
Math. Struct. in Comp. Science (2012), vol. 22, pp. 729–751. c© Cambridge University Press 2012

doi:10.1017/S0960129511000508

Renormalisation and computation II: time cut-off

and the Halting Problem

YURI I. MANIN

Max Planck Institut für Mathematik, Bonn, Germany

and

Northwestern University, Evanston, U.S.A.

Received 12 May 2010; revised 21 July 2010

This is the second instalment in the project initiated in Manin (2012). In the first Part, we

argued that both the philosophy and technique of perturbative renormalisation in quantum

field theory could be meaningfully transplanted to the theory of computation, and sketched

several contexts supporting this view.

In this second part, we address some of the issues raised in Manin (2012) and develop them

further in three contexts: a categorification of the algorithmic computations; time cut-off and

anytime algorithms; and, finally, a Hopf algebra renormalisation of the Halting Problem.

1. Introduction

1.1. Regularisation and anytime algorithms

It is well known that the classical theory of computability includes non-computability

phenomena as an integral part. In particular, an attempt to compute the value of a

partially recursive function at a point where it is not defined might stall the computation

forever, but we will never know whether this is so, or we have just not waited long enough

(‘the Halting Problem is undecidable’).

The applied theory of computation deals with algorithms processing a finite amount of

data into finite outputs. Nevertheless, even in such theoretically safe situations, time and/or

memory requirements may make the implementation of a sound algorithm unfeasible.

The celebrated theory of polynomial time computations and the discovery of the

P/NP problem served as a neutral zone meeting point between theoretical possibility and

practical feasibility, and revealed beautiful new mathematical structures.

However, applied computer scientists consider other possible ways of turning unfeasible

computations into feasible ones, known as ‘anytime algorithms’. Basically, an ‘anytime

algorithm’ allows the computation to stop in a feasible time, and it then supplies the result

of this mutilated procedure with a measure of its quality: see Grass and Zilberstein (1995)

and, for a nice short introduction, Grass (1996).

In Section 3 of the current paper, which is the second instalment in the project initiated

in Manin (2012), we suggest that ‘anytime algorithms’ can be treated theoretically as

a version of one of the regularisation schemes used in Quantum Field Theory, namely,

time cut-off (for a more detailed description of the whole project, see the Introduction

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 730

in Manin (2012)). More precisely, we analyse from this viewpoint the results of the

stimulating paper Calude and Stay (2008).

One of the themes of the current paper, which the analogies with renormalisation and

experience with anytime algorithms bring to the foreground in computation theory, is

the stress on the structure of programs determined by the operation of the ‘composition

of programs’ and by explicit parallelism, which played a key role in our treatment of

perturbative renormalisation as a model for regularising computations in Manin (2012).

Notice that many standard descriptions of programming methods are not stable with

respect to composition, and have no natural means for expressing parallelism.

For example, composition T2 ◦ T1 of two Turing machines, informally defined as a

computation in which the output of T1 becomes the oracular input (‘program’) for T2, is

not directly described as a new Turing machine T3.

Language-like constructions like the lambda-calculus are inherently linear/sequential,

and are thus not well suited for expressing options of parallelism.

The ‘Flowcharts’ imagery we propagandised for in Manin (2012) serves these goals much

better. In Section 2 of the current paper, we will show that the same ideas admit a succinct

categorical expression, and suggest that the flowchart constructions of Manin (2012) can

be interpreted as a constructive existence theorem, to produce what we call ‘an enriched

programming method with unrestricted parallelism’ (cf. Definition 2.5). This seems to be

very much in the spirit of Baez and Stay (2010).

Finally, in Section 4 we use some ideas from quantum computation to give a Hopf

renormalisation scheme for the Halting Problem.

1.2. Computability as a mathematical structure and its interaction with other

mathematical structures

Most of the constructions considered in this paper refer to (un)feasible algorithms

with infinite domains/ranges. When devising natural quantitative characteristics and

regularisation schemes for them, we should bear in mind that they can be roughly

subdivided into two large blocks.

Block A. This block consists of the inherent problems we enconter when referring to an

infinite constructive world X, which depend only on the class of ‘admissible’ recursively

equivalent numberings of X, and which are the same for all infinite X. From the

computational viewpoint, any such X can be identified with N (natural numbers) or

Z+ (non-zero natural numbers).

A typical example of such an X is some set of finite Bourbaki structures, such as words

in a finite alphabet, or finite groups, or graphs, or their descriptions. In this context,

the Bourbaki description is primarily used to define the class of admissible bijections

(numberings) Z+ → X in question: they must be informally computable together

with their inversions. One aspect of Church’s thesis is the statement that recursive

functions will provide an adequate notion of the algorithmic processing of elements

of X whenever we can imagine an informal algorithm producing the numbering.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 731

Once it is decided that the role of the respective Bourbaki structure is finished as soon

as the class of numberings is determined, one can make explicit various secondary

structures on X that can be defined exclusively in terms of admissible numberings.

One such structure is the algebra of enumerable subsets of X: the definition domains

D(f) of partial recursive functions. This family is stable with respect to finite

intersections and enumerable unions. If we consider these sets modulo finite ones,

we can prove interesting results about simple sets, maximal sets, and so on. For

example, maximal D(f) display a striking similarity to the holomorphy domains V

in the theory of complex analytic functions of � 2 variables: in both cases, there

are functions defined on D(f) or V , respectively, that cannot be extended to a larger

domain.

The proviso ‘modulo finite subsets’ can be formalised very naturally by changing the

Constructive Universe C described in Section 2: simply consider the largest quotient

of C that makes invertible those morphisms (computable maps) X → Y that become

computably invertible after the restriction to some subsets of X and Y with finite

complements.

Another such structure is the class of Kolmogorov orderings: total orders on X

defined by increasing the Kolmogorov complexity with respect to various optimal

enumerations.

Such orderings are not computable, but with respect to them, all recursive functions,

including admissible numberings, become functions of linearly bounded growth. We

will discuss this feature from the renormalisation viewpoint in Section 4.

Block B. This group consists of problems related to the interaction of computability with

other Bourbaki sructures on X. An elementary example is the embedding X = Q ⊂ R

used in the theory of computable rational approximations to real numbers.

In this block, the greatest discovery was the Diophantine representability of enumerable

subsets of N due to Davis, Robinson, Putnam and Matiyasevich.

A very interesting and unexpected example of such an interaction was elaborated in

the work of Nabutovsky and Weinberger (cf. Nabutovsky and Weinberger (2003)), who

showed that the computational complexity can be used to display a highly irregular

landscape of minima of natural differential/geometric functionals on the space of

Riemannian metrics modulo diffeomorphisms.

Since path integration over such a space is one of the key tools of quantum gravity,

this can become an important next meeting space between renormalisation and

computation.

