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Abstract

Let R be a finite ring and let zp(R) denote the nullity degree of R, that is, the probability that the
multiplication of two randomly chosen elements of R is zero. We establish the nullity degree of a
semisimple ring and find upper and lower bounds for the nullity degree in the general case.
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1. Introduction

Group theoretical problems related to discrete probabilities have been extensively
studied (see, for example, [2, 8, 9, 12, 16]). Recently, there has been interest in using a
similar approach with rings, mainly concerning the commuting probability (also called
the commutativity degree) [3–5, 13] and the probability of zero multiplication (also
called the nullity degree) [6, 7] of finite rings. However, all recent results regarding the
nullity degree have been obtained in the setting of finite commutative rings.

We investigate the nullity degree of an arbitrary finite ring with identity. The nullity
degree of R is zp(R) = |{(x, y) ∈ R × R : xy = 0}|/|R|2, that is, the probability that the
multiplication of two randomly chosen elements of R is zero. In Section 2, we find the
nullity degree of an arbitrary semisimple ring. In Section 3, we generalise the notion
of a nullity degree to ideals and consider the relations between the nullity degree of
the ring and the nullity degree of an ideal, with an emphasis on the Jacobson radical.
In the final section, we find upper and lower bounds for the nullity degree, whereby we
also generalise and improve some of the results from [6].

We recall some basic definitions that are needed in this paper. Let Z(R) be the
set of zero divisors of the finite ring R. Note that by [10, Proposition 1.3], every left
zero divisor is also a right zero divisor and vice versa, so we do not need to make a
distinction between left and right zero divisors. We denote by R∗ the group of invertible
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elements of R, while for an element x ∈ R, we denote the right annihilator of x in R
by Ann(x) = {y ∈ R : xy = 0}. We say that e ∈ R is an idempotent if e2 = e, and e is a
nontrivial idempotent if e � 0, 1. Idempotents e and f are orthogonal if e f = f e = 0.
We introduce a binary relation on the set of idempotents with e ≥ f if e f = f e = e. The
set of all idempotents is partially ordered with this relation, and we call any smallest
nonzero idempotent under this relation a minimal idempotent. For a set X, let |X| denote
its cardinality. If p is a prime, we say that R is a p-ring if |R| = pk for some integer k.
We denote the Jacobson radical of R by J(R) and say that R is a basic ring if R/J(R)
is a direct product of finite fields. Also, we denote by x ∈ R/J(R) the image of x ∈ R
under the canonical homomorphism. For a field F, let Mn(F) denote the full matrix
ring of n-by-n matrices over F, while the ring of integers modulo n will be denoted by
Zn. We denote the disjoint union of two sets A and B by A � B.

2. Semisimple rings

In this section, we investigate the nullity degree of a semisimple ring. The following
lemma is obvious.

LEMMA 2.1. For any finite ring R, we have zp(R) =
∑

x∈R |Ann(x)|/|R|2.

The following lemma will be useful.

LEMMA 2.2. For any finite rings R1, R2, . . . , Rn, we have zp(R1 × R2 × · · · × Rn) =
zp(R1)zp(R2) · · · zp(Rn).

PROOF. Observe that Ann(x1, x2, . . . , xn) = Ann(x1) × Ann(x2) × · · · × Ann(xn) and
use Lemma 2.1. �

Any finite semisimple ring is a direct product of fields and full matrix rings over
fields. Thus, to find the nullity degree of an arbitrary finite semisimple ring, we have
to investigate the nullity degrees of finite fields and matrix rings over finite fields.

PROPOSITION 2.3. Let F be a finite field and n an integer. Then, the following
equations hold:

(1) zp(F) = (2|F| − 1)/|F|2;
(2) zp(Mn(F)) = (1 +

∑n
r=1 (
∏r−1

j=0 (|F|n − |F|j)2/|F|n(|F|r − |F|j)))/|F|n2
.

