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Abstract

There is an increasing interest in using logic programming to specify and implement distributed

algorithms, including a variety of network applications. These are applications where data

and computation are distributed among several devices and where, in principle, all the

devices can exchange data and share the computational results of the group. In this paper

we propose a declarative approach to distributed computing whereby distributed algorithms

and communication models can be (i) specified as action theories of fluents and actions;

(ii) executed as collections of distributed state machines, where devices are abstracted as

(input/output) automata that can exchange messages; and (iii) analysed using existing results

on connecting causal theories and Answer Set Programming. Results on the application of

our approach to different classes of network protocols are also presented.

KEYWORDS: action theory, answer set programming, network protocols, distributed com-

puting

1 Introduction

In the context of distributed applications, specifying and reasoning about distributed

algorithms are hard and open problems. This is mainly because the behaviour of
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Fig. 1. Opinion network.

these applications is not simply expressed by the local computation of a program

but by the global behaviour that emerges from the interactions of all computational

nodes, which is very difficult for a programmer to visualise. Minor modifications

can drastically change how the application behaves. As an illustration of these

challenges consider a simple voting algorithm over a network of nodes, depicted

in Figure 1. The algorithm runs as follows: each node has an initial opinion of

either good (white color) or bad (grey colour), and (1) sends it to all its neighbours;

(2) upon receiving a neighbour’s opinion, the node decides its new opinion based

on the majority opinions received from all of its neighbours so far; and (3) if the

node changes its opinion, it will inform the neighbours. This program is assumed to

run on every node in the network. Examples of global properties include checking

whether the algorithm always converges (i.e., reaching a global state where nodes

stop changing their opinion); checking if a specific global state is eventually reached

(e.g., all nodes will eventually become good); or which initial state of the network

will cause the algorithm to never converge. Although the algorithm that runs in each

node has three simple steps, answering these questions is not obvious. Our challenge

is to find appropriate computational abstractions that allow distributed algorithms

to be described simply, and also amenable to efficient analysis.

A very common abstraction used to describe distributed algorithms is to view

each computational node as an input/output automaton. We can find many

useful/practical algorithms that can be defined using input/output automata where

the transition functions are limited to polynomial computations with respect to the

size of the input and the state, from routing protocols, to leader elections to commit

decisions for database transactions (Lynch 1996).

A substantial body of work and results on the use of declarative languages for

describing and reasoning about the effects of actions have been presented in the

literature. These have been shown to be sound and complete with respect to a

semantics based on automaton (e.g. (Gelfond and Lifschitz 1998)). Translations of

these languages to (extended) logic programs or causal logics have also provided

means to use theorem provers to tackle a variety of application problems including

planning and fault diagnosis.

Building upon this body of work, we propose a declarative approach to distributed

computing whereby distributed algorithms can not only be specified as action

theories of fluents and actions, but also executed as collections of (input/out-

put) automata which can exchange messages, and analysed using existing results

on connecting causal theories and Answer Set Programming (ASP). By looking

at a distributed computing problem from the point of view of causal theories,

we can express real world network applications, such as the current de facto
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inter-domain routing protocol BGP, essentially as action theories of fluents and

actions, and perform analysis tasks known to be NP-complete. This is done by

lifting constructions from the action language C+ to specify distributed algorithms

and then use the same language to formalize network communication models. This

result demonstrates that distributed systems are fundamentally action theories. This

is in contrast to our earlier language (Lobo et al. 2012) where the communication

model is expressed as a logic program. The solution proposed here is much more

elegant and still takes advantage of the connection of causal theories and ASP.

This is reflected in the fact that the specification of distributed algorithms is more

concise, but most importantly the implementation of the automaton evaluation

engine is much simpler.

By using existing results, we are able to translate the distributed algorithm and the

communication model from the causal logic-based specification into logic programs,

providing a formal foundation for the implementation of distributed applications and

analysis tools. We briefly describe a system, called Distributed State Machine (DSM),

for executing distributed algorithms written in our language on real network

topologies, and our analysis approach, based on ASP, for checking the correctness

of these algorithms with respect to given properties. We illustrate the application

of our approach two classes of real-world network protocols and present results on

some key verification tasks.

The paper is structured as follows. Section 2 presents the language D for the

specification of distributed system components in terms of input/output automata.

