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We present a theoretical and computational study of the mechanics of a jet formed from
a large amplitude, axisymmetric, capillary-gravity wave on the surface of a liquid pool
in a cylindrical container. Jetting can cause a pronounced overshoot of the interface
at the axis of symmetry. A linear theory presented earlier in Farsoiya et al. (J. Fluid
Mech., vol. 826, 2017, pp. 797–818) was shown to be incapable of describing this jet.
To understand its mechanics, we present here the inviscid, weakly nonlinear solution to
the initial value problem where the initial surface perturbation is a single Fourier–Bessel
mode on quiescent fluid. The theory predicts that energy injected into a primary (Bessel)
mode initially is transferred nonlinearly to a spectrum of modes. The extent of the
theoretically predicted energy transfer is found to be very accurate for modes up to
the second harmonic. We show using numerical simulations that the jet originates as
a small dimple formed at the trough of the wave, analogous to similar observations in
bubble cavity collapse (Duchemin et al., Phys. Fluids, vol. 14, 2002, pp. 3000–3008;
Lai et al., Phys. Rev. Lett. vol. 121, 2018, 144501). The theory is able to describe the
jet overshoot and the velocity and pressure fields in the liquid qualitatively, but does
not capture the temporal evolution of the dimple or the thinning of the jet neck leading
to pinchoff. Modal analysis shows that the latter phenomenon requires higher-order
approximations, beyond the second order presented here. The nonlinear theory yields
explicit analytical expressions without any fitting parameters which are systematically
tested against numerical simulations of the incompressible Euler equation. The theory
contains cylindrical analogues of the singularities corresponding to second harmonic
resonance (Wilton, Lond. Edinb. Dubl. Phil. Mag. J. Sci., vol. 29, 1915, pp. 688–700).
The connection of these to triadic resonant interactions among capillary-gravity waves in
a cylindrical confined geometry is discussed.

Key words: capillary waves, surface gravity waves

1. Introduction

Formation of an axisymmetric or two-dimensional liquid jet due to the collapse of an
air cavity is a well-documented phenomenon which may be observed in a wide range of
natural or engineered situations (MacIntyre 1972; Tsai et al. 2017; Lai, Eggers & Deike
2018). Understanding the mechanics of these jets from first principles is a challenging

† Email address for correspondence: dasgupta.ratul@iitb.ac.in
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problem and progress in this accrues benefit for various scientific and engineering
applications. For example, these jets may be produced from collapsing bubbles near a
solid wall, and being able to control their direction of ejection is a significant step in
preventing erosion damage to turbomachinery surfaces (Blake & Gibson 1981). Bursting
bubbles at the ocean surface (Veron 2015) or those in a glass of champagne (Ghabache
et al. 2014a) generate air cavities which collapse producing similar liquid jets which can
release drops from their tip (Duchemin et al. 2002; Gordillo & Gekle 2010; Gañán-Calvo
2017, 2018b). At the ocean surface, these ejected drops constitute an important source of
sea-salt aerosols (Kientzler et al. 1954; Veron 2015) while those in the champagne glass
assist in the spread of aroma (Liger-Belair et al. 2009; Ghabache et al. 2014a; Ghabache
& Séon 2016; Séon & Liger-Belair 2017). Similar jets are observed at the base of a
collapsing cavity in overdriven Faraday waves (Longuet-Higgins 1983; Zeff et al. 2000)
and play a crucial role in vibration-induced atomisation of droplets (Goodridge, Hentschel
& Lathrop 1999; James et al. 2003; Tsai et al. 2017). They are also formed during sloshing
and atomisation (Das & Hopfinger 2008; Raja, Das & Hopfinger 2019) occurring inside
fuel-filled containers subjected to vibrations. Yet other examples include jets formed when
a droplet impacts a liquid pool (Prosperetti & Oguz 1993; Morton, Rudman & Jong-Leng
2000; Bartolo, Josserand & Bonn 2006; Ray, Biswas & Sharma 2015), ‘Worthington jets’
produced through water entry of projectiles (Worthington & Cole 1897, 1900; Gordillo
2008; Gekle & Gordillo 2010; Truscott, Epps & Belden 2014) or the so-called ‘Pokrovski’s
experiment’ (Milgram 1969; Antkowiak et al. 2007; Yukisada et al. 2018) where a column
of liquid in a container is allowed to fall freely and, following impact with the floor, a
liquid jet shoots upwards at the centre of the container. A list of various situations of
occurrence of these jets has been enumerated in Gekle & Gordillo (2010) and pictorially
in Ganán-Calvo & Lopez-Herrera (2019).

