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ABSTRACT

Telematicsdevices installed in insured vehicles provide actuaries with new risk
factors, such as the time of the day, average speeds, and other driving habits.
This paper extends the multivariate mixed model describing the joint dynam-
ics of telematics data and claim frequencies proposed by Denuit et al. (2019a)
by allowing for signals with various formats, not necessarily integer-valued,
and by replacing the estimation procedure with the Expected Conditional
Maximization algorithm. A numerical study performed on a database related
to Pay-How-You-Drive, or PHYDmotor insurance illustrates the relevance of
the proposed approach for practice.
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1. INTRODUCTION

Insurers have now started to collect telematics data from usage-based motor
insurance comprising high-frequency GPS location, road conditions, driving
distances, duration of trips, speed, force of acceleration and deceleration or
changes of direction, for instance. We refer the reader to Gao et al. (2021)
and the references therein for more information. This provides actuaries with
valuable information that can be used for ratemaking, beyond classical risk
factors used for decades.
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Traditionally, motor insurance pricing is generally performed in two steps:

a priori, risk classification: first, a priori features are integrated in the pure
premium with the help of supervised learning models including policyholder’s
characteristics as well as information about his or her vehicle and about the
type of coverage selected, among others.

a posteriori, experience rating: then, a posteriori information is used to refine
the a priori risk evaluation. This is done with the help of a credibility, or mixed
model inducing serial dependence among past and future claims by means of
random effects accounting for unexplained heterogeneity. Credibility models
are sometimes simplified into bonus-malus scales for commercial purposes.

A priori means here that features are available before the start of the cover-
age period. This is the case for policyholder’s age, gender, or place of residence,
power, or use of the vehicle, or policy conditions, for instance. A priori fea-
tures are available for all policyholders in the same, standardized way (except
for missing values), whereas the volume of a posteriori information varies
among policyholders: it is not available for new risks (newly licensed drivers,
for instance), available in abridged form for new contracts (certificate record-
ing claims in tort over the past few years are commonly encountered in motor
insurance), or available only for claiming policyholders if related to severities.

A priori features are treated as known constants and the regression model
targets the conditional distribution of the response, given the a priori features.
The dynamics of a priori features is generally not modeled (if, when, and where
the policyholder moves, for instance). A posteriori variables are modeled
dynamically, jointly with claim experience. This information is included in
pricing by means of predictive distributions specific to each policy, accounting
for the volume of own past experience. We refer the reader to Denuit et
al. (2007, 2019b) for an extensive presentation of motor insurance pricing
techniques.

Because telematics data evolve over time in parallel to claim experience
being recorded while policyholders are driving, signals extracted from telemat-
ics data should be treated as a posteriori information, not as a priori risk fea-
tures. In order to capture the multivariate dynamics across insurance periods,
these signals must be modeled jointly with claim experience. This led Denuit et
al. (2019a) to design a multivariate credibility model (or mixed model, in statis-
tics) applying to a random vector joining telematics data and claim experience.
In that paper, signals are discretized so that they are integer-valued. They thus
have the same format as the number of claims taken as response.

Compared to Denuit et al. (2019a), the present paper innovates by allow-
ing for signals with various formats, not necessarily integer-valued, and by
extending the calibration of the multivariate mixed model describing the
joint dynamics of telematics data and claim frequencies. The fitting proce-
dure proposed in Denuit et al. (2019a) only allows the actuary to include
signals measured in the same units as the response considered in the analy-
sis (the claim frequency, so that only signals consisting in event counts can
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be analyzed). In practice, signals may, however, have various formats. Some
of them may beproportions, other ones may correspond to continuous, possi-
bly zero-augmented measurements, for instance. Many signals are continuous
since embarked devices generally produce real-valued measurements.

The inclusion of signals with different formats requires the development of
an original estimation procedure because available statistical packages gen-
erally only allow for one type of response: integer, proportions, continuous
measurement, or zero-augmented ones. Here, we design a powerful expected
conditional maximization (ECM) estimation procedure to fit the model. ECM
has been proposed by Meng and Rubin (1993) to escape difficulties with opti-
mization in the M-step of EM algorithms. To this end, the M-step is split into
several substeps so that the problem is reduced to several computationally eas-
ier, lower-dimensional optimizations. Notice that we are not the first authors to
implement ECM procedures in insurance studies. We refer the reader to Fung
et al. (2019) for an application to Erlang count logit-weighted reduced mixture
of experts model as well as to Fung et al. (2020) who propose a transformed
Gamma logit-weighted mixture of experts model for severity regression, with
an application to loss reserving.

The approach proposed in this paper is illustrated on a real, but simpli-
fied data set. The a posteriori corrections to a priori premiums are calculated,
depending on past experience in terms of both claim frequencies and driving
behavior as reflected in the signals recorded at individual level. This demon-
strates the capabilities of the approach developed in this paper to tackle with
practical applications.

The remainder of this paper is organized as follows. Section 2 describes
multivariate credibility models for random vectors joining signals and claim
counts. The ECM algorithm is described in Section 3. Before the conclusion,
Section 4 illustrates the proposed approach on a real data set with a simplified
structure, and the results are compared with those obtained from the classical
actuarial approach. Some technical elements related to numerical integration
are gathered in appendix. Throughout this text, index i refers to the policy-
holder under consideration, index t refers to time or trip driven by policyholder
i, index j refers to a priori features, index k refers to signals, and l refers to the
iterations of the ECM algorithm.

