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Abstract

Motivated by Avram, Vu and Zhou (2017), Kyprianou and Zhou (2009), Li, Vu and
Zhou (2017), Wang and Hu (2012), and Wang and Zhou (2018), we consider in this
paper the problem of maximizing the expected accumulated discounted tax payments
of an insurance company, whose reserve process (before taxes are deducted) evolves
as a spectrally negative Lévy process with the usual exclusion of negative subordinator
or deterministic drift. Tax payments are collected according to the very general loss-
carry-forward tax system introduced in Kyprianou and Zhou (2009). To achieve a
balance between taxation optimization and solvency, we consider an interesting modified
objective function by considering the expected accumulated discounted tax payments
of the company until the general draw-down time, instead of until the classical ruin
time. The optimal tax return function and the optimal tax strategy are derived, and some
numerical examples are also provided.
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1. Introduction

Albrecher and Hipp [1] first introduced the so-called loss-carry-forward tax strategy in the
classical compound Poisson risk model. In their model, taxation is imposed at a constant
proportional rate γ ∈ (0, 1) whenever the surplus process is in its running supremum (and,
hence, in a profitable situation). The authors established a remarkably simple relationship
between the ruin probabilities of the surplus processes with and without tax; obtained
the solution for the expected accumulated discounted tax payments; and characterized the
optimal starting threshold M ∈ (0,∞) that maximizes the expected accumulated discounted tax
payments. Here, we say that M is a starting threshold for taxation, if tax is collected by the tax
authority only when the surplus has exceeded M and is in a profitable situation at the same time.

During the past decade, there has been much progress in the study of the loss-carry-
forward taxation problem when the underlying surplus processes are spectrally negative Lévy
processes, time-homogeneous diffusion processes, and Markov additive processes. In the
following, we will summarize the literature on loss-carry-forward taxation, which consists
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of four components: (i) the Gerber–Shiu function; (ii) the distribution of the accumulated
discounted tax payments; (iii) searching for the optimal starting threshold M to maximize
the expected accumulated discounted tax payments; and (iv) characterizing the optimal tax
strategy to maximize the expected accumulated discounted tax payments.

With respect to (i), the study concerning loss-carry-forward taxation has undergone an
impressive metamorphosis. In the earliest work, Albrecher and Hipp [1] presented a simple
relationship (also called the tax identity) between the ruin probabilities under the classical
compound Poisson risk models with and without constant tax rate. By linking queueing
concepts with risk theory, another simple and insightful proof for the tax identity was provided
in [6]. The tax identity was then extended to classical compound Poisson risk processes with
constant credit interest rate and surplus-dependent tax rate in [37]; to spectrally negative Lévy
risk processes with constant tax rate in [4]; to time-homogeneous diffusion risk processes
with surplus-dependent tax rate in [23]; and to Markov additive risk processes with surplus-
dependent tax rate in [5]. The Gerber–Shiu functions were studied in [35] under the classical
compound Poisson risk model with a constant tax rate; in [27] under the classical compound
Poisson risk model with constant tax, credit interest, and debit interest rates; in [15] under the
classical compound Poisson risk model with surplus-dependent premium and tax rates; in [38]
under the Markov-modulated risk model with constant tax rate; and in [20] under the Lévy risk
model with surplus-dependent tax rate.

We can find the earliest work for (ii) and (iii) in [1] under the classical compound Poisson
risk model with constant tax rate. These results were then generalized in [36] to classical
compound Poisson risk processes with constant interest and tax rates; in [15] to the classical
compound Poisson risk model with surplus-dependent premium and tax rates; and in [3]
to spectrally negative Lévy risk processes with constant tax rate. Results for (ii) can also
be found in [23] for time-homogeneous diffusion risk processes with surplus-dependent tax
rate. In addition, for spectrally negative Lévy risk processes with surplus-dependent tax rate,
Kyprianou and Zhou [20] obtained a solution to problem (ii), while Renaud [30] obtained
arbitrary moments of the accumulated discounted tax payments.

For the dual model of the classical compound Poisson risk process, Albrecher et al. [4]
solved tax problems (i)–(iii) under the assumption of exponential jump sizes. Periodic tax
has also been taken into consideration in the case of spectrally negative Lévy risk processes.
In [18], asymptotic formulae for the ruin probability with periodic tax is discussed under
suitable assumptions imposed on the Lévy measure. While in [39] periodic tax was investigated
and solutions for (i)–(iii) were given. In addition, capital injection has been included in risk
processes with loss-carry-forward tax in [2], where some power identities were obtained. For
works concerning the two-sided exit problem for risk models with loss-carry-forward tax, the
reader is referred to [3], [5], [7], [15], [20], [23], and [33].

It is known that in the seminal paper [16], a critical surplus threshold for starting dividend
payments was determined to maximize the expected accumulated discounted dividends, and
it aroused great research interests in optimizing the dividend payment strategy. Likewise, the
studies on (iii) aroused research interests in optimizing the loss-carry-forward tax strategy,
which lies in the scope of (iv). Recently, under spectrally negative Lévy risk processes, Wang
and Hu [32] characterized the optimal tax strategy which maximizes the expected accumulated
discounted tax payments until ruin, via the standard approach of stochastic control theory. The
optimal tax return function was also obtained in [32].

Recently, Avram et al. [12] considered the variants of (i)–(iii) through replacing the ruin
time by the draw-down time with a linear draw-down function in spectrally negative Lévy risk
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processes with constant tax rate. The subsequent work of Li et al. [24] proved several results
involving the general draw-down time from the running maximum for the spectrally negative
Lévy process. Quite recently, Wang and Zhou [34] considered a general version of de Finetti’s
optimal dividend problem in which the ruin time is replaced by the general draw-down time
for spectrally negative Lévy risk processes. The authors identified a condition under which the
barrier dividend strategy turned out to be optimal among all admissible dividend strategies. For
more results on the general draw-down time, we refer the reader to [29].

Motivated by [12], [20], [24], [32], and [34], the present paper is also concerned with the
problem of optimizing the payment of loss-carry-forward tax in the Lévy setup, under the
optimization criterion of maximizing the expected accumulated discounted tax payments until
the general draw-down time from the running maximum. The main goal of this paper is to
extend the classical ruin-based tax optimization solution to the general draw-down-based tax
optimization solution, with the latter involving a trade-off between taxation optimization and
solvency. Specifically, we shall search for the optimal tax return function and the optimal tax
strategy which maximizes the expected accumulated discounted tax payments until the general
draw-down time. We mention that this extension makes our optimization problem interesting
and practical in the following senses.

(a) Roughly speaking, the general draw down (see (1) for its definition; see the paragraph
immediately below (1) for its origin) refers to the first time when a drop in value (say,
of a stock price or value of a portfolio) from a historical peak exceeds a certain surplus-
related level. Hence, draw down is fundamentally useful from the perspective of risk
management as it can be applied in measuring and managing extreme risks. In fact,
applications of draw down can be found in many areas. Draw down is frequently used
by mutual fund managers and commodity trading advisors as an alternative measurement
for volatility, especially when the downward risks of asset returns are of primary interest
(see [31]). There are also close ties between draw down and problems in mathematical
finance, insurance, and statistics. To name a few, the draw down can be useful in pricing
and managing of Russian options or insurance options against a drop in the value of a
stock (see, e.g. [8], [9], and [26]); the equivalence between the joint distributions of ruin-
related quantities under the barrier dividend strategy and draw-down-related quantities
under a dividend-free risk model can be found in [10] and [25]; draw down turned out
to be the optimal solution in the cumulative sum statistical procedure in [28]. General
draw-down times also find interesting applications of defining Azéma–Yor martingales
to solve the Skorokhod embedding problem (see, e.g. [13] and [29]). For a more detailed
review of applications of draw down, the interested reader is referred to [21] and [22].

(b) By extending the classical ruin to the general draw down, we can easily adjust the
draw-down function so that the surplus levels remain positive at the terminal draw-down
time with positive probability. It thus provides an interesting alternative to the optimal
taxation problem that achieves a balance between taxation optimization and solvency
(see [34]).

For more detail, let us look at definition (1) endowed with positive-valued ξ ; whenever
the surplus process hits a new record high x, the surplus process is allowed to deviate
down from x with deviation magnitude no more than x− ξ (x) ∈ (0, x); otherwise, general
draw down occurs. In contrast, classical ruin occurs when the surplus process deviates
down with deviation magnitude no less than x, a deviation magnitude large enough to
lead to general draw down. Intuitively speaking, if adopted by the insurance company
as a risk assessment tool, general draw down only allows for a ‘moderate’ downward
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deviation magnitude of the surplus process, while the classical ruin allows for a ‘large’
downward deviation magnitude of the surplus process. Hence, compared with classical
ruin, general draw down turns out to be the more favorable risk assessment tool from the
practical view point of ‘protecting’ the insurance company.

More importantly, when ξ is chosen to be positive valued, there is a positive
probability that the surplus remains positive at the general draw-down time. Take the
Lévy risk processes with nontrivial Gaussian part for example; there should be positive
probability that the surplus hits the general draw-down level ξ (y) ∈ (0, y) at the general
draw-down time, where y ∈ (0,∞) denotes the running maximum until the general
draw-down time.

If ξ is additionally assumed such that ξ and x− ξ (x) are both increasing, as its running
supremum grows larger, the surplus process is allowed to deviate down further away
from the running supremum, meanwhile the surplus remains at a higher level at the
general draw-down time, leaving the insurance company more flexible disposal choices
of risks. This seems to be very close to reality.

If ξ is chosen to be negative valued, whenever the surplus process hits a new record
high x, the company is allowed to continue running its businesses until its surplus process
drops below 0 with a deficit bigger than |ξ (x)|. In the latter case, the company stops run-
ning its businesses and we say ‘absolute ruin’ occurs. We refer the reader to, for example,
[11] for the definition of ‘absolute ruin’ for spectrally negative Lévy risk processes.

In addition, it is interesting to see that draw down provides much more surplus-level-
related information compared to classical ruin. It is also interesting to see that, when
our model and tax structure are specified to those in the existing literature, our results
coincide with those existing results (see Remark 2).

(c) This extension makes our optimization problem much more difficult and complicated.
First, new solutions of the general draw-down-based two-sided exit problem and the
expected discounted accumulated tax payments (in Section 3) should be obtained in
advance so as to push forward the Hamilton–Jacobi–Bellman (HJB) equation and the
verification proposition in Section 4. Second, because the general draw-down function
introduces new complexity into the HJB equation, characterizing its solutions becomes
more challenging, and, hence, greater endeavors are devoted to guessing and verifying
its candidate solutions, which is very critical in addressing optimal control problems,
since solutions to the HJB equation usually correspond to the optimal tax return function
and the optimal tax strategy.