2. Enriched programming methods with typing and parallelism: a categorical approach

2.1. Preliminary remarks

We use N to denote the set of natural numbers and Z+ to denote the positive natural

numbers. N is usually taken as the basic set on which recursive functions are defined,

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 732

though we used Z+ in Manin (2010), having found it more convenient in a Diophantine

context.

As a Bourbaki structure, both Z+ and N are here (isomorphic) totally ordered sets,

with minimal elements 1 and 0, respectively, and successor function suc(x): ‘the smallest

y such that y > x’, or suc(x) = x + 1 in the standard notation. In a sense, this is the

minimal structure needed to define the set of partial recursive functions that are partial

maps Z+ → Z+ or, more generally, (Z+)a → (Z+)c. The remaining components of the

definition (see, for example, Manin (2010, V.2.1–2.4)) are just the standard category-

theoretic constructions in a fixed monoidal category of sets (ParSets,×) with partial

maps as morphisms and cartesian product: cf. Manin (2012, Section 3.7).

However, this total order structure is not invariant with respect to the structure we

will define below in the sense that it is not preserved under the automorphisms of

this structure. For this reason, we will not use one of the standard categorifications of

computation theory in which N is replaced by a ‘natural numbers object’ N (of an

abstract category), endowed with a morphism sucN : N → N: this categorification puts

undue stress on the role of this total order and the related iteration sucN ◦ · · · ◦ sucN.

Instead, we adopt the version advocated in Manin (1999) of a subcategory C of ParSets

called the Constructive Universe. The relevant formal definitions are collected together in

Sections 2.2–2.8, with some informal comments left until Section 2.10.

2.2. Objects

Objects of C will be called constructive worlds.

Definition 2.1. A constructive world X is either a finite set, or an infinite set endowed

with a non-empty set Num(X) of bijections ν : Z+ → X, called admissible numberings,

satisfying the following conditions:

(i) If ν1, ν2 ∈ Num(X), then ν−1
2 ◦ ν1 is a total recursive bijection.

(ii) If ν ∈ Num(X) and f : Z+ → Z+ is a total recursive bijection, then ν ◦ f ∈ Num(X).

Elements of the constructive world X are called constructive objects of the type X.

2.3. Morphisms

Let X,Y be two constructive worlds. Morphisms X → Y are induced by partial recursive

maps on their structure numberings. More precisely, we have the following definition.

Definition 2.2. A morphism X → Y is a partial map f : D(f) → Y , where D(f) ⊂ X is a

subset (possibly empty) satisfying the following conditions:

(i) If X is infinite and Y is finite, then for one (equivalently, any) admissible numbering

ν : Z+ → X and any y ∈ Y , the set ν−1(f−1(y)) is recursive enumerable.

(ii) If X and Y are both infinite, then for one pair (equivalently, any pair) of admissible

numberings νX : Z+ → X, νY : Z+ → Y , the partial map ν−1
Y ◦ f ◦ νX : Z+ → Z+ is

a partial recursive function.

(iii) If X is finite and Y is infinite, any partial map is a morphism.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 733

With the standard composition of partial maps, constructive worlds form a category

C, which we will call the Constructive Universe. The set of morphisms X → Y will be

denoted C(X,Y). Its subcategory consisting of infinite constructive worlds is equivalent

to a very simple category consisting of one object, say Z+, and partial recursive maps as

morphisms. Such categories are called isotypical ones in Heller (1990).

However, it is important to consider C as a (bi)monoidal category, with two symmetric

monoidal structures × (direct product) and
∐

(coproduct, or disjoint union (Heller 1990)),

connected by the standard coherence diagrams.

These monoidal structures are induced by those in a small category of (unstructured) sets

in which our constructive worlds lie, so it suffices to specify some privileged numberings

of disjoint sums and direct products. Moreover, it suffices to consider numberings that

are bijective maps Z+ →
∐m

i=1 Z+ and Z+ → (Z+)m.

For
∐m

i=1 Z+, we simply assign to m(k − 1) + i the number k in the ith summand.

The cartesian product is more interesting because there are several numberings that

become privileged in the context of Kolmogorov complexity.

We will generally assume that C is closed with respect to the monoidal structures ×
and

∐
.

2.4. Constructive descriptions of morphisms

We fix two constructive worlds X,Y . Since the set of recursive maps C(X,Y) is not a

constructive world, we may try to replace it by descriptions.

Definition 2.3. A constructive world of descriptions is a pair (P (X,Y), F), where P (X,Y)

is an object of C, and F : P (X,Y) ×X → Y is a morphism in C, satisfying the following

condition:

— Letting p ∈ P (X,Y), we use fp to denote the partial map x �→ F(p, x) ∈ Y , x ∈ X.

Then each fp is a morphism X → Y in C.

In other words, descriptions produce a set theoretic map P (X,Y) → C(X,Y) construct-

ively depending on (p, x).

2.4.1. Translations. Let (P (X,Y), F) and (Q(X,Y), G) be two constructive worlds of

descriptions. A translation (or compilation) method

transP ,Q : P (X,Y) → Q(X,Y)

is an everywhere defined morphism in C such that for all p ∈ P (X,Y), we have trans(p) ∈
Q(X,Y) defines the same morphism fp : X → Y . In other words,

G ◦ (transP ,Q × idX) = F.

2.4.2. Universal descriptions. The world (U(X,Y),W) is the world of universal descrip-

tions, if for any other world of descriptions (P (X,Y), F), there exists a translation

morphism

transP ,U : P (X,Y) → U(X,Y).

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 734

In particular, it can compute any (semi)computable function, in the sense that the

family of maps fu : X → Y , u ∈ U(X,Y) contains all morphisms in C.

2.4.3. Complements. Amongst the various constructive worlds of descriptions P (X,Y)

there exist some with better properties than the general definition would suggest. The

terminology for them is rather unstable. We will sometimes say (see Section 3.5) that

P (X,Y) is the base of a family fp : X → Y , p ∈ P (X,Y) of partial functions.

We will review below some relevant definitions and existence theorems. We consider

four cases separately:

(i) If X and Y are infinite, then we may assume without loss of generality that X = Y =

Z+.

Rogers (1958) calls such a world of descriptions U semi-effective if it computes all

morphisms (partial recursive functions), and he says U is fully effective if it is universal

in the sense of Section 2.4.2.

An easy construction in Rogers (1958) (see the example following Definition 3) shows

that there are semi-effective descriptions that are not fully effective. A universal

description world U(X,Y) = Z+ (or rather N) is also called a Gödel numbering in

Rogers (1958).

The main Theorem of Rogers (1958) implies in our language that for any two universal

description worlds (for infinite X, Y), there exist two mutually inverse translation

isomorphisms between them: total recursive bijections that are compatible with functions

that these descriptions compute.

