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In the present paper, we use a coarse-graining approach to investigate the nonlinear
redistribution of free energy in both position and scale space for weakly collisional
magnetised plasma turbulence. For this purpose, we use high-resolution numerical
simulations of gyrokinetic (GK) turbulence that span the proton–electron range of scales,
in a straight magnetic guide field geometry. Accounting for the averaged effect of
the particles’ fast gyro-motion on the slow plasma fluctuations, the GK approximation
captures the dominant energy redistribution mechanisms in strongly magnetised plasma
turbulence. Here, the GK system is coarse grained with respect to a cut-off scale,
separating in real space the contributions to the nonlinear interactions from the coarse-grid
scales and the sub-grid scales (SGS). We concentrate on the analysis of nonlinear SGS
effects. Not only does this allow us to investigate the flux of free energy across the scales,
but also to now analyse its spatial density. We find that the net value of scale flux is an
order of magnitude smaller than both the positive and negative flux density contributions.
The dependence of the results on the filter type is also analysed. Moreover, we investigate
the advection of energy in position space. This rather novel approach for GK turbulence
can help in the development of SGS models that account for advective unstable structures
for space and fusion plasmas, and with the analysis of the turbulent transport saturation.
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1. Introduction

Our understanding of turbulence in collisionless magnetised plasma has increased
dramatically during the last decade. This was spearheaded by the need to predict transport
coefficients in magnetic confinement fusion and to explain solar wind observations at
scales smaller than the ion gyroradius (ρi). In both laboratory and astrophysical settings,
the relevant micro-physics requires a kinetic theory description, and it involves dynamics
in a position–velocity phase space. Although a non-perturbative Vlasov–Maxwell
approach is ultimately desired, various approximations make the problem more tractable
from a numerical perspective. In particular, the gyrokinetic (GK) approximation for
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strongly magnetised plasma requires only a five-dimensional phase space (see § 2), and is
used mostly in magnetic confinement fusion studies (Krommes 2012; Helander et al. 2015;
Fasoli et al. 2016). In the astrophysical context, although it neglects cyclotron resonance
and has limitations that need to be considered (Told et al. 2016), GK theory captures the
crucial dynamics of three-dimensional kinetic Alfvén wave (KAW) turbulence (Chen et al.
2013). For turbulence at scales larger than the gyroradius, drift kinetic approximations can
reduce the dynamics further and capture the problem in a four-dimensional space (Zocco
& Schekochihin 2011; Hatch et al. 2014).

In our current work, we look at KAW turbulence in the range of perpendicular scales
(�⊥ ∼ 1/k⊥) found between the ion and the electron gyroradii, ρi > �⊥ > ρe (see § 2.2
for details on parameters). The use of a GK representation is needed to account for the
gyroaverage effects on the ions’ dynamics (k⊥ρi > 1). The comparison between the ion
and electron species also allows us to roughly see the qualitative difference between GK
and drift-kinetic approximations, as the gyroaverage effects on the electrons are negligible
in this range of scales (k⊥ρe < 1). The work itself, which benefits from the different
qualitative behaviours of the ion and electron species, explores in position space the
configuration of the energy flux across scales and the spatial energy transport, as we
elaborate on next.

In classical turbulence, energising a fluctuation leads to a redistribution of energy via
nonlinear interactions. This redistribution can occur as a flux that cascades the energy
across scales, or as a spatial advection of energy in position space. The analysis of the
redistribution of energy in wave space (k) cannot track the spatial advection, whereas a real
space analysis cannot account for fluxes across scales. To merge the two, a coarse-grained
analysis can be performed, which consists in filtering the system in regard to a cut-off scale
(�c ∼ 1/kc) and then performing an analysis in real space. Doing so localises the nonlinear
dynamics in both position and scale space simultaneously, and is particularly useful if
inhomogeneities develop. Coarse graining the system allows us to separate the nonlinear
dynamics into coarse-grid-scale and sub-grid-scale (SGS) effects. The large, coarse-grid
scales do not cause particular problems when accounting for turbulence numerically.
The complications that appear in the study of turbulence are mostly due to the SGS.
These complications are usually considered in the development of large eddy simulations
(LES) models. However, the scaling of SGS terms relates to the fundamental problem
of smoothness of turbulence, including for kinetic plasma (Eyink 2018). Being the first
numerical study of its kind for kinetic plasma, this work concentrates on the introduction
of the definitions used and the presentation of qualitative numerical results.

In the current paper, using numerical solutions of GK turbulence (§ 2), we study the
effects of SGS on the energy flux across scales and across compact structures in the
perpendicular direction to the magnetic guide field (coarse graining introduced in § 3). We
make this distinction based on the explicit form of the coarse-graining filter. Definitions
with appropriate spatial density in position space are used. This allows the analysis of the
redistribution of free energy in position space in addition to scale space (see § 4). Although
the analysis uses a straight magnetic guide field geometry and is done for KAW relevant
turbulence, introducing these effects will be useful for tokamak modelling, even though we
do not present such models here. Being able to track point-wise the flow of free energy, our
approach can help with the analysis of advective unstable structures (Mcmillan, Pringle &
Teaca 2018), plasma blob dynamics (Theiler et al. 2009) and saturation mechanisms for
turbulent transport (Howard et al. 2016). Although in the current paper we do not perform
a coarse graining in velocity space, accounting for the redistribution of free energy in
position space can help future works that deal with Landau damping in inhomogeneous
turbulent media, or that probe the nature of kinetic plasma turbulence (Grošelj et al. 2019).
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Finally, a real space analysis can help with the automatisation of nonlinear diagnostics via
machine learning algorithms, by identifying first in position space and then tracking in
phase space the most important structures or events of interest (e.g. reconnections) for a
turbulent plasma.

2. The GK system
2.1. Highlights of past works on GK turbulence

In classical fluid turbulence (Frisch 1995), the energy cascade, the locality of interactions
and the intermittency behaviour are considered standard problems of interest. Although
turbulence at kinetic scales inherits all of them, it also adds the phase space mixing
problem (includes Landau damping) that affects which route in phase space is selected
for the thermalisation of plasma fluctuations. In magnetised plasma, all of these problems
can be tackled via the GK approximation (for a review on the formal derivation of the
general equations, see Brizard & Hahm 2007).

The GK approximation was instrumental in probing turbulence at sub-ion scales
(kρi > 1). GK theory assumes low plasma frequencies compared with the ion cyclotron
frequency and small fluctuation levels compared with background quantities to remove
the particles’ fast gyro-motion, effectively reducing the relevant phase space to
five-dimensions. This approach was adopted by Howes et al. (2006) for the study of KAWs
and their turbulent cascade in the dissipative range of the solar wind (Howes et al. 2008a,
b, 2011). Compared with the use of global background profiles in tokamak geometries (see
Krommes 2012), the use of local background approximations in a straight-field magnetic
geometry, typical for the study of KAW turbulence, simplifies the underlying dynamics.