Section 3 shows how input/output automata can be composed into complex network

applications and describes how D itself can be used to model the communication

between the different distributed components. Section 4 introduces our DSM system

for executing distributed applications written in D on real network topologies.

Section 5 describes the concept of traces, how traces can be captured using logic

programs and how these logic programs can be used to analyse network applications.

Related work and concluding remarks can be found in Section 6.

2 The language D

Distributed system components are typically modelled using input/output (I/O)

automata (Lynch 1996). An I/O automaton adds to a transition diagram extra

labels representing the output of the transitions. Our approach is to build upon the

language C+ (Giunchiglia et al. 2004) a dialect, called D, for describing distributed

systems as compositions of I/O automata. The underlying signature of D is defined

by two pairwise disjoint non-empty sets (F, A) of fluent names and action names.

For I/O automata, in addition, the set of action names A is partitioned into a set of

input actions AI and communication actions AC . A fluent literal is a fluent name or

its negation. Similarly, an action literal is an action named or its negation. A state

will be any subset of fluent names. A fluent f is true in a state s if and only if f ∈ s.

As a simple illustration, assume we are managing virtual machines in a cloud

system. The state of the administration node may have fluent names such as

vmachine(vm1, ser1) and vmachine(vm2, ser3), or vrouter(rt11, ser2) and
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vrouter(rt22, ser2) representing the physical server where virtual machines and

routers are located. Input actions can indicate the creation or removal of virtual

machines such as in new vm(vm5, ser5), remove(vm2). A communication can be

interpreted as a message that has been sent between automata. The communication

action where is(vm1)@ ser5 � ser3 can be read as “server 5 sends a request

to server 3 to know the location of virtual machine vm1”. We use three types of

propositions to define transition diagrams. Static laws of the form

caused F if G1, . . . , Gn (1)
dynamic laws of the form

caused F if G1, . . . , Gn after H1, . . . , Hm (2)

and communication laws of the form

sent A if G1, . . . , Gn after H1, . . . , Hm (3)

Here F and the G’s are fluent literals. The H’s are either fluent or action literals.

A is a communication action and is called the output communication action of the

proposition. Static and dynamic laws are similar to that in C+ but restricted to

literals. Like in C+ as well, we write

caused F after H

when n = 1 and G1 is the constant true. As in C+ too, one can choose in D the

fluent literals that follow the law of inertia. Inertia is defined by dynamic laws of

the form

caused F if F after F

and they will be abbreviated by
inertial F

An I/O automaton D is defined as a collection of static, dynamic and communication

laws. An example of dynamic law is the proposition schema

caused vmachine(V, L) after new machine(V, L)

Here V and L are meta-variables that vary over all possible machine names and

possible locations. Informally, this proposition schema can be read as: there is a cause

for a virtual machine V to be in location L after the input action new machine(V, L)

is executed. We would like the existence or non-existence of virtual machines to

persist by inertia, so we add the following propositions

inertial vmachine(V, L)

inertial ¬vmachine(V, L)

Inertia causes that when a new machine is created, if the machine already exists it

can be located in two different places. To avoid this situation we can add the static

law

caused ⊥ if vmachine(V, L1), vmachine(V, L2), L1 �= L2

Recall again that V, L1 and L2 are meta-variables for all possible machine names and

locations, but in this case L1 must be different to L2. The following communication

law

sent location(V, L)@ ser3 � ser5 after vmachine(V, L), where is(V)@ ser5 � ser3
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can be read as server 3 will send the location of virtual machine V to server 5 after

server 5 asked server 3 where V is and server 3 knows that the location is L.

2.1 Semantics of D
Since our language D is essentially a subset of C+, we can use a similar translation

to a logic program as described in Giunchiglia et al. (2004). There is only the minor

distinction that in our language, our communication laws are short-hands of a

combination of fluent and dynamic laws of C+, as dynamic laws in C+ do not

allow an “after” component whereas our communication laws do. For completeness

we present the full translation into logic programs. The logic program will have, in

addition to elements of F and A, a copy f′ and a
′
c of each fluent f in F and each

communication action ac in A. Each static law of the form (1) in an automaton D

is translated into the logic programming rules

F← not G1, . . . , not Gn

F′ ← not G1′, . . . , not Gn′

These rules say that the static laws apply to every state of the automaton. Each

dynamic law of the form (2) in D is translated into the rule

F′ ← not G1′, . . . , not Gn′, H1, . . . , Hm

Similar translation applies to the communication laws (3) in D

A′ ← not G1′, . . . , not Gn′, H1, . . . , Hm

Note that the notation L in the body of the rules above represents the complementary

literal of L, and not corresponds to negation as failure. The translation is completed

by adding the following set of rules for each action name A, and each fluent name F

