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BAYESIAN OCKHAM’S RAZOR AND
NESTED MODELS

BENGT AUTZEN∗

Abstract: While Bayesian methods are widely used in economics and
finance, the foundations of this approach remain controversial. In the
contemporary statistical literature Bayesian Ockham’s razor refers to
the observation that the Bayesian approach to scientific inference will
automatically assign greater likelihood to a simpler hypothesis if the data
are compatible with both a simpler and a more complex hypothesis. In this
paper I will discuss a problem that results when Bayesian Ockham’s razor
is applied to nested economic models. I will argue that previous responses
to the problem found in the philosophical literature are unsatisfactory and
develop a novel reply to the problem.
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1. INTRODUCTION

Bayesian methods are widely used in economics and finance. For instance,
Bayesian approaches have become popular when it comes to evaluating
dynamic stochastic general equilibrium (DSGE) models with empirical
data (Smets and Wouters 2007). Similarly, Bayesian methods are invoked
to help international corporations that sell their goods abroad to manage
the risk of foreign exchange rate exposure that they incur at the time they
repatriate the proceeds of their sales (Bos et al. 2000). And finally, Bayesian
approaches are used to estimate financial risk measures, such as Value-
at-Risk, employed by banks and other financial institutions (Hoogerheide
and van Dijk 2010).
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Ockham’s razor, sometimes referred to as the principle of parsimony
or simplicity, is the idea that simpler hypotheses are more likely to be
true. Ockham’s razor has made two prominent inroads into Bayesian
methodology. Early attempts by Wrinch and Jeffreys (1921) suggested
that in Bayesian inference simpler hypotheses should get assigned higher
prior probability. One problem with Wrinch and Jeffreys’s proposal,
which has become known as Jeffreys’s simplicity postulate (Jeffreys
1931), is that it does not offer a justification for Ockham’s razor. Rather
the simplicity postulate only interprets Ockham’s razor in a particular
Bayesian way. Modern Bayesians therefore prefer a different view on
the relationship between Ockham’s razor and Bayesian methodology. In
the contemporary statistical literature Bayesian Ockham’s razor (BOR)
refers to the observation that Bayesian inference will automatically assign
greater likelihood to a simpler hypothesis if the data are compatible with
both a simpler and a more complex hypothesis (Jefferys and Berger 1992).

In this paper I will focus on a particular issue resulting when BOR
is applied to nested models.1 The problem of comparing a set of nested
models arises in a number of economic applications. For instance, in
studies on asset price forecasting, a baseline model postulating a random
walk of asset prices (or a random walk with drift) is compared to a
number of more complex models that include additional predictors of
asset price movements.2 In a further example involving nested economic
models, Kriwoluzky and Stoltenberg (2016) compare a baseline model of a
cashless New Keynesian economy with a number of more complex DSGE
models that include additional features, such as the indexation of prices
to past inflation, the formation of consumption habits and the inclusion of
money in a household’s utility function. In particular, they compare the
baseline model with indexation, here referred to as the indexation model,
with their most complex model, here referred to as the complete model,
that allows for habit formation, indexation and money. Importantly, the
indexation model is nested in the complete model since the former is a
special case of the latter. In line with BOR, the simpler indexation model
has both a greater likelihood and a greater posterior probability than the
more complex complete model in their Bayesian analysis.

There is, however, something puzzling about this result. The
indexation model is assumed to be nested in the complete model, that
is, the indexation model only describes a subset of possibilities regarding
the data generating mechanism when compared to the complete model.
However, if an event A is a subset of event B, then the probability of A,

1 For a recent philosophical discussion of BOR in the context of non-nested models, see Sober
(2015).

2 Examples include Hong and Lee (2003), who study exchange rates, and Sarno et al. (2005),
who study interest rates.
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P(A) cannot be larger than the probability of B, P(B) for any probability
measure P. As such, it seems somewhat miraculous that the simpler,
nested indexation model has a greater posterior probability (i.e. 0.82) than
the more complex complete model (i.e. 0.18). Phrased differently, BOR
seems to lead to an incoherent probability assignment when applied to
nested models.

This problem is analogue to an objection raised by Popper (1959)
against Jeffreys’s simplicity postulate. To recapitulate, the simplicity
postulate requires that simpler hypotheses are to be assigned a greater
prior probability than more complex hypotheses in a Bayesian analysis.
Popper denies the possibility that when a simpler hypothesis is nested
in a more complex hypothesis, the simpler hypothesis can have higher
probability than the more complex one. While the focus of Popper’s
critique directed at Jeffreys’s simplicity postulate has been on the role
of prior probabilities of hypotheses in a Bayesian analysis, the same
conceptual problem arises in the discussion of the role of posterior
probabilities of nested models in BOR.

