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New Semantics for Bayesian Inference:
The Interpretive Problem and Its Solutions
Olav Benjamin Vassend*y

Scientists often study hypotheses that they know to be false. This creates an interpretive
problem for Bayesians because the probability assigned to a hypothesis is typically in-
terpreted as the probability that the hypothesis is true. I argue that solving the interpre-
tive problem requires coming up with a new semantics for Bayesian inference. I present
and contrast two new semantic frameworks, and I argue that both of them support the
claim that there is pervasive pragmatic encroachment on whether a given Bayesian prob-
ability assignment is rational.
1. Introduction. Bayesianism is one of the most influential contemporary
frameworks for statistical inference, but from a philosophical point of view
Bayesian inference faces several difficulties. One particularly serious prob-
lem is that statisticians who use Bayesian methods often assign nonzero
probabilities over sets of hypotheses that they know are false, yet, as I show
in the next section of the article, this practice is inconsistent with the inter-
pretation of probability that is standardly assumed by Bayesians. Thus, there
is a tension between the standard Bayesian interpretation of probability and
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the way the Bayesian framework is often applied, which I will refer to as the
“interpretive problem.”1

Although the problem is primarily interpretive and philosophical, it also
has practical consequences. According to most Bayesians, probability distri-
butions ought to incorporate relevant background information—indeed, the
fact that Bayesians can do this in a principled way is often touted as a major
advantage that Bayesianism has over rival statistical frameworks, such as
frequentism. However, in cases in which the standard Bayesian interpreta-
tion of probability fails, it is unclear how background information should
be taken into account in a principled way. Probably in part for this reason, so-
called default priors that do not even attempt to take into account relevant
background information have gained prominence in recent years. But de-
fault priors have their own problems (De Heide and Grünwald 2018). Hence,
solving the interpretive problem is not just philosophically interesting; it is
also of some practical importance.

I will argue that the only satisfactory solutions to the problem involve re-
interpreting what it means to assign a probability to a hypothesis. According
to one solution (originally proposed by Sprenger [2017]), probabilities are
interpreted counterfactually; according to a second solution, probabilities
are interpreted as what I will refer to as “verisimilitude probabilities.”Much
of the article will be concerned with exploring the features of these two in-
terpretations. In particular, I will argue that the verisimilitude and counter-
factual interpretations have the same nice features that the standard interpre-
tation has but that they have the added benefit of being sensible and useful in
situations in which the standard interpretation is not. In particular, the veri-
similitude and counterfactual interpretations of probability enable us to in-
corporate background information in probability distributions in a principled
manner, even when all the hypotheses under consideration are known to be
false. I will also show that the two interpretations are intertranslatable and that
they are therefore—in an intuitive sense—equivalent, and I will explore the
relationship between the verisimilitude and counterfactual interpretations, on
the one hand, and the standard interpretation, on the other.

Although the interpretive problem arises in applied statistics, both the
verisimilitude interpretation and the counterfactual interpretation of prob-
ability are interesting from an epistemological point of view. In particular,
both interpretations have the feature that whether a given Bayesian prob-
ability distribution is rational is partly influenced by pragmatic factors. As I
1. The problem has been noted in the past, e.g., by Box (1980), Bernardo and Smith
(1994), Forster and Sober (1994), Forster (1995), Key, Pericchi, and Smith (1999), Shaf-
fer (2001), Sprenger (2009, 2017), Gelman and Shalizi (2013), and Walker (2013). In-
deed, Sprenger calls the problem the “scandal of Bayesianism,” but in general the seri-
ousness of the issue seems to be underappreciated.
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argue in section 10, there are good reasons for suspecting that all solutions
of the interpretive problem will have this feature. Thus, I argue, there is an in-
teresting—and unavoidable—form of pragmatic encroachment in Bayesian
inference.

2. An Abstract Characterization of the Interpretive Problem. The pur-
pose of this section is go give a brief introduction to the fundamentals of
Bayesian statistical inference and to provide an abstract characterization of
the interpretive problem. In the next section, I show how the problem arises
in practice.

The basic objects of study in Bayesian statistical inference are statistical
models. Given a set of candidate hypotheses indexed by a parameter, v inV;
and given some particular context in which the possible observations or out-
comes are x1, x2, and so on, in X; and given a corpus of background knowl-
edge or background assumptions K, a statistical model is a set of conditional
probability (density) distributions,2 pK(xjv), that jointly specify the probabil-
ity of each possible x in X given each possible v inV. Given a statistical model
or a set of statistical models, Bayesians do inference by following a three-
step procedure.

In the first step, a probability is assigned to each v ∈ V; these probabilities
are supposed to be assigned before looking at the data and are therefore
known as “prior” probabilities. If there are multiple candidate statistical
models, then all of the models must be assigned prior probabilities as well.
The requirement that the numbers assigned to parameters be probabilities
rather than just arbitrary real numbers means that the assignment must sat-
isfy the following constraints:
2. Fr
densi

8 Publ
Standard Probability Axioms. Suppose V indexes a set of hypotheses
{v1, v2, ..., vn} considered by some agent, and let K represent a corpus of
background knowledge. Then the distribution pK over V satisfies the prob-
ability axioms if and only if:
om n
ties

ished 
1S. pK(∨ vi) 5 1, whenever K entails that at least one hypothesis in
the disjunction of hypotheses indexed by ∨vi is true.

2S. pK(vi) ≥ 0 for all vi in V.
3S. pK(∨ vi) 5 opK(vi), whenever K entails that at most one of the hy-

potheses in the disjunction of hypotheses indexed by ∨vi is true.
Bayesians divide over how, exactly, pK should be interpreted. Subjective
Bayesians interpret pK as the degrees of belief of some particular agent and
ow on, I will use “probability” for simplicity, although in practice probability
are more common.
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K as that particular agent’s background knowledge, whereas objective Bayes-
ians typically interpret pK as representing a logical degree of support and
K as representing a collection of “objective” background information (or in-
tersubjectively shared background knowledge). For our purposes, the differ-
ences between subjective and objective Bayesians will not be important. The
more important fact, from our point of view, is that both subjective and ob-
jective Bayesians agree that p(v) represents a probability that the hypothesis
indexed by v is true.

In the second step of Bayesian inference, data x are collected, and the
“likelihood” of each hypothesis is calculated. The likelihood of v is the prob-
ability that v assigns to the data, pK(xjv). In the third and final step, the pos-
terior probability of each parameter and each statistical model is calculated
by combining the prior and the likelihood of each hypothesis using Bayes’s
theorem, pK(vjx) 5 pK(xjv) � pK(v)=pK(x).

In what follows, I refer to the above three-step procedure as “standard
Bayesian inference.” Although I think each of the three steps of standard
Bayesian inference faces difficulties, in this article I focus on the first step.
What I refer to as the “interpretive problem” arises whenever scientists as-
sign nonzero probabilities to hypotheses that they know to be false. In such
situations, they will, in fact, be violating the probability axioms.