PROOF. (1) follows from [6, Lemma 3.1]. To see (2), observe first that zp(Mn(F)) =∑n
r=0
∑

rank(A)=r Ann(A)/|F|2n2
. Now, dimF(ker(A)) = n − r for any matrix A of rank r.

Thus, every column of a matrix B ∈ Ann(A) is a linear combination of n − r vectors
from ker(A) and thus |Ann(A)| = |F|n(n−r). By [15], the number of matrices of rank r in
Mn(F) is exactly

∏r−1
j=0 (|F|n − |F|j)2/(|F|r − |F|j). Therefore,

zp(Mn(F)) =
|F|n2
+
∑n

r=1 |F|n(n−r)(
∏r−1

j=0 (|F|n − |F|j)2/(|F|r − |F|j))
|F|2n2

and thus the desired equality follows. �
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Since for any ring R, the factor ring R/J(R) is a semisimple ring, we can now
calculate its nullity degree. We thus have the following upper bound for zp(R).

PROPOSITION 2.4. For any finite ring R, we have zp(R) ≤ zp(R/J(R)).

PROOF. Denote J = J(R). By Lemma 2.1,

zp(R/J) =
∑

x+J∈R/J |Ann(x + J)|
|R/J|2

≥
∑

x+J∈R/J |Ann(x)|/|J|
|R/J|2

=

∑
x∈R |Ann(x)|/|J|2

|R/J|2
=

∑
x∈R |Ann(x)|
|R|2

= zp(R). �

3. Generalised nullity degree

In this section, we generalise the nullity degree of the ring to the ideals. Let I be an
ideal of R.

DEFINITION 3.1. The generalised nullity degree of a finite ring R corresponding to an
ideal I is equal to

zpI(R) =
|{(x, y) ∈ R × R; xy ∈ I}|

|R|2
.

Obviously, zp(0)(R) = zp(R). In the general case, we have the following lemma.

LEMMA 3.2. For any finite ring R and an ideal I of R, we have zpI(R) = zp(R/I).

PROOF. Observe that for every x, y ∈ R, xy ∈ I if and only if (x + I)(y + I) = I, so for
every x ∈ R we have |{y ∈ R; xy ∈ I}|= |Ann(x + I)||I|. Therefore,

∑
x∈R |{y ∈ R; xy ∈ I}|=∑

x∈R |Ann(x + I)||I| = ∑x+I∈R/I |Ann(x + I)||I|2, which is equal to zp(R/I)/|R|2 by
Lemma 2.1. �

We can now prove the following theorem.

THEOREM 3.3. For any finite ring R and an ideal I of R, we have zpI(R) ≥
|I|(2|R| − |I|)/|R|2, and the equality holds if and only if the factor ring R/I is a field.

PROOF. Choose x ∈ R. If x ∈ I then xy ∈ I for all y ∈ R, and if x � I then xy ∈ I
for all y ∈ I. Thus,

∑
x∈R |{y ∈ R; xy ∈ I}| ≥ |I||R| + |R \ I||I| = |I|(2|R| − |I|) and zpI(R) ≥

|I|(2|R| − |I|)/|R|2. Suppose now that R/I is a field. Choose x ∈ R \ I. Since x ∈ R/I
is invertible, the fact that xy ∈ I implies y = 0 and thus y ∈ I. So, xy ∈ I if and
only if y ∈ I. We have proved that zpI(R) = |I|(2|R| − |I|)/|R|2. On the other hand, if
zpI(R) = |I|(2|R| − |I|)/|R|2, then for every x ∈ R \ I, the fact that xy ∈ I has to imply
that y ∈ I. So, for every nonzero x ∈ R/I, the fact that xy = 0 implies that y = 0. We
have proved that R/I is a ring without nontrivial zero divisors and hence a field. �

This immediately yields the following corollary.

COROLLARY 3.4. For any finite ring R, we have zp(R/J(R)) ≥ |J(R)|(2|R| − |J(R)|)/|R|2,
and the equality holds if and only if R is a local ring.
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4. Bounds for the nullity degree

In this section, we find some further upper and lower bounds for the nullity degree
of finite rings. First, we investigate the upper bounds for zp(R).