¬A← not A

¬F← not F

← not F′, not ¬F′ (4)

For any set of predicates P , let P ′ = {p′|p ∈ P }. Let ΠD be the logic program

obtained from an I/O automaton D. Given two states s1 and s2, there is an arc from

s1 to s2 in the diagram of D if and only if there is a subset E of the actions A and

answer set S of ΠD ∪ s1 ∪ E such that S ∩ F ′ = s′2. The labels in the arc are the set

E as input and the set O of output actions that result from removing the ′ from

all the actions in S ∩ A′C . This diagram defines the transition relation trans(D) ⊆
F×A×F×Ac.

3 Modeling distributed processing with D

In a distributed application, each I/O automaton represents a component of the

application which is defined by the composition of its components. Following

(Lynch 1996), a composition is realized by identifying actions in different automata

with the same name as the same action and compositions are allowed if the

automata participating in the composition are compatible. A collection of automata

is compatible if and only if:

• All the sets of output actions are pair-wise disjoint.
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This condition means that although a communication action can appear in any

automaton, it can only be the output of a single automaton. In this paper we

will assume that the number of automata in any composition is finite and all the

compositions are made with compatible sets of automata. Given I/O automata

D1, . . . , Dn, the composition Δ(D1, . . . , Dn) of these automata is an I/O automaton

defined as follows

1. (s1, . . . , sn) is a state of Δ(D1, . . . , Dn) iff si is a state of Di, for 1 � i � n and

2. ((s1, . . . , sn), E, (r1, . . . , rn), O) ∈ trans(Δ(D1, . . . , Dn)) iff

(si, Ei, ri, Oi) ∈ trans(Di), for 1 � i � n, and E =
⋃
Ei, O =

⋃
Oi.

The interesting definition for composed automata is not the diagram that the

composition defines but the interactions between its components. This interaction

is captured by the concept of traces. An elementary trace of a composed automa-

ton Δ(D1, . . . , Dn), is a (possibly infinite) sequence s0, O0, s1, O1, s2, O2, . . . such that

(si−1, Oi−1, si, Oi) ∈ trans(Δ(D1, . . . , Dn)) for every i � 1 in the sequence. Note that,

except for O0, all the Oi’s are sets of output actions that are used to move to the

next state in the trace. This captures a possible computation of the system where

input actions are only executed at the beginning of the computation. Non-elementary

traces are defined similarly, except that input actions are allowed at any step. That is,

a non-elementary trace of a composed automaton Δ, is a (possibly infinite) sequence

s0, O0, s1, O1, s2, O2, . . . such that (si−1, Oi−1, si, Oi ∩ Ac) ∈ trans(Δ) for every i � 1 in

the sequence.

Let us take the voting algorithm as an illustration. The specification of the I/O

automaton Di that will run in the node i is given below:

inertial neighbour(X),¬neighbour(X). (5)

caused neighbour(X) after add neighbour(X, i). (6)

caused ¬neighbour(X) after del neighbour(X, i). (7)

caused neighbour opinion(X, V) after receive vote(V, X, i). (8)

caused neighbour opinion(X, OldV) after (9)

neighbour opinion(X, OldV),¬receive vote(AnyV, X, i).

caused my opinion(good) if num goods(N), num bads(M), N � M. (10)

caused my opinion(bad) if num goods(N), num bads(M), M > N. (11)

caused num good(#count<X>) if neighbour opinion(X, good). (12)

caused num bad(#count<X>) if neighbour opinion(X, bad). (13)

sent send vote(V, i, X) if neighbour(X), (14)

my opinion(V) after my opinion(OldV), V �= OldV.