To see why, let us suppose, for simplicity (but without loss of generality),
that the parameter v can take a finite number of possible values v1, v2,..., vm.
Now suppose we know that each of the hypotheses under consideration is
false; that is, K entails that vi is false, for each i. Then K entails that :vi is
true, for each i. 1S then implies that we must—on pain of violating the prob-
ability axioms—assign a probability of 1 to :vi. Finally, axioms 2S and 3S
jointly entail that we must assign a probability of 0 to vi for every i. Hence, if
we nonetheless assign nonzero numbers to the various possible values of v,
we will be violating the standard probability axioms.3 In the next section, I
argue that scientists often know that all of the hypotheses they consider are
false.

3. The Interpretive Problem in Practice. Scientists are often interested in
studying the functional relationship between multiple quantities. Statisti-
cians call this type of problem “regression analysis.”An example of a regres-
sion problem that is of obvious practical importance (discussed, e.g., by
Choi et al. 2016) concerns the relationship between minimal pressure and
3. A referee points out that one way to undercut this argument is to insist that the prob-
ability distribution should only be based on some proper subset of K. This is correct, but
then the question arises of which proper subpart of K it is legitimate to use. The verisi-
militude and counterfactual interpretations that I offer later in the article provide princi-
pled answers to this question.
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maximal wind speed in tropical storms. Let X represent the minimal pressure
of some storm, and let Y represent the maximal wind speed of the storm;
then we would like to know the true functional dependence of Y on X. This
relationship is unknown and probably quite complex. However, various ide-
alized assumptions (see Knaff and Zehr 2007) justify the following model:

Y 5 a(1, 010 2 X )n 1 ε: (1)

Here, ε, n, and a are all parameters that must be estimated from the data.4

Each triple of values for a, ε, and n picks out a given hypothesis about the
true relationship between X and Y. Importantly, the fact that the model is
based on idealized assumptions (i.e., assumptions that are known to be vio-
lated in practice—indeed physically impossible) implies that the model in
fact is known to be false. That is, the true relationship between Y and X does
not belong to the class of hypotheses picked out by the parameters in the
model. Hence, every hypothesis picked out by any triple of values for a,
n, and ε is also known to be false, even before any evidence is collected.

It is worth emphasizing that this example is by nomeans unrepresentative.
It is almost invariably the case in regression problems that the hypotheses
under consideration will be restricted to very simple functional relationships,
such as the set of lines, parabolas, exponentials, and so on. Most functional
relationships in the world cannot realistically be expected to belong to one of
these sets of simple functional relationships, and indeed the choice of func-
tional class is usually justified on the basis of highly idealized scientific as-
sumptions, if it is justified at all. Hence, scientists will generally know that all
the functional relationships they consider are false. By the argument at the
end of the preceding section, the probability axioms imply that scientists
ought to assign a probability of 0 to all of their hypotheses. But that is of
course not what they do, and for good reason because in the Bayesian frame-
work assigning a hypothesis a probability of 0 is tantamount to excluding it
from further consideration. If scientists were to assign a probability of 0 to all
functional relationships they know to be false, they would in effect rule out
all of their hypotheses from the get-go.

Bayesian phylogenetics is an example of another major area of statistical
inference in which scientists generally know that the hypotheses they con-
sider are false. Phylogeneticists in both biology and linguistics use trees to
represent family relationships between species or between languages. In both
cases, the trees investigated omit known relationships and introduce false
idealizations (see, e.g., Heggarty, Maguire, and McMahon 2010; O’Malley,
Martin, and Dupre 2010; Velasco 2012). For example, a tree phylogeny for a
4. Strictly speaking, ε itself is not a parameter; it is an error term, which in general will
have an associated parameter d that will need to be estimated. I gloss over those nuances
here.
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language family is premised on the (false) idea that languages bifurcate in-
stantaneously and are forever separated thereafter. Again, if Bayesian phylo-
geneticists took seriously the standard probability axioms, then they would
have to assign all of their hypotheses a prior probability of 0. But that is
not what they do. The widespread practice of assigning nonzero prior prob-
abilities to hypotheses that are obviously false is what leads to the interpre-
tive problem, which may be phrased in the form of a question: what does it
mean to assign a model or hypothesis that is known to be false a nonzero
probability?

4. Unsuccessful Solutions to the Interpretive Problem. One response to
the interpretive problem that initially strikes many philosophers as attractive
is to try to change the algebra over which the probability function p ranges.
For example, some might be tempted to consider the algebra generated by
the associated propositions, hvi is the best hypothesisi, for each vi, or some-
thing similar. The idea is that even if vi must be assigned a probability of 0
(because it is known to be false), the standard probability axioms allow us to
assign hvi is the best hypothesisi a nonzero probability.

However, this proposal faces several difficulties. The most immediate
problem is the fact that scientists do not, in fact, consider hypotheses of the
form hvi is the best hypothesisi. And for good reason, as we will soon see.
The problem is that, whereas a parameter v in a statistical model will index
a set of probability distributions each of which entails probabilities for the
various possible observations, an expression such as hvi is the best hypothe-
sisi does not. For example, in the example in section 3, a 5 1 picks out a
particular class of hypotheses that make probabilistic predictions about the
possible observations.5 But a proposition such as ha 5 1 is the best hypoth-
esisi is not part of any statistical model and does not make any probabilistic
predictions.

To see the problem from a different perspective, consider Bayes’s formula:

pK(vjx) 5 pK(xjv) � pK(v)

pK(x)
: (2)

Clearly, the likelihood and the prior have to range over the same set of hypoth-
eses in order for Bayes’s formula to be applicable. If we change the algebra
of hypotheses so that we instead assign probabilities to propositions of the
form hvi is the best hypothesisi, then we may assign nonzero prior proba-
bilities to our hypotheses without violating the probability axioms. However,
nowthe likelihoodswill beof the formpK(xj h vi is the best hypothesis i), but
hvi is the best hypothesisi does not entail any probabilistic prediction for x,
5. In fact, each value of a picks out a class of hypotheses that is itself a statistical model.
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so it is hard to see how we are to come up with a principled estimate for
pK(xjhvi is the best hypothesis i).6

There is another, related, reason why we cannot just change the algebra
over which the probability distribution ranges. The problem is that, in re-
placing vi with hvi is the best hypothesisi, important evidential relationships
between the hypotheses and evidence will generally be lost. An important
special case is parameter estimation with exchangeable evidence,7 where a
theorem due to de Finetti (proved in a more general form by Hewitt and Sav-
age [1955]) shows that there will be a probability model such that the param-
eters of the model render the evidence conditionally independent. Hence,
when the evidence is exchangeable, statisticians have an imperative to con-
struct models that render the evidence conditionally independent. But hvi is
the best hypothesisiwill in general not render the evidence conditionally in-
dependent whenever vi does.