One might be tempted to think that even though this problem
has attracted the attention of philosophers of science, it does not
have any impact on scientific debates. Turning to a biological context,
however, Templeton (2010) critically notices that in some prominent
phylogeographic studies nested models have higher posterior probability
than their encompassing models. For instance, Fagundes et al. (2007)
compare three models of human evolution. First, the out-of-Africa
replacement model asserts that an expanding African population
completely replaced Eurasian populations with no admixture. Second, the
assimilation model allows for potential admixture between the African
population and the Eurasian populations. The degree of admixture in the
assimilation model is measured by the parameter m that can vary between
0 (i.e. no genetic input from archaic Eurasians) and 1 (i.e. no genetic input
from the expanding African population into Eurasians). And finally, the
gene flow model allows for gene flow between African and Eurasian
populations. Since the assimilation model reduces to the replacement
model by fixing the parameter m at zero, the replacement model is
nested in the assimilation model. Fagundes et al. calculate a posterior
probability of 0.781 for the replacement model and a posterior probability
of 0.001 for the assimilation model. Templeton (2010: 6377) concludes: ‘It
is mathematically and logically impossible for [the replacement model] to
have greater probability than [the assimilation model].’

In this paper I aim to make sense of the apparent Bayesian incoherence
found in the economic and statistical literature. The structure of the paper
is as follows. Section 2 illustrates the problem of applying BOR to nested
models by means of a simple coin tossing example. Section 3 reviews some
previous responses to the problem found in the philosophical literature.
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Section 4 develops an alternative response based on the notion of a
Bayesian model. Section 5 discusses a difficulty associated with the use
of Bayesian models in scientific inference. Section 6 concludes.

2. A TOY EXAMPLE

In order to state the problem associated with the application of BOR to
nested models as succinctly as possible, I will abstract from the details
of the DSGE models discussed by Kriwoluzky and Stoltenberg (2016)
and consider a more manageable example that is structurally similar. In
particular, I will introduce two statistical models representing different
hypotheses about a coin. The first hypothesis, denoted as FAIR, asserts
that the coin is fair. More formally, the hypothesis asserts that the coin
tosses are independent and identically distributed and that the probability
of the coin landing ‘Heads’ in a single toss is equal to 0.5. According to
FAIR, the number of ‘Heads’ in n tosses is then described by the Binomial
distribution B(n, 0.5). In order to simplify the example, the number of
tosses is fixed at n = 10. FAIR is then given by

(FAIR){B(10, p1) : p1 = 0.5}.
In contrast, the second hypothesis, denoted as HEDGE, asserts that the
coin is fair or biased towards heads or biased towards tail. As such the
second hypothesis can be represented by the following set of probabilistic
hypotheses:3

(HEDGE){B(10, p2) : 0 ≤ p2 ≤ 1}.

In line with standard treatments of model selection theory (e.g. Burnham
and Anderson 2002), FAIR is considered as simpler than HEDGE since
FAIR has no adjustable parameters (i.e. parameter p1 is fixed at 0.5) while
HEDGE has one.

In order to illustrate the mechanics of BOR, I will examine the
posterior probabilities of FAIR and HEDGE given the data D denoting
the sequence of 10 coin tosses (H, T, H, T, H, T, H, T, H, T). The posterior
probability of, say, FAIR results from applying Bayes’s theorem:

P(FAIR|D) = P(D|FAIR)P(FAIR)
P(D)

.

Since I am mainly interested in the relationship between the posterior
probabilities of FAIR and HEDGE, it suffices to assess the ratio of these

3 Note that HEDGE is not a tautology. It asserts that the coin tosses are independent and
identically distributed with parameter p2 describing the probability of ‘Heads’ in a single
coin toss.
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two probabilities:

P(FAIR|D)
P(HEDGE|D)

= P(D|FAIR)P(FAIR)
P(D|HEDGE)P(HEDGE)

.

In order to evaluate the ratio of posterior probabilities of FAIR and
HEDGE, one has then to calculate the likelihood and prior probability
of each model. Suppose for the moment that the prior probability
of FAIR equals 0.4 and the prior probability of HEDGE equals 0.6.4

The likelihood of FAIR is straightforwardly given by 0.510 as there is
only a single Binomial distribution included in this model. In contrast,
the likelihood of HEDGE is an average for Bayesians and therefore
requires assigning a prior distribution to the adjustable parameter
p2. More formally, the (‘marginal’) likelihood P(D|HEDGE) is given
by

∫ 1
0 P(D|B(10, p2)) f (p2|HEDGE)dp2, where f(p2|HEDGE) denotes the

conditional prior probability density of parameter p2. In line with common
treatments of BOR suppose that p2 follows a ‘flat’ prior such as the
uniform distribution on the unit interval [0, 1].5 Given these assumptions,
the ratio of model posterior probabilities is given by

P(FAIR|D)
P(HEDGE|D)

≈ 0.000977 ∗ 0.4
0.000361 ∗ 0.6

> 1.