We also mention that the standard line of stochastic control theory was adopted when
addressing our general draw-down-based loss-carry-forward tax optimization problem, just as
in the dividend optimization literature (see, e.g. [10], [25], and [34]). However, the present
paper is different from those in the dividend optimization literature in implementing each
step along the standard line of stochastic control theory. For example, we use an alternative
martingale approach instead of the Itô’s formula in Proposition 4.

This paper is structured as follows. In Section 2, we give the mathematical presentation of
the problem and a quick review of some preliminaries of the spectrally negative Lévy process.
The solution of the two-sided exit problem and the return function for a given tax strategy are
given in Section 3. It is then argued in Section 4 that, if the optimal tax return function is once
continuously differentiable, then it satisfies an HJB equation. Conversely, it is proven that a
solution to the HJB equation coincides with the optimal tax return function. In Section 5, the
solution to the HJB equation is constructed and the optimal strategy is also found, provided that
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Assumption 1 (in Section 5) holds. In Section 6, for some spectrally negative Lévy processes,
we construct some appropriate classes of draw-down functions which satisfy Assumption 1.
Finally, some numerical results are given in Section 7.

2. Problem formulation

To give a mathematical formulation of the optimization problem, we start from a one-
dimensional Lévy process X = {X(t); t≥ 0} defined on (�,F , F= {Ft, t≥ 0}, P), a filtered
probability space satisfying the usual conditions. Throughout this paper, we assume that X is
a spectrally negative Lévy process with the usual exclusion of pure increasing linear drift and
the negative of a subordinator. We denote by Px the law of X with X0 = x≥ 0, and let Ex denote
the corresponding expectation operator. Let {X(t); t≥ 0} be the running supremum process of
X, where X(t) := sup0≤s≤t X(s) for t≥ 0. We assume that in the case of no control, the surplus
process for a company evolves as {X(t); t≥ 0}.

A loss-carry-forward tax strategy is described by a one-dimensional stochastic process
{γ (X(t)), t≥ 0}, where γ : [0,∞)→ [γ1, γ2] is a measurable function with 0≤ γ1 ≤ γ2 < 1.
Since there is a one-to-one correspondence between the function γ and the tax strategy
{γ (X(t)), t≥ 0}, we will also denote the corresponding loss-carry-forward tax strategy by γ
for short. For the case of an insurance company, γ (X(t)) denotes the fraction of the insurer’s
income that is paid out as tax at time t if it is in a profitable situation. Here we say that the
company is in a profitable situation at time t if we have X(t)= X(t). Thus, when applying
strategy γ , the cumulative tax until time t is∫ t

0
γ (X(s)) d X(s),

and the controlled surplus process is given by

Uγ (t)= X(t)−
∫ t

0
γ (X(s)) d X(s).

The strategy γ is said to be admissible if the process {γ (X(t)); t≥ 0} is adapted to the
filtration {Ft; t≥ 0} and γ (X(t)) ∈ [γ1, γ2]. By � we denote the set of all measurable functions
γ : [0,∞)→ [γ1, γ2], i.e. � consists of all admissible tax strategies in the sense of equating
a tax strategy with its corresponding function γ . For a given admissible strategy γ ∈ �, we
define the tax return function fγ by

fγ (x)=Ex

( ∫ τ
γ
ξ

0
e−qtγ (X(t)) d X(t)

)
, x ∈ [0,∞),

where q> 0 is a discount factor, and

τ
γ
ξ = inf{t≥ 0; Uγ (t)< ξ (U

γ
(t))} (1)

with U
γ

(t) := sup0≤s≤t Uγ (s), is the general draw-down time associated with the general
draw-down function ξ for the process Uγ . The function ξ : [0,∞)→ (−∞,+∞) is called
a general draw-down function if it is a continuously differentiable function satisfying ξ (y)=
y− ξ (y)> 0 for all y ∈ [0,∞).

It is interesting to see why the time defined by (1) is called the general draw-down time.
In the literature, the reflected process of a Markov process Y at its supremum, defined as
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sups∈[0,t]Y(s)− Y(t), is called the draw-down process of Y (see, for example, [21]). Hence,
it is natural to name the first time when the magnitude of the draw-down process exceeds a
given threshold a> 0, i.e.

�+a := inf
{

t≥ 0; sup
s∈[0,t]

Y(s)− Y(t)> a
}
= inf

{
t≥ 0; Y(t)< sup

s∈[0,t]
Y(s)− a

}
,

as the draw-down time. By comparing the definitions of �+a and τγξ , we may observe that �+a is
a special case of the general draw-down time for the process Y , in that its general draw-down
function is specialized to ξa(x)= x− a. This explains the origin of the name general draw-
down time. In addition, we find that the classical ruin time is recovered if we choose ξ ≡ 0
in (1), while draw down provides greater reserve-level-related information compared to ruin.
In this sense, draw down shall be an efficient tool of characterizing extreme risks from the
point of view of risk management.

The optimal tax return function is defined by

f (x)= sup
γ∈�

fγ (x)= sup
γ∈�

Ex

( ∫ τ
γ
ξ

0
e−qtγ (X(t)) d X(t)

)
, x ∈ [0,∞). (2)

The objectives of this paper are to find the optimal tax return function and the optimal tax
strategy γ ∗ that satisfies f (x)= fγ ∗(x) for all x ∈ [0,∞).

Now we present some useful concepts associated with X. The Laplace exponent of X is
defined by

ψ(θ )= logEx(eθ(X(1)−x)),

which is known to be finite for at least θ ∈ [0,∞) in which case it is strictly convex and
infinitely differentiable. As in [14], the q-scale functions {W(q); q≥ 0} of X are defined
as follows. For each q≥ 0, W(q) : [0,∞)→ [0,∞) is the unique strictly increasing and
continuous function with Laplace transform∫ ∞

0
e−θxW(q)(x) dx= 1

ψ(θ )− q
, θ >
(q),

where 
(q) is the right inverse of ψ , i.e. the largest root of the equation (in θ ) ψ(θ )= q. For
simplicity, we write W(x) for W(0)(x). In addition, it follows from [40] that

lim
x→∞

W(q)′(x)

W(q)(x)
=
(q)> 0 for q> 0. (3)

For any x ∈R and ϑ ≥ 0, there exists a well-known exponential change of measure that one
may perform for spectrally negative Lévy processes:

P
ϑ
x

Px

∣∣∣∣
Ft

= eϑ(X(t)−x)−ψ(ϑ)t. (4)

Furthermore, under the probability measures P
ϑ
x , X remains within the class of spectrally

negative Lévy processes. Here and after, we shall refer to the functions W(q)
ϑ and Wϑ as the

functions that play the role of the q-scale functions and 0-scale function considered under the
measure P

ϑ
x .

We also briefly recall concepts in excursion theory for the reflected Lévy process {X(t)−
X(t); t≥ 0}, and we refer the reader to [14] for more details. For x ∈ [0,∞), the process
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{L(t) := X(t)− x, t≥ 0} serves as a local time at 0 for the Markov process {X(t)− X(t); t≥ 0}
under Px. Let the corresponding inverse local time be defined as

L−1(t) := inf{s≥ 0 | L(s)> t} = sup{s≥ 0 | L(s)≤ t}.
Furthermore, L−1(t− )= lims↑t L−1(s). The Poisson point process of excursions indexed by
this local time is denoted by {(t, εt); t≥ 0},

εt(s) := X(L−1(t))− X(L−1(t− )+ s), s ∈ (0, L−1(t)− L−1(t− )],

whenever L−1(t)− L−1(t− )> 0. For the case when L−1(t)− L−1(t− )= 0, define εt =ϒ
with ϒ being an additional isolated point. Accordingly, we denote a generic excursion as ε( · )
(or ε for short) belonging to the space E of canonical excursions. The intensity measure of the
process {(t, εt); t≥ 0} is given by dt× dn, where n is a measure on the space of excursions. In
particular, ε= sups≥0 ε(s) serves as an example of the n-measurable functional of the canonical
excursion. Recalling the definition of L−1(t), we can verify that

L−1(t− )= lim
u↑t

L−1(u)= inf{s≥ 0 | L(s)≥ t} = sup{s≥ 0 | L(s)< t}

and
s< L−1(t− ) ⇐⇒ L(s)< t. (5)

Throughout this paper, to avoid the trivial case that X drifts to −∞ (draw down is certain),
we assume that ψ ′(0+ )≥ 0. It is also assumed that each scale function has continuous
derivative of second order.

3. Two-sided exit problem and expected accumulated discounted tax

In this section, solutions of the two-sided exit problem and expected accumulated
discounted tax payments are given, in preparation for motivating the HJB equation (see
Proposition 3) and the verification proposition (see Proposition 4) in Section 4. The solutions
are explicitly expressed by the scale functions associated with the driving spectrally negative
Lévy process.

Define the first up-crossing time of level b as

τ+b = inf{t≥ 0; Uγ (t)> b}, (6)

with the convention that inf ∅=∞. For γ ∈ �, define

γ x(z) := x+
∫ z

x
(1− γ (y)) dy, z ∈ [x,∞).

By Lemma 2.1 of [20], we know that the random times {t≥ 0: Uγ (t)=U
γ

(t)} agree
precisely with {t≥ 0: X(t)= X(t)}. Hence, we have X(τ+x+h)= X(τ+x+h), which together with
the definitions of γ x(z) and Uγ yields, for h≥ 0,

x+ h=Uγ (τ+x+h)= X(τ+x+h)−
∫ τ+x+h

0
γ (X(s)) d X(s)= γ x(X(τ+x+h)), x ∈ [0,∞). (7)

Furthermore, using the fact that γ x is strictly increasing and continuous, we obtain

X(τ+x+h)= γ−1
x (x+ h), x ∈ [0,∞),

where γ−1
x denotes the well-defined inverse function of γ x.
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The following result gives the solution to the two-sided exit problem in terms of scale
functions via an excursion argument. The excursion theory has also been used in some recent
works; see [12], [20], and [24].

Proposition 1. For a ∈ (0,∞), tax strategy γ, and draw-down function ξ, we have

Ex(e−qτ+a 1{τ+a <τγξ })= exp

(
−
∫ a

x

W(q)′(ξ (y))

W(q)(ξ (y))

1

1− γ (γ−1
x (y))

dy

)
, x ∈ [0, a], (8)

with ξ (y) := y− ξ (y).

Proof. On {τ+a < τ
γ
ξ }, we have

Uγ (t)≥ ξ (U
γ

(t))= ξ
(

sup
0≤s≤t

Uγ (s)
)

for all t ∈ [0, τ+a ].