As a concrete example, consider coin tossing. Coin tosses are clearly ex-
changeable (e.g., “heads, tails, heads” is as probable as “heads, heads, tails”),
so de Finetti’s theorem implies that there exists a model with a parameter that
renders the coin tosses conditionally independent. In fact, there is a well-
known model that does this, namely, the model that posits a parameter, bias,
that represents the coin’s underlying propensity to land heads. Each possible
bias of the coin renders all future coin tosses conditionally independent.8 The
coin bias model is therefore an adequate statistical model for coin tossing in
the sense that it captures the conditional independence relations between
evidence and hypotheses that de Finetti’s theorem says it is possible to cap-
ture. However, note that there is no reason to think that a proposition like
hbias 5 0:3 is the best value for the coin’s propensityi will likewise render
the coin tosses conditionally independent. Hence, we cannot simply replace
6. A similar solution has recently been proposed in the statistics literature. Walker
(2013) suggests that in cases in which no hypothesis in the model indexed by v is true,
we ought to construe the goal of Bayesian analysis as finding the hypothesis v* that min-
imizes statistical divergence from the true data-generating distribution (a similar proposal
is adopted by Bissiri, Holmes, and Walker [2016]). Hence, the prior distribution ranges
over the possible values of v*. There is a problem, however: the parameter v* and the
parameter v range over distinct hypotheses. Parameter v ranges over hypotheses in a sta-
tistical model, whereas v* ranges over hypotheses of the following form, where S is a sta-
tistical divergence and g is the truth: v* 5 minv∈V S(v, g). Hence, the likelihood, which
Walker derives from the statistical model, is of the form p(xjv), whereas the prior is of
the form p(v*). But p(xjv) and p(v*) cannot be combined using Bayes’s formula since
they range over different sets of hypotheses. To be fair, Walker (2013) is sensitive to the
problem.

7. Roughly speaking, evidence is exchangeable if the probability of receiving any given
sequence of evidence is not dependent on the order in which the evidence is received.

8. For example, p(heads on second tossjbias 5 0:3&tails on first toss) 5 p(heads on 
second tossjbias 5 0:3).
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the bias parameter with a different parameter without risking losing impor-
tant relationships that hold between the evidence and the hypotheses.

The same points hold more generally: statisticians (rationally) prefer hy-
potheses that (1) entail probabilities for the possible evidence and (2) have
suitably informative connections with the evidence. But a proposition such
as hvi is the best hypothesisi will generally not satisfy either 1 or 2. And that
is probably why such hypotheses do not occur in statistical practice.

Hence, avoiding the interpretive problem by changing the algebra over
which p ranges is not a workable solution to the interpretive problem. Other
ways of avoiding the interpretive problem also fail to deliver. For example,
Morey, Romeijn, and Rouder (2013) assert that “scientific models, including
statistical models, are neither true nor false” (71). They then recommend as-
signing odds rather than probabilities to models because a “Bayesian who
employs odds is silent onwhether or not she is in possession of the truemodel,
and, in fact, need not acknowledge the existence of a true model at all” (71).
It is, however, unclear how using odds rather than probabilities is supposed
to avoid the interpretive problem. And it is not clear how refusing to assign
truth values to models avoids the problem either. What does it mean to say
that your odds are 5 to 1 in a model that is neither true nor false as against
another model that is also neither true nor false? The interpretive problem
seems to be just as severe here as before.

We have to face the interpretive problem head on, and if we are to do so,
then we have to face up to the fact that it really is an interpretive problem—
the problem is that the standard probability axioms do not fit with how the
Bayesian machinery is often applied in practice. To solve the problem, it fol-
lows that we have to come up with a different interpretation of the Bayesian
framework. For the remainder of the article, I consider two solutions to the
interpretive problem. One solution involves interpreting conditional proba-
bilities counterfactually rather than indicatively, while the other solution in-
volves interpreting probabilities as what I refer to as a “verisimilitude prob-
abilities.” As we will see, each interpretation necessitates a new version of
the probability axioms.

5. Verisimilitude Probabilities. In cases in which all the hypotheses under
consideration are known to be false, the goal of Bayesian inference cannot
reasonably be construed as discovering the hypothesis that most probably is
true. A natural proposal is that the goal in such cases changes to discovering
which hypothesis is—in some sense—closest to the truth. Indeed, scientific
realists have long held that the real (achievable) goal of inference is close-
ness to the truth rather than truth itself.

The idea that the goal of inference is to identify the v that is closest to the
truth leads to a natural reinterpretation of probability. Instead of interpreting
pK(v) as the probability that v is true, we interpret pK(v) as the probability that
86/704978 Published online by Cambridge University Press
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v is closest to the truth out of the hypotheses in V. I call this interpretation
of probability the “verisimilitude interpretation.”

The reader may wonder how the verisimilitude interpretation differs from
the earlier rejected suggestion of changing the algebra of hypotheses. Does
the verisimilitude interpretation not just say that we ought to assign prob-
abilities to propositions of the form hv is closest to the truthi rather than to
v itself ? The answer is no. According to the verisimilitude interpretation,
pK(v) is a probability that is assigned to v itself, not to hv is closest to the
truthi. Thus, according to the verisimilitude interpretation
9. Co

10. S
ships
1987
the v
for B

11. In
that t
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pK(v) 5 the probability that v is closest to the truth out of the hypotheses
in V.
In other words, according to the verisimilitude interpretation, a probability
assignment to v represents a complex epistemic attitude taken toward v; it
does not represent a simple attitude taken toward a complex proposition.9

This is important, because as we saw in the previous section, avoiding the
interpretive problem by changing the algebra of propositions does not work.

So far the discussion of the verisimilitude interpretation has proceeded on
an informal and intuitive level. Tomake the verisimilitude interpretation pre-
cise, more needs to be said about verisimilitude. The study of verisimilitude
was initiated by Popper (1963) and has by now accumulated a large litera-
ture.10 The most influential contemporary approach in the study of verisimil-
itude—known in the literature as the “similarity approach”—understands
verisimilitude as a particular kind of approximation. To say that something
is a good approximation of something else is to say that the two things are
similar in some relevant respect. Thus, to say that a hypothesis is close to
the truth is to say that the hypothesis is similar to the true hypothesis.