In a recent study (Farsoiya, Mayya & Dasgupta 2017), we have shown using direct
numerical simulations that jets can be obtained from free, large amplitude interfacial
oscillations. Perturbing the interface as a Bessel function (see figure 1a), it was found that
jetting and droplet ejection are obtained at the axis of symmetry, as the non-dimensional
parameter ε ≡ a0k (also known as the wave steepness parameter in classical water-wave
theory, see figure 1(b), Lake & Yuen (1977) and Longuet-Higgins (1978)) is systematically
increased. The complete inability of the linear initial value problem (IVP) to model these
jets was demonstrated in Farsoiya et al. (2017). The aim of the present study is to report
significant progress made in the understanding and modelling of these jets since our 2017
study. Notably, we show here that these jets can be obtained from the inviscid equations
of motion (in contrast to the viscous equations solved earlier in Farsoiya et al. (2017)). We
also demonstrate here that the inception of these jets closely mimic those seen in Faraday
waves, bursting bubbles and many other scenarios. A novel weakly nonlinear solution (up
to O(ε2)) to the IVP is then presented for modelling the jets. In the next paragraph, we
describe the qualitative phenomenology of the formation of these jets in the current study.

The phenomenology of jetting is depicted in figure 2(a–c) (also see accompanying file
Movie.mp4 available at https://doi.org/10.1017/jfm.2020.851). The time evolution of the
interface starting with a single Bessel mode (see figure 1a) is obtained from numerical
simulations of the axisymmetric Euler equation. Figures 2(a), 2(b) and 2(c) correspond
to moderate and large values of ε and depict the interface shape at various times. In
figure 2(a), at time t̂ = 0.020 s, a dimple-like structure appears around r̂ = 0. It gets
momentarily suppressed at t̂ = 0.027 s, before reappearing as a more pronounced dimple
at t̂ = 0.051 s (see right-hand inset) with associated curvature reversal similar to what is
also known in bubble bursting (Deike et al. 2018; Ganán-Calvo & Lopez-Herrera 2019).
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FIGURE 1. (a) Initial condition: the black line depicts cross-section of the perturbed interface at
t̂ = 0. The interface initially is η̂(r̂, 0) = a0J0(kr̂) where J0 is the zeroth-order Bessel function of
the first kind, k is the wavenumber, a0 is the perturbation amplitude and r̂ is the radial coordinate.
The liquid (in grey) is quiescent initially. (b) The effect of changing the wave steepness parameter
ε ≡ a0k on the initial perturbation. Here ε is a non-dimensional measure of the maximum slope
of the initial perturbation. A wave with ε � 1 has an amplitude much smaller than its wavelength
and can be described by linear theory. Jets form at the axis of symmetry for moderate to high
values of ε (>0.5 typically) and are nonlinear phenomena. We use ε as a small parameter in our
perturbative expansion.

The formation of this dimple is a nonlinear event and constitutes the first signature of
impending jet formation. More features are seen in figures 2(b) and 2(c) where ε is higher.
The jet is clearly visible and is seen to rise to a height greater than the maximum height of
the perturbation at t̂ = 0, viz. an overshoot at r̂ = 0 is observed. In figure 2(c) the formation
of a slender jet with the ejection of a droplet from its tip is seen. This jetting seen here from
free interfacial oscillations bears a qualitative resemblance to that observed during cavity
collapse in bubble bursting (see Gekle & Gordillo 2010; Kroon 2012; Gañán-Calvo 2017;
Lai et al. 2018). We present a short review of the jetting literature below, focussing on
analytical models and simulations. A classification of the literature on the various jetting
scenarios is also provided in table 1.