THEOREM 4.1. For a finite ring R, we have zp(R) ≤ (|Z(R)|2 + 2|R \ Z(R)|)/|R|2, and
the equality holds if and only if R is a local ring with J(R)2 = 0.

PROOF. By Lemma 2.1, we have zp(R) =
∑

x∈R |Ann(x)|/|R|2. Obviously, |Ann(x)| = 1
for every x that is not a zero divisor, and |Ann(x)| ≤ |Z(R)| for any nonzero zero
divisor x, and thus zp(R) ≤ (|R \ Z(R)| + |R| + (|Z(R)| − 1)|Z(R)|)/|R|2, so we have
proved the desired inequality. If R is local with J(R)2 = 0, then |Ann(x)| = |Z(R)| for
every nonzero zero divisor x, so the equality does indeed hold. Conversely, if R is not
a local ring, then by [14, Theorem VII.7] there exists a nontrivial idempotent e ∈ Z(R).
However, if the equality holds, then |Ann(x)| = |Z(R)| for every nonzero zero divisor x,
which implies that e2 = 0, a contradiction. So, R is local and thus J(R) = Z(R), so
J(R)2 = 0. �

We can actually find an even better bound if we have some knowledge of the
structure of the orthogonal minimal idempotents in R and the corresponding Peirce
decomposition of R. Recall at this point that R is called a basic ring if the factor ring
R/J(R) is a direct product of fields.

THEOREM 4.2. Let R be a finite ring, and let e1, e2, . . . , en be mutually orthogonal
minimal idempotents in R such that

∑n
i=1 ei = 1. Denote N = {1, 2, . . . , n}. Then,

zp(R) ≤
∑

I1�I2⊆N

∏

i∈I1

|(eiRei)∗|
|eiR||eiRei|

∏

j∈I2

|J(eiRei)| − 1
|(ejRej)∗||ejRej|

, (4.1)

and the equality holds if and only if R is a basic ring with J(R)2 = 0.

PROOF. By Lemma 2.1, we have zp(R) =
∑

x∈R |Ann(x)|/|R|2. Choose x ∈ R. Let I1(x) =
{i : eixei ∈ (eiRei)∗} ⊆ N and I2(x) = {i : 0 � eixei ∈ J(eiRei)} ⊆ N. Observe that I1(x)
and I2(x) are disjoint sets. Note also that every x can be written as x =

∑n
i,j=1 eixej.

Thus, for any disjoint sets I1, I2 ⊆ N, there exist exactly
∏

i∈I1

|(eiRei)∗|
∏

j∈I2

(|J(eiRei)| − 1)
|R|∏

i∈I1∪I2

|eiRei|

elements in R such that I1(x) = I1 and I2(x) = I2. Choose y ∈ Ann(x). For any i ∈ I1(x),
we have eixeiy = 0 and therefore eiy = 0. Also, if j ∈ I2(x) then j � I1(y). Thus, y ∈∑