This idea can be formalized if we suppose that there is a (context-
appropriate) verisimilitude measure, v, that ranks hypotheses by how similar
they are to the true hypothesis.11 If we presume that such functions are avail-
able, we can say that v1 is closer to the truth than v2 if and only if v(v1) > v(v2).
Here, we can be quite liberal in what we count as a “verisimilitude measure,”
mpare the point made by Moss (2018), although the lesson drawn here is different.

ee Niiniluoto (1998) for a survey. Some of this literature has dealt with relation-
between verisimilitude and Bayesianism (e.g., Rosenkrantz 1980; Niiniluoto 1986,
; Festa 1993; Cevolani, Crupi, and Festa 2010; Oddie 2019). However, no one in
erisimilitude literature has—to my knowledge—discussed the interpretive problem
ayesian statistical inference.

general I agree with Northcott (2013) that there is little reason to assume a priori
here is a single appropriate distance measure of approximate truth in all contexts.
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although as a minimal requirement it is reasonable to suppose that v be
maximized by the true hypothesis, if the true hypothesis is one of the hy-
potheses under consideration. Later in the article I suggest a simple verisi-
militude measure that makes sense in the earlier example concerning the re-
lationship between wind speed and pressure.

Given a measure of verisimilitude, v, I use pv
K with a v superscript to in-

dicate that the intended interpretation of pv
K is the verisimilitude interpreta-

tion with measure v. That is,
86/7049
pv
K(v) 5 the probability that v maximizes v.
Note that the verisimilitude interpretation is consistent with either a subjec-
tive or an objective Bayesian philosophy. On a subjective Bayesian reading,
pv
K(v) would be interpreted as some particular agent’s epistemic state, K, as

that agent’s background knowledge, and v as the agent’s preferred verisimil-
itude measure. On an objective reading, pv

K(v) would instead be interpreted
as expressing a logical probability, K, as some objectively shared background
knowledge, and v as a verisimilitude measure that is “objectively proper” given
the purpose at hand.

Moving from the standard interpretation of probability to the verisimili-
tude interpretation necessitates a suitable change in the probability axioms.
Here is the verisimilitude version of the probability axioms:
Verisimilitude Probability Axioms. Suppose V indexes a set of hypoth-
eses {v1, v2,..., vn}, let v be a verisimilitude measure defined over the hy-
potheses indexed by V, and let K be a corpus of background knowledge.
Then a distribution p over V satisfies the verisimilitude probability axioms
with respect to v if and only if:
78 Pu
1V. pv
K(∨ vi) 5 1, whenever K entails that at least one hypothesis in
the disjunction of hypotheses indexed by ∨vi maximizes v.

2V. pv
K(vi) ≥ 0 for all vi in V.

3V. pv
K(⋁ vi) 5 opv

K(vi), whenever K entails that at most one of the
hypotheses in the disjunction of hypotheses indexed by ∨vi max-
imizes v.
It is clear that by adopting the verisimilitude probability axioms we avoid the
interpretive problem, because the fact that K entails that all the hypotheses
under consideration are false does not mean that K will entail that none of
the hypotheses under consideration will be closest to the truth. On the con-
trary, under commonly satisfied conditions, for example, when the hypoth-
esis space is closed and bounded and v is continuous, then one of the hypoth-
eses will be mathematically guaranteed to maximize v.
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Note that, on the verisimilitude interpretation, the probability assigned
to a hypothesis is relative to a given way of measuring verisimilitude. Con-
sequently, in contrast to what is the case in standard Bayesian analysis, the
verisimilitude prior probability of a hypothesis does not simply reflect back-
ground information. Instead, on the verisimilitude interpretation, the prior
probability distribution is fundamentally goal relative; its functional role in
statistical analysis is to assign less weight to hypotheses that are likely to be
further from the truth, given one’s background knowledge and given the veri-
similitude measure of interest.

6. The Verisimilitude Interpretation in Practice. The main purpose of
this section is to illustrate, through an example, the abstract remarks made
at the end of the previous section. More precisely, the goal is to show how
it is possible to combine background information with a verisimilitude mea-
sure in a principled manner in order to derive rational constraints on veri-
similitude probability distributions in a way that is very analogous to how
background information leads to rational constraints on standard probability
distributions. Thus, verisimilitude prior probability functions can play a role
in inference that is very similar to the role played by standard prior probabil-
ity functions in standard Bayesian inference. But, the example will also serve
to show how pragmatic factors may influence what the rational constraints
on the prior probability function turn out to be, and it will thereby prepare
the way for the argument in section 10.

In order to get a sense of how this will work, it is helpful to first look at a
simple example of how background knowledge can be incorporated in the
prior distribution in a simple case in which there is no interpretive problem.
Suppose we are estimating the mass of a small cup of water, and suppose we
model the outcome of the measurement as a likelihood function pK(xjm),
where x is the outcome of the measurement and m is a possible value of the
cup’s mass. The traditional frequentist (non-Bayesian) way of estimating the
value of m would be to take as our best estimate the value of m that maxi-
mizes the probability of x—this is the maximum likelihood estimate. From a
Bayesian point of view, maximum likelihood estimation is clearly suboptimal
in this case because it fails to take into account background knowledge that
we have about the reasonable masses of cups of water.

In particular we know that m cannot be any negative value (themass of an
object cannot be a negative number). Furthermore, we know that a small cup
of water will not weigh more than, say, 1 kilogram. Therefore, at a minimum,
our background knowledge entails that m lies somewhere in the interval [0,
1]. The standard probability axioms, 1S–3S, then entail that we ought to as-
sign every value of m that lies outside of this interval a probability of 0. From
a Bayesian point of view, this prior probability function can be expected to
8 Published online by Cambridge University Press
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improve on maximum likelihood estimation because it restricts the analysis
to an area of the parameter space that is consistent with background knowl-
edge. I will ague that verisimilitude probability distributions can play a sim-
ilar role in cases in which we face the interpretive problem.

Consider again the example concerning the relationship between baro-
metric pressure (X ) and maximum wind speed (Y ). Let us use f to denote
the true (unknown) functional dependency of Y on X. Now, suppose one of
the things we know about the relationship between barometric pressure and
wind speed is that changes in maximum wind speed are relatively insensi-
tive to changes in barometric pressure, and suppose we also know the amount
of maximal wind speed associated with the minimal pressure of interest.

So far, this is background knowledge about the actual, unknown function
relating barometric pressure and wind speed. What consequences does this
background knowledge about f have for inferences about the hypothesis set
actually under consideration? To simplify the example somewhat, suppose
that rather than the hypotheses in equation (1), the set of hypotheses we are
considering consists of lines. Suppose, moreover, that we know that f is not
a line. Can we use our background knowledge about f to discriminate be-
tween the various false lines in a principled way? The answer is yes, but how
our background knowledge affects the inferences we are entitled to make will
depend on how we measure verisimilitude.

Suppose that our ultimate goal is to build a structure that will be able to
withstand strongwinds.12 In that case, it is important that themaximal errorwe
make when we estimate wind speed be as small as possible. In other words,
figure 1 is a natural measure of closeness to the truth given our goal; this is
not to say that this is an appropriate way to measure closeness to the truth
given other goals.