1.1. Literature review: analytical models and simulations
Analytical solutions related to jetting have focussed on the surface singularity due to
divergence of local curvature (Longuet-Higgins 1983; Zeff et al. 2000) or the surface
itself (Goodridge, Shi & Lathrop 1996; Shi, Goodridge & Lathrop 1997; Hogrefe et al.
1998). Related studies include self-similar solutions close to the singularity (Zeff et al.
2000; Duchemin et al. 2002) and scaling analysis (Duchemin et al. 2002; Gañán-Calvo
2017; Lai et al. 2018). An early attempt at modelling these axisymmetric jets was
by Longuet-Higgins (1983) who discovered a solution to the axisymmetric Laplace
equation with a time-varying free surface. The free surface becoming orthogonal to
the streamlines everywhere is a singularity in this model, identified with the onset
of jetting (Longuet-Higgins 1994). While good quantitative agreement was obtained
between the model and bubble collapse data of Blake & Gibson (1981), the agreement
with the author’s experiments for jets in overdriven Faraday waves was qualitative.
A notable analytical and experimental study of jetting in Faraday waves was reported by
Zeff et al. (2000) who argued that the singularity implied by Longuet-Higgins (1983)
is concomitant with a change in surface topology, leading to entrapment of a bubble.
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Literature on jet formation (T, theory; S, simulations; E, experiments)

Faraday waves Bursting bubbles at a
free surface

Water entry of
projectiles

Drop impact on a pool Other scenarios

Longuet-Higgins (1983) (E,T) Blanchard (1963),
Blanchard & Syzdek
(1972), Blanchard
(1989), Blanchard (2004)
(E)

Worthington & Cole
(1897), Worthington &
Cole (1900) (E)

Prosperetti & Oguz (1993)
(Review)

Blake & Gibson (1981)
(Cavitation)

Longuet-Higgins (1994) (T) Woodcock et al. (1953) (E) Cheny & Walters (1996)
(E)

Morton et al. (2000) (S,E) Antkowiak et al. (2007)
(Pokrovski
experiment,T,E)

Zeff et al. (2000) (E,T) MacIntyre (1972) (E,T) Shin & McMahon (1990)
(E)

Bartolo et al. (2006) (E) Thoroddsen, Etoh &
Takehara (2007)
(Oscillating drops, E)

Goodridge et al. (1996),
Hogrefe et al. (1998),
Goodridge et al. (1999) (T,E)

Duchemin et al. (2002)
(S,T)

Gekle et al. (2009), Gekle
& Gordillo (2010)
(E,T,S)

Ray et al. (2015) (S) Tjan & Phillips (2007)
(Jetting in lungs, S,T)

James et al. (2003) (E,T) Ghabache, Séon &
Antkowiak (2014b),
Ghabache et al. (2014a),
Ghabache & Séon
(2016), Krishnan,
Hopfinger &
Puthenveettil (2017)
(T,E)

Truscott et al. (2014)
(Review)

Thoroddsen et al. (2018)
(E)

Ghabache et al. (2014b)
(Cavity collapse, T,E)

TABLE 1. See Caption on next page.
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Das & Hopfinger (2008) (T,E) Lai et al. (2018), Deike
et al. (2018) (S,T)

Kim & Park (2019) (E) Yamamoto, Motosuke &
Ogata (2018) (E)

Farsoiya et al. (2017)
(Capillary-gravity
waves, T,S)

Tsai et al. (2017) (E) Gañán-Calvo (2017),
Gañán-Calvo (2018a),
Gañán-Calvo (2018b),
Ganán-Calvo &
Lopez-Herrera (2019)
(T)

— Castillo-Orozco et al.
(2015) (E,S)

van Rijn (2018) (Various
cases, T,E)

Raja et al. (2019) (T,E) Gordillo &
Rodríguez-Rodríguez
(2018), Gordillo &
Rodríguez-Rodríguez
(2019), Kang & Cho
(2019),
Blanco-Rodríguez &
Gordillo (2020) (T,S)

— — Ismail et al. (2018) (Cavity
collapse, T,S)