Following the recipe of classical turbulence, a generalised free energy that is conserved
in the absence of collisions was identified for GK turbulence (see Howes et al. 2006;
Schekochihin et al. 2008, 2009). With the idea of a free energy cascade in phase space,
the concept of the nonlinear phase mixing for GK was introduced as well (Schekochihin
et al. 2008, 2009). The nonlinear phase mixing occurs in the direction perpendicular to
the magnetic guide field, and it refers in particular to the creation of small-scale structures
in velocity space owing to the small-scale structure in position space. This effect results
from the nonlinear interaction between the distribution function and the gyroaveraged
potential fields. The gyroaverage represents the effect of the fast gyro-motion on the slower
dynamics captured by GK theory. In the electrostatic limit, the phase space cascade and
the nonlinear phase mixing were studied extensively (Tatsuno et al. 2009, 2010; Plunk &
Tatsuno 2011; Tatsuno et al. 2012) for ‘two-dimensional’ GK turbulence (i.e. neglecting
parallel dynamics, see Plunk et al. 2010). For the five-dimensional GK system, while still
in the electrostatic limit, the energy balance equation and the energy cascade problem was
studied by Navarro et al. (2011a, b), Nakata, Watanabe & Sugama (2012) and later by
Teaca, Navarro & Jenko (2014), Cerri et al. (2014) and Maeyama et al. (2015). Measuring
the intensity of the energetic exchanges with the increase in separation between scales,
the locality of the nonlinear interactions was studied for electrostatic GK turbulence in
Teaca et al. (2012, 2014) and for the electromagnetic KAW case in Told et al. (2015) and
Teaca, Jenko & Told (2017). Although GK turbulence exhibits a strong nonlocal interaction
character, Teaca et al. (2017) found that the nonlocal contribution is superimposed on
top of a classic asymptotically local contribution that depends only with the separation
between scales, rather than substituting the classic local character altogether. This is
encouraging when considering modelling the SGS effects. Last, the intermittency problem
was looked at in phase space for KAW turbulence by Teaca et al. (2019), where the
deviation from scale invariance was measured directly on the distribution functions.
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In relation to the dissipation route for magnetised plasma fluctuations, Told et al.
(2015) showed via a multi-species GK simulation of KAW turbulence at plasma β = 1
that electrons dissipate most of the free energy at ion scales (k⊥ρi ∼ 1), whereas ions
dissipate at small scales (k⊥ρi > 1). Later, Navarro et al. (2016) showed on the same
data that the electrons prefer parallel collisions, indicative of parallel linear phase mixing
(Hammett, Dorland & Perkins 1992; Kanekar et al. 2015), whereas ions enter into a
fluid-like cascade in the perpendicular direction. The linear phase mixing problem is tied
to the Landau damping problem for GK turbulence (Tenbarge & Howes 2013) and has
a non-trivial effect on its structure character (Teaca et al. 2019). The balance between
linear phase mixing in the parallel direction and the nonlinear cascade in the perpendicular
direction was introduced for a drift-kinetic reduced model in Schekochihin et al. (2016).
The four-dimensional drift-kinetic models in question integrate over the perpendicular
velocity, while retaining the information for kρi < 1 scale dynamics (see also Hatch et al.
2014). The use of these models was helpful in showcasing the linear flux of energy across
parallel velocity scales induced by linear phase mixing, and its suppression that leads to
the fluidisation of the kinetic turbulent problem (Meyrand et al. 2019). Finally, depending
on the plasma parameters (plasma-β, in particular), Kawazura, Barnes & Schekochihin
(2019) showed via hybrid GK simulations that ions can exhibit parallel or (fluid-like)
perpendicular dissipation routes in phase space.

Although understanding turbulence is a goal in itself, in tokamak studies, turbulence
is seen as a problem that overcomplicates the study of heat and particle transport
by energising small-scale fluctuations compared with the scale of the dominant linear
instabilities (Görler & Jenko 2008a,b). To model the effect of these small scales on the
nonlinear interactions at large scales, LES have been adopted for GK turbulence (Morel
et al. 2011, 2012), and were refined further in Navarro et al. (2014). To put it simply, LES
models SGS effects. Although known extensively in the field of turbulence (see Eyink &
Sreenivasan 2006, and the references within), an SGS analysis for kinetic turbulence was
introduced by Eyink (2018), where the entropy cascade was rigorously defined for a full
Vlasov–Maxwell–Landau system and an upper bound scaling computed via functional
analysis. Considering that velocity space integrals are performed in addition to position
space ones, cancellation effects cannot be overlooked when computing the actual fluxes
across scales. To what degree the upper bound estimates overshoot the real levels can only
be determined numerically, and it is one of the questions we answer in the current paper
for the GK system.

2.2. Plasma parameters and numerical simulation details
Depending on the geometry of the external magnetic guide field and the plasma regime,
the GK equations can have an intricate or simple explicit form. Before introducing the GK
equations, we start by presenting the main parameters for the plasma considered and list
the numerical details used to solve the system in practice.

In this study, we look at a proton–electron plasma that is weakly collisional and
strongly magnetised, and which evolves in the presence of a straight magnetic guide
field (B0ẑ). Proton (referred to as ion) and electron species are included with their real
mass ratio of mi/me = 1836. The plasma βi ≡ 8πniTi/B2

0 = 1 is chosen to match solar
wind conditions at 1 astronomical unit. The plasma background is assumed to exhibit an
isotropic thermodynamic equilibrium with a temperature ratio of Ti/Te = 1. The electron
collisionality is chosen to be νe = 0.06 ωA0 (with νi = √

me/miνe), and ωA0 being the
frequency of the slowest Alfvén wave in the system. This allows for a KAW cascade.

The system is solved numerically with the help of the Eulerian code GENE (Jenko
et al. 2000). The data used in this work is from the simulation presented in Told
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et al. (2015), and it is briefly summarised in the following: the evolution of the
gyrocentre distribution is tracked on a grid with the resolution {Nx, Ny, Nz, Nv‖, Nμ, Ns} =
{768, 768, 96, 48, 15, 2}, where (Nx, Ny) are the perpendicular, (Nz) parallel, (Nv‖) parallel
velocity and (Nμ) magnetic moment grid points, respectively. This covers a perpendicular
dealiased wavenumber range of 0.2 ≤ k⊥ρi ≤ 51.2 (or 0.0047 ≤ k⊥ρe ≤ 1.19) in a domain
Lx = Ly = 10πρi (ρs = √

Tsmsc/eB). In the parallel direction, a Lz = 2πL‖ domain is
used, where L‖ � ρi is assumed by the construction of GK theory. A velocity domain up to
three thermal velocity units (vT,s = √

2Ts/ms) is taken in each direction. The fluctuations
in the system are driven to a steady state via a magnetic antenna potential, which is
prescribed solely at the largest scale and evolved in time according to a Langevin equation
(TenBarge et al. 2014).

2.3. The GK equations
For the system considered previously, we use the δf -approach. The particle distribution
function of each plasma species s is split into a time constant background Fs and a
perturbed part δfs, with δfs/Fs 	 1. We consider a local approximation for Fs, which
for constant background density ns and temperature Ts (again, vT,s = √

2Ts/ms) has the
Maxwellian form,

Fs(v) = ns

(vT,s
√

π)3
exp

(
−v2

‖ + v2
⊥

v2
T,s

)
. (2.1)

In the presence of a strong external magnetic field compared to the fluctuating
electromagnetic fields, the dynamics of the plasma become strongly anisotropic
(k‖/k⊥ 	 1). More importantly, particles develop fast cyclotron motions (of gyro-frequency
Ωs = qsB0/msc) compared with the rest of the plasma dynamics (ω/Ωs 	 1). Employing
the guiding centre coordinate (Rs = xx̂ + yŷ + zẑ) transformation

Rs = r + v(θ) × ẑ/Ωs = r + v⊥(θ) × ẑ/Ωs, (2.2)

for v(θ) = v⊥(θ) + v‖ẑ = v⊥ sin(θ)x̂ + v⊥ cos(θ)ŷ + v‖ẑ, and integrating the dynamics
over the gyrophase angle (θ ) allows us to reduce the dimension of the phase space by one,
obtaining the five-dimensional gyrocentre phase space (Rs, v‖, v⊥) of GK theory. We can
substitute the perpendicular velocity with the magnetic moment μ = msv

2
⊥/2B0. Although

we do this in practice, some relations are more transparent when utilising v⊥.
For this simple case, considering δfs/Fs ∼ B⊥/B0 ∼ B‖/B0 ∼ (cE⊥/vT,s)/B0 ∼

k‖/k⊥ ∼ ω/Ωs ∼ ε 	 1 as the the GK ordering, expanding all fields in powers of ε and
keeping contributions up to the first order, the perturbed distribution function becomes1

δfs(r, v, t) = −qsφ(r, t)
Ts

Fs(v) + hs(Rs, v‖, v⊥, t), (2.3)

where we see a Boltzmann response contribution and a non-adiabatic part,
hs(Rs, v‖, v⊥, t), which here is the effective GK distribution function.