Mathematically, the verisimilitude of some straight line L is given by the
formula vmax(L) 5 2maxx∈½a,b�jt(x) 2 L(x)j, where [a, b] is the range of rele-
vant pressures. Given that we use v to measure verisimilitude, and given that
we have restricted the analysis to the class of lines, the more immediate goal
is to identify lines that are close to the truth according to v.

It is in fact easy to show that, under the given conditions, some (identifi-
able) lines will be further from the truth than others, given the way verisimil-
itude is measured and given our background knowledge. In particular, our
background knowledge entails that certain lines that have a particularly steep
slope cannot possibly be closest to the truth.13 Hence, the verisimilitude axi-
oms, 1V–3V, entail that such lines ought to be assigned a probability of 0.
12. I thank Mike Titelbaum for suggesting this example to me.

13. For reasons of space, I have not included a complete demonstration of this fact, but
here is a sketch: our background knowledge that changes in maximum wind speed are
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However, crucially, if closeness to the truth is measured in a different
way, we do not necessarily get the same rational requirements on the prior
distribution. Suppose, for example, that we are instead very concerned with
the minimal rather than maximal distance of each line from the truth. That
is, we use wmin(L) 5 2minx∈½a,b�jt(x) 2 L(x)j to measure the verisimilitude of
each line (see fig. 2).
Figure 1. Measure of closeness to the truth.
relatively insensitive to variations in barometric pressure may be formalized as knowl-
edge that the derivative of f is bounded by some known interval (a, b). Suppose, more-
over, that the range of relevant pressures is contained in some known interval (x1, x2) and
that we know that f (x1) 5 w. Then it is possible to show that if L*(x) 5 ax 1 b is a line
such that L*(x1) > w and a > b, then there is another line L1(x) 5 a1x 1 b1 such that
L1(x1) < w and a1 ∈ (a, b) such that L1 is closer to the truth than L*, according to the
verisimilitude measure v(L) 5 2maxx∈(x1,x2)jf (x) 2 L(x)j. The upshot is that our back-
ground knowledge entails that L* cannot possibly be closest to the truth: L* should
therefore be assigned a probability of 0.
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According to w, any line that intersects f will be maximally close to the
truth, and so our goal now is to identify the lines that intersect f. Clearly, lines
that have a very steep slope will stand a better chance of intersecting f than
lines that do not, and thus if we use w to measure verisimilitude, then it is
rational to use a prior distribution that assigns more probability to lines that
have a steep slope than to lines that have a more gradual slope; this is oppo-
site the result we get when we use the verisimilitude measure in figure 1.

In general, how background knowledge interacts with a given measure of
verisimilitude in order to induce rational requirements on the prior distribu-
tion is a subtle and complex question. My goal in this section is not, however,
to demonstrate in full generality how to best translate background informa-
tion into reasonable requirements on prior distributions over sets of known
false hypotheses. My goal is rather to show how, in principle, background
knowledge can be used to discriminate between multiple false hypotheses,
Figure 2. Different measure of closeness to the truth.
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provided we have a verisimilitude measure. As we have seen, the way veri-
similitude is measured plays a crucial role in shaping the rational constraints
on the prior; moreover, we have also seen that the way verisimilitude ought
to be measured is reasonably influenced by the goals that we have.

It is worth emphasizing, once again, that regardless of how verisimilitude
is measured, the prior probability distribution ranges over exactly the same
set of hypotheses—in this case, the set of lines. The set of hypotheses does
not change when we change the verisimilitude measure; rather, on the veri-
similitude interpretation, it is the probability function pv

K that changes. Ac-
cording to standard Bayesianism, the probability one should assign to any
particular hypothesis is independent of one’s goals, but this is no longer true
for verisimilitude probabilities. Instead, the verisimilitude probability that it
is rational to assign to a hypothesis is in part influenced by how verisimili-
tude is measured.

7. The Counterfactual Interpretation of Probability. The verisimilitude
interpretation has the feature that the prior probability distribution incorpo-
rates not just background information but also what one hopes to accom-
plish, formalized byway of a verisimilitudemeasure. Consequently, the veri-
similitude probability that it is rational to assign to a hypothesis will be
influenced by how verisimilitude is measured, which in turn will generally
be influenced by pragmatic factors. In a very recent article, Sprenger (2017)
proposes an alternative solution to the interpretive problem. Sprenger’s solu-
tion also involves reinterpreting the probability axioms, but he offers a rein-
terpretation that appears to be quite different from the verisimilitude interpre-
tation. However, as we will soon see, given certain plausible assumptions,
the verisimilitude solution and Sprenger’s solution share many features and
are even formally intertranslatable.

Sprenger’s suggestion is that the probability of a false hypothesis can sen-
sibly be interpreted as a counterfactual probability (or, more specifically, a
counterfactual degree of belief; however, the counterfactual interpretation,
like the verisimilitude interpretation, is consistent with either an objective
or a subjective reading). More precisely, suppose V is a set of hypotheses,
all of which are known to be false. Then any probability assigned to some
particular vi should be construed as the probability that vi is true conditional
on the (false) supposition that one of the hypotheses in V is true. In other
words, the probability of vi is really the counterfactual conditional probabil-
ity pK(vijV), where the condition V is construed as the (false) claim that one
of the hypotheses in V is true.

Note that pK(vijV) cannot simply be replaced with pK(V→ vi), that is,
with a probability distribution defined over counterfactual propositions (the
discussion in sec. 4 applies equally here). Parameter value vi picks out a hy-
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pothesis in a scientific and statistical model that makes probabilistic predic-
tions, but V→ vi does not.14

In order for the counterfactual interpretation to be a rigorous alternative
semantics for Bayesian inference, something more substantive needs to be
said about how we are supposed to understand and evaluate counterfactual
probabilities. Unfortunately, Sprenger does not offer us any guidance. How-
ever, a natural thought is that counterfactual probabilities should be evaluated
in a way that is analogous to the way counterfactual conditionals are evalu-
ated. According to (a simplified version of ) the standard analysis of counter-
factuals due to Lewis (1973), evaluating a counterfactual such as “If A were
the case, then B would be the case” involves considering the closest possible
world in which A is true and then checking whether B is true in that world.
Crucially, Lewis’s analysis depends on a ranking of possible worlds, where
worlds are ranked by how similar they are to the actual world.