k�I1∪I2
ekR +

∑
k∈I2,l�k ekRel +

∑
k∈I2

J(ekRek). Therefore, |Ann(x)| is bounded by
∏

i�I1∪I2

|eiR|
∏

j∈I2

|ejR|
|(ejRej)∗|

=
|R|∏

i∈I1∪I2

|eiR|
∏

j∈I2

|ejR|
|(ejRej)∗|

=
|R|∏

i∈I1

|eiR|
∏

j∈I2

1
|(ejRej)∗|

,

and (4.1) holds.
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Now, if R is a basic ring with J(R)2 = 0 then ekRel ∈ J(R) for all k � l, so the
equality holds in (4.1). Conversely, assume that the equality holds in (4.1). If R is
not a basic ring, then by the Wedderburn–Artin theorem there exists a full matrix
ring Mr(F) as a subring of R/J(R) for a field F and an integer r. Thus, there exist
two orthogonal minimal idempotents e, f ∈ Mr(F) ⊆ R/J(R) such that e = P f P−1 for
some invertible (permutation) matrix P ∈ Mr(F). Therefore, eP f P−1e = e. By [14,
Theorem VII.12], there exist orthogonal idempotents e, f ∈ R such that e + J(R) = e
and f + J(R) = f . Also, by [14, Theorem VII.13], there exist a ∈ R∗ and i, j ∈ N such
that e = aeia−1 and f = aeja−1. Choose an invertible p ∈ R such that p + J(R) = P. The
equality in (4.1) now implies that (eia−1 paej)(eja−1 p−1aei) = 0; thus, (ep f )( f p−1e) = 0
and consequently eP f P−1e = 0, a contradiction. We have proved that R/J is indeed a
basic ring. Now, J(R) =

∑
i∈N J(eiRei) +

∑
i�j∈N eiRej, so the fact that J(R)2 = 0 follows

immediately from the equality in (4.1). �

Next, we investigate lower bounds for zp(R). Obviously, by Lemma 2.2, there is no
nonzero constant that can be a lower bound for the nullity degree of an arbitrary ring.
However, since every finite ring is uniquely expressible as a direct product of rings of
prime power order (see, for example, [14, Theorem I.1]), we can limit ourselves (again
by Lemma 2.2) to studying the bounds for the nullity degrees of rings of prime power
orders.

We can prove the following lemma, thereby improving upon the lower bound of
[6, Lemma 2.5] and generalising it to noncommutative and nonlocal rings.

LEMMA 4.3. Let R be a p-ring that is not a field. Then,

zp(R) ≥ (2|R| + (p − 1)
√
|R| − p)/|R|2,

where the equality holds if and only if R = Zp2 or R = Zp[x]/(x2).

PROOF. By Lemma 2.1, we have zp(R) =
∑

x∈R |Ann(x)|/|R|2. Since any element in R
that is not a zero divisor is invertible and Ann(x) is a nontrivial subgroup of the group
(R,+),

zp(R) =
|R \ Z(R)| +∑x∈Z(R) |Ann(x)|

|R|2
=

2|R| − |Z(R)| +∑0�x∈Z(R) |Ann(x)|
|R|2

≥ 2|R| − |Z(R)| + p(|Z(R)| − 1)
|R|2

.

Since |Z(R)| ≥
√
|R| by [11], this implies that zp(R) ≥ (2|R| + (p − 1)

√
|R| − p)/|R|2.

Obviously, if R = Zp2 or R = Zp[x]/(x2), we have zp(R) = (2p2 + (p − 1)p − p)/p2,
so the equality holds. On the other hand, if zp(R) = (2|R| + (p − 1)

√
|R| − p)/|R|2

then |Z(R)| =
√
|R| and |Ann(x)| = p for any nonzero x ∈ Z(R). Now, |Z(R)| =

√
|R|

together with [10, Corollary 2.6] implies that R is a local ring with J(R)2 = 0. Since
|Ann(x)| = p, we conclude that |J(R)| = p. Finally, we use [1, Theorem 3] to see that
R = Zp2 or R = Zp[x]/(x2). �
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This immediately yields the following theorem, which is an improvement on [6,
Theorem 3.2] and a generalisation of it to noncommutative rings.

THEOREM 4.4. Let R be a finite ring such that no direct factor of R is a field. Suppose
that |R| = pα1

1 pα2
2 . . . p

αk
k for distinct primes p1, p2, . . . , pk and integers α1,α2, . . . ,αk.

Then, zp(R) ≥∏k
i=1 (2pαi

i + (pi − 1)pαi/2
i − pi)/|R|2, where the equality holds if and

only if R is a direct product of rings isomorphic to Zp2 or R = Zp[x]/(x2).

PROOF. This follows directly from Lemmas 2.2 and 4.3 and [14, Theorem I.1]. �
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