The systematic expansion of the Vlasov–Maxwell system gives rise to the GK equations
(see Brizard & Hahm (2007) for a general Hamiltonian derivation, or Howes et al. (2006),

1Formally this is obtained via a pull-back operation (Brizard & Hahm 2007) on the gyrocentre distribution function
and has an intricate expression. Only for a Maxwellian background Fs does δfs end up having the simple form given by
(2.3). Assuming a Maxwellian form for the background distribution function provides a tremendous simplification of the
GK system.
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Schekochihin et al. (2009) for a simpler presentation appropriate in our case). For the
first-order contribution hs(x, y, z, v‖, μ, t), the GK equations have the form

∂hs

∂t
+ c

B0
{〈χ〉Rs, hs} + v‖

∂hs

∂z
= qsFs

Ts

∂〈χ〉Rs

∂t
+
(

∂hs

∂t

)
c

. (2.4)

Although the electromagnetic potentials are computed at the particle position (r), only
their gyroaveraged contributions affect the GK dynamics. For clarity, the gyroaveraged GK
potential 〈χ(r)〉Rs = (1/2π)

∫ 2π

0 χ(Rs − v⊥(θ) × ẑ/Ωs) dθ is found via its wave-space
representation as

〈χ〉Rs =
∑

k

exp(ik · R)

[
J0(λs)

(
φ̂(k) − v‖

c
Â‖(k)

)
+ 2μ

qs

J1(λs)

λs
B̂‖(k)

]
, (2.5)

where J0(λs) and J1(λs) are zero- and first-order Bessel functions, with λs = k⊥v⊥/Ωs =
k⊥

√
2μB0/ms/Ωs. The first-order self-consistent electrostatic potential (φ), magnetic

potential in the parallel direction (A‖) and magnetic fluctuation in the parallel direction
(B‖) are obtained in wave space from their respective GK field equations as

φ̂(k, t) =
∑

s

2πqs
B0

ms

∫ +∞

−∞
dv‖

∫ +∞

0
dμ J0(λs)ĥs(k, v‖, μ, t)

/∑
s

q2
s ns

Ts
, (2.6)

Â‖(k, t) = 4π

k2
⊥c

∑
s

2πqs
B0

ms

∫ +∞

−∞
dv‖

∫ +∞

0
dμv‖J0(λs)ĥs(k, v‖, μ, t), (2.7)

B̂‖(k, t) = −4π
∑

s

2π
B0

ms

∫ +∞

−∞
dv‖

∫ +∞

0
dμμ

2J1(λs)

λs
ĥs(k, v‖, μ, t). (2.8)

Considering the values of the Bessel functions J0 and 2J1(λs)/λs, we see that the
gyroaverage operation cannot be ignored for k⊥ρi > 1 scales, where we can imagine
the problem as the distribution of a system of electrical charged rings. Conversely,
the gyroaverage operation is not that important for k⊥ρi < 1 scales, and drift-kinetic
approximations can be obtained in the k⊥ρi 	 1 limit, which can still account for
gyroaverage effects in a simplified way (Hammett et al. 1992; Hatch et al. 2014).

The (∂hs/∂t)c term represents the action of collisions, which are here modelled through
the action of a linearised Landau–Boltzmann collision operator (see supplementary
material from Navarro et al. 2016). Collisions represent the ultimate sink of plasma
fluctuations and, in the collisionless limit, they are assumed to occur at very small scales
in velocity space. For GK theory, owing to the nonlinear phase mixing, the small scales in
the perpendicular velocity and the perpendicular small scales in position space are linked.
As a result, dissipation in the perpendicular direction occurs similarly as for a fluid via an
effective (hyper) Laplacian term in position space. For GK turbulence, the break from the
fluidisation can occur only when the parallel collisions dominate (Navarro et al. 2016) and
higher-velocity moments in the v‖ direction become excited via linear phase mixing.

The nonlinear structure is given in terms of the spatial Poisson bracket (to simplify the
notation of gradients, from now on ∇ ≡ ∇Rs = ∂/∂Rs),

{a, b} = [∇a × ∇b] · ẑ = ∂a
∂x

∂b
∂y

− ∂a
∂y

∂b
∂x

, (2.9)
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FIGURE 1. Generalised drift velocity us for the GK system, at one point in z, v‖ and μ (v‖ =
−0.31 and μ = 0.015 in thermal velocity units). The difference between the ion and electron
species consists in the gyroaverage of χ . The electrons (a), which have a small gyroaverage that
can be neglected for the scales depicted, show classical turbulent structures. For the ions (b), we
see the phase mixing caused by the gyroaverage.

which possesses all its properties (antisymmetry, bilinearity, etc., see Appendix A for
details). To highlight the advective role of the nonlinearity, we can rewrite it as

c
B0

{〈χ〉Rs, hs} = us · ∇hs = ∇ · (ushs), (2.10)

where the advective velocity us is simply the generalised drift velocity for GK,

us = − c
B0

[∇〈χ〉Rs × ẑ]. (2.11)

By definition, it is clear that us = us(x, y, z, v‖, μ, t) is zero-divergent (∇ · us = 0) and
that it differs slightly for each species due to the gyroaverage, see figure 1. For the analysis
of the nonlinear redistribution of free energy, we will utilise the advective velocity form for
the nonlinear term. Although key results will also be presented in Poisson bracket form, the
advective velocity form allows for a much simpler connection with classical turbulence.
As mentioned in § 2.1, the analogue to the energy cascade in classical turbulence is given
for GK turbulence by the free energy cascade.