Hence, we can rewrite the set {τ+a < τ
γ
ξ } as

{τ+a < τ
γ
ξ } = {εt ≤ ξ (γ x(x+ t)) for all t ∈ [0, γ−1

x (a)− x]}. (9)

Here we have used the fact that, for any s ∈ [0, L−1(t)− L−1(t− )],

Uγ (L−1(t− )+ s)= X(L−1(t− )+ s)−
∫ L−1(t−)+s

0
γ (X(u)) d X(u)

= X(L−1(t− )+ s)−
∫ L−1(t−)

0
γ (X(u)) d X(u),

which implies that Uγ (L−1(t− )+ s)≥ ξ ( supu≤L−1(t−)+s Uγ (u))= ξ (Uγ (L−1(t))) and is
equivalent to

εt(s)= X(L−1(t))− X(L−1(t− )+ s)

=Uγ (L−1(t))−Uγ (L−1(t− )+ s)

≤Uγ (L−1(t))− ξ (Uγ (L−1(t)))

= ξ (γ x(x+ t)), s ∈ [0, L−1(t)− L−1(t− )].

By (9) we have

Px({τ+a < τ
γ
ξ })= Px({εt ≤ ξ (γ x(x+ t)), for all t ∈ [0, γ−1

x (a)− x]})

= exp

(
−
∫ γ−1

x (a)−x

0
n(ε > ξ (γ x(x+ t))) dt

)
= exp

(
−
∫ a

x

W ′(ξ (y))

W(ξ (y))

1

1− γ (γ−1
x (y))

dy

)
, (10)

where in the last equality we have changed variables via y= γ x(x+ t) and used n(ε > x)=
W ′(x)/W(x), providing that x is not a point of discontinuity in the derivative of W (see [19]).

By (4) we have

P

(q)
x (τ+a < τ

γ
ξ )=Ex(e
(q)(X(τ+a )−x)−qτ+a 1{τ+a <τγξ })

= e
(q)(γ−1
x (a)−x)

Ex(e−qτ+a 1{τ+a <τγξ }), (11)
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while, on the other hand, we also have

P

(q)
x (τ+a < τ

γ
ξ )= exp

(
−
∫ a

x

W ′
(q)(ξ (y))

W
(q)(ξ (y))

1

1− γ (γ−1
x (y))

dy

)
= exp

(
−
∫ a

x

W(q)′(ξ (y))

W(q)(ξ (y))

1

1− γ (γ−1
x (y))

dy+
(q)(γ−1
x (a)− x)

)
, (12)

where a similar argument leading to (10) and W
(q)(x)= e−
(q)xW(q)(x) are used. Combining
(11) and (12), we arrive at the desired result (8). �

The following result solves the expected accumulated discounted tax payments (tax return
function) for a given tax strategy γ .

Proposition 2. For a ∈ (0,∞), tax strategy γ, and draw-down function ξ, we have

Ex

( ∫ τ+a ∧τγξ
0

e−qtγ (X(t)) d(X(t)− x)

)
=
∫ γ−1

x (a)

x
exp

(
−
∫ y

x

W(q)′(ξ (γ x(s)))

W(q)(ξ (γ x(s)))
ds

)
γ (y) dy, x ∈ [0, a]. (13)

Proof. See Appendix B. �
Remark 1. Letting a→∞ in (13) we obtain the solution of the expected total discounted tax
payments paid until the general draw-down time

Ex

( ∫ τ
γ
ξ

0
e−qtγ (X(t)) d(X(t)− x)

)
=
∫ ∞

x
exp

(
−
∫ y

x

W(q)′(ξ (γ x(s)))

W(q)(ξ (γ x(s)))
ds

)
γ (y) dy, x≥ 0.

Note that, since W(q)′(x)/W(q)(x)≥
(q)> 0 (see (29)), we can obtain an upper bound for fγ (x)
as

fγ (x)≤ γ2

∫ ∞
x

e−
(q)(y−x) dy= γ2


(q)
, x ∈ [0,∞),

which yields

f (x)= sup
γ∈�

fγ (x)≤ γ2


(q)
, x ∈ [0,∞).

4. HJB equation and verification arguments

In this section, the HJB equation and the verification proposition are presented. It turns out
that the optimal tax return function (i.e. the expected accumulated discounted tax payments
corresponding to the optimal tax strategy) satisfies the HJB equation. Since a solution to the
HJB equation is not necessarily the optimal tax return function, then a verification proposition
is in need to guarantee that the solution to the HJB equation is indeed the optimal tax return
function.

The following result gives the HJB equation satisfied by the optimal tax return function
defined by (2).
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Proposition 3. Assume that f (x) defined by (2) is once continuously differentiable over [0,∞).
Then f (x) satisfies the following HJB equation

sup
γ∈[γ1,γ2]

(
γ

1− γ −
1

1− γ
W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ f ′(x)

)
= 0, x ∈ [0,∞). (14)

Proof. See Appendix C. �

In the following result, we argue that a solution to the HJB equation (14) serves as the
optimal tax return function f (x) defined in (2).

Proposition 4. (Verification proposition.) Assume that f (x) is a once continuously differen-
tiable solution to (14), and let γ ∗ be the function that maximizes the left-hand side of (14),
i.e.

γ ∗(z)= arg max
γ∈[γ1,γ2]

[
γ

1− γ −
1

1− γ
W(q)′(ξ (γ x(z)))

W(q)(ξ (γ x(z)))
f (γ x(z))+ f ′(γ x(z))

]
(15)

for z ∈ [x,∞). Then γ ∗ serves as an optimal tax strategy.

Proof. Since γ (z) ∈ [γ1, γ2] for all z ∈ [x,∞) and γ ∈ �, it can be checked from (14) that,
for any γ ∈ �,

γ (z)≤−
(

(1− γ (z)) f ′(γ x(z))− W(q)′(ξ (γ x(z)))

W(q)(ξ (γ x(z)))
f (γ x(z))

)
, z ∈ [x,∞),

and the equality holds when γ ≡ γ ∗. Replacing z by X(t) in the above inequality we should
have, for all s≥ 0,

γ (X(s))≤ W(q)′(ξ (γ x(X(s))))

W(q)(ξ (γ x(X(s))))
f (γ x(X(s)))− (1− γ (X(s))) f ′(γ x(X(s))), (16)

and the equality holds when γ ≡ γ ∗.
Define {η(s); s≥ 0} as

η(s)= lim
h↓0

1

h
Ex

((
e
−qτ+

γ x(X(s))+(1−γ (X(s)))h 1{τ+
γ x(X(s))+(1−γ (X(s)))h

<τ
γ
ξ } f (γ x(X(s))

+ (1−γ (X(s)))h)−e
−qτ+

γ x(X(s)) 1{τ+
γ x(X(s))

<τ
γ
ξ } f (γ x(X(s)))

) ∣∣∣Fτ+
γ x(X(s))

)
. (17)

Then, by mimicking the arguments in the proof of the martingale property of the process (4.3)
in [17] or the process (3.5) in [32], we can verify that the compensated process

Z(t)= e
−qτ+

γ x(X(t)) 1{τ+
γ x(X(t))

<τ
γ
ξ }f (γ x(X(t)))−

∫ τ+
γ x(X(t))

0
η(s) d X(s), t≥ 0,

is a martingale with respect to the filtration {Fτ+
γ x(X(t))

; t≥ 0}. In addition, the right-hand side
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of (17) can be rewritten as

η(s)= lim
h↓0

1

h

(
Ex

(
e
−qτ+

γ x(X(s))+(1−γ (X(s)))h 1{τ+
γ x(X(s))+(1−γ (X(s)))h

<τ
γ
ξ }

× f (γ x(X(s))+ (1− γ (X(s)))h)
∣∣Fτ+

γ x(X(s))

)
− e
−qτ+

γ x(X(s)) 1{τ+
γ x(X(s))

<τ
γ
ξ }f (γ x(X(s)))

)
= lim

h↓0

1

h

(
Ex

(
e
−qτ+

γ x(X(s))+(1−γ (X(s)))h 1{τ+
γ x(X(s))+(1−γ (X(s)))h

<τ
γ
ξ }
∣∣∣Fτ+

γ x(X(s))

)
× (f (γ x(X(s)))+ f ′(γ x(X(s)))(1− γ (X(s)))h+ o(h))

− e
−qτ+

γ x(X(s)) 1{τ+
γ x(X(s))

<τ
γ
ξ }f (γ x(X(s)))

)
= lim

h↓0

1

h

((
1− (W(q))′(ξ (γ x(X(s))))

W(q)(ξ (γ x(X(s))))
h+ o(h)

)
× (f (γ x(X(s)))+ f ′(γ x(X(s)))(1− γ (X(s)))h+ o(h))

− f (γ x(X(s)))

)
e
−qτ+

γ x(X(s)) 1{τ+
γ x(X(s))

<τ
γ
ξ }

=
(
− W(q)′ (ξ (γ x(X(s))))

W(q)(ξ (γ x(X(s))))
f (γ x(X(s)))

+ (1− γ (X(s)))f ′(γ x(X(s)))

)
e
−qτ+

γ x(X(s)) 1{τ+
γ x(X(s))

<τ
γ
ξ }, (18)

where in the third equality of (18) we have used Lemma 1 (see Appendix A) and the fact that

z− ξ1(z)= γ x(z)− ξ (γ x(z))= ξ (γ x(z)).

Combining (16) and (18) yields

γ (X(s))e
−qτ+

γ x(X(s)) 1{τ+
γ x(X(s))

<τ
γ
ξ } ≤−η(s), (19)

where the equality holds when γ = γ ∗. It is also seen from (19) that {−η(s); s≥ 0} is
a nonnegative-valued process. Noting that {Z(t); t≥ 0} is a martingale with respect to
{Fτ+

γ x(X(t))
; t≥ 0}, we have

Ex

[
e
−qτ+

γ x(X(t)) 1{τ+
γ x(X(t))

<τ
γ
ξ }f (γ x(X(t)))−

∫ τ+
γ x(X(t))

0
η(s) d X(s)

]
= f (x). (20)

Now note that lim supt→∞ X(t)=∞ almost surely (a.s.) implies that limt→∞ X(t)=∞ a.s.,
which further implies that limt→∞ τ+γ x(X(t))

=∞ a.s. Combining the facts that f (x) is bounded

over [0,∞) (see Remark 1) and limt→∞ τ+γ x(X(t))
=∞ a.s., we obtain

lim
t→∞Ex

(
e
−qτ+

γ x(X(t)) 1{τ+
γ x(X(t))

<τ
γ
ξ }f (γ x(X(t)))

)
= 0,
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due to the bounded convergence theorem. Letting t→∞ in (20) and using the monotone
convergence theorem, we arrive at

Ex

[
−
∫ ∞

0
η(s) d X(s)

]
= f (x). (21)

Since (19) becomes equality when γ = γ ∗, by (21) we obtain

Ex

[ ∫ ∞
0

e
−qτ+

γ ∗(X(s)) 1{τ+
γ ∗(X(s))

<τ
γ ∗
ξ }
γ ∗(X(s)) d X(s)

]
= f (x).