Presumably counterfactual probabilities should be assessed in a similar
manner. It is not hard to imagine very strange and fanciful possible worlds
in which pressure and wind speed are linearly related, but presumably most
of those possible worlds are not interesting or relevant. As is the case in the
counterfactual analysis of conditionals, it is presumably the closest possible
worlds that are the interesting ones. But which possible worlds are those? To
answer this question, we need to be able to rank worlds in terms of their
closeness or similarity to the actual world. Supposewe have such a similarity
measure, s. Then we can define the counterfactual probability of vi given s,
ps
K(vijV), where ps

K must obey the following constraints.
14. I
probl

86/7049
Counterfactual Probability Axioms. SupposeV indexes a set of hypoth-
eses {v1, v2,..., vn}, let s be a similarity measure defined over the set of pos-
sible worlds, and let K represent a corpus of background knowledge. Then
a distribution p over V satisfies the probability axioms with respect to s if
and only if:
n ad
ems

78 Pu
1C. ps
K(∨ vijV) 5 1, whenever K entails that one of the hypotheses in
the disjunction ∨vi is true in the closest world (according to s) in
which V is true.

2C. ps
K(vijV) ≥ 0 for all vi in V.

3C. ps
K(∨ vijV) 5 opv

K(vijV), whenever K entails that at most one of
the hypotheses in the disjunction of hypotheses indexed by ∨vi
is true in the closest world (according to s) in which V is true.
dition, replacing pK(vijV) with pK(V→ vi) might run us into triviality result
.
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The counterfactual interpretation, like the verisimilitude interpretation,
solves the interpretive problem, because the fact that K entails that vi is false
does not mean that K entails that vi is false in the closest possible world in
which V is true. Hence, the counterfactual interpretation allows us to assign
nonzero probabilities to hypotheses that we know are false (in the actual
world).

It is clear that the counterfactual interpretation has the same broad fea-
tures as the verisimilitude interpretation. In particular, on the counterfactual
interpretation understood in the aboveLewisianway, every probability assign-
ment becomes relative to the way similarity between worlds is measured.
Moreover, there are many ways of measuring similarity between worlds,
but the way in which similarity between worlds should be measured is pre-
sumably relative to the features of the world that are relevant, and what fea-
tures are relevant is in part determined by the goals of the analysis. Indeed, in the
next section we will see that the counterfactual and verisimilitude frameworks
are plausibly intertranslatable, so that if verisimilitude probabilities are goal
relative, then so are counterfactual probabilities.

8. Relationship between the Verisimilitude and Counterfactual Inter-
pretations. At this point, we apparently have two viable reinterpretations
of the Bayesian framework, both of which solve the interpretive problem.
Many philosophers will be tempted to ask which of the two solutions is
the better one. My contention is that neither solution is better than the other
and that in fact there is a sense in which the two solutions are equivalent.

Indeed, note that, in general, any similarity ranking of possible worlds
straightforwardly induces a natural verisimilitude ranking of hypotheses
and vice versa.More precisely, supposewe are given a similarity ranking func-
tion, s, on worlds such that s(wa) ≥ s(w1) ≥ s(w2) ≥ :::, where wa is the ac-
tual world. Thenwe can define a verisimilitude ranking on hypotheses as fol-
lows: suppose w is the closest world in which H is true and w0 is the closest
world in which H 0 is true, then v(H ) ≥ v(H 0) if and only if s(w) ≥ s(w0).15

Conversely, any verisimilitude ranking induces an ordering over possi-
ble worlds. Suppose v(H0) ≥ v(H1) ≥ v(H2) ≥ ::: is a verisimilitude ranking
of hypotheses, and for any hypothesis H, let SH denote the set of worlds in
which H is true. Then we can define an ordering of possible worlds in the
following way: suppose H is the hypothesis with the highest verisimilitude
such that w ∈ SH and suppose H 0 is the hypothesis with the highest verisi-
militude such thatw0 ∈ S 0

H , then we define s such that s(w) ≥ s(w0) if and only
if v(H) ≥ v(H 0).

According to the verisimilitude interpretation, agents have to evaluate
which hypothesis is plausibly closest to the truth out of the hypotheses under
15. Hilpinen (1976) uses a similar approach to define a specific verisimilitude measure.
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consideration. According to the counterfactual interpretation, agents must
instead evaluate which hypothesis is plausibly true in the closest possible
world in which one of the hypotheses under consideration is true—in other
words, they must evaluate what the closest possible world is plausibly like.
Since any verisimilitude ranking may be translated into a ranking of worlds,
and vice versa, it is now clear that these two tasks are really one and the
same. That is, if s is the similarity ranking that is induced by the verisimil-
itude ranking v, then a hypothesis,H, will be closest to the truth according to
v if and only if H is also true in the world that is closest to the actual world,
according to s. Figuring out how probable it is that H is closest to the truth
according to v is therefore equivalent to figuring out how probable it is that
H is true in the closest possible world according to s.

None of the above should really be that surprising since a similar fact is
true of standard Bayesianism. There is a well-known duality between prop-
ositions and possible worlds: a proposition may be construed as a set of pos-
sible worlds, and a possible world may be construed as a conjunction of
propositions. Hence, an agent who has a degree of belief in a certain propo-
sition may be regarded as implicitly having a degree of belief that the actual
world is in a certain set of possible worlds and vice versa. The correspon-
dence between verisimilitude rankings and possible worlds rankings shown
in this section demonstrates that the same is true of counterfactual and veri-
similitude probabilities: any counterfactual probability may be regarded as
an implicit verisimilitude probability and vice versa.

Thus, although they may appear different, the verisimilitude interpreta-
tion and the counterfactual interpretation of probability are, in a sense, two
sides of the same coin. This means that if there is pragmatic encroachment
in the verisimilitude framework, there will also be pragmatic encroachment
in the counterfactual framework. In particular, if the reader agrees that the
example in section 6 plausibly shows that verisimilitude rankings are some-
times goal relative, then the same example will also show that rankings of
worlds are sometimes goal relative, since the verisimilitude ranking may sim-
ply be translated into a ranking of possible worlds using the recipe provided
in this section. It follows that the rational status of counterfactual probabil-
ities will in general be goal relative.

9. Relationship between the Verisimilitude, Counterfactual, and Stan-
dard Interpretations. The preceding section investigated how the counter-
factual and verisimilitude interpretations of probability relate to each other.
But how do either of these interpretations relate to the standard interpretation?
Recall that according to the standard interpretation, pK(H ) is the probability
that H is true, relative to background knowledge K. Ideally, the verisimili-
tude and counterfactual interpretations should both be generalizations of the
standard interpretation, so that both are extensionally equivalent to the standard
interpretation in cases in which the standard interpretation is applicable, that is,
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in cases in which K entails that one of the hypotheses under consideration is
true. Is that the case?16

The answer is that it depends on characteristics of the verisimilitude and
counterfactual similarity measures. Let us first consider the verisimilitude in-
terpretation. Let us call the true—but unknown—hypothesis t. Suppose v is
such that it has a unique maximum over the set of hypotheses under consid-
eration and that the unique maximum is t. According to the verisimilitude
interpretation, pv

K(H ) is the probability that H is a maximum of v, relative to
K, which, under the conditions specified, means that pv

K(H ) is the probability
that H 5 Ht (since Ht is the only maximum of v). In other words, pv

K(H ) is
simply the probability that H is true, relative to K. Thus, we have pv

K(H ) 5
pK(H ). Hence, the verisimilitude interpretation is extensionally equivalent
to the standard interpretation under the specified conditions in the sense that
the verisimilitude and standard probability distributions assign the same prob-
abilities to all hypotheses. However, if v has several maxima or if the truth
is not among the maxima of v, then clearly pv(H ) will not necessarily equal
pK(H ). Hence, the verisimilitude interpretation is extensionally equivalent
to the standard interpretation just in case the following conditions are met:
(1) v has a unique maximum over the set of hypotheses, and (2) that unique
maximum is the truth.