That is, even though HEDGE has a higher prior probability than FAIR,
FAIR has a higher posterior probability than HEDGE.

Underlying BOR is the idea that a more complex model must spread
its likelihood more thinly over the data space than a simpler model. This
can be illustrated by means of the likelihoods of FAIR and HEDGE, where
the likelihood ratio in the previous numerical example is approximately
given by 9.77

3.61 in support of the simpler model FAIR. Depending on the
assignment of prior probabilities to the two models, this can result in the
simpler model being more probable a posteriori. In the current example,
the simpler model FAIR not only has higher likelihood than HEDGE but
also has a larger posterior probability given the data.

Before considering possible replies to the problem, it is worth noting
that there is nothing special about using a simpler model that consists only
of a point hypothesis regarding the value of the unknown coin tossing
parameter. As an alternative to FAIR consider, for instance, the following
model FAIR-ε given by

(FAIR-ε){B(10, p1) : 0.5 − ε ≤ p1 ≤ 0.5 + ε}

4 This choice of prior probabilities reflects Popper’s remark that simpler, nested models
cannot have greater prior probability than more complex models.

5 Calculating the likelihood P(D|HEDGE) then involves evaluating the integral
∫ 1

0 p5
2(1 −

p2)5dp2.
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with a small, fixed ε > 0. For a suitable choice of data FAIR-ε will have
both larger likelihood and larger posterior probability than HEDGE. Also
note that in the modified example a slightly different notion of simplicity
is invoked according to which a model is simpler if its adjustable
parameter has a more constrained range of possible numerical values than
the adjustable parameter of its competitor. While the adjustable parameter
p2 of HEDGE ranges between 0 and 1, the parameter p1 of FAIR-ε ranges
over a much smaller interval that also forms a subset of [0, 1]. FAIR-ε is
therefore simpler than HEDGE based on this second reading of simplicity.

MacKay (2003: 349–350) discusses a similar example in which he
compares three nested models, denoted as H1, H2 and H3. Each model has
one parameter w but assigns a different prior range to that parameter. The
model H3 is the most complex model since it assigns the broadest prior
range, while model H1 is the simplest model since it goes along with the
most narrow prior range. It is assumed that all three models have equal
prior probability. In the example a data set assigns a higher likelihood to
model H2 than the more complex model H3. The simplest model H1 has
the smallest likelihood since it can only achieve a poor fit to the observed
data. Since all three models have equal prior probability, the model H2
of intermediate complexity has the largest posterior probability given the
data.

The latter examples demonstrate that the canonical philosophical
response to Popper’s critique of the simplicity postulate cannot
accommodate BOR in its full generality. Howson (1988) replies to Popper’s
argument by restricting the domain of the simplicity postulate to non-
nested models. More specifically, Howson essentially asks us to compare
FAIR with the model given by{

B(10, p2) : 0 ≤ p2 ≤ 1, p2 �= 1
2

}

rather than HEDGE. Since HEDGE and the model given by the set
{B(10, p2) : 0 ≤ p2 ≤ 1, p2 �= 1

2 } have the same marginal likelihood, this
re-description seems to solve the conceptual problem while leaving
the numerical model probabilities unaffected.6 This proposal, however,
becomes problematic when comparing models such as (FAIR-ε) with
HEDGE. Here, HEDGE cannot be re-described in the way suggested by
Howson without affecting its likelihood calculation. Since proponents
of BOR, such as MacKay (2003), are genuinely interested in comparing
models with non-trivially overlapping parameter ranges, restricting the
Bayesian analysis to models with non-overlapping parameter ranges
amounts to substantively changing the inference problem. In the next

6 Here, I rely on the fact that taking out a singleton value in the parameter range does not
affect the likelihood calculation for a continuous probability distribution.
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section, I will turn to some more recent philosophical responses that aim
to take the conceptual sting out of BOR.

3. PREVIOUS RESPONSES

3.1. Theories as generators

In their discussion of Bayesian hierarchical modelling Henderson et al.
(2010) respond to the view that simple, nested models cannot have
higher probability than more complex models. Henderson et al. phrase
their discussion in terms of theories rather than models such that they
take issue with the view that logically stronger theories cannot have
higher probability than logically weaker theories. Their reply can be best
discussed by means of one of their examples.

Curve fitting refers to the problem of finding the curve that best
represents the relationship between two variables X and Y in the light
of some observed data. Doing so not only involves choosing a particular
curve, such as y = 2x + 1 or y = x2 + x + 2, but also making a decision
about the functional form of the curve (e.g. linear function, quadratic
function etc.) that is most appropriate for the task at hand. Henderson
et al. understand the curve fitting problem as an instance of Bayesian
hierarchical modelling. At the lowest level of the hierarchical model one
finds particular curves such as y = 2x + 1. At the next level of the
hierarchy theories are distinguished by means of the maximum degree
of the polynomial used to establish particular curves in the lower level
hypothesis space. In particular, Henderson et al. consider the two higher
level theories Poly1, referring to polynomials with maximum degree 1,
and Poly2, referring to polynomials with maximum degree 2.