Because tax would be paid when and only when X(s) genuinely increases (intuitively, when
‘dX(s)> 0’ or s ∈ {τ+

γ ∗(X(s))
; s≥ 0}), we have

Ex

[ ∫ ∞
0

e−qs1{s<τγ ∗ξ }
γ ∗(X(s)) d X(s)

]
=Ex

[ ∫ ∞
0

e
−qτ+

γ ∗(X(s)) 1{τ+
γ ∗(X(s))

<τ
γ ∗
ξ }
γ ∗(X(s)) d X(s)

]
= f (x),

that is, fγ ∗ (x)= f (x).
While, for arbitrary γ ∈ �, by (19) and similar arguments, we can obtain

Ex

[ ∫ ∞
0

e−qs1{s<τγξ }γ (X(s)) d X(s)

]
≤ f (x),

that is, fγ (x)≤ f (x) for all γ ∈ �. �

5. Characterizing the optimal return function and strategy

As usual in stochastic control problems, we guess the qualitative nature of the optimal return
function and make some assumptions. Based on those assumptions we find the solution to the
HJB equation and later we need to verify that the obtained solution satisfies the assumptions.
To be more specific, we proceed as follows.

• Guess in advance that ‘W(q)′(ξ (x))f (x)/W(q)(ξ (x))≤ 1 for all x’, which is equivalent
to (32), to arrive at a candidate solution (28) to (14). Then we should prove that
(28) satisfies ‘W(q)′(ξ (x))f (x)/W(q)(ξ (x))≤ 1 for all x’, to guarantee that this candidate
solution (28) is indeed a solution to (14). See Proposition 5 and its proof.

• Guess in advance that ‘W(q)′(ξ (x))f (x)/W(q)(ξ (x))≥ 1 for all x’, which is equivalent
to (35), to arrive at a candidate solution (34) to (14). Then we should prove that
(34) satisfies ‘W(q)′(ξ (x))f (x)/W(q)(ξ (x))≥ 1 for all x’, to guarantee that this candidate
solution (34) is indeed a solution to (14). See Proposition 6 and its proof.

• Guess in advance that ‘W(q)′(ξ (x))f (x)/W(q)(ξ (x))≥ 1 for all x ∈ (0, x1) and
W(q)′(ξ (x))f (x)/W(q)(ξ (x))≤ 1 for all x ∈ [x1,∞)’, to arrive at a candidate solution (38)
to (14). Then we should prove that (38) satisfies ‘W(q)′(ξ (x))f (x)/W(q)(ξ (x))≥ 1 for all
x ∈ (0, x1) and W(q)′(ξ (x))f (x)/W(q)(ξ (x))≤ 1 for all x ∈ [x1,∞)’, to guarantee that this
candidate solution (38) is indeed a solution to (14). See case (v) of Proposition 7 and its
proof. Or, vice versa for case (vi) of Proposition 7.
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It is already argued in Proposition 4 that the solution to (14) serves as the optimal tax return
function of the taxation optimization problem (2), and the optimal tax strategy is then obtained
using such a solution through (15). In order to solve (14), one may eliminate the operator
‘supγ∈[γ1,γ2]’ on the right-hand side of (14) beforehand. To this end, we first guess that the

solution f (x) of (14) satisfies W(q)′(ξ (x))f (x)/W(q)(ξ (x))≤ 1 for all x, in which case

γ

1− γ −
1

1− γ
W(q)′(ξ (x))

W(q)(ξ (x))
f (x)

is nondecreasing with respect to γ for all given x. Then, using this fact, we may rewrite (14) as

0= γ2 − W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ (1− γ2)f ′(x) for all x≥ 0. (23)

Instead of solving (23), we first turn to the homogeneous differential equation of (23), which
can be rewritten as

d

dx
ln f (x)= f ′(x)

f (x)
= 1

1− γ2

W(q)′(ξ (x))

W(q)(ξ (x))
, x≥ 0.

The solution of the above homogeneous differential equation is given by

f (x)=C exp

(
1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
, x≥ 0,

with C being some constant. By the standard method of the variation of constants, we guess
that the solution to (23) is

f (x)=C(x) exp

(
1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
, x≥ 0, (24)

with C(x) being some unknown function to be determined later. Substituting (24) into (23) we
obtain

0= γ2 − W(q)′(ξ (x))

W(q)(ξ (x))
C(x) exp

(
1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
+ (1− γ2) exp

(
1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)(
C′(x)+ C(x)

1− γ2

W(q)′(ξ (x))

W(q)(ξ (x))

)
,

which can be simplified as

C′(x)=− γ2

1− γ2
exp

(
− 1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
.

The solution of the above differential equation is given by

C(x)=C0 − γ2

1− γ2

∫ x

0
exp

(
− 1

1− γ2

∫ y

0

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy, (25)
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where C0 is some constant. Combining (24) and (25) we know that the solution of (23) is

f (x)=
(

C0 − γ2

1− γ2

∫ x

0
exp

(
− 1

1− γ2

∫ y

0

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy

)
× exp

(
1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
, x≥ 0. (26)

It remains to determine the unknown constant C0. For this purpose, we first deduce that

lim
x→∞ exp

(
1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
=∞, (27)

which together with the fact that f (∞)<∞ implies that (26) can be rewritten as

f (x)= γ2

1− γ2

∫ ∞
x

exp

(
− 1

1− γ2

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy, x≥ 0. (28)

We prove (27) in the sequel. Note that the scale function W(q)(x) is continuously dif-
ferentiable, positive valued, and strictly increasing over (0,∞). By the equality W(q)(x)=
e
(q)xW
(q)(x) we can conclude that the function W ′(x) must also be a continuous function
over (0,∞). Furthermore, we have

W(q)′(x)

W(q)(x)
= 
(q)e
(q)xW
(q)(x)+ e
(q)xW ′
(q)(x)

e
(q)xW
(q)(x)

=
(q)+ W ′
(q)(x)

W
(q)(x)

=
(q)+ n
(q)(ε > x)

≥
(q)> 0 for all x ∈ (0,∞) and all q> 0. (29)

Hence, recalling that ξ (y)> 0 for all y ∈ [0,∞), we can find that

lim
x→∞ exp

(
1

1− γ2

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
≥ lim

x→∞ exp

(
1

1− γ2

(q)x

)
=∞,

as is required in (27).
For the candidate optimal solution given by (28), we need to justify that

W(q)′(ξ (x))

W(q)(ξ (x))
f (x)≤ 1 (for all x> 0)

to assure its optimality. Using integration by parts, we can rewrite (28) as,

f (x)=
∫ ∞

x
d

⎛⎝− exp
(
− γ2

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

exp
( ∫ y

x
W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

⎞⎠

−
∫ ∞

x

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]′
exp

(
− γ2

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]2
dy
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=−
exp

(
− γ2

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

exp
( ∫ y

x
W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

∣∣∣∣∞
x

−
∫ ∞

x

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]′
exp

(
− γ2

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]2
dy

= W(q)(ξ (x))

W(q)′(ξ (x))
−G2(x), x≥ 0, (30)

where

G2(x)=
∫ ∞

x
exp

(
− 1

1− γ2

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
g(y) dy, x≥ 0.

Here the function g is defined as

g(x)= ξ ′(x)+ (1− ξ ′(x))
W(q)′′(ξ (x))W(q)(ξ (x))

(W(q)′(ξ (x)))2
, x≥ 0. (31)

With the above alternative representation of f (x), we conclude that

W(q)′(ξ (x))

W(q)(ξ (x))
f (x)≤ 1 (for all x> 0)

is equivalent to the inequality

G2(x)≥ 0 for all x> 0. (32)

In order to characterize the optimal tax strategy and the optimal tax return function
explicitly, we need the following assumption, under which the optimal tax return function
and the optimal tax strategy can be obtained. As can be seen, the extension from the ruin-based
tax optimization problem to our general draw-down-based tax optimization problem incurs in
greater difficulties and complexity, especially in finding the optimal tax return function and the
optimal tax strategy, while characterizing them is very critical in addressing optimal control
problems. When our model and tax structure reduce to those in the existing literature, our
results coincide with the corresponding results.

Assumption 1. Let g be defined by (31). Assume that there exists an x0 ∈ [0,∞) such that the
function g changes its sign at the point x0. Here, we say that the function g(x) changes its sign
at the point x0 if and only if g(x1)g(x2)≤ 0 for all x1 ≤ x0, x2 ≥ x0.

Proposition 5. Suppose that Assumption 1 and condition (32) hold, which is equivalent to a
combination of the two cases

(i) x0 = 0, g(x)≥ 0 for x ∈ [0,∞);

(ii) x0 ∈ (0,∞), g(x)≤ 0 for x ∈ [0, x0], g(x)≥ 0 for x ∈ (x0,∞), G2(0)≥ 0.

Let f (x) be defined by (28). Then f (x) is indeed a once continuously differentiable solution to
(14). In addition, the optimal tax strategy is γ (x)≡ γ2, x ∈ [0,∞).
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Proof. See the arguments before Assumption 1. �

We proceed to characterize the optimal solution for (14). This time we guess that the
solution f (x) of (14) satisfies W(q)′(ξ (x))f (x)/W(q)(ξ (x))≥ 1 for all x. Then, for all x≥ 0, the
function f satisfies

0= γ1 − W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ (1− γ1)f ′(x). (33)

Solving (33) by similar arguments as in solving (23), we obtain

f (x)= γ1

1− γ1

∫ ∞
x

exp

(
− 1

1− γ1

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy

= W(q)(ξ (x))

W(q)′(ξ (x))
−G1(x), x≥ 0, (34)

where

G1(x)=
∫ ∞

x
exp

(
− 1

1− γ1

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
g(y) dy.

By (34), it is obvious that

W(q)′(ξ (x))

W(q)(ξ (x))
f (x)≥ 1 for all x> 0

is equivalent to
G1(x)≤ 0 for all x> 0. (35)

Proposition 6. Suppose that Assumption 1 and condition (35) hold, which is equivalent to a
combination of the two cases

(iii) x0 = 0, g(x)≤ 0 for x ∈ [0,∞);

(iv) x0 ∈ (0,∞), g(x)≥ 0 for x ∈ [0, x0], g(x)≤ 0 for x ∈ (x0,∞), G1(0)≤ 0.