In this example specification, there are two types of input actions: add neighbour

(X, i) and del neighbour(X, i), and two types of communication actions: send vote

(V, i, X) and receive vote(V, X, i), and the rest are fluents. Note that the i is not a

meta-variable; it will not be replaced. It is used to identify the node. Propositions

(6)–(7) describe how the input actions (i.e., inserted by the administrator) can

affect fluents of the form neighbour(X). In Propositions (12)–(13) we are abusing

notation and doing aggregation. Translations into logic program rules of this simple
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kind of aggregation can be done systematically. This is described in detail in

Section 2.1.14 of (Baral 2003). The point is to have copies of this automaton in each

node of the network and just change the identifier i for the proper identifier. So, if

we have another node j and its automaton Dj , we can compose Di and Dj . However,

notice that output actions of these automata are of the form send vote(V, S, D),

and all the communication actions in the rest of the propositions are of the

form receive vote(V, S, D). Hence, as it is, there is no real interaction between

the automata and all the elementary traces of Δ(Di, Dj) have a single step. To make

the connection, we can define another I/O automaton to model the communication

between Di and Dj and add it to the composition. For example, we can define the

automaton CS with a single communication law schema

sent received vote(V, S, D) after send vote(V, S, D)

This is actually modelling synchronous communication: all messages sent are

passed simultaneously to all the receiving automata which will evaluate them

simultaneously in the next step. The following is an elementary trace of Δ(Di, Dj , Cs).

We show only in details the content of the initial state s0 and the actions in the

trace

({my opinion(good)}, {my opinion(bad)}, ∅), {add neighbour(i, j), add neighbour(j, i)}, s1,
{send vote(good, i, j), send vote(bad, j, i)}, s2, {received vote(good, i, j),

received vote(bad, j, i)}, s3, {send vote(good, j, i), send vote(bad, i, j)}, s4, . . .)

Note that more instances of Di, representing more nodes in the graph, can be

composed without changes in CS . This method of representing communication

using I/O automata is common in the formalization of distributed systems (Lynch

1996). And hence, the idea here is to use the same language to describe different

communication models, e.g., (un)reliable and/or (a)synchronous, etc. For example,

the following I/O automaton defines a reliable asynchronous model, called the fully

interleaved model, as at each step only one node is activated. In this model, we

describe each directional communication link as a message queue. At each step, a

node is non-deterministically selected to activate. Upon activation, the node non-

deterministically selects a non-empty communication link to dequeue, and processes

the dequeued message (i.e., as the received action). If after the step, a non-empty set of

messages (i.e., output action) are generated, they will be enqueued the corresponding

communication links

sent receive vote(V, From, To) if dequeued(From, To) after buffer(V, From, To, 0). (15)

caused buffer(V, From, To, Pos) if¬dequeued(From, To) after buffer(V, From, To, Pos). (16)

caused buffer(V, From, To, Pos− 1) if dequeued(From, To) (17)

after buffer(V, From, To, Pos), Pos > 0.

caused buffer(V, From, To, NextPos) if next queue pos(From, To, NextPos), NextPos < κ

(18)

after send vote(V, From, To).

caused next queue pos(From, To,#count<Pos>) if¬dequeued(From, To) (19)

after buffer(V, From, To, Pos).
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caused next queue pos(From, To,#count<Pos>) if dequeued(From, To) (20)

after buffer(V, From, To, Pos), Pos > 0.

caused activated(#chosen<To>) after buffer(V, From, To, 0). (21)

caused dequeued(#chosen<From>, To) if activated(To) after buffer(V, From, To, 0). (22)

Propositions (15) and (17) describe the effects of a dequeue operation: the first

message (i.e., at position 0) in the buffer will be sent to the destination; the

remaining messages are “shifted” one position to the front. If no dequeue operation

is performed by the buffer, then all the messages remain at their position (i.e.,

Proposition (16)). The constant κ in Proposition (18) fixes the maximum size of the

buffers. Note that during an enqueue operation, if the buffer is already full (i.e.,

the next available position is bigger than κ), then the message will not be added to

the buffer (i.e., dropped). Propositions (21) and (22) capture the non-deterministic

selection of an activating node and a dequeuing communication link, respectively, by

the use of the non-deterministic operator chosen<>.1 In particular, Proposition (21)

non-deterministically selects one receiver node To from a set of buffered messages

