular domain with constant-flow-rate boundaries to match the
experimental conditions. Numerical simulations generally agree with the experimental
results, and thus the numerical method can be employed to systematically investigate
the quasi-static fluid displacement in porous media with different disorders and contact
angles that cannot be achieved in microfluidic experiments.

Through theoretical analysis on the probability of overlap events that stabilize the
fluid–fluid interface, we propose a theoretical model to describe the lower and upper
bounds of cross-over between capillary fingering and compact displacement in porous
media with a given disorder. The phase diagram predicted by the theoretical model not
only captures the boundaries that separate the regimes but also identifies four zones to
elucidate that the impact of disorder depends on contact angle. In zone II (θCDM <θ <
θc), increasing λ destabilizes the displacement patterns, and the underlying mechanism
is well explained by the pore-scale images recorded with the microscope. For zone III
(θc < θ < θCFM), however, we show that a stabilizing effect of disorder plays a role
because the non-uniform posts would stabilize the local fluid–fluid interface. We find
that this destabilizing effect is less significant than that in zone II. In zone I and
zone IV, displacement patterns respectively exhibit compact displacement and capillary
fingering, independent of both contact angle and disorder. Finally, the proposed phase
diagram is evaluated using the extensive pore-scale simulations, and the experimental
results in this work and in the literature.

Our proposed phase diagram, different from the previous works that consider the
flow rate, the wetting condition and the fluid properties (Lenormand et al. 1988;
Holtzman & Juanes 2010; Zhang et al. 2011), defines the lower and upper bounds
of the cross-over zone between compact displacement and capillary fingering for an
arbitrary flow geometry with a given disorder. Thus, our work extends the previous
studies to consider the impact of flow geometry. The proposed phase diagram provides
the first identification of displacement patterns just using the statistical parameters such
as porosity, average particle/pore sizes and disorder. Thus, our work is of practical
significance for engineering applications, such as geological carbon sequestration,
oil recovery and shale gas production, where the identification of the displacement
pattern is critical for controlling the hydraulic properties of the multiphase flow
system in order to ensure recovery efficiency. Note that in this work we only
consider triangular lattice packing and uniform post size distribution for a fixed
porosity and a fixed correlation length. Many geologic media often have an intrinsic
spatial correlation and do not follow a uniform pore size distribution (or do not
exhibit triangular lattice packing). The system size of the flow geometry is also fixed
as 10 mm× 5 mm (including 987 posts) in this work, and the system size may also
affect the displacement, which is not considered in this work. Thus, the impacts of
the spatial correlation length (Holtzman 2016; Borgman et al. 2019), the distribution
type, the post packing and the system size on the multiphase flow need further
investigation to improve the generality of the theoretical model. Another important
open question is to extend the proposed phase diagram from weak imbibition to
strong imbibition in which corner flow plays a key role in quasi-static displacement
(Girardo et al. 2009; Primkulov et al. 2018).
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Appendix A. The occurrence of three basic modes
A.1. Burst

As shown in figure 2(a), for a three-post arrangement, the arc touches the posts
O1 and O2 at B and C, and the radius of curvature is R = AB = AC. Note that
because 6 DBO1= 6 ABE= 90◦, we have 6 ABO1= 6 DBE= θ and similarly 6 ACO2= θ .
Applying the law of cosines in 4AO1B and 4AO2C, we have

y2
1 = r2

1 + R2
− 2r1R cos θ,

y2
2 = r2

2 + R2
− 2r2R cos θ,

}
(A 1)

where R is the radius of curvature of the arc. The radius R increases with y1 and
y2. The radius R reaches its minimum (Rb) corresponding to the condition that y1+ y2
also reaches its minimum. In the post arrangement shown in figure 2(a), the minimum
of y1 + y2 means that the point A lies on the line O1O2, i.e. y1 + y2 = a. Substituting
y1+ y2= a into (A 1), we can obtain the critical radius of curvature for the burst mode
as

burst : Rb =
−b1 +

√
b2

1 − 4a1c1

2a1
, (A 2)

with
a1 =

2
a2
(r1 − r2)

2 cos2 θ − 2,

b1 = 2(r1 + r2) cos θ −
2
a2
(r1 − r2)

2(r1 + r2) cos θ,

c1 =
a2

2
+

1
2a2

(r2
1 − r2

2)
2
− r2

1 − r2
2,


(A 3)

where r1 and r2 are the radii of post 1 and post 2, and θ is the invading fluid contact
angle.

A.2. Touch
As shown in figure 2(b), again, applying the law of cosines in 4AO1B, 4AO2C,
4AO1O3 and 4AO2O3, we have

y2
1 = r2

1 + R2
t − 2r1Rt cos θ,

y2
2 = r2

2 + R2
t − 2r2Rt cos θ,

y2
1 = a2

+ (Rt + r3)
2
− 2a(Rt + r3) cos γ ,

y2
2 = a2

+ (Rt + r3)
2
− 2a(Rt + r3) cos(60◦ − γ ).

 (A 4)

From (A 4), we can obtain the analytical solution of the critical radius of curvature,
Rt, for the touch mode as

touch : Rt =
−b2 +

√
b2

2 − 4a2c2

2a2
, (A 5)
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with

a2 = 4r2
3 + 4 cos2 θ (r2

1 + r2
2 − 4r1r3)+ 4r3 cos θ (r2 + r1)− 3a2,

b2 = 2a2(r1 cos θ + r2 cos θ − 2r3)+ 2r1 cos θ (r2
2 + r2

3 − 2r2
1)

+ 2r2 cos θ(r2
1 + r2

3 − 2r2
2)+ 2r3(2r2

3 − r2
1 − r2

2),

c2 = a2(a2
− r2

1 − r2
2 − r2

3)+
1
2(r

2
1 − r2

2)
2
+

1
2(r

2
1 − r2

3)
2
+

1
2(r

2
2 − r2

3)
2.