Let f (x) be defined by (34). Then f (x) is indeed a once continuously differentiable solution to
(14). In addition, the optimal tax strategy is γ (x)≡ γ1, x ∈ [0,∞).

Proof. See the arguments between Propositions 5 and 6. �

Aside from cases (i)–(iv), we also consider the following two cases.

(v) x0 ∈ (0,∞), g(x)≤ 0 for x ∈ [0, x0], g(x)≥ 0 for x ∈ (x0,∞), and there is an x> 0 such
that G2(x)< 0.

(vi) x0 ∈ (0,∞), g(x)≥ 0 for x ∈ [0, x0], g(x)≤ 0 for x ∈ (x0,∞), and there is an x> 0 such
that G1(x)> 0.

In case (v), we must have x< x0. By the definition of x0 we know that G2(x0)≥ 0. Then
from the intermediate value theorem for the continuous function G2(x) we claim that there
must exist some x ∈ (x, x0] such that G2(x)= 0. Let

x1 = inf{x ∈ (x, x0] | G2(x)= 0}. (36)
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Then G2(x1)= 0, G2(x)< 0 for all 0< x< x1, and G2(x)≥ 0 for all x ∈ [x1,∞). Hence, this
time we guess that the solution f (x) of (14) satisfies

W(q)′(ξ (x))

W(q)(ξ (x))
f (x)≥1 for all x ∈ (0, x1), and

W(q)′(ξ (x))

W(q)(ξ (x))
f (x)≤1 for all x ∈ [x1,∞).

That is, f (x) satisfies the system of differential equations

0= γ1 − W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ (1− γ1)f ′(x) for all x ∈ (0, x1),

0= γ2 − W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ (1− γ2)f ′(x) for all x ∈ [x1,∞).

(37)

Solving the above system of equations yields

f (x)=
(

C− γ1

1− γ1

∫ x

0
exp

(
− 1

1− γ1

∫ y

0

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy

)
× exp

(
1

1− γ1

∫ x

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
for all x ∈ (0, x1),

f (x)= γ2

1− γ2

∫ ∞
x

exp

(
− 1

1− γ2

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy for all x ∈ [x1,∞).

Using the continuity condition f (x1 − )= f (x1 + )= f (x1), we can determine the constant
C as

C= γ1

1− γ1

∫ x1

0
exp

(
− 1

1− γ1

∫ y

0

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy

+ γ2

1− γ2
exp

( −1

1− γ1

∫ x1

0

W(q)′(ξ (y))

W(q)(ξ (y))
dy

) ∫ ∞
x1

exp

( −1

1− γ2

∫ y

x1

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy.

Therefore, we can write down the solution to the equations in (37) as

f (x)= γ1

1− γ1

∫ x1

x
exp

( −1

1− γ1

∫ y

x

W(q)′(ξ (u) )

W(q)(ξ (u) )
du

)
dy

+ γ2

1− γ2
exp

( −1

1− γ1

∫ x1

x

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
×
∫ ∞

x1

exp

( −1

1− γ2

∫ y

x1

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy for all x ∈ (0, x1),

f (x)= γ2

1− γ2

∫ ∞
x

exp

(
− 1

1− γ2

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy for all x ∈ [x1,∞). (38)

We need to only further prove that the function given by (38) satisfies

W(q)′(ξ (x))

W(q)(ξ (x))
f (x)≥ 1 for all x ∈ (0, x1)
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to guarantee itself a solution to the HJB equation (14). By some algebraic manipulations we
obtain, for x ∈ (0, x1),

f (x)=
∫ x1

x
d

⎛⎝− exp
(
− γ1

1−γ1

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

exp
( ∫ y

x
W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

⎞⎠

−
∫ x1

x

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]′
exp

(
− γ1

1−γ1

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]2
dy

+ exp

( −1

1− γ1

∫ x1

x

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)

×
⎛⎝∫ ∞

x1

d

⎛⎝− exp
(
− γ2

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

exp
( ∫ y

x
W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

⎞⎠

−
∫ ∞

x1

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]′
exp

(
− γ2

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

[
exp

( ∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

W(q)′(ξ (y))
W(q)(ξ (y))

]2
dy

⎞⎟⎠
= W(q)(ξ (x))

W(q)′(ξ (x))
−
∫ x1

x
exp

(
− 1

1− γ1

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
g(y) dy

− exp

( −1

1− γ1

∫ x1

x

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
G2(x1)

≥ W(q)(ξ (x))

W(q)′(ξ (x))
, (39)

since g(y)≤ 0 for y ∈ [x, x1]⊆ [0, x0] and G2(x1)= 0. Inequality (39) reveals that
W(q)′(ξ (x))f (x)/W(q)(ξ (x))≥ 1 for all x ∈ (0, x1).

Proposition 7. In case (v), the once continuously differentiable solution to (14) (optimal tax
function) is defined by (38) with x1 determined by (36) and x0 given in Assumption 1. In
addition, the optimal tax strategy is given by γ (x)= γ11[0,x1](x)+ γ21(x1,∞)(x).

In case (vi), the once continuously differentiable solution to (14) (optimal tax function) is
defined by,

f (x)= γ2

1− γ2

∫ x2

x
exp

( −1

1− γ2

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy

+ γ1

1− γ1
exp

( −1

1− γ2

∫ x2

x

W(q)′(ξ (y))

W(q)(ξ (y))
dy

)
×
∫ ∞

x2

exp (
−1

1− γ2

∫ y

x2

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy for all x ∈ (0, x2),

f (x)= γ1

1− γ1

∫ ∞
x

exp

(
− 1

1− γ1

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
dy for all x ∈ [x2,∞),

with x2 determined by,
x2 = inf{x ∈ (x, x0] | G1(x)= 0},
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and x0 given by Assumption 1. In addition, the optimal tax strategy is given by γ (x)=
γ21[0,x2](x)+ γ11(x2,∞)(x).

Proof. The arguments of the proof of case (v) are given immediately above this proposition.
The proof of case (vi) is much similar. �
Remark 2. Let ξ (x)≡ 0. Then the HJB equation (14) coincides well with Equation (2.6) of
[32]. Furthermore, if it is assumed that each scale function is three times differentiable and its
first derivative is a strictly convex function (as was assumed in [32] and [4]), then

g(x)= W(q)′′(x)W(q)(x)

(W(q)′(x))2
, x≥ 0,

will change its sign at most once. In addition, if g(x) changes its sign once at x0 ∈ [0,∞), we
must have g(x)≤ 0 for x ∈ [0, x0], and g(x)≥ 0 for x≥ x0.

That is, only cases (i), (ii), and (v) are possible scenarios. Combined with the last equality
in (39), it is obvious that (38) in case (v) coincides with Equation (5.7) of [32]. Meanwhile,
(28) in cases (i) and (ii) coincides with Equation (4.2) of [32]. Indeed, when ξ ≡ 0, we have

G2(x)= (W(q)(x))1/(1−γ2)
∫ ∞

x

W(q)′′(y)(W(q)(y))1−1/(1−γ2)

(W(q)′(y))2
dy, x≥ 0.

Hence, x1 as defined by (36) in case (v) coincides with u0 defined in Equation (5.15) of [32],
which implies that Equation (5.22) of [32] holds with β = γ2 and c= q, that is,

W(q)(x1)

W(q)′(x1)
= γ2

1− γ2

∫ ∞
x1

(
W(q)(x1)

W(q)(y)

)1/(1−γ2)

dy. (40)

By (40), (38) can be rewritten as

f (x)= γ1

1− γ1

∫ x1

x
exp

( −1

1− γ1

∫ y

x

W(q)′(u)

W(q)(u)
du

)
dy

+ exp

( −1

1− γ1

∫ x1

x

W(q)′(y)

W(q)(y)
dy

)
γ2

1− γ2

∫ ∞
x1

exp

( −1

1− γ2

∫ y

x1

W(q)′(u)

W(q)(u)
du

)
dy

= (W(q)(x))1/(1−γ1)
(

γ1

1− γ1

∫ x1

x
(W(q)(y))−1/(1−γ1)dy+ (W(q)(x1))1−1/(1−γ1)

W(q)′(x1)

)
for x ∈ (0, x1), and

f (x)= γ2

1− γ2
(W(q)(x))1/(1−γ2)

∫ ∞
x

(W(q)(y))−1/(1−γ2) dy

= (W(q)(x))1/(1−γ2)
(

(W(q)(x1))1−1/(1−γ2)

W(q)′(x1)
− γ2

1− γ2

∫ x

x1

(W(q)(y))−1/(1−γ2) dy

)
for x ∈ [x1,∞), coinciding well with Equation (5.7) of [32].

6. Examples

In this section, we consider several examples of spectrally negative Lévy processes X
and show that Assumption 1 holds for certain choices of the draw-down function ξ . For
simplicity of notation, write ξ (x) := x− ξ (x), Wξ (z) :=W(q)(ξ (z))/W(q)′(ξ (z)), and, hence,
W0(z) :=W(q)(z)/W(q)′(z).
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Example 1. In this example, let X(t)=μt+ B(t) for a constant μ and a Brownian motion B.
The q-scale function of X is given by

W(q)(x)= 1√
μ2 + 2q

(eθ1x − eθ2x), x≥ 0,

with θ1 =−μ+
√
μ2 + 2q and θ2 =−(μ+√μ2 + 2q). It can be checked that

W(q)′(x)= 1√
μ2 + 2q

(θ1eθ1x − θ2eθ2x)> 0, x≥ 0,

W(q)′′(x)= 2(qW(q)(x)−μW(q)′(x)), x≥ 0.

The function g can be rewritten as

g(x)= ξ ′(x)+ (1− ξ ′(x))(2qWξ (x)2 − 2μWξ (x)),

from which we can deduce that

g′(x)= ξ ′′(x)f1(Wξ (x))+ (ξ ′(x)− 1)W ′ξ (x)f2(Wξ (x)),

with f1(x)= 1− 2qx2 + 2μx and f2(x)=−4qx+ 2μ. We can find that f1(x)> (< ) 0
on [0, (μ+√μ2 + 2q)/2q) (((μ+√μ2 + 2q)/2q,∞)), and f1(x)= 0 for x=
(μ+√μ2 + 2q)/2q; while f2(x)> (< ) 0 on [0, μ/2q) ((μ/2q,∞)), and f2(x)= 0 for
x=μ/2q. There are two cases to be considered.

Case 1: μ> 0, and hence 0<μ/2q< (μ+√μ2 + 2q)/2q. First, choose ξ in such a way
that

• ξ (0)= 0, limx→∞ ξ (x)=∞, ξ ′(0)≤ 0;

• ξ ′(x)< 1 for all x ∈ [0,∞);

• ξ ′′(x)≤ 0 for all x ∈ [0,W−1
ξ (μ/2q)] and ξ ′′(x)≥ 0 for all x ∈ (W−1

ξ (μ/2q),∞).