(i.e., after buffer(V, From, To, 0)) at the head of their corresponding queues (this

guarantees that the activated node has at least one communication link to dequeue),

and Proposition (22) non-deterministically selects a sender node From to fix a

communication link to dequeue. The combined effect of (21) and (22) guarantees

that at any step there are only one activated fluent and only one dequeued fluent

which are true. This captures the behaviour of fully interleaved execution of any

given protocol. Variants of the model can be obtained by modifying rules (22)

and/or (21). For another example, if we want to capture that upon activation a

node is allowed to dequeue all the non-empty incoming communication links and

process multiple messages, then we can replace Proposition (22) with (23):

caused dequeued(From, To) if activated(To) after buffer(V, From, To, 0). (23)

Alternatively, if we want to allow all nodes with available incoming messages to be

activated at each step (e.g., to maximize parallelism), we can replace rule (21) with

(24):

caused activated(To) after buffer(V, From, To, 0). (24)

When both rules (23) and (24) are used, the constrained asynchronous model

mimics exactly the synchronous model (it is easy to check that in this case the

next queue pos tuples will always have 0 as the next position for any From and

To).

4 Implementation and system execution

We have developed an infrastructure in Java called Distributed State Machines (DSM)

for the development and execution of distributed applications (Lobo et al. 2012). It

has a three-layer architecture (see Fig. 2).

1 We are again abusing notation: translations to causal theories and logic programs of non-deterministic
choice can be found in Turner (1999) and Baral (2003).
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Application & Service Layer
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Fig. 2. System architecture.
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Application
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Application
Data

FSM
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Data
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Fig. 3. DSM execution.

At the bottom, there is the Data Sharing and Network Communication Layer,

which maintains low level data representation and storage, and handles inter-

node communications. Various communication mechanisms (e.g., Ethernet, Wifi)

or protocols (e.g., UDP, TCP) can be implemented, which remain hidden from

the higher layers. The middle layer is called the Declarative Computing Layer.

Applications written in D are executed in this layer.2 At the Application and Service

Layer, we find the application (or service) that might use the results of the distributed

computation. For example, the router application that uses the forwarding tables

maintained by the declarative rules to decide where to route the data packets, or

the application that uses the fact that the node has been elected leader to start

performing special operations.

During deployment and execution (see Fig. 3), the infrastructure provides an

engine running on each network node. Each engine takes as input a D specification,

executes the local I/O automaton and handles the inter-automaton (inter-node)

communication. Relational databases are used as the primary data structure rep-

resenting an automaton’s state, i.e., each fluent refers to a record in a table with

the matching fluent name, and its truth value is reflected by its presence in the

table. Events executing communication or input actions, which can trigger local

state transitions, are represented as transient records (i.e., inserted when they occur,

and dropped after used) in their corresponding tables. During a transition, the new

local state is computed, based on the D specification and the current local state,

using a variant of the semi-naive evaluation algorithm of Datalog, and then stored.

Any communication action computed during the transition is handled and sent out

by the communication layer implementation of the engine.

We have developed various distributed applications, for instance, for the control

of video analytics in a surveillance context, tracking of assets in a sensor field,

fault management and resiliency in networked appliances, and for management of

2 The current implementation does not support constraint propositions, i.e. proposition with ⊥ as effect.
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resources in a data center environment. Testing has been conducted in developing a

universal proxy for P2P file sharing protocols, which has shown that the versatility

of the declarative rule language allows us to quickly adapt the proxy to multiple

protocols and easily reconfigure the proxy to support either caching or access control.

5 Analysis of distributed systems

Most properties of distributed systems can be reduced to properties of their traces.

For example, questions of convergence in our voting example for the synchronous

case are equivalent to finding an empty Oi, for some i. Given an initial configuration

of the network, its elementary trace is unique, so showing divergence is equivalent

to finding i and j, i �= j, such as si = sj and Oi = Oj . For the asynchronous

case, expressing the same properties is more complicated because a single network

configuration may have multiple elementary traces. In fact, for the voting algorithm

the same initial configuration can lead to both converging and diverging traces, but

the same methods for the synchronous case can be used to check convergence or

divergence of individual traces.