2. MULTIVARIATE CREDIBILITY MODEL

2.1. Mixed Poisson model for annual claim frequencies

Let Ni,t be the number of claims reported by Policyholder i, i= 1, 2, . . . , n,
during period t, t= 1, 2, . . . ,Ti. Let di,t be the corresponding exposure-to-
risk that can be the distance driven in kilometers or time spent behind the
wheel in the context of telematics data. At the beginning of each insurance
period, the actuary has at his or her disposal some information about each
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policyholder summarized into p features xi,t,j, j= 1, . . . , p, that may evolve
with t. The a priori information xi,t = (xi,t,1, . . . , xi,t,p)� is integrated into a
score ηi,t = η(xi,t) for Policyholder i in period t.

A random effect �i is added to the score ηi,t to recognize the residual
heterogeneity of the portfolio. Given �i = δ, the random variables Ni,t, t=
1, 2, . . ., are independent and conform to the Poisson distribution with mean
exp ( ln di,t + ηi,t + δ). At the portfolio level, the sequences (�i,Ni,1,Ni,2, . . . ),
i= 1, 2, . . . , n, are assumed to be mutually independent. In the remainder of
this paper, we comply with the standard approach tomixedmodels and assume
that the random effects �i are independent, normally distributed with zero
mean and constant variance σ 2

�.

Remark 2.1. If longer panels are available, then the static random effects �i can
be replaced with dynamic ones �i,1,�i,2, . . . which discount past observations
according to their seniority. This is easily done by replacing �i with a random
sequence �i,1,�i,2, . . . obeying a Gaussian process whose covariance structure
accounts for the memory effect (such as AR1, for instance).

Remark 2.2. Other distributions than the mixed Poisson one could be considered
for the claim counts Ni,t. For instance, zero-inflated Poisson or hurdle models as
proposed in Boucher and Denuit (2008) or in Boucher et al. (2007) could provide
interesting alternatives.

2.2. Behavioral variables or signals

In order to predict the number of claims Ni,t filed by policyholder i during
period t, the insurer has q signals, henceforth denoted as Si,k,t, k= 1, . . . , q, at
its disposal. These signals summarize the information collected by means of
telematics devices installed in the vehicle and bring some information about
policyholder’s behavior behind the wheel during the same period. We combine
past claims experience with the available signals with the help of correlated
random effects. Each signal Si,k,t comprises an unobservable effect �i,k that
reflects the quality of driving being correlated to �i and random noise. It is
important to realize here that signals are also influenced by traditional risk
factors included in xi,t so that we need to account for this effect in model
design.

We explicitly allow for signals with different formats. To fix the ideas, we
assume that signals obey distributions within the Exponential Dispersion fam-
ily that comprises the Normal, Gamma and Inverse-Gaussian distribution for
continuous measurements, the Binomial and Poisson distribution for event
counts (as well as the Negative Binomial distribution as a border case), and
the Tweedie distribution for zero-augmented distributions. These distributions
are henceforth referred to as ED.

Recall from Denuit et al. (2019b) that a response Y valued in a subset S
of the real line (− ∞,∞) is said to possess a distribution belonging to the
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ED family if Y admits a probability mass function pY or a probability density
function fY of the form

pY (y)
fY (y)

}
= exp

(
yθ − a(θ)

φ/ω

)
c(y, φ/ω), y ∈ S, (2.1)

whereθ is the real-valued location parameter (called the canonical parameter),
φ is a positive scale parameter (called the dispersion parameter), ω is a known
positive constant (called the weight), a( · ) is a monotonic convex function of
θ , and c( · ) is a positive normalizing function. This is henceforth denoted as
Y ∼ED(θ , φ/ω).

Remark 2.3.Notice that distributions outside the ED family could also be used to
describe the behavior of the signals under consideration, exactly as other distri-
butions than the mixed Poisson one could be envisaged for the number of claims.
The distributions in the GAMLSS family, as described in Denuit et al. (2019b),
could be relevant in that respect, for instance. We concentrate here on the ED
family because these distributions are supported by the vast majority of machine
learning algorithms available in computer packages.

Then, a multivariate mixed/credibility model describes the joint dynamics
of claim frequencies Ni,t and related signals Si,k,t, k= 1, . . . , q, accounting for
the availability of a priori features xi,t. Given �i, claim counts Ni,1,Ni,2, . . .
are independent and independent of �i,k, Si,k,1, Si,k,2, . . . for all k= 1, 2, . . . , q.
Also, given �i,k, the signals Si,k,1, Si,k,2, . . . are independent and independent
of �i,Ni,1,Ni,2, . . ., and

Si,k,t ∼EDk
(
νi,k,t + �i,k, φk/ωi,k,t

)
where νi,k,t = νk(xi,t) is the score for the kth signal based on a priori fea-
tures xi,t and �i,k is normally distributed with zero mean and variance σ 2

�,k.
Here, �i,k represents the additional information contained in the kth sig-
nal about claim frequencies, corrected for the effect of the features xi,t,
whereas the ED error structure represents the noise comprised in the observed
signal Si,k,t which does not reveal anything about claim counts. Also, the
random vector (�i, �i,1, �i,2, . . . , �i,q) is multivariate normally distributed
with zero mean vector and covariance matrix � driving the corrections
brought by signals in the evaluation of future expected number of claims.
Finally, given (�i, �i,1, �i,2, . . . , �i,q), all the observable random variables
Ni,1, Si,1,1, Si,2,1, . . ., Si,q,1, Ni,2, Si,1,2, Si,2,2, . . ., Si,q,2, . . ., are mutually
independent.