Schnorr (1974) considerably strengthened this result by saying that a universal

description world (U = Z+,W) is an optimal Gödel numbering if for any other world

of descriptions (P = Z+, F), there exists a translation morphism t : P → U that is

a linearly bounded function Z+ → Z+. We will simply say that such a description

world is optimal.

Schnorr then proved that optimal descriptions exist, and for any two optimal description

worlds (with infinite X, Y), there exist two mutually inverse linearly bounded translation

isomorphisms between them.

Similar results hold in the case when only one of the worlds X,Y is infinite. The

general situation can be reduced to the case when the relevant finite world is a

one-element set – for simplicity, we will only consider this case.

(ii) The case X = {∗} is truly exceptional in the sense that C({∗}, Y), that is, ‘Y -valued

recursive functions of zero variables’, can be canonically identified with the set Y , and

it is thus a constructive world. Nevertheless, the ideas and main results of Rogers and

Schnorr are also applicable in this case, and lead to a strengthening of the notion of

a Kolmogorov optimal enumeration of constructive objects of a given type.

(iii) In the case Y = {∗}, we can naturally identify C(X, {∗}) with the set of all enumerable

subsets of X, domains of partial recursive functions with one value. Gödel and optimal

numberings of enumerable subsets can also be easily defined, and again the Rogers

and Schnorr theorems are valid for them.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 735

(iv) Finally, when both X and Y are finite, the useful structurings of descriptions are

those of Boolean polynomials, circuits and so on, and many complexity problems are

centered around polynomial time computations – see Manin (1999) for an introduction

that is close in style to the current paper.

2.5. Enrichments of C over itself and programming methods

There is a well-known general notion of a category C enriched over a monoidal category

(M,⊗, I), where I is an identity object.

We will consider enrichments of C over (C,×, I) where I is a fixed one-element

constructive world. Products of empty families, such as Na for a = 0, are interpreted as I .

According to the general pattern, such an enrichment must consist of the following

data:

(a) For each pair of constructive worlds X,Y , an ‘object of morphisms’ P (X,Y) ∈ ObC.

(b) For each triple of constructive worlds X,Y , Z , a ‘composition morphism’ in C:

◦ : P (Y ,Z) × P (X,Y) → P (X,Z) (1)

(c) For each object X of C, an identity morphism

idX : I → P (X,X). (2)

The standard axioms for morphisms in a category translate into commutativity

requirements for three classes of diagrams in C expressing properties of associativity

of enriched composition, and left and right identities.

Definition 2.4. An enrichment of C over (C,×, I) as above is said to be an enriched

programming method, denoted by CP , if:

(A) For each pair of constructive worlds X,Y , we are given a morphism

FX,Y : P (X,Y) ×X → Y

in C such that P (X,Y) becomes a constructive world of descriptions in the sense of

Definition 2.3. Thus, we have a family of set-theoretic maps

ΦX,Y : P (X,Y) → C(X,Y) : p �→ fp. (3)

We will say that p is a description, or a program, computing fp.

(B) The following axioms are satisfied:

(i) Morphisms (1) and (2) must be everywhere defined (total recursive) maps.

(For (2), this simply means that they are non-empty maps.)

(ii) Compositions (1) must be compatible with the compositions of morphisms in C:

fp◦q = fp ◦ fq.

(iii) Element idX(I) ∈ P (X,X) must be a description of the ‘copying’ program mapping

x to x.

(Note that this should not be confused with the ‘cloning’ program computing the

diagonal map X → X ×X, x �→ (x, x).)

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 736

Informally speaking, we have a functor

ΦP : CP → C (4)

that is identical on objects and mapping a program to the function that this program

computes.

The most important feature of this formalism is its explicit and systematic inclusion of

the composition of programs into our formalism: this is a key requirement for all Hopf

algebra renormalisation schemes.

Finally, we should mention that we use the word program as a synonym for ‘description

of a method to compute a given function’, where the input to such a program is a specific

value of the argument of this function, and the output is the value of the function. This

praxis should not be confused with the one used in the theory of Turing machines, where

programs are often understood as our inputs: the initial binary string on the tape.

2.6. A (uni)versal enrichment

An enrichment CU as above is said to be (uni)versal if programs from U compute all

partial recursive maps, and, moreover, if for each CP , there is a functor between enriched

categories

Ψ : CP → CU (5)

that is identical on objects, with total recursive maps

ΨX,Y : P (X,Y) → U(X,Y) (6)

such that ΨX,Y (p) for each p computes the same function as p. In other words, we have

ΦU ◦ Ψ = ΦP .

Intuitively, we want the following properties of U as a programming method, which are

somewhat stronger than those in Section 2.4.

(a) It can compute any (semi)computable function.

(b) For each other programming method P , there must exist a computable (on the world

of P -programs) translation of P -programs into U-programs that compute the same

functions.

(c) The translation must be compatible with the composition of programs and copy-

ing/identity programs (functorality of Ψ).

2.7. Coproducts and typing

Coproducts (disjoint sums) admit the most straightforward interpretation in the contexts

where computer scientists speak about typing. In the simplest situation, a program p ∈
P (X

∐
Y ,Z) accepts inputs of either type X or Y , and produces outputs of type Z .

As far as I can judge, iterated application of similar interpretations, can be used in all

contexts where the notion of typing is essential.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 737

2.8. Products and parallelism

Let Xi, Yi, i = 1, . . . , n be constructive worlds. Then the map

π : C(X1, Y1) × C(X2, Y2) × · · · × C(Xn, Yn) → C(X1 ×X2 × · · · ×Xn, Y1 × Y2 × · · · × Yn),

π(f1, . . . , fn)(x1, . . . , xn) := (f1(x1), . . . , fn(xn)) (7)

defines families of computations with independent inputs/outputs that can be implemented

in parallel. This can be generalised to programming methods as follows.

Definition 2.5. Let P be an enriched programming method. We will say that P admits

unrestricted parallelism if the following additional structure is given.

Let {Xi}, {Yi}, i = 1, . . . , n, be any finite family σ of constructive worlds. We must be

given maps

πσ :

n∏
i=1

P (Xi, Yi) → P

(
n∏
i=1

Xi,

n∏
i=1

Yi

)
, (8)

that are lifts of (7). These maps must be equivariant with respect to the natural action of

the symmetric group Sn permuting subscripts on both sides.

2.9. Basic example: flowcharts

The flowcharts defined in Manin (2012) form a convenient context for constructing

enriched progamming methods with unrestricted parallelism. One example of such a

method is the world P , which computes primitive recursive functions, and is described in

Manin (2012, Definition 2.11). This definition uses the ideas of Yanofsky (2006).