Henderson et al. contrast their understanding of these higher
level theories with the traditional, ‘set-based’ understanding of higher
level theories in the curve fitting problem according to which higher level
theories are characterized by sets of curves. For instance, the set of all
linear curves of the form y = a1x + a0 (with a0, a1 ∈ R) constitutes one
such higher level theory. A further candidate theory is given by the set of
all quadratic functions of the form y = a2x2 + a1x + a0 (with a0, a1, a2 ∈ R).
At the heart of Henderson et al.’s account is the idea that higher level
theories ‘generate’ lower level theories meaning that higher level theories
provide ‘a rule or recipe specifying constraints on the construction of
[the lower level theory]’ (Henderson et al. 2010: 176). In the curve fitting
problem Poly1 and Poly2 each generate curves of a particular functional
form. However, Poly1 and Poly2 are not to be identified with the set of
curves they generate according to the generative view on higher level
theories. Importantly, Poly1 and Poly2 are not considered as standing in
a subset relationship. Rather, these higher level theories are seen to be
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mutually exclusive and thereby to block any concerns about the simpler
theory having larger probability than the more complex theory.

How to unpack the idea of higher level theories as generators of lower
level theories? And more specifically, how to understand the models Poly1
and Poly2? A natural reading identifies Poly1 with the proposition that
the curve describing the relationship between variables X and Y has a
linear form. Similarly, Poly2 is then to be identified with the proposition
that the curve describing the relationship between variables X and Y
has a quadratic form. These are very general readings of Poly1 and
Poly2 that provide constraints on the construction of particular curves,
such as y = 2x + 1 and y = x2 + x + 2. Based on this reading,
however, Poly2 is logically entailed by Poly1 since every linear curve is
a quadratic curve but not vice versa. As such, Poly1 cannot have a higher
probability than Poly2. Importantly, this line of reasoning does not rely
on invoking a set-based approach to state the higher level theories in the
curve fitting problem. While probability theory is typically formulated
in a set-theoretic framework following Kolmogorov’s foundational work
(Kolmogorov 1933), probability theory can be equivalently phrased in
terms of propositions rather than sets (Jaynes 2003).

Given that the proposed reading of Poly1 and Poly2 does not provide
a satisfactory reply to the apparent incoherence of BOR, the question
remains of how to cash out the idea of higher level theories as generators
of lower level theories. The proponent of this account needs to say
more about the content of the generative narratives associated with Poly1
and Poly2 as well as how these narratives prevent Poly2 being logically
entailed by Poly1. I will come back to this question in Section 4, where
I offer an answer on what additional content might be needed in the
generative story of higher level theories. For the moment, I conclude
that the generative view on theories in its current form does not offer a
satisfactory answer on how BOR applies to nested models.

3.2. Relabelling

Romeijn and van de Schoot (2008) provide an alternative proposal for
addressing the challenge resulting from applying BOR to nested models.
They propose that nested models, such as FAIR and HEDGE, can be
relabelled so that assigning larger probability to the nested model does
not violate the probability calculus. Romeijn and van de Schoot (2008: 353)
write:

nothing prevents us from using two distinct sets of hypotheses ... which are
different from a set-theoretical view by virtue of being labelled differently,
even while they have exactly the same likelihood functions over the data.
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To illustrate, consider again the model FAIR. FAIR consists of the
single Binomial distribution denoted as B(10, 0.5). Now, relabel the
hypothesis in the set. For instance, let us denote the same probability
distribution as B∗(10, 0.5). Romeijn and van de Schoot suggest that in
virtue of the different label, the model consisting only of the single
Binomial distribution B∗(10, 0.5), here denoted as FAIR∗, and the model
FAIR form two disjunct sets of hypotheses. As a result, FAIR∗ can
be assigned a different probability than FAIR. In particular, FAIR∗ can
be assigned a larger probability than HEDGE without violating the
probability calculus, or so they claim.

Romeijn and van de Schoot propose that the models FAIR and
FAIR∗ are non-nested in virtue of the fact that the hypotheses in each
set are labelled differently. While I agree that, technically speaking, the
models FAIR and FAIR∗ are non-nested, the question arises of whether
FAIR and FAIR∗ constitute an adequate mathematical representation
of the inference problem at hand. Relabelling does not alter the
fact that both FAIR and FAIR∗ are empirically equivalent. The two
statistical models consist of pairwise identical probabilistic hypotheses
in the sense that these hypotheses assign the same probabilities to
the events in the underlying probability space. As a result it is not
clear why one would reasonably assign different probabilities to these
two models. Put differently, simple relabelling seems to amount to
a case of mislabelling. Assigning different labels to sets of pairwise
identical probability distributions, gives a misleading picture regarding
the possible hypotheses about the data generating mechanism.