Besides the intrinsic value of declarative programming of distributed applications

(Loo et al. 2009), the other contribution of this paper is to provide the formal

foundations on which analysis tools can be developed. This is done by showing a

1-to-1 correspondence between traces of a composed automaton and the answer sets

of a logic program obtained from the individual components of the composition.

Let Δ(D1, . . . , Dn) be the composition of n I/O automata. Let (Fi, Ai) be the set of

fluent and action names defining Di. To define the logic programs Π(Di), for each Di

in the composition, we will need a set T of time names corresponding to an initial

segment of the natural numbers. Π(Di) uses atoms of the form fit and at, for each t

in T, each f in Fi, and each a in Ai (note that super-indices are not used in actions).

The translation follows the same pattern as the program defining the semantics of

a single I/O automaton. Each static law of the form (1) in Di is translated into the

rules
Fit ← not G1it, . . . , not Gnit

for each t in T. Each dynamic law of the form (2) in Di is translated into the rules

Fit+1 ← not G1it+1, . . . , not Gnit+1, π(H1), . . . , π(Hm)

Here, π(Hj) = Hjit, if Hj is a fluent literal; otherwise π(Hj) = Hjt. Similar translation

applies to the communication laws (3) in Di

At+1 ← not G1it+1, . . . , not Gnit+1, π(H1), . . . , π(Hm)

In all cases, this is done for all possible values t in T. To this set we also add, for

each action name A and each fluent name F and each time name t, the rules
¬At ← not At ¬Fit ← not Fit

Let Π(Δ(D1, . . . , Dn)) =
⋃

1�i�n Π(Di). Given a t ∈T, and an i, 1 � i � n, for any set of

fluent symbols s and any set of actions O, let (s)it = {fit|f ∈ s} and (O)t = {at|a ∈ O}.
Proposition 1
For a composed automaton Δ(D1, . . . , Dn), and T of size t,

(s0,1, . . . , s0,n), O0, (s1,1, . . . , s1,n), O1, . . . , (sk,1, . . . , sk,n), Ok
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Fig. 4. Link-state.

is an elementary trace of the automaton if and only if(
n⋃

i=1

(s0,i)
i
0

)
∪ (O0)0 ∪

(
n⋃

i=1

(s1,i)
i
1

)
∪ (O1)1 ∪ · · · ∪

(
n⋃

i=1

(sk,i)
i
k

)
∪ (Ok)k

is an answer set of

Π(Δ(D1, . . . , Dn)) ∪
(

n⋃
i=1

(s0,i)
i

)
∪ (O0)0

This proposition is limited to elementary traces but a similar proposition can be

written to cover general traces too. We have used this connection between traces

and logic programs to build tools supported by ASP solvers to analyze different

properties of distributed algorithms, and more specifically routing protocols. Routing

protocols allow nodes to populate their routing tables and learn the forwarding paths

so that traffic can be routed and delivered to the intended destination.

A routing protocol must satisfy two properties. First, it must converge: in the

absence of topology change, all nodes should ultimately reach a consistent view

of the network. Second, the resulting forwarding paths must be devoid of loops.

Although these two properties are critical, verifying them has been a challenging

problem. By using ASP, such analysis is possible (see online Appendix A for protocol

specification in D):

Forwarding loops: Once a protocol converges (described next), the forwarding table

of each node in the network becomes stable. From the union of these tables, we can

compute the transitivity closure with respect to different destinations, and detect

the presence of loops in the forwarding tables. To illustrate it, we implemented the

link state protocol suggested in Sobrinho and Griffin (2010): link state protocols

have each node flood its topological information and is commonly believed not to

result in loops since every participant node can reconstruct a global view of the

entire network topology. However, (Sobrinho and Griffin 2010) demonstrated that

depending on the metrics (i.e., how weights are assigned to paths), and the adopted

path computation algorithm, persistent forwarding loops can actually also happen

in link state protocols.

As depicted in Figure 4, each link is labelled with a tag (b, d) where b represents the

bandwidth, and d the distance. As specified in Sobrinho and Griffin (2010), nodes

prefer path with the largest available bandwidth, and among paths of identical

bandwidth, select the one with the shortest distance to the destination. Formally,

metric (b1, d1) is better than metric (b2, d2) if b1 > b2, or if b1 = b2 and d1 < d2. In
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Fig. 5. Conf. B.

addition, the metric of a route with metric (b1, d1), exported over a link with metric

(b2, d2), becomes (min(b1, b2), d1 + d2). For each node, we adopted the right local

algorithm (Sobrinho and Griffin 2010) to compute the best path (see code in online

Appendix A.2). Answer set program solvers revealed the persistent forwarding loop

3–4–5–3 for destination 2.