Additional work remains to be done to produce a manageable construction of an

universal enrichment with unrestricted parallelism.

2.10. Comments: constructive worlds and admissible numberings

Technically speaking, conditions (i) and (ii) of Definition 2.1 together mean that Num(X)

forms a principal homogeneous space over the group of total recursive permutations

of Z+, which we may denote by SZ+ ,rec, as an infinite analogue of þnite symmetric

groups. Hence, the whole Num(X) can be reconstructed from any single numbering in

this set. There are usually some ‘simplest’, or ‘privileged’, numberings with which one

mostly works, such as the numbering of binary words w ∈ {0, 1}N used in Calude and

Stay (2008): bin−1 : w �→ 1w, where the line over a binary word means that it should be

treated as the natural number given by its binary digits.

The idea of privileged numberings is essential, especially when we are dealing with

polynomial time or, more generally, ‘feasible’ computations. In order to accommodate this

idea, we can strengthen Definition 2.1 as follows. Consider the smaller ‘symmetric group’

SZ+ ,pol of total recursive permutations that are polynomial time computable together with

their inverses, and define the structure of the polynomial time constructive world X by a

set Numpol(X) forming a principal homogeneous space over the group SZ+ ,pol .

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 738

An (often implicit) part of the contemporary philosophy around Turing’s Thesis consists

of postulating that whenever we can informally speak about algorithms and (semi-)

computable maps between two constructive worlds, we can always produce in the context

of this discussion admissible numberings that are informally algorithmic and transform

informal (semi)computable maps into (partial) recursive functions.

In any case, starting with such a class of numberings of X, we should stress that we

study notions that are either invariant, or behave in a controlled way, under the action

of the group SX,rec.

A few further remarks are in order here.

Sometimes, a constructive world X itself is an unstructured set, in the sense that the

only relevant structure on it is given by its set of admissible numberings. The typical

example is a world A that in further constructions may serve as an alphabet. In this

case, a numbering defining the whole Num(A) is usually introduced ad hoc. But in most

applications, X itself consists of certain sets (often finite and/or considered only up to

isomorphism, or even organised into a category) endowed with a certain fixed Bourbaki

structure, such as:

(a) finite words in an alphabet A;

(b) finite graphs up to an isomorphism;

(c) finite groups.

In such cases, the privileged numberings (‘encodings’) generating the whole Num(X) are

supposed to interact with this structure in such a way that the number of a constructive

object can be ‘algorithmically calculated’ when we know this object as an instance of this

structure, and, conversely, this instance must be algorithmically reconstructible from the

number. It is only very rarely that such encodings can give good translations of the basic

relations, composition laws and so on, involved in the definition of the structure. This

is one reason to formulate models of computation directly in terms of this structure: cf.

Church’s lambda-calculus, Kolmogorov–Uspenski’s graphs and Gács–Levin causal nets

(see Gács and Levin (1982)).

On the other hand, such a simple task as choosing a privileged numbering of Z+ × Z+

(upon which one of the monoidal structures on C is based) can lead to quite interesting

constructions when this choice is related, for example, to complexity estimates – see

the discussion in Sections 3.6–3.8 using L. Levin’s norms for the definitions of such

numberings.

Notice that the instances of constructive worlds of causal nets studied in Gács and

Levin (1982) are themselves categories, and the study of the interaction of computability

with symmetries of the respective constructive objects reveals interesting new phenomena.

We want to argue that our categorical framework suggests other possibilities for

avoiding too close attention to the elementary steps of computation. In particular, the

‘categorical Church Thesis’ allows the following wonderfully succinct expression:

— The category C is defined uniquely up to equivalence.

An important complication and variation of the theme of admissible numberings arises

when a structure S that we want to treat ‘constructively’ is then imposed on eventually

inþnite sets. In such cases the relevant constructive objects are often not the structures

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 739

themselves, but their finite descriptions: a group might be given by generators and relations,

an affine scheme over Z by its equations, and so on.

The usual complication with descriptions is that many descriptions can produce

one and the same (or canonically isomorphic) Bourbaki structure, and the relevant

equivalence relation on the set of descriptions can be undecidable, or even not recursively

enumerable. This is precisely the case of the structure constituted by recursive functions

themselves, which is our main motivation for introducing enrichments as in Definitions 2.4

and 2.5.

3. Cut-off regularisation and anytime algorithms

3.1. Cut-off regularisation

In Quantum Field Theory, cut-off regularisation schemes have the following typical

structure. The relevant Feynman integrals, say, in momentum space, may diverge when

momentum becomes large or small. In this case, the formal integral I in question is

replaced by the finite integral IP taken over momenta p � P := pcutoff or p � P := pcutoff ,

respectively. The behaviour of IP as P → ∞ or P → 0, respectively, is then studied, and

physical information is extracted from the behaviour of the polar part, or regular part, of

IP .

In computer science based on Turing machines and/or recursive functions, the natural

‘divergence’ occurs in space–time: a computation uses discrete memory (space) and

runtime. A typical example of such a divergence is the infinite runtime of a Turing

machine computing a partial recursive function f at an input (program) x that is outside

the definition domain of f.

Application-oriented computer scientists, of course, recognise the practical necessity of

time cut-offs, accompanied by sober estimates of the quality of the outputs. Systematic

work on this problem resulted in the notion of ‘Anytime Algorithms’, cf. Grass and

Zilberstein (1995). The usefulness of composition and the use of parallelism was stressed

in Russell and Zilberstein (1991).

The stimulating paper Calude and Stay (2008) addressed the problem of cut-off of

runtime theoretically, and gave meaningful quantitative characteristisations of such a

cut-off. More precisely, let f be a partial recursive function (‘a morphism of constructive

worlds X → Y ’) as above, and F be its description – a program calculating it. The

computation time (or runtime) is another partial recursive function, which has the same

domain D(t(F)) = D(f) ⊂ X and target Z+, and whose precise definition depends on the

details of the implied choice of our programming method.

For a Turing machine F , the number of steps required to halt and print f(x) on the tape,

where x ∈ D(f), is t(F)(x). One can similarly define another partial recursive function,

‘memory volume’ m(F) : X → Z+ such that for x ∈ D(f), the minimal length of tape

required to compute f(x) is m(F)(x). Here W is the constructive world of binary words

{0, 1}Z+

. Yet another partial recursive function, s(F), is the sum total of lengths of filled

parts of the tape over all steps of computation. Notice that Soare’s settling function (Soare

2004, Definition 8.2), which is essentially max {t(F)(y) | y < x, y ∈ D(f)}, is generally not

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 740

partial recursive, but some of the inequalities stated below, such as (11), are valid for it

too.

One can define natural analogues of functions t(F), m(F) and s(F) for rather general

conventional programming methods F , as discussed in Manin (1999) and Chapter IX of

the new edition of Manin (2010).