Remark 2.4.We acknowledge here that the multivariate normal assumption may
appear to be restrictive in some applications because it constrains the dependence
structure (prohibiting tail dependence, for instance). Other multivariate distri-
butions, such as Elliptical ones, can be useful to model the dependency of the
signals, and a copula construction can be employed to this end. The present paper
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describes a general modeling strategy that can be adapted to any other distri-
butional choice. Notice that identifiability issues need to be carefully assessed in
these more general mixed models.

3. ECM ALGORITHM

3.1. Likelihood

Denuit et al. (2019a) considered signals obeying Mixed Poisson distributions
with correlated random effects so that the glmer function included in the R
package lme4 can be used to fit a GLMM. To achieve convergence, some care
was nevertheless needed in relation with the nonlinear optimizer. To ensure
numerical stability of the optimization algorithms, some features and signals
had to be rescaled, which resulted in a loss of information. Another limita-
tion of the glmer function is that all signals must be mixed Poisson distributed
(because signals have to follow the same law as the response, here the num-
ber of claims). For all these reasons, a more powerful estimation procedure is
needed, and the ECM approach proposed in Meng and Rubin (1993) offers an
interesting alternative.

The expression for the likelihood of a mixed-effects model involves an inte-
gral over all the random effects. In our case, the likelihood associated to the
observations (ni,t, si,1,t, . . . , si,q,t), i= 1, . . . , n and t= 1, 2, . . . ,Ti, writes

L =
n∏
i=1

∫ ∞

−∞
. . .

∫ ∞

−∞

Ti∏
t=1

(
exp

(− di,t exp (ηi,t + δ)
)(di,t exp (ηi,t + δ)

)ni,t
ni,t!

q∏
k=1

fSi,k,t|�i,k=γk (si,k,t)

)
× f�(δ, γ1, . . . , γq)dδdγ1 . . . dγq

where fSi,k,t|�i,k=γk is the probability density function or the probability mass
function of the k-th signal Si,k,t given �i,k = γk. The latter has been assumed to
belong to the ED family. Also, f� is the joint probability density function of the
random vector (�i, �i,1, . . . , �i,q), corresponding to the assumed multivariate
Normal distribution with zero mean vector and variance–covariance matrix �.
Clearly, a direct maximization of L appears to be an extremely difficult task.
This is why we follow the ECM strategy presented next.

3.2. From EM to ECM

The EM algorithm proposed by Dempster et al. (1977) is a powerful tool to
deal with mixed models because its maximum, or M-step, corresponds to max-
imum likelihood estimations performed with complete data, after each random
effect has been replaced with its conditional expectation, given observed data.
This can often be performed with the help of available computer packages.
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Broadly speaking, the E-step can be viewed as creating a complete-data
problem by imputing missing values, and the M-step can be understood as
conducting a maximum likelihood-based analysis. Various methods for accel-
erating EM have been proposed in the literature. We refer the reader to
Varadhan and Roland (2008) for a review.

The ECM algorithm proposed by Meng and Rubin (1993) replaces a com-
plicated M-step of EM with several computationally simpler CM-steps or
conditionally M-steps. Precisely, the lth iteration of ECM consists of an E-
step, which computes the expected complete-data log-likelihood function given
the observed data and the current estimate of the parameter and replaces the
M-step of EMwith a sequence of simpler constrained or conditional maximiza-
tion (CM) steps, each of which fixes some function of the unknown parameter.
Broadly speaking, ECM divides the M-step of standard EM algorithms into
several substeps and optimizes a more mathematically tractable function over
a lower dimensional space in each substep. In the ECM approach, the param-
eters can be estimated using functions for fitting GLMMs that are readily
available in standard statistical software packages. Effective Gauss–Hermitte
quadratures are used to approximate intractable integrals.

As in the EM case, the E-step consists in computing the expectation of
the unknown random effects �i, �i,1, . . . , �i,q, given the observed values for
Ni,t, Si,1,t, . . . , Si,q,t, t= 1, . . . ,Ti. Including the resulting values in the offsets
of the marginal models for the observations Ni,t, Si,1,t, . . . , Si,q,t, the scores
η(xi,t) and νk(xi,t) can be estimated by maximum-likelihood (CM1-step). The
covariance structure of the random effects �i, �i,1, . . . , �i,q can also be esti-
mated by maximum-likelihood on the basis of the expectations produced in
the E-step (CM2-step). Here, we have obtained better performances by a
slight modification of the CM2-step, using classical variance and covariance
decomposition formulas to capture the second term as well (see the algorithm
below for more details). These three steps, the E-step followed with CM1- and
CM2-steps, are iterated until convergence.

3.3. Implementation of the ECM algorithm

Denote as Oi all observations for Policyholder i, that is,

Oi =
{
ni,1, . . . , ni,Ti , si,1,1, . . . , si,1,Ti , . . . , si,q,1, . . . , si,q,Ti

}
.

Also, let Si gather all the scores for Policyholder i, that is,
Si =

{
ηi,1, . . . , ηi,Ti , νi,1,1, . . . , νi,1,Ti , . . . , νi,q,1, . . . , νi,q,Ti

}
.

The ECM algorithm then proceeds as follows:

Initialize:

• Run a GLMMwith an intercept, only, on each response and signal, sepa-
rately, so that we get scores η

(0)
i,t and ν

(0)
i,k,t gathered in S (0)

i and a diagonal
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variance–covariance matrix �̂
(0) (with diagonal elements coming from

marginal GLMM analyses).
• Compute the expectation of each response and signal given the observed
valuesOi and scores S (0)

i using �̂
(0), that is, compute �̂

(0)
i =E[�i|Oi, S (0)

i ],

�̂
(0)
i,1 =E[�i,1|Oi, S (0)

i ], . . ., �̂
(0)
i,q =E[�i,q|Oi, S (0)

i ]. The calculation of these
conditional expectations is conducted with the help of quadrature formu-
las. Detailed explanations can be found in Appendix A.