2.4. The free energy
As presented in Howes et al. (2006), Schekochihin et al. (2008, 2009), the generalised free
energy is conserved for GK turbulence in the absence of collisions and external sources.
The free energy is defined as,

W =
∫

d3r

[∑
s

∫
d3v

Tsδf 2
s

2Fs
+ B2

8π

]
, (2.12)

where we neglect the electric field energy contribution due to free charges, as the scales
of interest here are much larger than the Debye length. Considering the quantities that
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express the GK equation and (2.3), the equivalent definitions are obtained,

W =
∫

d3r

[∑
s

∫
d3v

Ts〈h2
s 〉r

2Fs
−
∑

s

q2
s ns

2Ts
φ2 + |∇⊥A‖ |2

8π
+ B2

‖
8π

]

=
∑

k

[∑
s

2πB0

ms

∫
dv‖ dμ

Ts

2Fs
|ĥs(k, v‖, μ, t)|2

−
∑

s

q2
s ns

2Ts
|φ̂(k)|2 + k2

⊥|Â‖(k)|2
8π

+ |B̂‖(k)|2
8π

]
, (2.13)

with

〈h2〉r = 1
2π

∫ 2π

0
h2(r + v⊥(θ) × ẑ/Ωs, v‖, v⊥(θ)) dθ

=
∑

k

exp(ik · r)J0

(
k⊥v⊥
Ωs

)
ĥ2(k, v‖, v⊥). (2.14)

Considering the contribution of individual terms, with an appropriate selective
summation in wave space defined as

∑
⊥ ≡ ∑

kz

∑k⊥+�k
|k⊥|=k⊥ , we compute the unit band (�k)

spectra in the perpendicular direction

Whs(k⊥) =
∑

⊥

2πB0

ms

∫
dv‖ dμ

Ts

2Fs
|ĥs(k, v‖, μ, t)|2, (2.15)

Wφ(k⊥) =
∑

⊥

∑
s

q2
s ns

2Ts
|φ̂(k)|2, (2.16)

WB⊥(k⊥) =
∑

⊥

k2
⊥|Â‖(k)|2

8π
, (2.17)

WB‖(k⊥) =
∑

⊥

|B̂‖(k)|2
8π

. (2.18)

The total free energy spectrum can be found simply as the sum,

W(k⊥) =
∑

s

Whs(k⊥) − Wφ(k⊥) + WB⊥(k⊥) + WB‖(k⊥). (2.19)

We plot in figure 2 the spectra for all the contributions to the free energy. We see that the
so-called (Schekochihin et al. 2008) entropic contributions (Whs ) dominate the free energy.
The scaling of the magnetic fields is the same as listed in Told et al. (2016). Notably, for
k⊥ρi < 1, Whi and Wφ have the same energy, as expected in the magnetohydrodynamic
(MHD) limit (Howes et al. 2006).
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FIGURE 2. Spectra in the perpendicular direction for the contributions to the free energy,
normalised to the global level of free energy in the system.

From the GK equations (2.4), multiplying by Tshs/Fs we obtain the balance equation for
the h2

s variance,

Ts

2Fs

[
∂h2

s

∂t
+ c

B0
{〈χ〉Rs, h2

s } + v‖
∂h2

s

∂z

]
= qshs

∂〈χ〉Rs

∂t
+ Ts

Fs
hs

(
∂hs

∂t

)
c

. (2.20)

Integrating over the velocity space, position and summing over all species we can show
that we recover the evolution of the free energy (see Appendix B),

dW
dt

= d
dt

∫
d3r

[∑
s

(∫
d3v

Ts〈h2
s 〉r

2Fs
− q2

sφ
2ns

2Ts

)
+ B2

8π

]
. (2.21)

We are interested in the nonlinear contribution to the evolution of free energy for a scale,
knowing that for a finite-scale system, globally, nonlinear interactions conserve h2

s (see
Appendix A),

dW
dt

∣∣∣∣
NL

=
∫

d3Rs

∑
s

∫
d3v

Ts

2Fs

c
B0

{〈χ〉Rs, h2
s } =

∫
d3Rs

∑
s

∫
d3v

Ts

2Fs
us · ∇h2

s = 0.

(2.22)

Next, we look at the GK equations and at the nonlinear contribution to the free energy
balance for a system coarse-grained in the perpendicular direction in gyrocentre space.

3. The coarse-grained GK system
3.1. Definition of coarse graining

The coarse graining of the Vlasov–Maxwell kinetic system was done by Eyink (2018)
using isotropic kernels assumed to be smooth (e.g. infinitely differentiable) and rapidly
decaying (e.g.compact) phase space functions. For magnetised plasma turbulence captured
by GK theory, the parallel and perpendicular scales are too disjointed in size to justify
the use of isotopic filtering kernels. We concentrate here on the perpendicular scales.
Accounting that the GK dynamics of interest occur in the gyrocentre space, we define
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the perpendicular coarse-grid filtering for a R⊥s function as

ā(R̄⊥s) =
∫

dR′
⊥sG�(R′

⊥s)a(R̄⊥s + R′
⊥s) (3.1)

=
∫

dR′
⊥sG�(R′

⊥s − R̄⊥s)a(R′
⊥s) = [G� � a](R̄⊥s). (3.2)

The � symbol denotes the convolution operation. The filtering functions are considered as
G�(R⊥s) = �−3

c G(R⊥s/�c) with the G kernels having a series of desirable properties,

G(R⊥s) ≥ 0 (non-negative), (3.3)∫
dR′

⊥sG(R⊥s) = 1 (normalised), (3.4)∫
dR′

⊥sR⊥sG(R⊥s) = 0 (centred), (3.5)∫
dR′

⊥s|R⊥s|2G(R⊥s) = 1 (unit variance). (3.6)

A Gaussian kernel,

G(R⊥s/�c) = 1
π�2

c

exp
(

−R2
⊥s

�2
c

)
, (3.7)

represents a good selection for the filtering function, as it obeys the properties (3.3)–(3.6).
This has the advantage of a simple wave space representation, Ĝ(k⊥/kc) ∼ e−(k⊥/kc)

2 ,
which reduces the filtering convolution for the wavenumber cut-off kc = 2π/�c to a simple
multiplicative operation. However, in our work we also consider a sharp k-filter in wave
space (i.e. a Dirichlet kernel in real space). We also consider a general (hyper-Gaussian)
kernel,

Ĝα(k⊥/kc) ∼ e−(k⊥/kc)
α

, (3.8)

that is isotropic in the perpendicular direction, knowing that for α = 2 we recover the
Gaussian kernel and for large α we tend towards the sharp k-filter with respect to k⊥.
Figure 3 showcases this for the Whe spectra, i.e. we filter the he before computing the
spectra.

3.2. Coarse-grained GK equations
We start from the GK equations given in the advective velocity form and apply the
coarse-graining operation (G��) term by term. The overbar notation is moved only on
the quantities that undergo coarse graining to obtain,

∂ h̄s

∂t
+ ∇ · (ushs) + v‖

∂ h̄s

∂z
= qsFs

Ts

∂ ¯〈χ〉Rs

∂t
+
(

∂ h̄s

∂t

)
c

. (3.9)

The field equations are linear in hs and thus do not pose any complications under
the coarse-graining operation. Simply replacing hs by h̄s in (2.6)–(2.8) yields the
coarse-grained field equations.