Now let us consider the counterfactual interpretation of probability. Sup-
pose the similarity ranking over possible worlds satisfies the following con-
ditions: (1) there is a unique world that is closest to the actual world, and
(2) the actual world is closest to itself. Then, by essentially the same reason-
ing as above, it follows that we will have ps

K(H ) 5 pK(H ). Hence, the coun-
terfactual interpretation is extensionally equivalent to the standard interpre-
tation just in case one of the hypotheses under consideration is true and the
similarity ranking over possible worlds satisfies the constraint known in the
counterfactuals literature as strong centering.

10. Pragmatic Encroachment in Bayesian Inference. I have argued that
the only adequate solutions to the interpretive problem in Bayesian statis-
tical inference involve reinterpreting probability, and I have proposed two
candidate reinterpretations. Both the counterfactual and verisimilitude inter-
pretation have the following two important features: (1) they depend on a
ranking over some sort of object (either hypotheses or possible worlds), and
(2) the ranking that it is rational for an agent to have is influenced by prag-
matic factors, such as what the agent’s goals are. The upshot is that whether
a given probability assignment (i.e., verisimilitude or counterfactual prob-
ability) is rational is influenced by pragmatic factors.
16. I thank Andrew Forcehimes for pressing me on this issue.
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Of course, the standard Bayesian interpretation also allows for pragmatic
factors to play a role. According to standard Bayesian decision theory, we
ought to have both a probability function and a utility function; any pragmatic
factor—such as what we are interested in—should be relegated to the utility
function. This neat separation between the purely epistemic and the prag-
matic fails in cases in which we face the interpretive problem. In those cases,
I have argued that pragmatic factors should directly influence the probability
function, not just the utility function.

The reader may wonder whether there are other potential solutions to the
interpretive problem that would avoid having features 1 and 2. In section 4, I
argued that any solution to the interpretive problem needs to offer a reinter-
pretation of the probability axioms. A moment’s reflection should make it
clear that any reinterpretation that allows us to assign a nonzero probability
to a known false hypothesis needs to involve a ranking of some sort: if H1

and H2 are both known to be false, and yet we assign a higher probability to
H1 than to H2, there must be some sense in which H1 is “better” than H2.
The remaining question, then, is whether there is a ranking of hypotheses
(or other objects—of course, any ranking must implicitly be a ranking of the
hypotheses, since we are ultimately assigning probabilities to the hypothe-
ses) that can plausibly count as “objectively correct.” Here, thinking about
concrete examples—such as the example in section 6—should convince us
that the answer is no. Anyone who disagrees will have to explain why, say,
the way you rank various lines in the example in section 6 should be inde-
pendent of your interests. Hence, my conjecture is that all adequate solutions
to the interpretive problem will have features 1 and 2.

By combining the above considerations with a reasonable bridge prem-
ise, the following argument may now be formulated:

P1. All satisfactory solutions to the interpretive problem involve reinter-
preting what it means to assign a probability to a hypothesis.

P2. Any satisfactory reinterpretation that solves the interpretive problem
will have the following two features: (1) it will depend on a ranking
over some sort of object, and (2) whether a given ranking is rational
will in part be determined by pragmatic factors.

P3. If P1 and P2 hold, then whether a given Bayesian probability distri-
bution is rational will, in general, partly be determined by pragmatic
factors.

C. Whether a given Bayesian probability distribution is rational will, in
general, partly be determined by pragmatic factors.

The upshot of this argument is that there is an important—and hitherto un-
noticed—kind of pragmatic encroachment on Bayesian inference.
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In recent years, there has been much debate over whether there is some-
times “pragmatic encroachment” on the epistemic, that is, whether pragmatic
factors can sometimes influence whether an agent, for instance, knows
whether a proposition is true (see, e.g., Fantl and McGrath 2002; Stanley
2005; Ross and Schroeder 2014; Rubin 2015; Roeber 2018). As Schroeder
(2017) point outs, it seems to be almost universally agreed among partic-
ipants of this debate that although there may be pragmatic encroachment
on knowledge or rational (full) belief, there is no pragmatic encroachment
on Bayesian probability functions. Prominent experts on Bayesian statistical
theory agree, including adherents of the subjective (Lindley 1972, 71) and
objective (Jaynes 2003, 19) schools of Bayesianism. However, despite this
theoretical consensus, in practice Bayesian statisticians tend to use different
prior probability distributions depending on what they are interested in.17

The arguments in this article partially undermine the theoretical consensus
and lend a justification of statistical practice. Whereas it may be true that there
is no pragmatic encroachment on standard Bayesian probability functions,
there is—and ought to be—significant pragmatic encroachment on both coun-
terfactual and verisimilitude probabilities, and those are the types of proba-
bility distributions that are frequently (implicitly) used in statistical practice.

11. Conclusion. This article has mainly been concerned with the implica-
tions of the interpretive problem for our interpretation of the prior probability
distributions that are used in Bayesian statistical practice. I have not said any-
thing about the likelihood, but in fact the interpretive problem arguably has even
greater implications for how we are to interpret, and use, the likelihood function
and associated principles such as the law of likelihood and conditionalization.
In particular, although I will not argue this here, the counterfactual and verisi-
militude interpretations open the door to the possibility that it may sometimes
be rational to use an evidential measure other than the likelihood and an up-
dating procedure other than conditionalization. This is because the standard
arguments for conditionalization turn out to depend crucially on the standard
interpretation of probability. Thus, although this article has been concerned
with showing that we sometimes need to change the standard Bayesian seman-
tics, once we have a new semantics, it becomes apparent that we may some-
times be justified in also changing the standard Bayesian syntax.
REFERENCES

Bernardo, José M., and Adrian F. M. Smith. 1994. Bayesian Theory. New York: Wiley.
Bissiri, Pier G., Chris Holmes, and Stephen Walker. 2016. “A General Framework for Updating

Belief Distributions.” Journal of the Royal Statistical Society B 78 (5): 1103–30.
17. I thank a referee for pointing this out.