In a more recent article developing a Bayesian account of abductive
inference Romeijn (2013) elaborates how models, again understood as
sets of probability distributions, relate to empirical data from a Bayesian
perspective. Romeijn (2013: 430) writes

A central point in this paper is that models whose distinction is theoretical
[i.e. the models consist of probability distributions assigning identical
probabilities to the data] may still differ in empirical content, because of the
priors we define over them. We will look at models ... that differ theoretically
in the sense specified above, but that are associated with different stories
concerning the data generating system. Such stories motivate different
priors over the models in question, and these priors again lead to a different
empirical content for the two models. The data may be used to choose
between the models in virtue of their association with different priors.

Romeijn uses the example of a normal and a magical coin to illustrate
his view. A normal coin is most probably fair, that is, has a probability of
‘Heads’ that is close to 0.5. In contrast, the magical coin is most probably
biased, that is, has a probability of landing ‘Heads’ that is close to 0 or 1.
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The model of the normal coin, here denoted as NORMAL, is given by

(NORMAL){Hθ : θ ∈ [0, 1]},
while the model of the magical coin, here denoted as MAGIC, is given by

(MAGIC){H∗
θ : θ ∈ [0, 1]},

where Hθ (H∗
θ ) asserts that the probability of the coin landing ‘Heads’ is

equal to θ . (Again, it is assumed that the coin tosses are independent and
identically distributed.) The fact that the normal coin is most probably fair
while the magical coin is most probably biased is then captured by means
of distinct prior probability distributions assigned to the parameter θ in
the two models.

If the notion of a model as a set of probabilistic hypotheses about a
data-generating mechanism is maintained, Romeijn’s position leads to an
unclear and rather awkward terminology. It is unclear how the two sets
of hypotheses NORMAL and MAGIC can represent two different data-
generating mechanisms, that is, the normal and the magical coins. They
only do so in the light of the different priors assigned to the adjustable
parameters of the models. Furthermore, Romeijn (2013: 430) seems to
suggest that two models consisting of hypotheses with identical (classical)
likelihood functions simultaneously have the same and different empirical
content. That is, two models have the same empirical content because the
hypotheses in the models have pairwise identical likelihood functions. At
the same time these models can have different empirical content in virtue
of the different priors assigned to the adjustable parameters of the two
models even though these priors are not part of the models.

While I disagree with the particulars of Romeijn’s (and van de
Schoot’s) account, I still think there is an important lesson to be learned. I
concur with Romeijn (2013: 430) that ‘data may be used to choose between
the models in virtue of their association with different priors’. This
observation suggests to include the prior of adjustable parameters into the
notion of a model. By including the prior of the adjustable parameter into
the model, it becomes clear how models that contain pairwise identical
probabilistic hypotheses about the data-generating mechanism can have
different empirical content. The next section will follow up this idea.

4. BAYESIAN MODELS

The notion of a statistical model typically invoked in the philosophical
literature understands models as sets of probabilistic hypotheses about
the data generating process (e.g. Forster and Sober 1994). More formally,
a statistical model describes the generating process of data y in terms
of probability distributions or, more conveniently, probability densities
p(y|θ ) characterized by reference to the parameter θ � �. A statistical
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model is then given by {p(y|θ ) : θ � �}. There is, however, a different
reading of a statistical model found in the contemporary Bayesian
literature. For Bayesian statisticians, such as Box (1980), Spiegelhalter et al.
(2002) and Gelman et al. (2004), a (Bayesian) model consists of both a
set of probabilistic hypotheses about the data-generating process and a
prior probability distribution on its adjustable parameters. Schematically,
a Bayesian model is given by ({p(y|θ ) : θ � �}, p(θ )), with p(θ ) denoting
the prior probability density of θ .

By adopting the notion of a Bayesian model, the fair coin hypothesis
can be construed as follows:

(FAIR∗∗)({B(10, p1) : p1 = 0.5}, μ(p1)),

with μ(p1) denoting the (trivial) prior probability measure on parameter
p1 that assigns all the probability mass to the singleton value p1 =
0.5. Formally, probability measure μ(p1) is defined on the event space
containing only the element p1 = 0.5 (i.e. � = {p1 = 0.5}) and the σ -algebra
consisting of the empty set and the event {p1 = 0.5}. More interestingly,
the hypothesis that the coin is either fair or biased is to be formalized as
follows:

(HEDGE∗∗)({B(10, p2) : 0 ≤ p2 ≤ 1}, ν(p2)),

with ν(p2) denoting the prior probability distribution on parameter p2 in
the HEDGE model. In the numerical example discussed earlier a uniform
prior over the unit interval was assumed.