We can observe the following facts:

• ξ (x) is strictly increasing over [0,∞) (because ξ
′
(x)= 1− ξ ′(x)> 0 for all x ∈ [0,∞));

• Wξ (z) is strictly increasing (since W(q)(z)/W(q)′(z) and ξ (z) are both strictly increasing)
with supremum Wξ (∞)= (μ+√μ2 + 2q)/2q;

• limx→∞ g(x)= limx→∞ (ξ ′(x)+ 1− ξ ′(x))= 1> 0, limx→0 g(x)= ξ ′(0)≤ 0;

• g′(x)= ξ ′′(x)f1(Wξ (x))+ (ξ ′(x)− 1)W ′ξ (x)f2(Wξ (x))< 0 for all x ∈ [0,W−1
ξ (μ/2q));

• ξ ′(W−1
ξ (μ/2q))< 0, g(W−1

ξ (μ/2q))= ξ ′(W−1
ξ (μ/2q))+ (1− ξ ′(W−1

ξ (μ/2q)))×
(− μ2/2q)< 0;

• g′(x)= ξ ′′(x)f1(Wξ (x))+ (ξ ′(x)− 1)W ′ξ (x)f2(Wξ (x))> 0, x ∈ (W−1
ξ (μ/2q),∞).

Based on these observations, we can deduce that there should exist an x0 ∈ (W−1
ξ (μ/2q),∞)

such that g(x)≤ 0 for x≤ x0, and g(x)> 0 for x> x0. Thus, Assumption 1 holds.
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The above class of the general draw-down function however may seem to be restrictive
because conditions are imposed on the second derivative of ξ . Now we construct a more general
class of the general draw-down functions. It is seen that

g(x)≥ 0 ⇐⇒ 1

1− ξ ′((ξ )−1(z))
− 1≥−W(q)′′(z)W(q)(z)

(W(q)′(z))2
, z= ξ (x)

⇐⇒ ((ξ )−1)′(z)− 1≥ 2μW0(z)− 2qW0(z)2, z= ξ (x), (41)

provided that ξ ′(x)< 1 for all x≥ 0 (hence, (ξ )−1 is well defined). Recalling that W(q)′′(z) takes
positive values for large z (In fact, W−1

ξ (μ/q) is the unique zero of W(q)′′(z) with W(q)′′(z)<

(> ) 0 over [0,W−1
ξ (μ/q)) ((W−1

ξ (μ/q),∞)), we can also choose ξ satisfying

• 0≤ ξ ′(x)< 1 for all x ∈ [0,∞);

• ξ (0)= d ∈ (0,∞), ξ (∞)= d ∈ (0,∞], a ∈ [d, d];

• ((ξ )−1)′(z)− 1< 2μW0(z)− 2qW0(z)2 for all z ∈ [d, a);

• ((ξ )−1)′(z)− 1≥ 2μW0(z)− 2qW0(z)2 for all z ∈ [a, d),

so that Assumption 1 holds with x0 = (ξ )−1(a). In particular, if a= d then g(x)< 0 for all
x ∈ [0,∞); if a= d then g(x)≥ 0 for all x ∈ [0,∞). To see that such a construction is feasible, it
would be quite useful to note that ξ ′(x) ∈ [0, 1) (or, equivalently, ξ

′
(x) ∈ (0, 1]) over x ∈ [0,∞)

can result in ((ξ )−1)′(z) ∈ [1,∞) over z ∈ [0,∞). Note that the function on the right-hand side
of the final inequality of (41) does not depend on ξ .

In particular, we can fix d1 ∈ [0,∞), a ∈ [d1,∞), and M1 ∈ [1,∞), and then choose ξ
satisfying

• (ξ )−1(d1)= 0;

• ((ξ )−1)′(z) ∈ [1,M1), z ∈ [d1,∞);

• ((ξ )−1)′(z)− 1< 2μW0(z)− 2qW0(z)2 for all z ∈ [d1, a);

• ((ξ )−1)′(z)− 1≥ 2μW0(z)− 2qW0(z)2 for all z ∈ [a,∞),

to fulfill Assumption 1 with x0 = (ξ )−1(a). Here, we should note that the function on the right-
hand side of the final inequality of (41) is bounded, and ξ (∞)=∞ by construction.

Case 2: μ≤ 0. First, consider the case ξ satisfying

• ξ ′(x)< 1 for all x ∈ [0,∞);

• ξ (0)= 0, limx→∞ ξ (x)=∞, ξ ′(0)= 0;

• ξ ′′(x)≥ 0 for all x ∈ [0,∞),

so that ξ (x) is strictly increasing on [0,∞); g(0)= 0; and g′(x)= ξ ′′(x)f1(Wξ (x))+ (ξ ′(x)−
1)W ′ξ (x)f2(Wξ (x))> 0 (and, hence, g(x)> 0) for all x ∈ (0,∞). Hence, Assumption 1 should
hold with x0 = 0.

Due to the fact that

g(x)≥ 0 ⇐⇒ ξ ′(x)+ (1− ξ ′(x))(2qWξ (x)2 − 2μWξ (x))≥ 0,

we can also just choose ξ such that ξ ′(x) ∈ [0, 1) for x ∈ [0,∞), so that Assumption 1 holds
with x0 = 0.
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Example 2. Let X(t)= x+ pt−∑N(t)
i=1 ei, where p> 0, {ei; i≥ 1} are independent and iden-

tically distributed exponential random variables with mean 1/μ, and {N(t), t≥ 0} is an
independent Poisson process with intensity λ. The q-scale function of X is given by

W(q)(x)= p−1(A+eθ+x − A−eθ−x), x≥ 0,

where

A± = μ+ θ±
θ+ − θ− > 0, θ± = q+ λ−μp±√(q+ λ−μp)2 + 4pqμ

2p
.

Some algebraic manipulations yield

W(q)′′(x)= p−1(A+(θ+)2eθ+x − A−(θ−)2eθ−x)=−θ−θ+W(q)(x)+ (θ+ + θ−)W(q)′(x).

Hence, g(x) can be rewritten as

g(x)= ξ ′(x)+ (1− ξ ′(x))(− θ+θ−Wξ (x)2 + (θ+ + θ−)Wξ (x)).

Let f3(x)=−θ+θ−x2 + (θ+ + θ−)x, which is nonpositive and decreasing over [0, 0∨
(θ+ + θ−)/2θ+θ−), and increasing over [0∨ (θ+ + θ−)/2θ+θ−,∞). Because Wξ (z) is strictly
increasing with upper bound 1/θ+ (cannot be attained) and lower bound 0, 1− f3(Wξ (x))> 0,
leading to 1− 1/(1− f3(Wξ (x)))< 1, x ∈ [0,∞). Hence, we can verify that

g(x)≥ 0 ⇐⇒ ξ ′(x)≥ −f3(Wξ (x))

1− f3(Wξ (x))
= 1− 1

1− f3(Wξ (x))
. (42)

Then we can choose ξ satisfying

◦ ξ ′(x)≥ 1− 1

1− f3(0∨ (θ+ + θ−)/2θ+θ−)
for all x ∈ [0,∞),

in order to guarantee that g(x)≥ 0 for all x ∈ [0,∞), in which case Assumption 1 holds with
x0 = 0.

By imposing conditions on the first and second derivatives of ξ, and using a very similar
argument as in the first construction method for the case μ> 0 in Example 1, we can construct
an appropriate class of the general draw-down functions fulfilling Assumption 1.

Note that (42) is equivalent to

g(x)≥ 0 ⇐⇒ ξ ′((ξ )−1(z))≥ −f3(W0(z))

1− f3(W0(z))
, z= ξ (x)

⇐⇒ 1− (((ξ )−1)′(z))−1 ≥ −f3(W0(z))

1− f3(W0(z))
, z= ξ (x), (43)

provided that (ξ )−1 is well defined. Thus, we can also choose ξ satisfying

• ξ ′(x)< 1 for all x ∈ [0,∞);

• ξ (0)= d ∈ (0,∞), ξ (∞)= d ∈ (0,∞], a ∈ [d, d];

• 1− (((ξ )−1)′(z))−1 <
−f3(W0(z))

1− f3(W0(z))
for all z ∈ [d, a);

• 1− (((ξ )−1)′(z))−1 ≥ −f3(W0(z))

1− f3(W0(z))
for all z ∈ [a, d),
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so that Assumption 1 holds with x0 = (ξ )−1(a). To understand the feasibility of such a
construction, it would be quite useful to note that ξ ′(x) ∈ (−∞, 1) (or, equivalently, ξ

′
(x) ∈

(0,∞)) over x ∈ [0,∞) can lead to ((ξ )−1)′(z) ∈ (0,∞) over z ∈ [0,∞). Note that the function
on the right-hand side of the final inequality of (43) does not depend on ξ .

In particular, we can fix d2 ∈ [0,∞), a ∈ [d2,∞), and M2 ∈ (0,∞), and then choose ξ
satisfying

• (ξ )−1(d2)= 0;

• ((ξ )−1)′(z) ∈ (0,M2), z ∈ [d2,∞);

• 1− (((ξ )−1)′(z))−1 <
−f3(W0(z))

1− f3(W0(z))
for all z ∈ [d2, a);

• 1− (((ξ )−1)′(z))−1 ≥ −f3(W0(z))

1− f3(W0(z))
for all z ∈ [a,∞),

to fulfill Assumption 1 with x0 = (ξ )−1(a). Here, we should note that the function on the right-
hand side of the final inequality of (43) is bounded from above, and ξ (∞)=∞ by construction.

Example 3. In this example we consider a general spectrally negative Lévy process X. It still
holds that

g(x)≥ 0 ⇐⇒ ((ξ )−1)′(z)− 1≥−W(q)′′(z)W(q)(z)

(W(q)′(z))2
, z= ξ (x),

provided that ξ ′(x)< 1 for all x≥ 0. We can choose ξ satisfying

• ξ ′(x) ∈ (−∞, 1) for all x ∈ [0,∞);

• ξ (0)= d ∈ (0,∞), ξ (∞)= d ∈ (0,∞], a ∈ [d, d];

• ((ξ )−1)′(z)− 1< (> )− W(q)′′(z)W(q)(z)

(W(q)′(z))2
for all z ∈ [d, a);

• ((ξ )−1)′(z)− 1≥ (≤ )− W(q)′′(z)W(q)(z)

(W(q)′(z))2
for all z ∈ [a, d),

to guarantee that Assumption 1 holds with x0 = (ξ )−1(a). It would also be useful to note that
ξ ′(x) ∈ (−∞, 1) (or, equivalently, ξ

′
(x) ∈ (0,∞)) over x ∈ [0,∞) can result in ((ξ )−1)′(z) ∈

(0,∞) over z ∈ [0,∞). In essence, an appropriate class of general draw-down functions
satisfying Assumption 1 are constructed via imposing conditions on the inverse function (ξ )−1

instead of on ξ or ξ .
For the spectrally negative Lévy process whose Lévy measure has a completely monotone

density, we can also follow the method in [34] to construct the class of the general draw-down
functions fulfilling Assumption 1 with x0 = (ξ )−1(a) and a := inf{z≥ 0: W(q)′′(z)> 0}.