Returning to Calude and Stay (2008), we will first of all show that some of the basic

results of that paper related to cut-offs admit a straightforward reformulation in such a

way that they become applicable and true for any partial recursive function, including, of

course, t(F), m(F) and s(F).

This naturally raises the question of what is so specific about t(F), m(F) and s(F). We

will treat this question in Section 3.5 in the context of the categorification developed in

Section 2, and will show that this provides some meaningful insights into these measures

for computation processes.

3.2. Complexity

We will first recall the definition and properties of the Kolmogorov (‘exponential’ or

‘program’) complexity Cu : Z+ → Z+: cf. Manin (2010, VI.9). Calude and Stay (2008)

called it the the natural complexity and denoted it by ∇U or simply ∇.

This complexity measure is defined with respect to a partial recursive function u :

Z+ → Z+, which is surjective:

Cu(x) := min {y | u(y) = x}.

This function u is an arbitrary element of the set of Kolmogorov, or Gödel, optimal

functions, representatives of which can be effectively constructed: cf. Rogers (1958),

Schnorr (1974) and Manin (2010). Optimality implies that for any other partial recursive

v : Z+ → Z+, there exists a constant cu,v > 0 such that for all x, Cu(x) � cu,vCv(x). (The

right-hand side is interpreted as ∞ if x is not in the range of v).

It follows that another choice of optimal function replaces Cu by a function Cu′ =

2O(1)Cu. We will say that two such functions belong to the same bounded equivalence class.

Moreover, as we discussed earlier, the definition of the complexity of integers can

be extended to a definition of the complexity of partial recursive functions of any

fixed number of variables m, as in Manin (2010, VI.9.1). This requires a choice of

Kolmogorov optimal recursive function of m + 1 variables. We then have the following

simple result (where we omit the subscripts at C specifying the choices of optimal families,

and use c with subscripts to denote various constants, which also depend on these

choices).

Proposition 3.1. For any partial recursive function f : Z+ → Z+ and x ∈ D(f), we have

C(f(x)) � cfC(x) � c′
fx. (9)

If f and x ∈ D(f) are allowed to vary, we have

C(f(x)) � cC(f)C(x) log (C(f)C(x)) . (10)

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 741

In particular, if f is a total recursive permutation, then complexities of x and f(x) are

bounded equivalent. It follows that we can define the complexity function, up to bounded

equivalence, C : X → Z+ for any infinite constructive world X by choosing an admissible

numbering ν : Z+ → X and putting C(x) := Cu(ν
−1(x)) for some optimal u.

3.3. Runtimes according to Calude and Stay (2008)

Proposition 3.1 is a special case of Manin (2010, VI.9, Proposition 9.6). In turn, it implies

as special cases inequality (2) and Theorem 4 of Calude and Stay (2008).

It is easy to see this by simply comparing the terminology and notation.

Calude and Stay (2008) deals with the complexity C (their ∇ = ∇U) of binary words,

which reduces to the complexity of integers via the admissible numbering denoted by bin

in Calude and Stay (2008). This is defined using a ‘universal Turing machine’ U, which

in our language is a programming method computing one of the Kolmogorov optimal

functions u. Consider the partial recursive function x �→ t(U)(x), which is the runtime of

U at the argument x ∈ Z+. Inequality (2) of Calude and Stay (2008) can be rewritten in

our notation as

C(t(U)(x)) � cx, (11)

which is our (9) for f = t(U). The same inequality is valid for m(U) and s(U), but also

for t(F), m(F) and s(F) for any F , and even for Soare’s settling functions: see Section 3.1.

3.3.1. Growth of recursive functions and algorithmic randomness. The central argument of

Calude and Stay (2008) is based on two statements:

(a) The runtime of the Kolmogorov optimal program at a point x of its definition domain

is either � cx2, or is not ‘algorithmically random’ (Calude and Stay 2008, Theorem 5).

(b) ‘Algorithmically random’ integers have density zero for a class of computable prob-

ability distributions.

The last statement justifies the time cut-off prescription, which is the main result of

Calude and Stay (2008):

— if the computation on the input x did not halt after cx2 Turing steps, stop it, decide that

the function is not determined at x, and proceed to x+ 1.

Proposition 3.2 will generalise the statement (a) somewhat.

3.4. Randomness and growth

Consider a pair of functions ϕ,ψ : R>0 → R>0 satisfying the following conditions:

(a) ϕ(x) and x
ϕ(x)

are strictly increasing, starting with a certain x0, and tend to infinity as

x → ∞.

(b) ψ(x) and ψ(x)
xϕ(ψ(x))

are increasing and tend to infinity as x → ∞.

The simplest examples are ϕ(x) = log(x+ 2) and ψ(x) = (x+ 1)1+ε, with ε > 0.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 742

In our context, ϕ will play the role of a ‘randomness scale’. We will say x ∈ Z+ is

algorithmically ϕ-random if C(x) > x/ϕ(x). The second function ψ will then play the role

of the associated growth scale.

Proposition 3.2. Let f be a partial recursive function. Then for all sufficiently large x

exactly one of the following alternatives holds:

(i) x ∈ D(f) and f(x) � ψ(x).

(ii) x /∈ D(f).

(iii) x ∈ D(f), and f(x) is not algorithmically ϕ-random.

Proof. We only need to check that if x ∈ D(f) and f(x) > ψ(x), then f(x) is not

algorithmically ϕ-random, that is

C(f(x)) �
f(x)

ϕ(f(x))
. (12)

In fact, in view of (9),

C(f(x)) � cx (13)

for some constant c (depending on u and f). Furthermore, for sufficiently large x, in view

of (b) at the beginning of this section, we have

cx �
ψ(x)

ϕ(ψ(x))
�

f(x)

ϕ(f(x))
. (14)

Clearly, (13) and (14) imply (12).

3.5. Cost estimate functions

Since, as we have argued, the randomness/growth alternative holds for arbitrary recursive

functions, and not only for runtimes and the like, we will briefly discuss specific properties

of runtimes, considered from the perspective of categorification, explained in Section 2.

Let P be an enriched programming method, as in Definition 2.4. We will say that

a partial function δ : P (X,Y) × X → Z+ is a cost estimate function if the following

conditions are satisfied:

(i) δ is partial recursive (morphism in C) and D(δ) = {(p, x) | x ∈ D(fp)}.
(ii) δ(p ◦ q, x) = δ(q, x) + δ(p, q(x)) whenever both sides are defined.

Requirement (i) is natural because the ‘run-cost’ of a computation (time, maximum

storage size) must be computable in terms of cost increments required at each step.

Requirement (ii) then expresses the additivity of such increments. We may, or may not,

ascribe a non-zero cost to the program calculating identical function (‘data transfer’).