Adopting the Bayesian notion of a model has important consequences
for the present discussion. Since FAIR∗∗ is not a subset of HEDGE∗∗,
there are no formal reasons to think that FAIR∗∗ cannot have a larger
probability than HEDGE∗∗. As such, the aforementioned concerns raised
against BOR disappear by modifying the notion of a statistical model used
in Bayesian inference. Similarly, the present proposal can make sense of
Kriwoluzky and Stoltenberg’s Bayesian evaluation of DSGE models. By
including the prior probability distributions of their adjustable parameters
into the indexation and the complete model, these DSGE models turn out
to be mutually exclusive. As a result, there are no mathematical reasons
speaking against the simpler indexation model having a greater posterior
probability than the more complex complete model in the light of the data.

Having introduced and subsequently criticized previous philosophi-
cal responses to the problem of how to apply BOR to nested models, it is
natural to ask how my proposal fares in the light of the aforementioned
criticism. To begin with, consider the generative view on theories
proposed by Henderson et al. (2010). I argued that the generative view
needs a more detailed account of the generative story associated with
higher level theories. Based on the notion of a Bayesian model outlined in
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this section, I suggest that the additional content of higher level theories
(or models) is to be found in the prior probability distribution over
the adjustable model parameters. Generating a lower level theory then
amounts to specifying a particular prior over the model parameters.

This can be illustrated in the curve fitting context. Suppose the
higher level theory asserting that the curve describing the relationship
between variables X and Y is of the form y = a1x + a0 (with a0, a1 ∈ R) is
conjoined with information about the prior probability distribution over
the parameters a0 and a1. Doing so amounts to specifying a Bayesian
model. Now, one can choose a particular prior that assigns all probability
mass to the numerical parameter values a0 = 1 and a1 = 2. As a result,
the higher level theory gives rise to or ‘generates’ the particular curve
y = 2x + 1. Hence, the notion of a Bayesian model promises to provide
a more substantive account of how higher level theories generate lower
level theories.

Finally, let us revisit Romeijn’s writings on how to apply BOR to
nested models. Setting aside Romeijn and van de Schoot’s relabelling
approach, I objected that Romeijn’s treatment of the prior of adjustable
parameters leads to an unclear and rather awkward terminology. In
particular, I took issue with the fact that two models consisting of
identical classical likelihood functions p(y|θ ) can simultaneously have the
same and different empirical content based on Romeijn’s account. The
difference in empirical content results from the influence of the prior of the
adjustable parameters in a Bayesian analysis. In particular, the prior of the
adjustable parameters will influence the numerical value of the marginal
likelihood calculated in a Bayesian analysis. By including the prior of the
adjustable parameters into the model, there is nothing mysterious about
why two models can have different empirical content even though they
also contain identical classical likelihood functions. As such, I consider the
notion of a Bayesian model as a natural further development of Romeijn’s
ideas.

5. REPRESENTATION

While adopting the notion of a Bayesian model blocks the concerns
regarding the coherence of BOR, methodological questions remain. Here, I
will focus on what I consider the most pressing issue, that is, the question
of whether Bayesian models adequately represent scientific hypotheses.
Consider again the coin tossing example discussed earlier. While the prior
probability measure μ in the model FAIR∗∗ follows directly from the
meaning of the fair coin hypothesis, matters are less clear in the case of the
hypothesis that the coin is either fair or biased. The latter hypothesis does
not naturally induce a prior probability measure on parameter p2 needed
to specify the model HEDGE∗∗; the choice of the uniform prior over
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the unit interval in the previous numerical example was nothing more
than a convenient choice. Matters would be different if, say, HEDGE∗∗
were to represent the hypothesis that the coin had been selected by a
random mechanism that samples the parameter describing the probability
of ‘Heads’ from a uniform distribution. In that case the prior probability
distribution of parameter p2 would be prescribed by the hypothesis under
consideration.

A reader familiar with the subjective (or ‘Bayesian’) interpretation
of probability might point out that there is nothing problematic with
choosing a ‘flat’ prior (or any other coherent prior) for an adjustable model
parameter since prior probabilities merely reflect the subjective degrees of
belief of an agent. Matters are more complicated, however, when it comes
to the assignment of prior probabilities to the adjustable parameter(s)
in a Bayesian model. Since every Bayesian model has a distinct prior
probability distribution for its parameter(s), it is generally unclear whose
degrees of belief these priors are to be identified with. For instance,
comparing the models FAIR∗∗ and HEDGE∗∗ involves the assignment of
different prior probability distributions to the probability of a coin landing
‘Heads’. While FAIR∗∗ assigns a Dirac measure centred at 0.5 to the
probability that the coin will land heads, HEDGE∗∗ assigns the uniform
distribution to this probability. As a result it is difficult to understand these
two different prior probability distributions as the degrees of a belief that
the coin will land ‘Heads’ of a single agent.