• Fit GLMs with �̂
(0)
i , �̂

(0)
i,1 , . . ., �̂

(0)
i,g as offsets, separately. This produces

new scores η
(1)
i,t and ν

(1)
i,k,t gathered in S (1)

i .

• Estimate the variance–covariance matrix �̂
(1) as follows: starting from the

decomposition formulas

Var[�i] = E
[
Var[�i|Oi, S (0)

i ]
]+Var

[
E[�i|Oi, S (0)

i ]
]

Var[�i,k] = E
[
Var[�i,k|Oi, S (0)

i ]
]+Var

[
E[�i,k|Oi, S (0)

i ]
]
,

k= 1, . . . , q

Cov[�i, �i,k] = E
[
Cov[�i, �i,k|Oi, S (0)

i ]
]+Cov

[
E[�i|Oi, S (0)

i ],

E[�i,k|Oi, S (0)
i ]
]
k= 1, . . . , q

Cov[�i,k1 , �i,k2 ] = E
[
Cov[�i,k1 , �i,k2 |Oi, S (0)

i ]
]+Cov

[
E[�i,k1 |Oi, S (0)

i ],

E[�i,k2 |Oi, S (0)
i ]
]
k1 �= k2 ∈ {1, . . . , q}

we compute all the conditional moments appearing in the variances and
covariances by quadrature formulas as explained in Appendix A, with a
slight adaptation of the integrand. The estimated σ 2

�, σ 2
�,k, σ�,�,k, and

σ�,k1,k2 then follow by using sample means, variances, and covariances
of these conditional moments computed for each of the n policyholders
comprised in the portfolio.

Cycle: as long as the chosen stopping criterion is not satisfied, iterate

• E-Step: Compute the expectation of each response and signal given the
observed values Oi and scores S (l)

i using �̂
(l), that is, compute �̂

(l)
i =

E[�i|Oi, S (l)
i ], �̂(l)

i,1 =E[�i,1|Oi, S (l)
i ], . . ., �̂(l)

i,q =E[�i,q|Oi, S (l)
i ].

• CM1-Step: Fit GLMs with �̂
(l)
i , �̂

(l)
i,1, . . ., �̂

(l)
i,g as offsets, separately, to

obtain new scores η
(l+1)
i,t and ν

(l+1)
i,k,t gathered in S (l+1)

i .

• CM2-Step: Estimate the variance–covariance matrix � by �̂
(l+1) obtained

as described in the initialization step.
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The algorithm has been implemented in R with the help of the following
libraries: Matrix, lme4, mvtnorm, MultiGHQuad, Rcpp, fastGHQuad,
mgcv, STAR, statmod, doParallel, bigstatsr.

4. CASE STUDY

4.1. Data set

To evaluate the capabilities of the multivariate credibility model presented in
Section 2, we employ a data set collected in France by AXA insurance com-
pany within the framework of a Pay-How-You-Drive motor insurance cover
targeting young drivers. Data have been collected fromOBD-II dongle devices.
This is one of the most common way to collect telematics data among a large
variety of possibilities, as reported by Ortiz et al. (2020). OBD-II dongles peri-
odically record GPS locations as well as a time stamp and vehicle speed. From
this limited, yet significant, set of measures, many other metrics can be derived,
such as the number of dangerous events due to hazardous maneuvers or harsh
accelerations or the kilometers driven in a given period of time as well as infor-
mation as the number of kilometers driven at night or the number of kilometers
driven in a urban area. Motor insurance premiums can then be computed tak-
ing into account car usage and driver’s behavior behind the wheel as well as
traditional risk factors. Recorded data enable us to derive the exposure factor
dit that is taken to be the total driving duration.

In the following model, we consider two signals which reflect the type of
driving habits and skills as follows:

Si,1,t = number of dangerous driving events for Policyholder i in period t
Si,2,t = average speed for Policyholder i in period t.

Signal Si,1,t is integer-valued while Si,2,t assumes strictly positive values.
Average speed values have been normalized.

The first signal mainly focuses on four categories of event: (i) strong accel-
eration, (ii) harsh breaking, (iii) high speed, (iv) cornering. The first two are
reported by Tselentis et al. (2016) as the key factors for detecting aggressive
and dangerous driving behavior. The former occurs with an acceleration above
3 km/h/s while driving above 10 km/h, and the latter when, above the same
speed threshold, the acceleration is below −3.5 km/h/s. Acceleration events on
insertion lanes are filtered out as well as braking events on exit lanes. Diving at
a speed higher than the free flow speed of the road weighted by a weather factor
triggers a speed event. Finally, accelerations over 8 km/h/s or below −6 km/h/s
in turns with a speed above 50 km/h trigger a dangerous cornering event.

Signals 1 and 2 are practicable and convenient to collect. In fact, apart from
OBD-II dongles, the same data can be collected by the drivers’ smartphone in
the context of smartphone-based motor insurance as conceived by Wahlstrom
et al. (2015).
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TABLE 1

SAMPLE STATISTICS FOR RAW TELEMATICS INFORMATION BY QUARTER
(n= 10, 446). FOR EACH SIGNAL, THE SMALLEST OBSERVED VALUE (MIN),

AVERAGE, MEDIAN, INTERQUARTILE RANGE (IQR) AND LARGEST OBSERVED
VALUE (MAX) ARE DISPLAYED SEPARATELY FOR THE THREE QUARTERS OF

OBSERVATION (DENOTED, RESPECTIVELY, AS Q1, Q2, AND Q3).