7. Numerical analysis

In this section we provide some numerical examples to illustrate the theoretical results
obtained in the previous sections. We consider a linear draw-down function

ξ (x)= kx− d, k< 1, d≥ 0.
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FIGURE 1: Behavior of the function g for d= 1 and k=−10,−5,−1, 0, 0.1.

Under this assumption, we have, for x< y,∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du= 1

1− k
ln

(
W(q)((1− k)y+ d)

W(q)((1− k)x+ d)

)
,

which has frequently appeared in the formulae in Section 4.
For the risk process, it is assumed to be a linear Brownian motion, i.e.

X(t)=μt+ σB(t), t≥ 0, (44)

where μ ∈R, σ > 0, and {B(t)} is a standard Brownian motion. Note that our main results are
all expressed in terms of the q-scale function W(q). By [19] we know that the q-scale function
for the linear Brownian motion (44) is given by

W(q)(x)= 2

σ 2�
e−μx/σ 2

sinh (�x), x≥ 0,

where�=√μ2 + 2qσ 2/σ 2. Throughout this section, we set μ= 0.03, σ = 0.4, and q= 0.01.
It follows from Propositions 5 and 6 that Assumption 1 plays an important role in

characterizing the optimal return function. It is seen that

lim
x→∞

W(q)′′(ξ (x))W(q)(ξ (x))

(W(q)′(ξ (x)))2
= 1,

which yields limx→∞ g(x)= 1. In Figure 1, we plot the behavior of g(x) for d= 1 and k=
−10,−5,−1, 0, 0.1. It follows that the function g indeed converges to 1 as x→∞, and we
also find that the function g indeed changes its sign at some point x0.

Now for the draw-down parameters (k, d), we shall consider two cases: (0.1, 1) and (− 1, 1).
Furthermore, we set (γ1, γ2)= (0.2, 0.6). First, we consider the conditions in Proposition 5.
Besides Assumption 1, we also need to check inequality (32). It follows from Figure 1 that
g(y)> 0 for y> x0. Hence, to check inequality (32), we need to only check the condition

G2(x)≥ 0 for all 0< x≤ x0.
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FIGURE 2: The function G2 for d= 1 and k=−1, 0.1.
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FIGURE 3: The optimal return function when d= 1, k= 0.1, γ1 = 0.2, and γ2 = 0.6.

For (k, d)= (0.1, 1), we can obtain x0 = 1.360; for (k, d)= (− 1, 1), we can obtain x0 =
1.443. In Figure 2, we plot G2 as a function of x for 0≤ x≤ 1.5. When k= 0.1, we find that
G2(x) is strictly positive for 0≤ x≤ x0. It follows from Proposition 5 that the optimal strategy
function is γ (x)≡ γ2 for all x≥ 0, and the optimal return function is given by (28). In Figure 3,
we plot the optimal return value as a function of the initial surplus level x. We observe that f (x)
is an increasing function and converges to a constant value 2.8209. The limit can be checked
mathematically as follows. Using (30), we have

f (x)= W(q)(ξ (x))

W(q)′(ξ (x))
−
∫ ∞

x
exp

(
− 1

1− γ2

∫ y

x

W(q)′(ξ (u))

W(q)(ξ (u))
du

)
g(y) dy,

which, together with g(y)→ 1 as y→∞, yields, for large x,

f (x)≈ W(q)(ξ (x))

W(q)′(ξ (x))
− 1− γ2

γ2
f (x),
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FIGURE 4: The optimal return function when d= 1, k=−1, γ1 = 0.2, and γ2 = 0.6.

where we have used (3), (27), (28), and l’Hôpital’s rule to deduce that

lim
x→∞

∫∞
x exp

(
− 1

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

g(y) dy

f (x)

= lim
x→∞

−g(x)+ 1
1−γ2

W(q)′(ξ (x))
W(q)(ξ (x))

∫∞
x exp

(
− 1

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

g(y) dy

− γ2
1−γ2
+ γ2

1−γ2

1
1−γ2

W(q)′(ξ (x))
W(q)(ξ (x))

∫∞
x exp

(
− 1

1−γ2

∫ y
x

W(q)′(ξ (u))
W(q)(ξ (u))

du
)

dy

= 1− γ2

γ2
.

Hence, for large x, we have

f (x)≈ γ2
W(q)(ξ (x))

W(q)′(ξ (x))
= 0.6

W(q)(0.9x+ 1)

W(q)′(0.9x+ 1)
→ 0.6


(0.01)
= 2.8209 as x→∞,

where the last step follows from (3).
As for k=−1, after observing Figure 2 we find that G2(x) is not always positive for 0≤

x≤ x0. Hence, the optimal return function is not characterized by Proposition 5. However, it is
seen that the conditions in case (v) are satisfied; then the optimal return function is given by
formulae in (38). In Figure 4 we plot the optimal return function for 0≤ x≤ 20. In this case,
we find that f (x) converges to the same limit as the case when k= 0.1, which is due to the fact
that the optimal return function has the same form when x is large, and the corresponding limit
2.8209 is independent of the parameter k.

The patterns of the optimal return functions shown in Figure 3 and Figure 4 reveal that
the smaller the parameter k, the larger the optimal return function. This is because, for each
admissible tax strategy γ ∈ �, the draw-down time τγξ decreases a.s. as k increases, bearing
in mind (1) and ξ (x)= kx− d with d= 1 set in Figure 3 and Figure 4. These reasonings
together with the definition of the optimal return function given by (2) explain why smaller
k gives a larger optimal return function value, i.e. f (x)|k=k1 ≤ f (x)|k=k2 for x ∈ [0,∞) and
k2 ≤ k1 < 1.
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Appendix A. Proof of a technical lemma

Lemma 1. For z ∈ [x,∞), set

ξ1(y) :=
∫ z

x
γ (w) dw+ ξ

(
y−

∫ z

x
γ (w) dw

)
, y ∈ [z,∞).

Then we have, for z ∈ [x,∞) and a ∈ [0,∞),

Ex

(
e−q(τ+γ x(z)+a−τ+γ x(z))1{τ+γ x(z)+a<τ

γ
ξ }|Fτ+γ x(z)

)
= 1{τ+γ x(z)<τ

γ
ξ } exp

(
−
∫ z+a

z

W(q)′ (ξ1(y))

W(q)(ξ1(y))

1

1− γ (γ−1
z (y))

dy

)
. (45)

Proof. We find that

Uγ (t)= X(t)− X̄(t)+ z+
∫ X̄(t)

z
(1− γ (w)) dw−

∫ z

x
γ (w) dw

= X(t)− X̄(t)+ γ z(X̄(t))−
∫ z

x
γ (w) dw, t ∈ [τ+γ x(z),∞), z ∈ [x,∞),

where γ z(y)= y− ∫ y
z γ (w) dw, y ∈ [z,∞). Hence, we have

τ+γ x(z)+a = inf{t≥ τ+γ x(z); Uγ (t)> γ x(z)+ a}
= inf{t≥ τ+γ x(z); X(t)− X̄(t)+ γ z(X̄(t))> z+ a}, (46)

and, on {τ+γ x(z) < τ
γ
ξ },

τ
γ
ξ = inf

{
t≥ τ+γ x(z); X(t)− X̄(t)+ γ z(X̄(t))

<

∫ z

x
γ (w) dw+ ξ

(
γ z(X̄(t))−

∫ z

x
γ (w) dw

)}
. (47)

Recalling that

τ+γ x(z) = inf{t≥ 0; X(t)> z} and Uγ (t)= X(t)− X̄(t)+ γ x(X̄(t)),

we can find, from (46) and (47),

τ+γ x(z)+a − τ+γ x(z) = τ+z+a◦θτ+γ x(z)
, Px-a.s.

and
τ
γ
ξ − τ+γ x(z) = τγξ1

◦θτ+γ x(z)
, Px-a.s. on {τ+γ x(z) < τ

γ
ξ },

which combined with the strong Markov property yield

Ex

(
e−q(τ+γ x(z)+a−τ+γ x(z))1{τ+γ x(z)+a<τ

γ
ξ }
∣∣∣Fτ+γ x(z)

)
= 1{τ+γ x(z)<τ

γ
ξ }Ez

(
e−qτ+z+a 1{τ+z+a<τ

γ
ξ1
}
)
,

which together with (8) gives (45). �
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Appendix B. Proof of Proposition 2

Using (5), it can be verified that

Ex

( ∫ τ+a ∧τγξ
0

e−qtγ (X(t)) d(X(t)− x)

)
=Ex

( ∫ ∞
0

1{t<L−1(L(τ+a ∧τγξ )−)}e
−qtγ (X(t)) d(X(t)− x)

)
=Ex

( ∫ ∞
0

1{y<L(τ+a ∧τγξ )}e
−qL−1(y)γ (y+ x) dy

)
=
∫ ∞

0
Ex

(
e−qL−1(y)1{y<L(τ+a )∧L(τγξ )}

)
γ (y+ x) dy

=
∫ γ−1

x (a)−x

0
Ex

(
e−qL−1(y)1{y<L(τγξ )}

)
γ (y+ x) dy. (48)

In addition, the set {y< L(τγξ )} can be re-expressed as

{y< L(τγξ )} = {εt ≤ ξ (γ x(x+ t)), for all t ∈ [0, y]},
which together with (48) implies that

Ex

[ ∫ τ+a ∧τγξ
0

e−qtγ (X(t)) d(X(t)− x)

]
=
∫ γ−1

x (a)−x

0
Ex

(
e−qL−1(y)1{εt≤ξ (γ x(x+t)) for all t∈[0,y]}

)
γ (y+ x) dy

=
∫ γ−1

x (a)−x

0
e−
(q)y

E

(q)
x

(
1{εt≤ξ (γ x(x+t)) for all t∈[0,y]}

)
γ (y+ x) dy

=
∫ γ−1

x (a)−x

0
e−
(q)y exp

(
−
∫ y

0

W ′
(q)(ξ (γ x(x+ t)))

W
(q)(ξ (γ x(x+ t)))
dt

)
γ (y+ x) dy

=
∫ γ−1

x (a)−x

0
exp

(
−
∫ y

0

W(q)′(ξ (γ x(x+ t)))

W(q)(ξ (γ x(x+ t)))
dt

)
γ (y+ x) dy,

where n
(q) is the excursion measure under the probability measure P

(q)
x .