Natural for a nonlinear system, the ushs term, coarse-grained on a grid of resolution �c,
contains contributions from SGS. In the nonlinear term, to separate the purely
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FIGURE 3. Showcasing for Whe , the wavenumber support for different filtering kernels Ĝα

considered for the same three cut-offs kcρi = {1, 4, 16}, with α = {2, 4, 8} and α = ∞
representing the sharp k-filter. Not shown, for α = 64 the hyper-Gaussian filter would overlap
near-identically the sharp filter.

coarse-grained contributions from any SGS contributions, we make use of the cumulant

τ̄s = ushs − ūsh̄s. (3.10)

Now τ̄s is the term that contains all the SGS contributions to the nonlinear dynamics. An
important property of τ̄s is that it is Galilean invariant by definition. Indeed, for u′

s = us +
U , with Ū = U , we have τ̄ ′

s = (us + U)hs − (ūs + Ū)h̄s = ushs − ūsh̄s + U h̄s − U h̄s =
τ̄s. In a similar way, τ̄s is also invariant to a h′

s = hs + H transformation, for H̄ = H.
The nonlinear term simply becomes

∇ · (ushs) = ∇ · (ūsh̄s + τ̄s), (3.11)

where we now separate the coarse-grid-scale ūs and h̄s from the SGS τ̄s contributions.
Last, considering the definition (2.11) for us, we obtain the equivalent τ̄s formula,

τ̄s = − c
B0

ẑ × [∇〈χ〉Rs hs − ∇ ¯〈χ〉Rs
h̄s], (3.12)

which gives the SGS contribution to the nonlinear term expressed in term of the Poisson
bracket structure as

∇ · τ̄s = c
B0

[{〈χ〉Rs, hs} − { ¯〈χ〉Rs
, h̄s}]. (3.13)

3.3. The coarse-grained redistribution of free energy
We look at the evolution of the coarse-grained free energy as result of the nonlinear
interactions. This is obtained from (3.11) by multiplying with Tsh̄s/Fs, integrating over
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the velocity and position space and summing over the species,

dW̄
dt

∣∣∣∣
NL

=
∑

s

∫
d3Rs

∫
d3v

Ts

Fs
[∇ · (ūsh̄s + τ̄s)]h̄s =

∑
s

Π̄s(�c), (3.14)

where Π̄s(�c) represents the SGS net flux of free energy through the coarse-grained scales
�c for the species s,

Π̄s(�c) =
∫

d3Rs

∫
d3v

Ts

Fs
[−τ̄s · ∇h̄s]. (3.15)

As the free energy is a nonlinear invariant, for a finite-scale system (as considered
numerically in the current paper), we find the SGS net flux through an infinitely small
coarse-grain scale to be equal to zero,

lim
�c→0

dW̄
dt

∣∣∣∣
NL

= lim
�c→0

∑
s

Π̄s(�c) = 0. (3.16)

Furthermore, the contributions to the free energy from each plasma species are
independently invariant under the action of the nonlinear terms, i.e. lim�c→0 Π̄s(�c) = 0.
Naturally, for an infinite-scale system given by the Do → ∞ limit, where Do ∼ (kνi

⊥ρi)
5/3

is the Dorland number (for the definition convention see Schekochihin et al. 2009) defined
here on the ion dissipation scale (i.e. the scale at which the finite collisional dissipation
peaks in amplitude), taking the �c → 0 limit will give a constant flux value once parallel
mixing can be neglected. In the current paper Do ≈ 228 and strong parallel mixing affects
the scaling of the electron flux.

With this knowledge, we consider the Rs-density of free energy for each plasma species,
i.e. Ws(Rs, t), see Appendix B, and look at its coarse-grained variation due to the action
of nonlinear interactions,

∂W̄s(Rs, t)
∂t

∣∣∣∣
NL

=
∫

d3v[∇ · (ūsh̄s + τ̄s)]h̄s
Ts

Fs

=
∫

d3v

[
∇ · (ūh̄2

s/2 + τ̄ h̄s)
Ts

Fs

]
+
∫

d3v

[
−τ̄s · ∇h̄s

Ts

Fs

]
. (3.17)

The first term on the right-hand side corresponds to a transport in position space of free
energy, whereas the second corresponds to the density of the SGS scale flux. We introduce
the following definitions,

Ῡs(Rs, t) =
∫

d3v
Ts

Fs
[∇ · (ūsh̄2

s/2 + τ̄sh̄s)], (3.18)

Π̄s(Rs, t) =
∫

d3v
Ts

Fs
[−τ̄s · ∇h̄s]. (3.19)

As these definitions are the two integrals from (3.17), we see that we could move the
∇ · (τ̄sh̄s) term from (3.18) to (3.19) in an attempt to contain the SGS contributions into a
single h̄s∇ · τ̄s quantity. In fact, the SGS net flux (3.15) is defined up to a divergence term,
and the integrant could be written simply as h̄s∇ · τ̄s. However, although the SGS net flux
is not changed by adding or subtracting a divergence term, the resulting spatial density
would be different. It is hard to see a good reason to add an extra contribution to the flux
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density Π̄s(Rs, t) that does not contribute at all to the net flux across a scale2 . As such, we
decide on the definitions given by (3.18)–(3.19) for our current work.

In terms of the Poisson bracket structure, the integrant of (3.19) becomes

τ̄s · ∇h̄s = c
B0

[
hs
{〈χ〉Rs , hs

}− 1
2
{ ¯〈χ〉Rs

, h̄2
s }
]

. (3.20)

For clarity,

hs {〈χ〉Rs
, hs

} = hs
∂〈χ〉Rs

∂x
∂hs

∂y
− hs

∂〈χ〉Rs

∂y
∂hs

∂x
(3.21)

and it shows why the Poisson bracket notation becomes cumbersome when dealing with
coarse graining. Only terms of the form •{•, •}, that coarse grain across the Poisson
bracket structure, give SGS contributions. From the properties of the Poisson bracket (see
Appendix A) we know that the second term integrates spatially to zero (x, y integration
suffices). However, this second term is important to ensure the gauge invariance of
the SGS flux density. Simple algebra shows that the transformation h′

s = hs + H and
〈χ ′〉Rs = 〈χ〉Rs + a, with H̄ = H and ā = a leaves (3.20) invariant. We also ask for the
SGS flux density to be Galilean invariant, meaning that a change in the system of
reference cannot change the intensity of turbulence, and see that the definition (3.19)
fulfils this requirement. The link with Galilean invariance mentioned for τ̄s is given by
Ū = U = −(c/B0)[∇a × ẑ]. In the same spirit, the h′

s = hs + H invariance shows that
by adding or subtracting background density values to hs (during the δf splitting, for
example), we cannot change the intensity of turbulence. This also highlights why the
h̄s∇ · τ̄s quantity does not make for a good SGS flux density, whereas (3.19) does.

We normalise the nonlinear results with respect to

εNL =
∑

s

[∫
d3Rs(Υs(Rs, t) + Πs(Rs, t))2

]1/2

. (3.22)

As Ῡs(Rs, t) is defined as the divergence of a vector field, we clearly see that it integrates
to zero for periodic or appropriate asymptotic boundary conditions (i.e.

∫
d3RsῩs(Rs, t) =

0).
Here Ῡs(Rs, t) does not contribute to the redistribution of free energy across the cut-off
scale. Its role is to transport free energy in position space. The nonlinear transport of free
energy can be seen as being due to the coarse-grained advective velocity and due to the
SGS interactions, Ῡs = Ῡu,s + Ῡτ,s, with

Ῡu,s =
∫

d3v
Ts

Fs
[∇ · (ūsh̄2

s/2)], (3.23)

Ῡτ,s =
∫

d3v
Ts

Fs
[∇ · (τ̄sh̄s)]. (3.24)

The density of the SGS flux is much more interesting to us. Performing the spatial
integration, we recover the Π̄s(�c) flux,∫

d3RsΠ̄s(Rs, t) = Π̄s(�c), (3.25)

2See p. 15 of Eyink (2018), following (5.20), for a similar discussion on the entropy flux.
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FIGURE 4. The ion and electron SGS net flux Π̄s(�c) normalised to εNL, for �c = 2π/kc. The
vertical dashed lines represent the same kc cut-off values as considered by Teaca et al. (2017).
We obtain the same behaviour as reported previously by Teaca et al. (2017), where the flux was
computed via a triple-scale decomposition. Although the electron flux exhibits a −2/3 scaling,
the ion flux tends to be constant across the ‘inertial range’ scales. The small bottleneck around
k⊥ρi ≈ 26 is due to the relatively abrupt transition towards the range of scales dominated by
collisional dissipation.

which we plot in figure 4. As noted, although the integral in (3.14) recovers Π̄s(�c), it does
not provide for a good definition for the SGS flux density.