Q1 Q2 Q3

Signal 1

Min 0 0 0
Mean 12.04 12.81 13.54
Median 7 8 9
IQR 12 14 14
Max 178 172 291

Signal 2
Min 0.08 0.08 0.07
Mean 0.38 0.38 0.39
Median 0.37 0.37 0.38
IQR 0.18 0.19 0.19
Max 1 1 1

4.2. Descriptive statistics

The sample is made up of n= 10, 446 insured drivers followed over the three
quarters of calendar year 2019. All policyholders have been observed for three
quarters (so that Ti = 3 for all i). Thus, we have a multivariate, balanced panel
structure. The maximum age for all drivers in the sample is 26. In the par-
ticipating insurance company, the policies that involve collecting telematics
information are only offered to young drivers.

In Table 1, we present descriptive statistics for telematics data comprised
in the data set, separately for each quarter. It is worth stressing that Signal
2 remains remarkably stable over the observation periods, showing that driv-
ing habits in terms of speed do not change much at aggregate level. Signal 1
appears to be more volatile as driving events are more transient. It also exhibits
a moderate increasing trend within the database.

Figure 1. displays two histograms of the raw telematics data. This helps to
figure out the sample distribution of the two signals entering the analysis. The
scatterplot shows the correlation between them that appears to be moderately
positive. In order to illustrate the treatment of a priori features, we consider
here two binary covariates x1 and x2 (p= 2). Specifically, x1 corresponds to
the policyholder’s driving license age. It was discretized so that the value is 1
for drivers that have their driving license for more than 3 years (this represents
44% of the lines), otherwise the value is 0. The second feature x2 corresponds
to the car age. It was discretized so that the value is 1 for cars that are more
than 6 year old (60% of the database), otherwise the value is 0.

Table 2. displays the observed number of claims, together with the cor-
responding exposures, and the average signal values for each level of the
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FIGURE 1: Histograms for Signals 1 and 2 (upper left and right panels, respectively) and scatterplot
(bottom panel) with the linear regression line.

two features. We can see there that claim frequencies and signal values are
impacted by the features x1 and x2 so that we must enter this information in
the responses to correct apparent correlation for the confounding effect of the
covariates.

4.3. Association between signals and claim counts

We focus specifically on the two signals presented in Section 4.1 because we
expect some association between claim frequencies and numbers of dangerous
driving events and speed. There is an extensive literature on how all these fac-
tors are associated to claiming. Ayuso et al. (2016, 2019) showed that, among
other metrics, information on speed improves the prediction of the number of
claims, compared to classical models not using telematics information. Guillen
et al. (2019) provide an extended overview on how accumulated distance driven
shows evidence that drivers improve their skills, a phenomenon that is known
as the “learning effect.” All this previous knowledge is the reason why we focus
specifically on variables that reflect the driving habits, such as the average
speed, and for which we expect a clear association with the number of claims
like the number of dangerous driving events.

Let us now investigate the strength of this association on our data set.
Figure 2 displays the frequency of claiming policyholders within each of the
20 buckets in which Signals 1 and 2 are quantized. We clearly see there that the
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TABLE 2

OBSERVED NUMBER OF CLAIMS, TOGETHER WITH THE
CORRESPONDING EXPOSURES APPEARING WITHIN BRACKETS,
AND THE AVERAGE SIGNAL VALUES FOR EACH LEVEL OF THE

BINARY FEATURES x1 AND x2.

Observed claim numbers
(with rescaled exposures)

x2 =
0 1

x1 = 0 97 214
(4744.15) (8963.68)

1 67 91
(5051.20) (5765.08)

Average value for Signal 1

x2 =
0 1

x1 = 0 12.72 13.16
1 12.08 12.90

Average value for Signal 2

x2 =
0 1

x1 = 0 0.39 0.36
1 0.42 0.39

FIGURE 2: Signals 1 and 2 and claim frequency.

majority of drivers having reported claims concentrate in the higher buckets
for Signal 1 and in the lower buckets for Signal 2: in urban and traffic con-
gested areas, where the average speed is lower than rural and peri-urban
areas, the crash risk is higher. Thus, the association between signals and claim
frequencies seems to be present in the data set under consideration.

We also assess the strength of nonlinear dependence between the signals
and the claim counts with the help of the Hirschfeld–Gebelein–Renyi (HGR)
maximal correlation coefficient proposed by Grari et al. (2020). The HGR
coefficient is equal to 0 if the two random variables are independent. If they
are perfectly dependent, the value is 1. Note that although the claim counts
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is integer-valued, the HGR still captures nonlinear dependence since it corre-
sponds to Chi-square divergence in this specific case. We obtain an estimated
HGR coefficient of 0.048 between claim count and Signal 1. For Signal 2,
the estimation is 0.030. Signal 1 seems therefore to capture more information
about the claim counts than Signal 2. Notice that the nonlinear dependence
between Signals 1 and 2 is 0.200.