To consider a further example, Romeijn’s normal and magical coins
find natural representations by means of a Bayesian model. According
to the definition, a normal coin is most probably fair. As such, it can
be represented by means of a Bayesian model that includes a prior
probability distribution of the model parameter assigning most of its
weight to a small interval including the numerical value 0.5. In contrast,
the magical coin is most probably biased, that is, has a probability of
landing ‘Heads’ that is close to 0 or 1. As such, the magical coin can
be represented by means of a Bayesian model that includes a prior
probability distribution of the model parameter assigning most of its
weight to the ends of the interval [0,1]. Even though the normal and the
magical coin do not go along with unique prior probability distributions
of their model parameter, their definitions impose clear constraints on the
choice of prior probability distributions of these model parameters.

Having considered a number of different coin tossing models, it is
time to take stock. At the one end of the spectrum we find the fair-coin
hypothesis that can be directly represented by means of the Bayesian
model FAIR∗∗. At the other hand of the spectrum, we find the coin
tossing model HEDGE∗∗. Here, it is not clear how to assign a prior to
the adjustable parameter of the Bayesian model HEDGE∗∗ supposed to
represent the hypothesis that the coin is either fair or biased. In between
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these two extremes we find the normal and magical coins discussed by
Romeijn. Both the definitions of the normal and the magical coin refer to
a prior on the probability of ‘Heads’ in a single coin toss. As such, the
normal and the magical coin can be naturally represented by means of a
Bayesian model. In contrast to the prior in FAIR∗∗, however, the priors of
the adjustable parameters in these models are not uniquely specified but
allow for some choice on behalf of the investigator.

What are the implications for the role of Bayesian model comparison
in scientific inference? Based on this assessment a constrained role
for Bayesian model comparison suggests itself. While some scientific
hypotheses may be represented by means of a Bayesian model in a natural
way, other hypotheses may not. In the former case the Bayesian approach
offers adequate inferential tools, in the latter case its usefulness for
scientific inquiry is less clear. Phrased differently, if a scientific hypothesis
is not sufficiently detailed to specify a Bayesian model, then it is unclear
whether the assessment by means of Bayes’s theorem is epistemologically
relevant.

Returning to macroeconomics, one might wonder whether DSGE
models can be naturally represented by means of Bayesian models.
At first sight some sceptical thoughts come to mind. Consider, for
instance, the DSGE models analysed by Kriwoluzky and Stoltenberg
(2016). Their models incorporate a staggered price-setting mechanism
originally proposed by Calvo (1983). Suppose that firms cannot change
their prices freely each time period. More specifically, assume that when
a firm sets a (nominal) price there is a constant probability 1 – α that
the firm is able to adjust its price in any period. The Calvo parameter
α will govern the average duration between price changes. If the Calvo
parameter is small, then the firms can update their prices frequently. If
the Calvo parameter is large, then it is very probable that a firm will be
stuck for a long time with whatever price it chooses today. When assigning
a prior probability distribution to the Calvo parameter, Kriwoluzky
and Stoltenberg (2016: 336) opt for a ‘relatively uninformative’ beta
distribution with mean 0.5 and standard deviation of 0.2. Does this
choice indicate that the prior for the Calvo parameter merely reflects the
ignorance of the investigators rather than any substantive claim about
how price setting works? Following this line of thought, one might be
tempted to conclude that DSGE models are more similar to the model
HEDGE∗∗ than the fair coin hypothesis (or Romeijn’s normal and magical
coins) and, hence, that Bayesian model comparison is not suitable for
analysing DSGE models.

Such a conclusion, however, would be premature. Taking a closer look
at the motivation for assigning a prior to the Calvo parameter in DSGE
models, reveals that there are typically good empirical reasons for its
choice. Since the Calvo parameter describes the average period between
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price changes, one can calibrate the parameter by looking at data on the
average duration between price adjustments. Bils and Klenow (2004) find
that this number is between 6 months and one year. Taking into account
Bils and Klenow’s empirical study, Smets and Wouters (2007) assume the
Calvo parameter to be typically around 0.5, thereby suggesting an average
length of price contracts of half a year. As a mathematical description of
the empirical distribution of the lengths of price contracts, they choose the
beta distribution with mean 0.5 and standard deviation 0.15. This choice of
prior distribution is mirrored by Kriwoluzky and Stoltenberg, who closely
follow Smets and Wouters in their assignment of prior probabilities to
model parameters.7

More generally, the prior distributions of the adjustable parameters
of DSGE models are largely chosen to reflect empirical observations.
Del Negro and Schorfheide (2008) identify three main categories of
empirical regularities that are used to motivate the choice of these
prior distributions. First, economists use pre-sample data to design prior
distributions. For instance, investigators use pre-1982 observations to
select a prior when the Bayesian analysis is restricted to post-1982 data.
Second, data from other countries are used for prior specification. For
instance, a prior for a DSGE model for the Euro zone is specified
based on data from the US economy. And third, economists employ
observations that are concurrent to the analysed data sample but
excluded from the DSGE model. As an example, Del Negro and
Schorfheide refer to micro-level data that are informative about features
such as labour supply behaviour or price rigidities described in the
DSGE model.