Scaling laws predicted via functional analysis, like in the work of Eyink (2018) for the
Vlasov–Maxwell system, are computed for absolute values (i.e. Lp norms). This prohibits
cancellation effects from occurring when integrating any sign indefinite quantity. To make
a comparison, we define the maximal (upper bound) values for the spatial transfer and SGS
flux. We do so by taking the absolute value before integrating the respective quantities in
velocity space:

Ῡ MAX
s (Rs, t) =

∫
d3v

Ts

Fs
|∇ · (ūsh̄2

s/2 + τ̄sh̄s)|, (3.26)

Π̄ MAX
s (Rs, t) =

∫
d3v

Ts

Fs
|τ̄s · ∇h̄s|. (3.27)

Next, we present a numerical analysis of the SGS flux density and spatial transport of
free energy, concentrating on one aspect at a time.

4. Numerical analysis
4.1. The free energy transport in position space

We plot the space density of the nonlinear transport of free energy in figure 5 for the
ions and in figure 6 for the electrons. In addition, in each figure, we plot the upper
bound transport density (Ῡ MAX

s ) for the two species. Varying the cut-off value in dyadic
increments (i.e. kcρi = {1, 2, 4, 8}) allows us to observe the change in transport as smaller
and smaller structures are accounted. For Ῡs, the cut-off scale indicates how a structure of
that size perceives the spatial transport of free energy. As the cut-off scales are taken to be
smaller and smaller, we see more fine-structure being added to the transport behaviour. In
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FIGURE 5. (a–d) Transport of free energy in position space for the ions, Ῡi(Rs, t). The plots
depict the typical perpendicular structures at an arbitrary z slice and are normalised to their
maximal in-plane value. From left to right, the k-filtering cut-offs are kcρi = {1, 2, 4, 8}. (e–h)
The same plots for Ῡ MAX

i (Rs, t).
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FIGURE 6. (a–d) Transport of free energy in position space for the electrons, Ῡe(Rs, t). The
plots depict the typical perpendicular structures at an arbitrary z slice and are normalised to
their maximal in-plane value. From left to right, the k-filtering cut-offs are kcρi = {1, 2, 4, 8}.
(e–h) The same plots for Ῡ MAX

e (Rs, t).
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FIGURE 7. The global variation with the cut-off scale of the upper bound transport of free
energy (Ῡ MAX

s ) for ions (a) and electrons (b). The individual contributions from ūs and τ̄s are
shown as well. All the plots are normalised to εNL.

particular, for the electrons, this is seen best from the plots of their upper bound transport
(Ῡ MAX). For the transport, while more fine structures are added for small scales, the peaks
tend not to change. This is natural, as the advection of large scales by the small scales is
negligible in most turbulent systems.

Since globally the spatial transport integrates to zero for any coarse-grained cut-off,
we look instead in figure 7 at the global variation with scale of Ῡ MAX

s . Defined similarly
to (3.26), we also plot in the same figure the upper bound values for the individual
contributions

Ῡ MAX
u,s =

∫
d3v

Ts

Fs
|∇ · (ūsh̄2

s/2)| and Ῡ MAX
τ,s =

∫
d3v

Ts

Fs
|∇ · (τ̄sh̄s)|. (4.1a,b)

As expected, doing so allows us to clearly see that the total transport is mainly due to
the advective velocity and not due to the SGS terms. For ions, small-scale contributions
add up fast, which we believe is due to the advective velocity and its fine perpendicular
velocity structure induced by the gyroaverage, structure that cannot cancel out when taken
in absolute value. In fact, past the initial large scales, the density plots for the upper bound
transport are indistinguishable from the advective velocity contribution (not shown here).
For reference, we plot in figure 8 a z-slice in the density of Ῡ MAX

τ,s for the kcρi = 2 cut-off.
Not surprisingly, the Ῡ MAX

τ,s structures are closer in shape but not location to those observed
for the energy flux density, as we show next.

4.2. The free energy flux density
We plot the density of the SGS flux of free energy for the ions (figure 9) and for the
electrons (figure 10), respectively. The upper bound (maximal) value of the flux density
for each species are presented as well. Compared with the transport density, the SGS
flux density shows that as the cut-off scales become smaller, the small-scale information
replaces the larger-scale information. We do not observe more fine-scale structures being
added on top of a larger one, but small scales replacing the larger one. This is one of the
best ways to perceive the flux of free energy across a scale (we refine further this argument
to account for the filter type in § 4.3).

https://doi.org/10.1017/S0022377821000180 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000180


SGS effects in magnetised plasma turbulence 17

0 1010 2020 3030
x[ρi]

0

5

1010

1515

2020

2525

3030

y
[ ρ

i]

0.0

0.2

0.4

0.6

0.8

1.0

0 1010 2020 3030
x[ρi]

0

5

1010

1515

2020

2525

3030
y
[ρ

i]

0.0

0.2

0.4

0.6

0.8

1.0
(a) (b)

FIGURE 8. A z slice in the density of Ῡ MAX
τ,i (Rs, t) (a) and Ῡ MAX

τ,e (Rs, t) (b) for kcρi = 2. The
plots are normalised to their maximal in-plane value. Although the scale defined structures are
visible as for the flux (see § 4.2), their overall distribution follow the Ῡ MAX

s plots.
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FIGURE 9. (a–d) The SGS flux density of free energy for the ions, Π̄i(Rs, t). The plots
depict the typical perpendicular structures at an arbitrary z point. From left to right, the
k-filtering cut-offs are kcρi = {1, 2, 4, 8}. (e–h) The same plots for the absolute SGS flux density
Π̄MAX

i (Rs, t).

For the ions, the SGS flux density tends to homogenise for smaller and smaller
structures. The electrons show an opposite behaviour, with structures of higher intensity
than the background occupying a smaller and smaller volume. These behaviours are clearly
seen in figure 11, where we plot the normalised histogram of the SGS flux density values.
We see the histogram tails for the electrons becoming more pronounced as the cut-off
scales become smaller, whereas the ions’ values tend towards a Gaussian distribution
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FIGURE 10. (a–d) The SGS flux density of free energy for the electrons, Π̄e(Rs, t). The
plots depict the typical perpendicular structures at an arbitrary z point. From left to right, the
k-filtering cut-offs are kcρi = {1, 2, 4, 8}. (e–h) The same plots for the absolute SGS flux density
Π̄MAX

e (Rs, t).
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FIGURE 11. The normalised histogram of the SGS flux density Π̄s(Rs, t) for (a) ions and
(b) electrons. Observe the slight asymmetry in favour of the positive values. For visual reference,
the dashed lines depict the corresponding Gaussian distributions.

at small scales. This is inline with the intermittency measurements performed on the
distribution function in Teaca et al. (2019).
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FIGURE 12. The net SGS flux Π̄s(�c) computed as the difference of positive Π̄
(+)
s (�c) (direct

cascade) and negative Π̄
(−)
s (�c) (backscatter) contributions for (a) ions and (b) electrons. The

positive contributions dominate. For both species, the maximal flux Π̄MAX
s (�c) given by (3.27) is

plotted as well. All are normalised to εNL. The net SGS flux and the �c = 2π/kc cut-off values
depicted by vertical short dashed lines are the same as in figure 4.
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FIGURE 13. The election’s SGS flux density Π̄e(Rs, t) for (a–d) kcρi = 2 and (e–h) kcρi =
4. Left to right we use Ĝα with α = {2, 4, 8, ∞}. The tendency to spatially delocalise the
structures in position space, while at the same time increase the consistency of their scale size
representation, can be observed for larger α.