4.4. Fitted models

We have to estimate the scores η for claim numbers and νk, k= 1, 2, for Signals
1 and 2, including the two features x1 and x2, as well as dispersion param-
eters σ 2

� for claim numbers, σ 2
�,1 for Signal 1, and φ2 and σ 2

�,2 for Signal 2.
These are the marginal parameters involved in the distribution of the number
of claims and of the two signals included in the analysis. Then, the off-diagonal
elements of the variance–covariance matrix � joining the random effects in
claim counts and in the available signals must also be estimated, to allow for
information transfer from signal to claim frequencies. Si,1,t is modeled using a
Poisson regression with its natural link function while Si,2,t is modeled using a
Gamma regression using the logarithm link function.

Marginal parameters are generally well estimated by regression models
fitted separately to claim frequencies and signal values. This is why the
stopping criterion generally concentrates on the variance–covariance matrix
� joining the claim counts to the available signals. Several distances are
available to assess the proximity of two matrices. Some of them have been
designed specifically for variance–covariance matrices, such as Bhattacharyya
and Kullback-Leibler distance between two Gaussian distributions having the
same location vector. In this paper, we use the following simple rule: we
decide to stop the ECM algorithm as soon as the maximum relative difference
between correlation coefficients ρ�,�,k at two successive steps become smaller
than a predefined tolerance level.

Figures 3 and 4 display the estimations with respect to the number of iter-
ations. After about 50 iterations, the estimations stabilize and the stopping
criterion is fulfilled. We end up with the following estimates for the scores

η̂(x) = −3.912− 0.423x1 + 0.155x2
ν̂1(x) = 2.557− 0.025x1 − 0.134x2
ν̂2(x) = −0.989+ 0.103x1 − 0.073x2

involved in the number of claims Nit, Signal 1, and Signal 2, respectively. The
variance–covariance matrix of the multivariate Normal distribution for the
random vector (�, �1, �2) is estimated to

�̂ =
⎛⎝ 0.835608624 0.01087129 −0.003205314

0.010871290 0.54745657 0.020714447
−0.003205314 0.02071445 0.092999400

⎞⎠ .
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FIGURE 3: Scores estimates η̂(x) (in black), ν̂1(x) (in blue), and ν̂2(x) (in red) along algorithm iterations for
x= (0, 0) (circle), x= (1, 0) (triangle), x= (0, 1) (diamond), and x= (1, 1) (square).
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FIGURE 4: Estimation of the dispersion parameter φ2 along algorithm iterations (left). Estimations of the
standard deviations σ� (in black), σ�,1 (in blue), and σ�,2 (in red) along algorithm iterations (right).

In accordance with the exploratory analysis, we get a negative correlation
between � and �2 and a positive correlation between � and �1. Despite
the relatively small estimated correlations, signals induce strong a posteriori
corrections, as shown next (recall from Section 2 that correlations between
responses involve the exponential transform of the elements in �̂).
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TABLE 3

MODELS DEVIANCE

Average model GLM using traditional variables Final model

3955.3 3930.9 2220.4

Eventually, to benchmark our final fitted model, two other models were
trained. The simplest trained model consists in assigning to every row the aver-
age claim frequency. Then a model was trained using only the two traditional
variables. The Poisson deviance of different models is showed in Table 3. The
final model shows an important improvement compared to the simple models.

4.5. Credibility updating formulas

In the classical actuarial approach based on claim counts, only, past num-
bers of claims enter the credibility formulas in addition to observable features
xi,Ti+1 to explain Ni,Ti+1. Formally, the experience used to revise future pre-
miums relates to past claims history, only, and is henceforth denoted as

Hclaim
i,Ti = {Ni,t, t= 1, . . . ,Ti}.

This information enters the predictive distribution, i.e. the conditional dis-
tribution of Ni,Ti+1 given Hclaim

i,Ti
. With experience rating, the a priori

expectation

E[Ni,Ti+1]= λi,Ti+1E[ exp (�i)]

is replaced with the a posteriori expectation

E[Ni,Ti+1|Hclaim
i,Ti ]= λi,Ti+1E[ exp (�i)|Hclaim

i,Ti ].

The pricing structure is slow to adapt in personal lines because the expected
claim frequencies are generally small, whatever the driver’s risk profile.

The approach proposed in this paper recognizes the a posteriori nature of
telematics data. The multivariate credibility model developed in the present
case study captures the association between Signals 1-2 and claim counts,
allowing the actuary to refine risk evaluations based on past history. With
telematics, past claims history Hclaim

i,Ti
is enriched with behavioral data. This

allows the pricing structure to become more reactive. In this case, the policy-
specific historyHi,Ti gathers all the a posteriori information

Hi,Ti =Hclaim
i,Ti ∪Hsignals

i,Ti
= {(Ni,t, Si,1,t, Si,2,t), t= 1, . . . ,Ti}.

The multivariate mixed/credibility model describes the joint dynamics of
(Ni,t, Si,1,t, Si,2,t), given a priori features xi,t. The predictive distribution now
corresponds to the conditional distribution of Ni,Ti+1 givenHi,Ti . The a priori
expectation is replaced with an a posteriori one

E[Ni,Ti+1|Hi,Ti ]= λi,Ti+1E[ exp (�i)|Hi,Ti ],
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FIGURE 5: Left: Ni,1 +Ni,2 +Ni,3 = 0, Middle: Ni,1 +Ni,2 +Ni,3 = 1, Right: Ni,1 +Ni,2 +Ni,3 = 2.
E[ exp (�i)|Hi,Ti ] (in black) and E[ exp (�i)|Hclaim

i,Ti
] (in red) for (Si,2,1 = 0.20, Si,2,2 = 0.20, Si,2,3 = 0.20)