Requirement (i) complemented by the requirement of the decidability of the graph of

δ constitute two axioms that are due to M. Blum. The latter property also has a clear

intuitive meaning.

Finally, if our cost estimate function refers to time only, and we allow unrestricted

parallelism, the following property is natural. Using the notation of (8), we must have:

(iii) δ(πσ(p1, . . . , pn), (x1, . . . , xn)) = max (δ(p1, x1), . . . , δ(pn, xn)).

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 743

3.6. Constants related to Kolmogorov complexity estimates

Since inequalities (9) and (10), and their extensions are often useful, we will say a few

words about their computability.

As in Manin (2012, VI.9), we call partial maps (Z+)m → Z+, m � 0, m-functions. A

Kolmogorov optimal family of m-functions u(x1, . . . , xm; k), k ∈ Z+, is produced from two

inputs:

(a) A fully effective (in the sense of Rogers, cf. Section 2.4.3) family of (m+ 1)-functions

U.

(b) A recursive embedding θ : Z+ × Z+ → Z+ with decidable image satisfying a linear

growth condition

θ(k, j) � k · ϕ(j) (15)

where ϕ : Z+ → Z+ an appropriate function.

Having made these choices, we put

u(x1, . . . , xm; k) := U(x1, . . . , xm; θ−1(k)). (16)

Then for any other family v of m-functions v with base Z+ and each m-function f, we

have the inequality

Cu(f) � cu,vCv(f) (17)

with

cu,v := ϕ(CU(v)). (18)

(cf. Manin (2010, VI.9.4)).

Clearly, (9) is a special case of (17). An effective estimate of (18) will be assured, if

ϕ is computable and increasing, and if, knowing a P -description of v, we can find some

member of the family U coinciding with v. The latter, in turn, is automatic if P is supplied

with a translation morphism transP ,U .

We will now discuss the numberings θ.

3.7. Slowly growing numberings

Let R = (Rk | k ∈ Z+) be a sequence of positive numbers tending to infinity with k. For

M ∈ Z+, we put

VR(M) := {(k, l) ∈ (Z+)2 | kRl � M}. (19)

Clearly,

cardVR(M) �
∞∑
l=1

[
M

Rl

]
< ∞ , (20)

where [a] denotes the integral part of a.

We have

VR(M) ⊂ VR(M + 1), (Z+)2 = ∪∞
M=1VR(M).

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 744

Therefore, we can define a bijection NR : Z+ → (Z+)2 by saying NR(k, l) is the

number of (k, l) in the total ordering <R of (Z+)2 determined inductively by the rule that

(i, j) <R (k, l) if and only if one of the following alternatives holds:

(a) iRj < kRl .

(b) iRj = kRl and j < l.

Proposition 3.3. The numbering NR is well defined and has the property that all elements

of VR(M+1) \VR(M) have strictly larger numbers than those of VR(M). Moreover:

(i) If each Rl is rational, or computable from above, then NR is computable (total

recursive).

(ii) If the series
∑∞

l=1 R
−1
l converges and its sum is bounded by a constant c, then

NR(k, l) � c(kRl + 1). (21)

(iii) If the series
∑∞

l=1 R
−1
l diverges, and

M∑
l=1

R−1
l � F(M) (22)

for a certain increasing function F = FR , then

NR(k, l) � (kRl + 1)F(kRl + 1). (23)

Proof. The first statements are an easy exercise. For (21) and (22), notice that if M is

the minimal value for which (k, l) ∈ VR(M), we have M − 1 < kRl � M and

NR(k, l) � cardVR(M).

Then for part (ii), we have from (20) that

cardVR(M) �
∞∑
m=1

MR−1
m � c(kRl + 1).

Similarly, for part (iii), we have

cardVR(M) � M

M∑
m=1

R−1
m � (kRl + 1)F(kRl + 1).

3.8. Levin’s norms

From (21), any sequence {Rl} with converging
∑

l R
−1
l can be used in order to construct

the bijection Z+ × Z+ → Z+, (k, l) �→ NR(k, l) growing linearly with respect to k. Assume

that it is computable and therefore can play the role of θ in condition (b) in Section 3.6.

In this case, for any integer M the set VR(M) must be decidable. It follows that for any l,

the set of rational numbers k/M � rl := R−1
l is decidable.

Even if we weaken the last condition, requiring only recursivity of the set k/M � rl
(that is, asking each rl to be computable from below), the convergence of

∑
l rl implies

that there is a universal upper bound (up to a constant) for such rl . Namely, let CP be

the prefix Kolmogorov complexity on Z+ defined with the help of a certain optimal prefix

enumeration.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 745

Proposition 3.4 (Levin 1976). For any sequence of computable from below numbers rl
with convergent

∑
l rl , there exists a constant c such that for all l, we have rl � c ·CP (l)−1.

More generally, Levin constructs in this way a hierarchy of complexity measures

associated with a class of abstract norms, which are functionals on sequences computable

from below.

4. Regularisation and renormalisation of the Halting Problem

4.1. Introduction

In this section, we devise some simple regularisation/renormalisation schemes tailored to

the Halting Problem. The general structure of such a scheme is sketched in Manin (2012,

Section 0.2), and involves the following components.

(a) Deforming the Halting Problem.

In this step, we transform the problem of recognising whether a number k ∈ Z+

belongs to the definition domain D(f) of a partial recursive function f to the problem

of deciding whether an analytic function Φ(k, f; z) of a complex parameter z has a

singularity (in our case, a pole) at z = 1.

In fact, using an idea from quantum computing, we may reduce the case of arbitrary

f to the case of a partial recursive permutation σ = σf : D(σ) → D(σ) of its definition

domain, and construct Φ(k, σ; z) for such permutations. This reduction is described in

Manin (2012, Sections 3.6–3.8).

(b) Choosing a minimal subtraction algebra.

Our choice of an appropriate minimal subtraction algebra (see the definition in

Manin (2012, Section 4.2)) is based on the established properties of the functions

Φ(k, σ; z) – cf. Proposition 4.4.

Specifically, let A+ be the algebra of analytic functions in |z| < 1, continuous at |z| = 1.

This is a unital algebra, and we endow it with the augmentation εA : Φ(z) �→ Φ(1),

and put

A− := (1 − z)−1C[(1 − z)−1].

Finally, we let

A := A+ ⊕ A−.

We can now use Manin (2012, Theorem 4.4.1) in renormalisation schemes involving a

connected filtered Hopf algebra H (cf. Ebrahimi-Fard and Manchon (2007, Section 2.5,

Theorem 1) and Manin (2012, Section 4.1)). However, we still need to indicate which

Hopf algebras and which of their A-characters will be involved in this game.