One of the advantages of measuring SGS flux density is the ability to separate positive
Π̄ (+)

s (�c) and negative Π̄ (−)
s (�c) valued contributions to the net flux,

Π̄ (+)
s (�c) =

∫
d3RsΠ̄s(Rs, t), for Π̄s(Rs, t) > 0, (4.2)
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FIGURE 14. SGS net flux Π̄s for (a) ions and (b) electrons normalised to εNL, for Ĝα with
α = {2, 4, 8, ∞}.
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FIGURE 15. The normalised histogram of the SGS flux density Π̄s(Rs, t) at kcρi = 2 using a
Gaussian filter (Ĝ2) and a sharp one (Ĝ∞) for (a) ions and (b) electrons. The inset pictures show
the same for kcρi = 16. We see that the Gaussian filter has increased tail contributions and that
the positive branch (direct cascade) dominates. For visual reference, the dashed lines depict the
corresponding Gaussian distributions.

Π̄ (−)
s (�c) = −

∫
d3RsΠ̄s(Rs, t), for Π̄s(Rs, t) < 0. (4.3)

The positive value indicates a transfer towards the small scales, whereas a negative value
indicates a backscatter from small scales towards large ones. From figure 11, we clearly
see that the positive branch dominates. We plot in figure 12 the positive (Π̄ (+)

s ) and
negative (Π̄ (−)

s ) contributions to the net flux. The difference of the positive and negative
contributions give the net flux, i.e. Π̄s = Π̄ (+)

s − Π̄ (−)
s . Across the entire range of scales,

we see how the net flux for the electrons is the result of density cancellations of an order of
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magnitude higher. For the ions, a drastic cancellation is only observed up to approximately
k⊥ρi ∼ 2. We can say that more energy is moved up and down the energy cascade in scale
space than the secular-like net flux that is ultimately dissipated into heat. This is important
as this diffusion in scale space has an impact on the self-organisation of turbulence.
The fact that the net flux through a given scale is smaller in value than typical values
of the flux density, shows the benefit of using upper bound calculations in determining the
intensity of nonlinear dynamics.

4.3. Filtering kernel dependence
We want to understand whether the filtering kernel affects our results. In theory, the
results should be insensitive to the type of filters used, but, in practice, especially when
dealing with finite resolution numerical effects, they matter. We also state that we are less
concerned with the representation of the electromagnetic fields and hs as a result of the
filter (we found no visual difference; not shown), and are more concerned with the change
of the SGS flux and its density.

Although a sharp filter can be seen as a scale separation, a Gaussian filter is best seen
as separating compact structures in real space. With our choice of definition (3.8), we
can transition from the Gaussian filter to the sharp one by increasing the value of α. From
figure 13 we see that the more compact structures of an approximate scale give way to more
spread out structures of well-defined scale size. The flux is shown in figure 14, where no
change in the scaling is observed once we are past the smallest of wavenumbers. However,
from figure 15 we see that the distribution of flux density values has more pronounced
tails for a Gaussian filter.

5. Conclusions and discussion

We have revisited the problem of the redistribution of free energy in strongly magnetised
plasma turbulence. The plasma is embedded in a strong straight-line magnetic guide field,
and the dynamics of turbulence in the proton–electron range of scales are captured via
a GK approximation. This approximation is well suited for the analysis of the energy
redistribution in phase space and the subsequent thermalisation of plasma fluctuations.
We have concentrated on the redistribution of free energy in the perpendicular direction
to the guide field as the result of the nonlinear interactions. Unlike past works that
emphasised the spectral analysis, here, a novel approach in the field of GK turbulence
was employed. For a given reference scale, we decomposed the nonlinear interactions in
terms of coarse-grid scales and SGS. This approach allowed us to measure the spatial
density of the SGS flux of free energy and the spatial advection of free energy.

Employing an appropriate definition for the SGS flux, which also accounts for its
invariance to a change in the system of reference, and which recovers previously published
results (Teaca et al. 2017), we were able to analyse its spatial density properties. The use of
the flux density highlights the intermittent behaviour of nonlinear dynamics in turbulence,
with high-intensity flux structures occupying only a fraction of the total volume. For
progressively smaller cut-off scales, the intermittency of the flux density increases for
the electrons and decreases for the ions. This striking result, which is consistent with our
previous work on phase-space intermittency (Teaca et al. 2019), should be investigated
further and for a wider range of plasma parameters. The dependence of filtered quantities
on the type of scale filter has been analysed as well. Although a sharp filter in k-space
provides the best scale separation, a Gaussian filter allows for better structure localisation.
The hyper-Gaussian filters introduced here allowed for a transition between the sharp and
Gaussian filter types. Although the structures of the filtered fields do not depend strongly
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on the filter type, we have found that the nonlinear dynamics are sensitive enough that care
needs to be shown when analysing intermittent nonlinear behaviour.

We have also obtained the positive value and the negative value (backscatter)
contributions to the SGS flux. The difference between the two gives the net flux across
a scale, which is much smaller in value. This emphasises that nonlinear interactions are
much larger in absolute amplitude than the resulting net flux, and that SGS effects should
be modelled locally, at the density level. Previous studies (e.g. Navarro et al. 2011b; Nakata
et al. 2012; Navarro et al. 2014; Teaca et al. 2014; Maeyama et al. 2015) that studied the
energetic interactions between scales did so by looking at the coupling of spectral modes or
spectral bands, meaning that they could not differentiate between contributions to a scale
arising from different spatial structures. Moreover, SGS models for LES methods that
model solely the net flux significantly contaminate the local representation of structures
above the cut-off scale. It is also important for SGS models to allow for the negative scale
fluxes (backscatter), and move away from the idea that scale fluxes are simply sinks of
energy. This is particularly important in plasma that undergoes complex self-organisation
of structures at large scales, such as in tokamaks or stellarators, where global transport
levels are known to be influenced by small-scale effects (Görler & Jenko 2008b; Maeyama
et al. 2015; Howard et al. 2016). A density level approach to LES modelling would take
into account that not all large structures are affected equally. For this, multifractal models
developed for fluid flows (Burton & Dahm 2005) can be considered. Alternatively, models
that account for the effect of small scales on large-scale fluctuations can be adapted from
non-equilibrium statistical physics; see Maeyama & Watanabe (2020) on the use of the
Mori–Zwanzig formalism for this purpose. Moreover, the lessons learned from the LES
modelling of passive scalars (Warhaft 2000) should be examined as well, because the
nonlinear terms have an active and passive advection role for kinetic systems, which
for GK systems is best seen from a Laguerre–Hermite representation of the equations
(Mandell, Dorland & Landreman 2018).

Knowing that nonlinear interactions are responsible for a spatial advection of free
energy in addition to the energy flux across scales, we have looked at the spatial transport
of free energy. Not surprisingly, the coarse-grid scales are found to dominate the spatial
transport. This implies that whereas an SGS model is needed to truncate the nonlinear
interaction in scale space, the coarse-grid-scale fields suffice to obtain the spatial balance
of structures when investigating spatial advection. Spatial advection needs to be accounted
for the analysis of saturation levels of turbulent transport, especially in complex tokamak
or stellarator geometries, or in general whenever advective unstable structures develop.
This also gives hope that by prescribing the large-scale redistribution of free energy
in position space, machine learning algorithms could be trained to identify relevant
correlations between structures and guess the correct SGS density flux, providing effective
SGS models in the process.