(circles), (Si,2,1 = 0.40, Si,2,2 = 0.40, Si,2,3 = 0.40) (triangles), (Si,2,1 = 0.70, Si,2,2 = 0.70, Si,2,3 = 0.70)
(diamonds) and Si,1,1 + Si,1,2 + Si,1,3 = 0, 20, 40, 60, 80, 100. x= (0, 0) (solid line), x= (1, 0) (dashed line),

x= (0, 1) (dotted line), x= (1, 1) (two dash line).
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FIGURE 6: Left: Ni,1 +Ni,2 +Ni,3 = 0, Middle: Ni,1 +Ni,2 +Ni,3 = 1, Right: Ni,1 +Ni,2 +Ni,3 = 2.
E[ exp (�i)|Hi,Ti ]/E[ exp (�i)|Hclaim

i,Ti
] for (Si,2,1 = 0.20, Si,2,2 = 0.20, Si,2,3 = 0.20) (circles), (Si,2,1 = 0.40,

Si,2,2 = 0.40, Si,2,3 = 0.40) (triangles), (Si,2,1 = 0.70, Si,2,2 = 0.70, Si,2,3 = 0.70) (diamonds) and
Si,1,1 + Si,1,2 + Si,1,3 = 0, 20, 40, 60, 80, 100. x= (0, 0) (solid line), x= (1, 0) (dashed line), x= (0, 1) (dotted

line), x= (1, 1) (two dash line).

so that the factor E[ exp (�i)|Hi,Ti ]/E[ exp (�i)|Hclaim
i,Ti

] corresponds to the
improvement we get for the a posteriori correction by also using the behavioral
data provided by telematics.

Figures 5 and 6 depict the a posteriori corrections
E[ exp (�i)|Hi,Ti ] and E[ exp (�i)|Hclaim

i,Ti
] together with the factor

E[ exp (�i)|Hi,Ti ]/E[ exp (�i)|Hclaim
i,Ti

] for x= (0, 0), x= (1, 0), x= (0, 1)
and x= (1, 1). Horizontal lines correspond to a posteriori corrections based
on Hclaim

i,Ti
, whereas trending curves illustrate the impact of incorporating past

signal values in premium corrections.
For each value of x, one sees that both a posteriori corrections

E[ exp (�i)|Hi,Ti ] and E[ exp (�i)|Hclaim
i,Ti

] increase with the total number of
claims Ni,1 +Ni,2 +Ni,3 observed over the last three periods. Furthermore,
E[ exp (�i)|Hi,Ti ] also increases with the total number of dangerous driv-
ing events Si,1,1 + Si,1,2 + Si,1,3 observed over the last three periods while
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it decreases with the normalized average speeds (Si,2,1, Si,2,2, Si,2,3). For
instance, a policyholder belonging to the reference risk class x= (0, 0)
who made no claim over the last three periods (here the last 9 months)
and recording 10 dangerous driving events in total can see its expected
claim frequency decreases by approximately 5% by using telematics data
(i.e. E[ exp (�i)|Hi,Ti ]/E[ exp (�i)|Hclaim

i,Ti
]≈ 95%) when its normalized average

speeds are equal to 0.7 over the last three periods.
Finally, one can notice that the factor E[ exp (�i)|Hi,Ti ]/E[ exp (�i)|Hclaim

i,Ti
]

is stable from one risk class to another. As expected, when comparing
two drivers in two different risk classes, the one with the lower a priori
claim frequency has higher a posteriori corrections E[ exp (�i)|Hi,Ti ] and
E[ exp (�i)|Hclaim

i,Ti
].

Figures 5 and 6 show that despite relatively low estimated correlations, past
signal values induce further segmentation among insured drivers, beyond that
resulting from the inclusion of Hclaim

i,Ti
in premium calculation. This is particu-

larly encouraging for practical applications since with only two signals that can
easily be communicated to policyholders, the credibility model is able to cap-
ture quite a large part of residual heterogeneity after just three periods when
supplementingHclaim

i,Ti
withHsignals

i,Ti
.

4.6. Algorithm extensibility

We illustrate how the ECM algorithm can accept other signals extending the
previous use case adding a third signal that is

Si,3,t = distance driven for Policyholder i in period t.

In Figure 7, we show the new signal distribution, differentiated by the pres-
ence of claims. We use a Gamma distribution to model Si,3,t and Figure 7
also displays φ̂3 already converging after 20 iterations. The new random
effect �3 is negatively correlated with �, namely Ĉov[�, �3]= −0.030606301,
which can be explained by the superposition of the learning effect (one gains
experience while driving, as documented, e.g. in Boucher et al., 2013) and
a driving environment effect: those who drive very long distances do so on
highways, thus generally outside residential areas. Figure 8 displays the fac-
tor E[ exp (�i)|Hi,Ti ]/E[ exp (�i)|Hclaim

i,Ti
] for a policyholder i of the reference

class (xi = (0, 0)) who made no claims over the last three periods (Ni,1 +
Ni,2 +Ni,3 = 0) and with average values for Signal 2 (Si,2,1 = 0.40, Si,2,2 =
0.40, Si,2,3 = 0.40). Compared to the left of Figure 6 (solid line with triangles),
one sees that low (resp. high) values for Signal 3, here (Si,3,1 = 500, Si,3,2 =
500, Si,3,3 = 500) (resp. (Si,3,1 = 5000, Si,3,2 = 5000, Si,3,3 = 5000)), yield higher
(resp. lower) premium corrections.
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FIGURE 7: Signals 3 distribution, claim frequency, and convergence.
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FIGURE 8: E[ exp (�i)|Hi,Ti ]/E[ exp (�i)|Hclaim
i,Ti

] for xi = (0, 0), Ni,1 +Ni,2 +Ni,3 = 0,
(Si,2,1 = 0.40, Si,2,2 = 0.40, Si,2,3 = 0.40) and Si,1,1 + Si,1,2 + Si,1,3 = 0, 20, 40, 60, 80, 100. Left:

(Si,3,1 = 500, Si,3,2 = 500, Si,3,3 = 500), Right: (Si,3,1 = 5000, Si,3,2 = 5000, Si,3,3 = 5000).