8 Published online by Cambridge University Press

https://doi.org/10.1086/704978


NEW SEMANTICS FOR BAYESIAN INFERENCE 717

https://doi.org/10.10
Box, George E. P. 1980. “Sampling and Bayes’ Inference in Scientific Modelling and Robustness.”
Journal of the Royal Statistical Society A 143 (4): 383–430.

Cevolani, Gustavo, Vincenzo Crupi, and Roberto Festa. 2010. “The Whole Truth about Linda:
Probability, Verisimilitude, and a Paradox of Conjunction.” In New Essays in Logic and Phi-
losophy of Science, ed. Marcello D’Agostino, Federico Laudisa, Giulio Giorello, Telmo Pie-
vani, and Corrado Sinigaglia, 603–15. London: College.

Choi, Jae Won, Yumi Cha, Hae-Dong Kim, and Riyu Lu. 2016. “Relationship between the Max-
imumWind Speed and the Minimum Sea Level Pressure for Tropical Cyclones in the Western
North Pacific.” Journal of Climatology and Weather Forecasting 4 (3). doi:10.4172/2332-
2594.1000180.

De Heide, Rianne, and Peter D. Grünwald. 2018. “Why Optional Stopping Is a Problem for Bayes-
ians.” arXiv.org, Cornell University. https://arxiv.org/abs/1708.08278.

Fantl, Jeremy, and Matthew McGrath. 2002. “Evidence, Pragmatics, and Justification.” Philosoph-
ical Review 111 (1): 67–94.

Festa, Roberto. 1993. Optimum Inductive Methods: A Study in Inductive Probability, Bayesian Sta-
tistics, and Verisimilitude. Dordrecht: Springer.

Forster, Malcolm R. 1995. “Bayes and Bust: Simplicity as a Problem for a Probabilist’s Approach
to Confirmation.” British Journal for the Philosophy of Science 46 (3): 399–424.

Forster, Malcolm R., and Elliott Sober. 1994. “How to Tell When Simpler, More Unified, or Less
AD Hoc Theories Will Provide More Accurate Predictions.” British Journal for the Philoso-
phy of Science 45 (1): 1–35.

Gelman, Andrew, and Cosma Rohilla Shalizi. 2013. “Philosophy and the Practice of Bayesian Sta-
tistics.” British Journal of Mathematical and Statistical Psychology 66:8–38.

Heggarty, Paul, Warren Maguire, and April McMahon. 2010. “Splits or Waves? Trees or Webs?
How Divergence Measures and Network Analysis Can Unravel Language Histories.”
Philosophical Transactions of the Royal Society B 365 (1559): 3829–43.

Hewitt, Edwin. and Leonard J. Savage. 1955. “Symmetric Measures on Cartesian Products.”
Transactions of the American Mathematical Society 80:470–501.

Hilpinen, Risto. 1976. “Approximate Truth and Truthlikeness.” In Formal Methods in the Method-
ology of Empirical Sciences, 19–42. Dordrecht: Springer.

Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Cambridge: Cambridge University
Press.

Key, Jane T., Luis R. Pericchi, and Adrian F. M. Smith. 1999. “Bayesian Model Choice: What and
Why?” In Bayesian Statistics 6, ed. José M. Bernardo, James O. Berger, A. Phillip Dawid, and
Adrian F. M. Smith, 343–70 Oxford: Oxford University Press.

Knaff, John A., and Raymond M. Zehr. 2007. “Reexamination of Tropical Cyclone Wind-Pressure
Relationship.” Weather and Forecasting 22 (1): 71–88.

Lewis, David K. 1973. Counterfactuals. Oxford: Blackwell.
Lindley, Dennis V. 1972. Bayesian Statistics, A Review. Montpellier, VT: Capital City.
Morey, Richard D., Jan-Willem Romeijn, and Jeffrey N. Rouder. 2013. “The Humble Bayesian:

Model Checking from a Fully Bayesian Perspective.” British Journal of Mathematical and
Statistical Psychology 66 (1): 68–75.

Moss, Sarah. 2018. Probabilistic Knowledge. Oxford: Oxford University Press.
Niiniluoto, Iikka. 1986. “Truthlikeness and Bayesian Estimation.” Synthese 67 (2): 321–46.
———. 1987. Truthlikeness. Dordrecht: Springer.
———. 1998. “Verisimilitude: The Third Period.” British Journal for the Philosophy of Science

49 (1): 1–29.
Northcott, Robert. 2013. “Verisimilitude: A Causal Approach.” Synthese 190 (9): 1471–88.
Oddie, Graham. 2019. “What Accuracy Could Not Be.” British Journal for the Philosophy of Sci-

ence 70 (2): 551–80.
O’Malley, Maureen A., William Martin, and John Dupre. 2010. “The Tree of Life: Introduction to

an Evolutionary Debate.” Biology and Philosophy 25:441–53.
Popper, Karl. 1963. Conjectures and Refutations: The Growth of Scientific Knowledge. London:

Hutchinson.
Roeber, Blake. 2018. “The Pragmatic Encroachment Debate.” Noûs 52 (1): 171–95.
Rosenkrantz, Roger. 1980. “Measuring Truthlikeness.” Synthese 45 (3): 463–87.
86/704978 Published online by Cambridge University Press

https://doi.org/10.1086/704978


718 OLAV BENJAMIN VASSEND

https://doi.org/10.1086/70497
Ross, Jacob, and Mark Schroeder. 2014. “Belief, Credence, and Pragmatic Encroachment.”
Philosophy and Phenomenological Research 88 (2): 259–88.

Rubin, Katherine. 2015. “Total Pragmatic Encroachment and Epistemic Permissiveness.” Pacific
Philosophical Quarterly 96 (1): 12–30.

Schroeder, Mark. 2017. “Rational Stability under Pragmatic Encroachment.” Unpublished manuscript,
University of Southern California. https://static1.squarespace.com/static/55505fc8e4b032b4451e4a90
/t/59ab96e4cd39c3b55f92d05d/1504417508849/Schroeder1Rational1Stability.pdf.

Shaffer, Michael J. 2001. “Bayesian Confirmation of Theories That Incorporate Idealizations.”
Philosophy of Science 68 (1): 36–52.

Sprenger, Jan. 2009. “Statistics between Inductive Logic and Empirical Science.” Journal of Ap-
plied Logic 7 (2): 239–50.

———. 2017. “Conditional Degree of Belief.” Unpublished manuscript, PhilSci archive. http://
philsci-archive.pitt.edu/13515/.

Stanley, Jason. 2005. Knowledge and Practical Interests. Oxford: Oxford University Press.
Velasco, Joel D. 2012. “The Future of Systematics: Tree Thinking without the Tree.” Philosophy

of Science 79 (5): 624–36.
Walker, Stephen G. 2013. “Bayesian Inference with Misspecified Models.” Journal of Statistical

Planning and Inference 143:1621–33.
8 Published online by Cambridge University Press

https://doi.org/10.1086/704978