Last, to better understand the relation between theoretical and numerical estimates, we
have computed upper-bound values for the flux and spatial transport of free energy. We
have found the upper-bound (maximal) SGS fluxes to be much higher than the actual
spatially integrated values that allow for cancellations. To complete our current approach
for the analysis of the energy redistribution, a coarse graining of v‖ scales needs to
be additionally considered. This was not attempted here owing to practical numerical
limitations. This is a problem left for the future, that will be best performed via a
drift-kinetic approximation.
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Appendix A. Poisson bracket properties

The binary operation,

{ f , g} = [∇f × ∇g] · ẑ = ∂f
∂x

∂g
∂y

− ∂f
∂y

∂g
∂x

, (A 1)

defines a Poisson bracket structure in the x, y space that satisfies the properties:

(i) antisymmetry

{ f , g} = −{g, f }; (A 2)

(ii) bilinearity

{αf + βg, h} = α{ f , h} + β{g, h}, (A 3)

{ f , βg + γ h} = β{ f , g} + γ { f , h}; (A 4)

(iii) Leibniz–Newton rule

{ fg, h} = f {g, h} + { f , h}g, (A 5)

{ f , gh} = { f , g}h + g{ f , h}; (A 6)

(iv) Jacobi identity

{ f , {g, h}} + {g, {h, f }} + {h, { f , g}} = 0; (A 7)

(v) null for a constant

{ f , α} = 0; (A 8)

(vi) differential operator behaviour

D{ f , g} = {Df , g} + { f , Dg}. (A 9)

The proofs for all these properties are obtained directly from the definition (A 1) for
f , g, h functions of (x, y) and α, β, γ numerical constants. In practice, the operator D
stands in for ∂/∂t or ∂/∂v‖.
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From the definition, integrating by parts for appropriate boundary conditions (periodic,
asymptotic, etc.) we obtain,

∫∫
{ f , g} dx dy = 0. (A 10)

As a direct consequence of bilinearity and the Leibniz–Newton rule, we obtain that the
integral of the product of { f , g} with any linear combination of f and g monomials is zero,

∫∫
(αf mgn){ f , g} dx dy = α

(m + 1)(n + 1)

∫∫
{ f m+1, gn+1} dx dy = 0. (A 11)

For GK theory, this implies that because
{〈χ〉Rs, hs

}
is the nonlinear term that leaves

hs invariant (globally conserved), any statistical moments of hs (i.e. hm
s ) are nonlinear

invariants as well. More generally, any quantity that can be written under the form of
the Poisson bracket will be globally conserved.

Appendix B. Free energy balance equation

As presented in Howes et al. (2006) and Schekochihin et al. (2008, 2009), starting from
the GK equations,

∂hs

∂t
+ c

B0
{〈χ〉Rs, hs} + v‖

∂hs

∂z
= qsFs

Ts

∂〈χ〉Rs

∂t
+
(

∂hs

∂t

)
c

, (B 1)

multiplying by Tshs/Fs, integrating over the velocity space, position and summing over all
species, we obtain

∫
d3Rs

∑
s

∫
d3v

Ts

2Fs

[
∂h2

s

∂t
+ c

B0
{〈χ〉Rs, h2

s } + v‖
∂h2

s

∂z

]

=
∫

d3Rs

∑
s

∫
d3vqshs

∂〈χ〉Rs

∂t
+
∫

d3Rs

∑
s

∫
d3v

Ts

Fs
hs

(
∂hs

∂t

)
c

. (B 2)

Defining d ∗ /dt = ∂∗/∂t + (c/B0)
{〈χ〉Rs, ∗

}+ v‖∂∗/∂z in the gyrocentre space, we
write the left-hand side term as

∫
d3Rs

∑
s

∫
d3v

Ts

2Fs

(
∂h2

s

∂t
+ c

B0
{〈χ〉Rs, h2

s } + v‖
∂h2

s

∂z

)

= d
dt

∫
d3Rs

∑
s

∫
d3v

Tsh2
s

2Fs
= d

dt

∫
d3r

∑
s

∫
d3v

Ts〈h2
s 〉r

2Fs
. (B 3)
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On the right-hand side, using χ = φ − v · A/c, we manipulate the first term as∫
d3Rs

∑
s

∫
d3v qs

∂〈χ〉Rs

∂t
hs =

∫
d3Rs

∑
s

qs

∫
d3v

〈
∂χ

∂t
hs

〉
Rs

=
∫

d3r
∑

s

qs

∫
d3v

〈
∂χ

∂t
hs

〉
r

=
∫

d3r
∑

s

qs

∫
d3v

〈
∂φ

∂t
hs − 1

c
∂A
∂t

· vhs

〉
r

=
∫

d3r
∑

s

qs

∫
d3v

〈
dφ

dt
hs − ∇rφ · vhs − 1

c
∂A
∂t

· vhs

〉
r

=
∫

d3r
∑

s

qs

∫
d3v

〈
dφ

dt
hs + E · vhs

〉
r

=
∫

d3r
dφ

dt

∑
s

qs

∫
d3v 〈hs〉r +

∫
d3rE ·

∑
s

qs

∫
d3v 〈v hs〉r

=
∫

d3r
dφ

dt

∑
s

φ
q2

s ns

2Ts
+
∫

d3rE · j

= d
dt

[∫
d3r

∑
s

q2
sφ

2ns

2Ts
−
∫

d3r
B2

8π

]
, (B 4)

where we have used the relation dφ/dt = ∂φ/∂t + v · ∇rφ, the electric field definition
E = −∇rφ + ∂A/c∂t and the electric current expression j = ∑

s qs
∫

d3v 〈v hs〉r. For the
last equality we have used the quasi-neutrality condition

∑
s qs

∫ 〈hs〉rd3v = ∑
s qs

qsφ

Ts
ns

and the Poynting theorem in the form∫
d3rE · j = − d

dt

∫
d3r

B2

8π
. (B 5)

Grouping all the terms and knowing that the last term on the right-hand side represents
the change of free energy owing to collisions, we obtain the free energy balance equation,

dW
dt

= d
dt

∫
d3r

[∑
s

(∫
d3v

Ts〈h2
s 〉r

2Fs
− q2

sφ
2ns

2Ts

)
+ B2

8π

]

=
∫

d3Rs

∑
s

∫
d3v

Ts

Fs
hs

(
∂hs

∂t

)
c

. (B 6)

Finally, we define the Rs-density of the free energy contribution of species s as

Ws(Rs, t) =
∫

d3v

[
hs − qsFs

Ts
〈χ〉Rs

]
Ts

Fs
hs, (B 7)

The quantity Ws(Rs, t) recovers the free energy upon summing over the plasma species
and integrating over the position space. To show this, one just needs to trivially follow the
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steps presented in this appendix. From (B 1), multiplying by Tshs/Fs and integrating only
over the velocity space, we find the balance equation for Ws(Rs, t) to be

∂Ws(Rs, t)
∂t

=
∫

d3v
Ts

2Fs

[
− c

B0
{〈χ〉Rs, h2

s } − v‖
∂h2

s

∂z
+ 2hs

(
∂hs

∂t

)
c

]
. (B 8)

We clearly see now that the variation of the free energy density for each species is due to
the actions of a nonlinear term, a linear parallel term and a collisional term.
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