5. CONCLUSION

Pay-How-You-Drive (PHYD) motor insurance complements traditional actu-
arial models with data reflecting driving behavior (e.g., vehicle average speed)
and external risk factors (e.g., time of the day). Such data are recorded and
transmitted by telematics devices embedded in each vehicle.

In this paper, we exploit the a posteriori nature of telematics data and their
heterogeneity among insured drivers. We study a multivariate mixed model
that extends the model describing the joint dynamics of telematics data and
claim frequencies proposed by Denuit et al. (2019a) by replacing the estimation
procedure with the ECM algorithm. The proposed model enables to com-
bine telematics signals with various formats and claim counts, refining risk
evaluations based on drivers’ recent history.

Numerical illustrations carried on a real, but simplified data set with two
and three telematics signals of different formats suggest that the proposed
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approach is already able to capture quite a large part of residual heterogene-
ity after just few months monitoring, allowing the pricing structure to become
more reactive.
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APPENDIX

A EVALUATION OF THE CONDITIONAL EXPECTATIONS INVOLVED IN
THE ECM ALGORITHM

The ECM approach involves conditional expectations of the random effects
in each E-step. Here, we carefully explain how to compute E [�i|Oi, Si] and
E
[
�i,k|Oi, Si

]
so that the reader can easily adapt the formulas to the other

conditional expectations appearing in the ECM algorithm.
We have

E [�i|Oi, Si]=
∫ ∞

−∞
δf�i|Oi,Si (δ)dδ

where f�i|Oi,Si denotes the conditional probability density function of �i
given past observations Oi and past values of the scores Si. Assume that
the signals Si,k,t are continuous, with conditional probability density function
fSi,k,t|�i,k=γk ( · ) given �i,k = γk. For discrete signals, the conditional probabil-
ity density function is replaced with the conditional probability mass function.
The conditional expectation can then be expressed as the ratio E [�i|Oi, Si]=
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Ã(�)

B̃
with

Ã(�) =
∫ ∞

−∞
. . .

∫ ∞

−∞
δ

Ti∏
t=1

(
P[Ni,t = ni,t|�i = δ]

q∏
k=1

fSi,k,t|�i,k=γk (si,k,t)

)
f�(δ, γ1, . . . , γq)dδdγ1 . . . dγq

and

B̃ =
∫ ∞

−∞
. . .

∫ ∞

−∞

Ti∏
t=1

(
P[Ni,t = ni,t|�i = δ]

q∏
k=1

fSi,k,t|�i,k=γk (si,k,t)

)
f�(δ, γ1, . . . , γq)dδdγ1 . . . dγq.

Under the assumptions of our model, we know that given �i = δ,
Ni• =∑Ti

t=1 Ni,t obeys the Poisson
(
λi• exp (δ)

)
distribution where λi• =∑Ti

t=1 di,t exp (ηi,t). Therefore, E [�i|Oi, Si]= Ã(�)

B̃
= A(�)

B with

A(�) =
∫ ∞

−∞
. . .

∫ ∞

−∞
δ( exp (δ))ni• exp (− λi• exp (δ))

Ti∏
t=1

q∏
k=1

fSi,k,t|�i,k=γk (si,k,t)

f�(δ, γ1, . . . , γq)dδdγ1 . . . dγq

and

B =
∫ ∞

−∞
. . .

∫ ∞

−∞
( exp (δ))ni• exp (− λi• exp (δ))

Ti∏
t=1

q∏
k=1

fSi,k,t|�i,k=γk (si,k,t)

f�(δ, γ1, . . . , γq)dδdγ1 . . . dγq

where ni• =∑Ti
t=1 ni,t stands for the observed claim totals Ni•.

Similarly, we can write E
[
�i,k0 |Oi, Si

]= A(�k0
)

B for each signal �i,k0 with

A(�k0 )
=
∫ ∞

−∞
. . .

∫ ∞

−∞
γk0 ( exp (δ))

ni• exp (− λi• exp (δ))
Ti∏
t=1

q∏
k=1

fSi,k,t|�i,k=γk (si,k,t)

f�(δ, γ1, . . . , γq)dδdγ1 . . . dγq

and

B =
∫ ∞

−∞
. . .

∫ ∞

−∞
( exp (δ))ni• exp (− λi• exp (δ))

Ti∏
t=1

q∏
k=1

fSi,k,t|�i,k=γk (si,k,t)

f�(δ, γ1, . . . , γq)dδdγ1 . . . dγq.

Conditional expectations appearing at iteration l = 0, 1, 2, . . . of the ECM
algorithm (iteration l = 0 corresponding to the initialization) are then obtained
by replacing Si with S (l)

i . The integrals involved in these formulas can be
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computed using quadratures, as explained in Pechon et al. (2018, 2019, 2021).
Gauss–Hermite quadratures revealed itself to be fast, especially when used in
conjunction with the package Rcpp which allows to write chunk of codes in
C++ inside an R script enabling a drastic reduction in computational time (up
to 30 times faster).
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