(c) Hopf algebra of an enriched programming method.

A class of such algebras is described in Manin (2012, Sections 3.3–3.4). This construction

explicitly refers to flowcharts, but can be easily modified and generalised so that they

can be applied to enriched programming methods P in the sense of Definition 2.4.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 746

Basically, H = HP is the symmetric algebra spanned by isomorphism classes [p] of

certain descriptions belonging to, say, P (Z+,Z+). Comultiplication in HP is dual to

the composition of descriptions:

∆([p]) :=
∑

q,r|q◦r=p

[r] ⊗ [q]. (24)

(Recall that the composition of descriptions is associative).

In order to ensure the finiteness of the right-hand side of (24) and to produce a Hopf

filtration, we must also postulate the existence of a ‘size function’ on descriptions. The

simplest properties of such a function p �→ |p| that will serve our goal are finiteness of

the set of descriptions of bounded size and additivity

|q ◦ r| = |q| + |r|.

For a concrete example, see Manin (2012, Section 3.4).

(d) Characters, corresponding to the Halting Problem.

Finally, we assume that we have constructed HP and Φ(k, f; z) as above. Then the

character ϕk : HP → A (cf. Manin (2012, Section 4.4)) corresponding to the Halting

Problem at a point k ∈ Z+ for the partial recursive function computable with the help

of a description p ∈ P (Z+,Z+) is defined by

ϕk([p]) := Φ(k, f; z) ∈ A. (25)

As soon as this definition is adopted, the machinery and philosophy of Hopf renormal-

isation and Birkhoff decomposition (Manin 2012, Theorem 4.4.1) becomes applicable

to the classical Halting Problem.

It may be even more relevant for quantum computation schemes based on infinite-

dimensional Hilbert spaces.

4.2. The simplest construction

Let f : Z+ → Z+ be a partial recursive function. Consider its extension f̄ : N → N

defined by f̄(x) = f(x) if x ∈ D(f) and f(x) = 0 otherwise.

Put

Ψ(k, f; z) :=

∞∑
n=0

zn

(1 + nf̄(k))2
. (26)

Proposition 4.1.

(i) If k /∈ D(f), then

Ψ(k, f; z) =
1

1 − z
. (27)

(ii) If k ∈ D(f), then Ψ(x, σ; z) is the Taylor series of a function analytic at |z| < 1

and continuous at the boundary |z| = 1. The value f̄(k) = f(k) can be uniquely

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 747

reconstructed from Ψ: for example,

f(k) =

√
dz

dΨ

∣∣∣∣
z=0

− 1. (28)

Proof. The proof is obvious.

In fact, formula (26) can be seen in its natural context if we borrow the general

prescription of reducing any function to a permutation from the theory of quantum

computation.

We will now briefly recall this prescription, following Manin (2012, Sections 3.6–3.8).

4.3. Reduction of the general Halting Problem to the recognition of fixed points of

permutations

We begin with a partial recursive function f : X → X where X is an infinite constructive

world and extend X by one point, that is, form X
∐

{∗X}. We then choose a total

recursive structure of an additive group without torsion on X
∐

{∗X} with zero ∗X .

We now extend f to the everywhere defined (but generally uncomputable) function

g : X
∐

{∗X} → X
∐

{∗X} by

g(y) := ∗X if y /∈ D(f).

We then define the map

τf :
(
X

∐
{∗X}

)2

→
(
X

∐
{∗X}

)2

by

τf(x, y) := (x+ g(y), y). (29)

This is clearly a permutation, and since (X
∐

{∗X},+) has no torsion, the only finite orbits

of τZf are fixed points.

Moreover, the restriction of τf to the recursive enumerable subset

D(σf) :=
(
X

∐
{∗X}

)
× D(f)

of the constructive world Y := (X
∐

{∗X})2 induces a partial recursive permutation σf of

this subset.

Since g(y) never takes the zero value ∗X on y ∈ D(f), but is always zero outside it, the

complement of D(σf) in Y consists entirely of fixed points of τf .

Thus, the Halting Problem for f reduces to the fixed point recognition for τf .

4.4. Permutations with bounded shift

The formula (26) can be generalised as follows.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 748

Definition 4.2. Let σ be a permutation of Z+, k ∈ Z+. We say that σ has a bounded shift

at k if there exist constants a, b, c (depending on σ and k) such that for all n ∈ Z,

c · |n+ a| � σn(k) � c · |n+ b|. (30)

Lemma 4.3. If σ has bounded shift at k, then the σZ-orbit of k is infinite, and for any

m �= 0 and any point of this orbit l, we have σm has bounded shift at l.

Proof. Let l = σd(k). From (26) we get

c · |mn+ d+ a| � σmn(l) = σmn+d(k) � c · |mn+ d+ b|,

that is

c|m| ·
∣∣∣∣n+

d+ a

m

∣∣∣∣ � (σm)n(l) � c|m| ·
∣∣∣∣n+

d+ b

m

∣∣∣∣ . (31)

This inequality has the same form as (30), but with different constants.

Proposition 4.4. Let σ be a permutation of Z+, k ∈ Z+. Put

Ψ(k, σ; z) :=

∞∑
n=1

zn(
σn(k)

)2
. (32)

Then we have:

(i) If σZ-orbit of k is finite, then Φ(σ, x; z) is a rational function in z for which all poles

are first order and lie at roots of unity.

(ii) If this orbit is infinite, and σ has bounded shift at (any point of) this orbit, then

Φ(σ, k; z) is the Taylor series of a function analytic at |z| < 1 and continuous at the

boundary |z| = 1.

Proof. If σZ-orbit of k is finite, then (28) is a finite sum of several geometric progressions

each of which sums to a rational function of the type

const · zk

1 − zl
.

Otherwise, because of (30), we get a series that is absolutely convergent for |z| � 1.

4.5. The Kolmogorov order

There are many interesting σ, such as total recursive permutations, that are not per-

mutations of bounded shift. To cope with this situation, we will (uncomputably) reorder

Z+, and show that after this reordering, all partial recursive functions and permutations

corresponding to them will satisfy a version of the bounded shift property, which will

allow us to construct a modification of Ψ(z).

Slightly more generally, let X be an infinite constructive world, and consider an optimal

enumeration u : Z+ → X in the sense of Kolmogorov or Schnorr (see Section 2.4.3). This

means that u is total recursive and surjective, and the function Cu : X → Z+,

Cu(x) := min {k | u(k) = x}

is (a representative of) the Kolmogorov complexity of constructive objects of type X.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 749

We now define the Kolmogorov total order on X associated with u by

x < y ⇔ Cu(x) < Cu(y),

and write K = Ku : X → Z+ to denote the function

K(x) := 1 + card {y |Cu(y) < Cu(x)}.