Convergence: The Border Gateway Protocol (BGP) is the current de facto inter-

domain routing protocol. Despite its important role, conflicting BGP policies can

violate the convergence property and cause permanent route oscillations. The

absence of specific patterns in the network topology and policies known as “dispute

wheels” has been proved to be a sufficient condition for correctness. However, in the

presence of a dispute wheel, determining whether a network can converge is NP-

complete. Applying answer set programs, given a BGP configuration with dispute

wheels – such as the one depicted in Figure 5 – we can answer whether it sometimes

or always converges. In Figure 5, the vertical list next to each node represents the

path ranking preference: e.g., node 4 prefers the path (4, 0) to the path (4, 2, 0),

which is in turn preferred to (4, 3, 0). This BGP network includes a dispute wheel

but always converges: there exists some i such that for all j > i, Oj is empty.

However, there are two limitations of the pure ASP approach for analysing

convergence. The time sort to be finite, and hence when the convergence query fails

(to find some i), we cannot tell whether it is due to protocol divergence or due

to the time domain being too small. Secondly, though ASP is good for computing

reachability queries (e.g., finding forwarding loops) it does not scale up for queries

needing to reason over a set of traces. For example, it takes more than 7 hours

for answering “always converge” to the above BGP configuration with 5 nodes.

To do the analysis for this type of queries, we used a hybrid approach. We first

construct the transition diagram of the composed automaton and then compute the

queries as graph analysis. We used C++ to iteratively build the transition graph and

ASP to compute all children states given a global state (which is the union of all

local network node states and all the communication buffers). Such approach avoids

the re-computation of the same global states (note that ASP cannot recognise

the same state occurring at different time points) and hence makes performance

improvement possible. With this approach we have checked BGP convergence in

networks with dispute wheels of up to 7 nodes, which is twice larger than those

considered by (Musuvathi and Engler 2004; Wang et al. 2012). Other experimental

results are shown in Figure 6 (the configurations can be found in online Appendix

B and BGP in Appendix A.1).
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Total nodes Converge? Time

Dispute wheel size of 2 3 Sometimes 0.079s

Dispute wheel size of 3 4 Never 3.173s

Dispute wheel size of 4 5 Sometimes 25.784s

Dispute wheel size of 5 6 Never 4min

Dispute wheel size of 6 7 Sometimes 102min

Dispute wheel size of 7 8 Never 4503min

Conf. B 5 Always 123min
Dispute wheel size of 4 11 Sometimes 503min

Fig. 6. BGP convergence analysis results.

Remarks: we did not use model checking (MC) for the analysis of the composed

I/O automaton because the state representations are different: a state is represented

as a fixed set of variables in MC and as a set of fluents/actions in D. Translating our

analysis problem into model checking problem not only may cause state explosion

(e.g., treating each fluent/action as a boolean variable) but also departs from our

original objective of doing analysis directly on the implementation.

6 Discussion and related work

There has been a lot of work in distributed logic programming (references can

be found as far back as the early 80’s). The work presented here builds upon the

recent results on Declarative Networking (Loo et al. 2009) (DN). DN introduces

the idea of using Datalog-like languages (as opposed to full logic programs) as the

computational model for distributed computing. Although the initial proposal of

using Datalog was a leap forward toward a declarative approach for the specification

of routing protocols, many operational properties of distributed asynchronous

computation (e.g. process communication and state changes) were implicit in the

implementations (Pérez and Rybalchenko 2009). In other words initial DN languages

were not declarative enough (Mao 2009). The consequence has been a mismatch

between the syntax and semantics of the languages: the syntax is Datalog, but the

semantics are not. Hence, building analysis tools has not been easy. The limitation

arises because the semantics of Datalog is too poor to express state changes. In

an attempt to address this problem Alvaro et al modified the original proposal

by adding a second argument to every predicate to represent time and called the

new language Dedalus (Alvaro et al. 2011). With time states can be represented.