 (A 6)

A.3. Overlap
As shown in figure 2(d), the overlap will occur if η2 + η3 > 6 O1O2O3. Similar to
the procedures given in (A 2) and (A 5), applying the law of cosines in 4AO1B and
4AO2C, we have

y2
1 = r2

1 + R2
− 2r1R cos θ,

y2
2 = r2

2 + R2
− 2r2R cos θ,

}
(A 7)

and the law of sines in 4AO2C leads to

y2

sin θ
=

R
sin α2

. (A 8)

By the above two equations, the expression for α2 can be written as

cos α2 =
r2 − R cos θ√

r2
2 + R2 − 2r2R cos θ

. (A 9)

The expression for β2 can also be obtained via the law of cosines in 4AO1O2,
4AO1B and 4AO2C,

cos β2 =
a2
+ r2

2 − r2
1 + 2(r1 − r2) cos θ

2a
√

r2
2 + R2 − 2r2R cos θ

. (A 10)

By (A 9) and (A 10), the angle of η2 and η3 can be written as

η2 = cos−1

(
r2 − R cos θ√

r2
2 + R2 − 2r2R cos θ

)
− cos−1

(
a2
+ r2

2 − r2
1 + 2(r1 − r2) cos θ

2a
√

r2
2 + R2 − 2r2R cos θ

)
.

(A 11)
Similarly, the angle of η2 can also be expressed as

η3 = cos−1

(
r2 − R cos θ√

r2
2 + R2 − 2r2R cos θ

)
− cos−1

(
a2
+ r2

2 − r2
3 + 2(r3 − r2) cos θ

2a
√

r2
2 + R2 − 2r2R cos θ

)
.

(A 12)

Appendix B. The derivation of the theoretical model
B.1. The derivation of θCF(λ)

For θCF(λ), as shown in figure 7(d), the three radii reach their minimum, i.e. r1 =

r2 = r3 = (1 − λ)r̄, and the burst occurs for the two menisci. Based on (A 9), with
6 AO2C= 60◦, we have

cos 60◦ =
(1− λ)r̄− Rb cos θ√

R2
b + (1− λ)

2r̄2 − 2(1− λ)r̄Rb cos θ
. (B 1)
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From (B 1), Rb can be solved as

Rb =

√
3 sin θ − 3 cos θ
1− 4 cos2 θ

(1− λ)r̄. (B 2)

For the burst mode, the critical radius of curvature is expressed by (A 2), and
substituting r1 = r2 = r3 = (1− λ)r̄ into (A 2) leads to

Rb =
1
2

√
a2 − [2(1− λ)r̄]2 sin2 θ + (1− λ)r̄ cos θ. (B 3)

Combining (B 2) with (B 3), we derive the analytical solution for θCF(λ), as given
in (3.5).

B.2. The derivation of θCD(λ)

For θCD(λ), as shown in figure 7(c), the radius of post 3 reaches its minimum, i.e. r3=

(1− λ)r̄, while the other two posts reach their maximum radii, i.e. r1 = r2 = (1+ λ)r̄.
The burst occurs for the meniscus connecting posts 2 and 3 and later the two menisci
merge into a single one (overlap). Again, for the burst, the critical radius of curvature
is expressed by (A 2), and substituting r3= (1− λ)r̄ and r2= (1+ λ)r̄ into (A 2) leads
to

Rb =

2r̄ cos θ (a2
− 4λ2r̄2)+ a

√(
16λ2r̄4

[sin2 θ + λ2 cos2 θ ]

− 4a2r̄2(sin2 θ + λ2
+ λ2 cos2 θ)+ a4

)
2(a2 − 4λ2r̄2 cos2 θ)

. (B 4)

From the geometry shown in figure 7(c), we have

2α − β = 120◦, cos β =
a
2y
, sin α =

Rb sin θ
y

. (B 5a−c)

By (A 9), cos α is written as

cos α =
(1+ λ)r̄− Rb cos θ

y
. (B 6)

Using trigonometric functions, we have

sin 2α = 2 sin α cos α = 2Rb sin θ [(1+ λ)r̄− Rb cos θ ]/y2, (B 7)

cos 2α = cos2 α − sin2 α =
R2

b(cos2 θ − sin2 θ)− 2Rb(1+ λ)r̄ cos θ + (1+ λ)2r̄2

2y2
, (B 8)

cos β = cos(2α − 120◦)=− 1
2 cos 2α +

√
3

2 sin 2α. (B 9)

Substituting (B 5), (B 7) and (B 8) into (B 9) leads to

ay=−(
√

3 sin 2θ + cos 2θ)R2
b + 2(

√
3 sin θ + cos θ)(1+ λ)r̄Rb − (1+ λ)2r̄2. (B 10)

Applying the law of cosines in 4AO2C provides the relation between Rb and y,

y2
= (1+ λ)2r̄2

+ R2
b − 2(1+ λ)r̄Rb cos θ. (B 11)

Finally, the boundary curve θCD(λ) can be determined via the combination of (B 4),
(B 10) and (B 11), as rearranged in (3.6).
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