The general picture that emerges from the discussion of DSGE
models is conducive to the approach taken in this paper. Since there
are regularly empirical arguments given to motivate the design of
the prior distributions of DSGE parameters, there is good reason to
believe that DSGE models can be captured naturally by means of
Bayesian models. Returning to the taxonomy of coin tossing models,
DSGE models are reminiscent of Romeijn’s normal and magical coins.
Even though the priors of adjustable parameters are typically well
motivated by the hypotheses at hand, there is generally no unique prior
probability distribution for DSGE model parameters such as the Calvo
parameter. Since the empirical information does not uniquely specify
the assignment of a prior distribution, there is some room for choice on
behalf of the investigator. This does not mean, however, that these prior
distributions are completely subjective in nature. To the contrary, they

7 To be precise, Kriwoluzky and Stoltenberg choose a beta distribution with a slightly larger
standard deviation compared to Smets and Wouters.
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capture what economists currently know about a feature or process of
the economy.

It is informative to relate this view on Bayesian model comparison
to other philosophical positions arguing for a limited role of Bayesian
methods in scientific methodology due to the role of the priors in Bayesian
inference. Sober (2008), for instance, argues that Bayesianism does not
provide an adequate account of scientific inference in cases where there is
no objective basis for the prior probabilities of scientific hypotheses. Sober
(2008: 26–27) contrasts the case of medical hypotheses such as a patient
having tuberculosis where objective prior probabilities can be assigned
by reference to frequency data with the case of scientific theories such as
Darwin’s theory of natural selection where no such objective assignment
is possible. While in the former case the Bayesian approach to scientific
inference provides the right answers from an epistemological perspective,
in the latter case it does not or so it is argued. The difference to the position
on Bayesian model comparison outlined in this paper, however, is that I
am concerned with the question of whether scientific hypotheses can be
adequately represented by means of a Bayesian model. The question of
how to assign prior probabilities to these models is a further question that
I have not commented on but that needs to be addressed in any Bayesian
analysis.

To state this difference more clearly, consider a scenario in which a
scientific hypothesis can be adequately represented by mean of a Bayesian
model but does not have an objective prior along the lines demanded by
Sober. DSGE models with an empirically motivated prior of the Calvo
parameter, for instance, can be adequately represented by means of a
Bayesian model.8 It is much less clear, however, whether an objective prior
can be assigned to these models. Phrased differently, while authors such
as Sober would, in all likelihood, agree with the demand to employ an
empirically grounded prior for the Calvo parameter, they would go one
step further in demanding the assignment of an empirically grounded
prior to the DSGE model. The latter step, however, is not required in my
view on Bayesian model comparison. As a result, the constrained form
of Bayesian inference proposed in this paper is, in an important sense,
less restrictive than the limited Bayesianism with its emphasis on objective
priors of scientific hypotheses put forward by Sober and others, which is
typically discussed in the philosophical literature.

8 In order to simplify the discussion, I set aside the variety of different parameters used in
DSGE models and focus only on the Calvo parameter. I do not think that this restriction
threatens the generality of the treatment since, as Del Negro and Schorfheide (2008) point
out, economists typically aim to provide empirically grounded priors for the parameters
of DSGE models.
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6. CONCLUSION

In this paper I discussed a problem that results when BOR is applied to
nested models in the economic literature. I pointed out that based on the
orthodox reading of a statistical model, a simpler, nested model cannot
coherently have a higher posterior probability than a more complex
model. I argued that previous responses to the problem found in the
philosophical literature are unsatisfactory before developing a novel reply
to the problem invoking the notion of a Bayesian model. The approach
outlined in this paper considers the prior of adjustable parameters as part
of a (Bayesian) model. From this perspective choosing an empirically (and
perhaps theoretically) informed prior is an integral part of specifying a
model in Bayesian inference. While I offered a partial vindication for the
application of BOR to nested models as well as contemporary work on
Bayesian inference in economics, such as Kriwoluzky and Stoltenberg’s
Bayesian analysis of DSGE models, there is room for a more systematic
inquiry into the process of model building in economics. As such, the
present paper should be seen as opening a methodological discussion
rather than providing the final word on the subject matter.
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