However, Alvaro et al did not think in terms of state machine transitions, and

because of the way time was modelled, in order to avoid limiting the expressiveness

of the language, their semantics allows message sent from one node to another, to

arrive at the receiving node as if the message had been sent from the future. This

makes programming confusing. Furthermore, providing a declarative semantics to

Dedalus has not been easy either and has required going out of logic programs. This

limitation makes debugging and analysis also difficult. Another language proposal

for declarative specifications of distributed computations is Netlog (Grumbach

and Wang 2010). Motivated by the limitations of Dedalus, the authors of Netlog

developed an extension of Datalog and a new fix-point semantics for which they
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built an implementation. Although inspired by the semantics of logic programs, this

is a new programming language, and all the work of tools for program analysis are

open research issues. In contrast to extending Datalog, (Lopes et al. 2010) proposed

a Prolog-based system for declarative distributed system development, for which

system analysis is not easy.

Our key insight, introduced in Lobo et al. (2012), has been to exploit the

similarities between the computational model of the Datalog approach to distributed

computation and theories of action to help us close the gap between syntax and

semantics. However, as mentioned in Section 1, although our theories in Lobo et al.

(2012) described state transition systems, their model is fundamentally different from

the theories of actions built on the basis of two types of non-logical symbols: fluents

and actions. This has been resolved with the results in this paper. As a consequence,

we can model communication channels as I/O automata as oppose to integrity

constraints over times. This allows us to develop a new analysis approach that gives

much better performance results.

Recent work on modular logic programming in the context of ASP (see (Kren-

nwallner and Gelfond 2011)) is somewhat related to our result in Proposition 1 of

obtaining a single logic program from the composition of I/O automata. The goal

of modularity is to call programs that have predicates defined externally, but new

semantic notions need to be defined to accommodate the modular composition.

In contrast, our composition is simpler and results in a single logic program with

standard Answer Set semantics.

A line of research to be mentioned is reasoning about actions in multi-agent

domains. In a series of papers Baral, Gelfond, Ponetielli and Son (e.g., (Baral

et al. 2010; Pontelli et al. 2012)) have been developing a theory of reasoning about

knowledge of interactive agents. Their aim is to study how individual agents can

reason and plan about the knowledge of the other agents, in contrast to the work

of distributed network applications where we want the theories to be exactly the

programs that we deploy and run in the network nodes, and the reasoning is about

the programs, i.e. the behaviour of the application as a whole in the network. In

planning for multi-agent domains, the actions are supposed to be implemented by

somebody else, and the domain specification just has a specification of the effects of

the actions relevant for the planning, not the implementation.

Our approach is closer in goals to, for example, the work in Chandy et al.

(2011) for distributed program verification. In general, program verification is a

computationally harder problem than many planning tasks. This is reflected in

the size of networks we are able to analyse for BGP convergence: 8 nodes so

far. Although limited, with our approach we have been able to double the size of

the problems tackled when compared to the state of the art (Wang et al. 2012).

One important piece of work missing is the characterization of the computational

complexity of the different analysis tasks.

Nevertheless, in the constraint model of our approach, we might be able to

borrow ideas and results from planning since some analysis problems can be casted

as planning problems. For example, Propositions (21) and (22) can be re-written in

such a way that an omniscient agent can pick what message from the tops of the
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buffers to process next and model this as an action that the agent can take. Hence,

for analysis, we could ask questions like, given a initial state, is there a sequence of

actions that can take us to a particular state. The sequence of action will represent

a trace of the execution.

So far we have done analysis over elementary traces, but analysis of traces where

input actions are allowed will be extremely valuable since they model topological

changes of the network. Planning techniques might also be useful here since analysis

may require finding a sequence of input actions that causes certain behaviour in the

system.

There are surprisingly many practical algorithms that can be expressed by this

simple computational model, and hence target for our implementation and analysis.

The computational approach has been used, in addition to the implementation

of routing network protocols, in a diversity of areas such as in security and

provenance of distributed database query processing (Marczak et al. 2010; Zhou et al.

2011), analysis of event systems and management of web applications (Abiteboul

et al. 2011). We also plan to use our approach in two emerging areas of network

management: Software Defined Networks (McKeown et al. 2008) and Named Data

Networking (Zhang et al. 2010).
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