K is clearly a bijection. If we arrange X in the order of growing Kolmogorov complexity,

K(x) is precisely the number of x in this order.

It is also convenient to introduce a Kolmogorov order on Z+. We will denote the

numbering for this order by the same letter K since this should not lead to any confusion.

It is straightforward to check that for some constant c0 > 0 and all x ∈ X, we have

c0 Cu(x) � K(x) � Cu(x). (33)

We now let σ : X → X be a partial recursive map, such that σ maps D(σ) to D(σ) and

induces a permutation of this set. We put

σK := K ◦ σ ◦ K−1

and consider it as a permutation of the subset

D(σK) := K(D(σ)) ⊂ Z+

consisting of numbers of elements of D(σ) in the Kolmogorov order. We then have the

following modified version of (30):

Proposition 4.5. Let x ∈ D(σ). If the orbit σZ(x) is infinite, then there exist constants

c1, c2 > 0 such that for k := K(x) and all n ∈ Z we have

c1 · K(n) � σnK(k) � c2 · K(n). (34)

Proof. Let k = K(x), x ∈ X. We have for n > 0 that

σnK(k) = K(σn(x)) � c · K(n) (35)

for any fixed Kolmogorov complexity order on Z+ (which we will denote by the same letter

K to simplify the notation). In fact, if we replace K in (35) by the appropriate complexity

C , this will follow from (9), since n �→ σn(x) is an everywhere defined morphism Z+ → X

in C. It remains to invoke (33).

Furthermore, let Y := {σn(x) | n ∈ Z+}. This is a recursively enumerable subset of X,

and the partial function λ : X → Z+ with definition domain Y ,

λ(y) = n if y = σn(x),

is partial recursive. Hence, again in view of (29) and (9),

K(n) = K(λ(y)) � c′ · K(y) = c′ · K(σn(x)). (36)

Combining (35) and (36), we get (34) for n � 0. Applying the same reasoning to σ−1 in

place of σ, we obtain (34) for negative n.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Y. I. Manin 750

Proposition 4.6. With the same notation as in Proposition 4.5, we put

Φ(k, σ; z) :=
1

k2
+

∞∑
n=1

zK(n)(
σnK(k)

)2
. (37)

Then we have:

(i) If σZ-orbit of x is finite, then Φ(x, σ; z) is a rational function in z for which all the

poles are first order and lie at roots of unity.

(ii) If this orbit is infinite, then Φ(x, σ; z) is the Taylor series of a function analytic at

|z| < 1 and continuous at the boundary |z| = 1.

4.6. Remarks

(a) In the proofs of Propositions 4.5 and 4.4, we actually only used the fact that σ restricted

to the particular orbit Y := {σn(x) | n ∈ Z+} is recursive, which justifies our choice of

A− in component (b) of Section 4.1.

(b) Although Kolmogorov’s order is as uncomputable as Kolmogorov’s complexity, there

are serious arguments for studying constructions explicitly involving it, such as our

renormalisation characters.

One can argue that all cognitive activity of our civilisation that is based on symbolic

(in particular, mathematical) representations of reality actually deals with the initial

Kolmogorov segments of potentially infinite linguistic constructions, thereby always

replacing vast volumes of data by their compressed descriptions. This is especially

apparent in the outputs of the modern genome projects.

In this sense, such linguistic cognitive activity can be metaphorically compared to a

gigantic precomputation process, shellsorting infinite worlds of expressions in their

Kolmogorov order.

Acknowledgements

I am very grateful to Cristian Calude, Leonid Levin, Mike Stay and Noson Yanofsky,

who sent me remarks and suggestions that have been incorporated in the paper.

References

Baez, J. and Stay, M. (2010) Physics, topology, logic and computation: a Rosetta stone. In: Coecke, B.

(ed.) New Structures for Physics. Springer-Verlag Lecture Notes in Physics 813 95–172. (Available

at arXiv:0903.0340.)

Calude, C. and Stay, M. (2008) Most programs stop quickly or never halt. Advances in Applied

Mathematics 40 295–308.

Calude, C. and Stay, M. (2006) Natural halting probabilities, partial randomness, and zeta functions.

Information and Computation 204 1718–1739.

Ebrahimi-Fard, K. and Manchon, D. (2007) The combinatorics of Bogolyubov’s recursion in

renormalization. (Available at arXiv0710.3675 [math-ph].)

Gács, P. and Levin, A. (1982) Causal nets or what is a deterministic computation? International

Journal of Theoretical Physics 21 (12) 961–971.

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

Renormalisation and computation II 751

Grass, J. (1996) Reasoning about Computational Resource Allocation. An introduction to anytime

algorithms. Posted on the XRDS (Crossroads) website.

Grass, J. and Zilberstein, S. (1995) Programming with anytime algorithms. In: Proceedings of the

IJCAI-95 Workshop on Anytime Algorithms and Deliberation Scheduling.

Heller, A. (1990) An existence theorem for recursive categories. Journal of Symbolic Logic 55 (3)

1252–1268.

Levin, L. (1976) Various measures of complexity for finite objects (axiomatic description). Soviet

Math. Dokl. 17 (2) 522 –526.

Li, M. and Vitányi, P. (1993) An Introduction to Kolmogorov Complexity and its Applications, Springer.

Manin, Y. (2010) A Course in Mathematical Logic (the second, expanded Edition), Springer-Verlag.

Manin, Y. (1999) Classical computing, quantum computing, and Shor’s factoring algorithm.

Séminaire Bourbaki, Exposée 862 (June 1999), Astérisque 266 375–404. (Available at arXiv:quant-

ph/9903008).

Manin, Y. (2012) Renormalization and computation I. Motivation and background. In: Loday, J-

L. and Vallette, B. (eds.) Proceedings OPERADS 2009. Séminaires et Congrès 26, Société

Mathématique de France 181–223. (Preprint available at arXiv:0904.492.)

Nabutovsky, A. and Weinberger, S. (2003) The fractal nature of Riem/Diff I. Geometriae Dedicata

101 145–250.

Rogers, H. (1958) Gödel numberings of partial recursive functions. Journal of Symbolic Logic 23

331–341.

Russell, S. J. and Zilberstein, S. (1991) Composing real–time systems. In: Mylopoulos, J. and

Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence.

Sydney, Australia, Morgan Kaufmann 212–217.

Schnorr, C. P. (1974) Optimal enumerations and optimal Gödel numberings. Mathematical Systems

Theory 8 (2) 182–191.

Soare, R. I. (2004) Computability theory and differential geometry. Bulletin of Symbolic Logic 10 (4)

457–486.

Yanofsky, N. S. (2006) Towards a definition of an algorithm. (Available at arXiv:math/0602053v3

[math.LO].)

https://doi.org/10.1017/S0960129511000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129511000508