Appendix C. Proof of Proposition 3

For any ε > 0 and h> 0, by the definition of supremum we can always find a strategy γε ∈ �
yielding the first inequality in (49) below, where the stopping time τ̂+x+h is defined via (6) with
γ replaced by γε . Then we have

f (x)− ε = sup
γ∈�

Ex

∫ τ
γ
ξ

0
e−qtγ (X(t)) dX(t)− ε

≤Ex

∫ τ
γε
ξ

0
e−qtγε (X(t)) dX(t)

=Ex

( ∫ τ
γε
ξ ∧τ̂+x+h

0
e−qtγε (X(t)) d X(t)

)
+Ex

( ∫ τ
γε
ξ

τ̂+x+h

e−qtγε (X(t)) d X(t)1{τ̂+x+h<τ
γε
ξ }

)
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≤Ex

( ∫ τ
γε
ξ ∧τ̂+x+h

0
e−qtγε (X(t)) d X(t)

)
+Ex

(
e−qτ̂+x+h 1{τ̂+x+h<τ

γε
ξ }
)

f (x+ h)

≤ sup
γ∈�

Ex

( ∫ τ
γ
ξ ∧τ+x+h

0
e−qtγ (X(t)) d X(t)+ e−qτ+x+h 1{τ+x+h<τ

γ
ξ }f (x+ h)

)
. (49)

On the other hand, given any γ ∈ �, define a new strategy γ̃ ∈ � as follows: during the time
interval [0, τ+x+ε] the strategy γ is adopted, which is then switched to an ε-optimal strategy
associated with initial reserve x+ h. Because any given strategy must be suboptimal, we obtain

f (x)≥Ex

∫ τ
γ̃
ξ

0
e−qtγ̃ (X(t)) d X(t)

=Ex

(
Ex

( ∫ τ
γ̃
ξ

τ+x+h

e−qtγ̃ (X(t)) d X(t)

∣∣∣∣Fτ+x+h

)
1{τ+x+h<τ

γ
ξ }
)

+Ex

( ∫ τ
γ
ξ ∧τ+x+h

0
e−qtγ (X(t)) d X(t)

)
≥Ex

( ∫ τ
γ
ξ ∧τ+x+h

0
e−qtγ (X(t)) d X(t)+ e−qτ+x+h 1{τ+x+h<τ

γ
ξ }f (x+ h)

)
− ε, (50)

where we have used the fact that τ γ̃ξ ∧ τ+x+h = τγξ ∧ τ+x+h due to the definition of the strategy γ̃ .
Taking the supremum over γ ∈ � in (50), we should have

f (x)≥ sup
γ∈�

Ex

( ∫ τ
γ
ξ ∧τ+x+h

0
e−qtγ (X(t)) d X(t)+ e−qτ+x+h 1{τ+x+h<τ

γ
ξ }f (x+ h)

)
− ε. (51)

Putting together (49) and (51), by the arbitrariness of ε ∈ (0,∞) we obtain the dynamic
programming principle

f (x)= sup
γ∈�

Ex

( ∫ τ
γ
ξ ∧τ+x+h

0
e−qtγ (X(t)) d X(t)+ e−qτ+x+h 1{τ+x+h<τ

γ
ξ }f (x+ h)

)
.

Fix an arbitrary constant γ0 ∈ [γ1, γ2], and choose γ ∈ � such that tax is paid at the fixed rate
γ0 during the time interval [0, τ+x+h]. In this case

f (x)≥Ex

( ∫ τ+x+h

0
e−qtγ0 d X(t)1{τ+x+h<τ

γ
ξ } + e−qτ+x+h 1{τ+x+h<τ

γ
ξ }f (x+ h)

)
≥Ex

(
γ0e−qτ+x+h (X(τ+x+h)− x)1{τ+x+h<τ

γ
ξ }
)
+Ex

(
e−qτ+x+h 1{τ+x+h<τ

γ
ξ }
)

f (x+ h).

It can be verified from (7) that X(τ+x+h)= x+ h/(1− γ0), which together with the above
inequality yields

f (x)≥ exp

(
−
∫ x+h

x

W(q)′(ξ (y))

W(q)(ξ (y))

1

1− γ0
dy

)(
f (x+ h)+ γ0h

1− γ0

)
=
(

1− 1

1− γ0

W(q)′(ξ (x))

W(q)(ξ (x))
h+ o(h)

)(
γ0h

1− γ0
+ f (x)+ f ′(x)h+ o(h)

)
, (52)
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where we used (8) in Proposition 1 with γ ≡ γ0. Subtracting both sides of (52) with f (x) and
collecting the terms of order h we obtain

0≥ γ0

1− γ0
− 1

1− γ0

W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ f ′(x).

The arbitrariness of γ0 leads to

0≥ sup
γ∈[γ1,γ2]

(
γ

1− γ −
1

1− γ
W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ f ′(x)

)
. (53)

For h2 > 0, by the definition of supremum, there should exist a strategy γ̃ such that

f (x)≤Ex

( ∫ τ̃+x+h

0
e−qtγ̃ (X(t)) d X(t)1{̃τ+x+h<τ

γ̃
ξ } +

∫ τ
γ̃
ξ

0
e−qtγ̃ (X(t)) d X(t)1{̃τ+x+h>τ

γ̃
ξ }

)
+Ex

(
e−qτ̃+x+h 1{̃τ+x+h<τ

γ̃
ξ }
)

f (x+ h)+ h2. (54)

Here, τ̃+x+h is defined by (6) with γ replaced by γ̃ .
The first term on the right-hand side of (54) can be rewritten as

Ex

( ∫ τ̃+x+h

0
e−qtγ̃ (X(t)) d X(t)1{̃τ+x+h<τ

γ̃
ξ }

)
=Ex

(
e−qτ̃+x+h

∫ τ̃+x+h

0
γ̃ (X(t)) d X(t)1{̃τ+x+h<τ

γ̃
ξ }

)
+Ex

(
q
∫ τ̃+x+h

0
e−qt

( ∫ t

0
γ̃ (X(r)) d X(r)

)
dt1{̃τ+x+h<τ

γ̃
ξ }

)
. (55)

The cumulative (nondiscounted) tax until the stopping time τ̃+x+h (h> 0) can be re-expressed
as ∫ τ̃+x+h

0
γ̃ (X(s)) d X(s)= X

(
τ̃+x+h)− (x+

∫ τ̃+x+h

0
(1− γ̃ (X(s))) d X(s)

)
= (γ̃ x)−1(x+ h)−Uγ̃ (̃τ+x+h)

= γ̃ (x)

1− γ̃ (x)
h+ o(h), (56)

where we have used the fact that

lim
h↓0

(γ̃ x)−1(x+ h)− x− h

h
= [(γ̃ x)−1(x)]′ − 1= γ̃ [(γ̃ x)−1(x)]

1− γ̃ [(γ̃ x)−1(x)]
= γ̃ (x)

1− γ̃ (x)
,

since γ̃ x(z) is a strictly increasing and continuous function of z. By (56), the first quantity on
the right-hand side of (55) can be rewritten as

Ex

(
e−qτ̃+x+h

∫ τ̃+x+h

0
γ̃ (X(t)) d X(t)1{̃τ+x+h<τ

γ̃
ξ }

)
=
(

γ̃ (x)

1− γ̃ (x)
h+ o(h)

)
exp

(
−
∫ x+h

x

W(q)′(ξ (y))

W(q)(ξ (y))(1− γ̃ ((γ̃ x)−1(y)))
dy

)
= γ̃ (x)

1− γ̃ (x)
h+ o(h) (57)
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and

Ex

(
q
∫ τ̃+x+h

0
e−qt

( ∫ t

0
γ̃ (X(r)) d X(r)

)
dt1{̃τ+x+h<τ

γ̃
ξ }

)
≤ ((γ̃ x)−1(x+ h)− x− h)Ex

(
(1− e−qτ̃+x+h )1{̃τ+x+h<τ

γ̃
ξ }
)

=
(

γ̃ (x)

1− γ̃ (x)
h+ o(h)

)(
exp

(
−
∫ x+h

x

W(0)′ (ξ (y))

W(ξ (y))(1− γ̃ ((γ̃ x)−1(y)))
dy

)
− exp

(
−
∫ x+h

x

W(q)′(ξ (y))

W(q)(ξ (y))(1− γ̃ ((γ̃ x)−1(y)))
dy

))
= o(h). (58)

The second term on the right-hand side of (54) can be calculated as follows,

Ex

( ∫ τ
γ̃
ξ

0
e−qtγ̃ (X(t)) d X(t)1{̃τ+x+h>τ

γ̃
ξ }

)
≤Ex

(
e−qτ̃+x+h

∫ τ̃+x+h

0
γ̃ (X(t)) d X(t)1{̃τ+x+h>τ

γ̃
ξ }

+ q
∫ τ̃+x+h

0
e−qt

( ∫ t

0
γ̃ (X(r)) d X(t)

)
dt1{̃τ+x+h>τ

γ̃
ξ }

)
≤ [(γ̃ x)−1(x+ h)− x− h]Ex

[
e−qτ̃+x+h 1{̃τ+x+h>τ

γ̃
ξ } + q

∫ τ̃+x+h

0
e−qt dt1{̃τ+x+h>τ

γ̃
ξ }

]
= [(γ̃ x)−1(x+ h)− x− h]

[
1− exp

(
−
∫ x+h

x

W(0)′ (ξ (y))

W(ξ (y))(1− γ̃ ((γ̃ x)−1(y)))
dy

)]
= o(h). (59)

Hence, (54), (55), (57), and (58) together with (59) give rise to

f (x)≤ γ̃ (x)

1− γ̃ (x)
h+ f (x)+ f ′(x)h− W(q)′(ξ (x))

W(q)(ξ (x))(1− γ̃ (x))
f (x)h+ o(h). (60)

Subtracting f (x) from both sides of (60) and then collecting the terms of order h we have

0≤ γ̃ (x)

1− γ̃ (x)
+ f ′(x)− W(q)′(ξ (x))

W(q)(ξ (x))(1− γ̃ (x))
f (x)

≤ sup
γ∈[γ1,γ2]

(
γ

1− γ −
1

1− γ
W(q)′(ξ (x))

W(q)(ξ (x))
f (x)+ f ′(x)

)
. (61)

Finally, combining (53) and (61) leads to (14).
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