TABLE 1. The literature covering various jetting scenarios.
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FIGURE 2. Results from numerical simulations: temporal evolution of the interface for
(a) ε = 0.5, (b) ε = 1.2 and (c) ε = 1.7. (a) A dimple appearing at the base of the wave trough
is a nonlinear event and signals impending jetting. This is seen more clearly in panels (b,c)
where ε is chosen to be larger and produces a jet which overshoots the initial perturbation
at r̂ = 0 and also ejects a drop in panel (c); note the slender jet. (a) Dimple formation with
time for ε = 0.5. (b) Pronounced dimple, jet formation and overshoot at r̂ = 0 for ε = 1.2.
(c) Pronounced dimple, slender jet, overshoot, drop ejection for ε = 1.7.

Sufficiently close to the singularity, Zeff et al. (2000) proposed a similarity solution
where it was suggested that due to divergence of curvature and surface velocities,
gravity is unimportant and the surface profile is determined by a balance between
nonlinear inertia and surface tension. The first well-resolved numerical experiment
(solving the Navier–Stokes equations) demonstrating jetting from bubble bursting was by
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Duchemin et al. (2002). They clearly showed the focussing of capillary waves leading
to dimple and jet formation. In addition, they also demonstrated the validity of the
self-similar nature of the cavity collapse and the existence of an optimal viscosity where
the jet velocity was maximum. A set of studies by Gekle et al. (2009) and Gekle & Gordillo
(2010) have shown that the Longuet-Higgins model is inadequate for jets generated in disk
entry into a liquid pool. Modelling the flow due to a collapsing cavity using a line of sinks
(Gekle et al. 2009), the authors obtained good agreement for the time evolution of the
base coordinates with simulations and experiments. Gekle & Gordillo (2010) also further
elucidated the structure of their jets demonstrating good agreement with simulations and
model predictions for the jet shape.

The current consensus in the literature is that that the inception of these jets is due
to focussing of capillary waves at the axis of symmetry (MacIntyre 1972; Duchemin
et al. 2002). The detailed physical mechanism of this focussing has been under active
debate recently, in particular the role of viscosity in this focussing process as well as
the dominant wavelength which gets focussed (Duchemin et al. 2002; Gañán-Calvo 2017;
Lai et al. 2018; Gañán-Calvo 2018a; Gordillo & Rodríguez-Rodríguez 2018). A number
of numerical simulations on jetting through bursting bubbles or Faraday waves have
utilised the inviscid, irrotational framework employing the boundary integral technique
(Boulton-Stone & Blake 1993; Gekle & Gordillo 2010). Since the seminal study by
Duchemin et al. (2002), many studies have been reported where the full Navier–Stokes
equations with an interface or a free-surface have been solved, capturing jet formation
with high resolution (Ray et al. 2015; Deike et al. 2018; Lai et al. 2018; Blanco-Rodríguez
& Gordillo 2020). Predicting the rate and size of droplets from these jets have important
applications, e.g. see Blanco-Rodríguez & Gordillo (2020) and the important recent study
by Ismail et al. (2018) which has elucidated, via experiments and simulations, the criterion
for minimising the size and number of ejected droplets from jetting obtained from cavity
collapse, in addition to providing scaling laws for the size of drops.

While time-periodic, large-amplitude gravity waves in cylindrical geometry have been
studied in Mack (1962) and Fultz & Murty (1963), solution to the IVP is far less explored.
To the best of our knowledge, there have been only two studies using the IVP approach
in cylindrical axisymmetric geometry. The study by Jacobs & Catton (1988) solved the
weakly nonlinear IVP in a generalised framework in a number of geometries, focussing
on nonlinear corrections to the cutoff wavenumber for the Rayleigh–Taylor instability.
They did not discuss the application of their results to jetting or comment on the presence
of critical points due to triadic resonant interactions. A more recent linearised IVP
approach has been the study by Kang & Cho (2019) which has experimentally investigated
capillary-gravity waves from the bursting of a bubble underwater. The analytical part of
this study was confined to the linearised regime viz. the axisymmetric Cauchy–Poisson
solution (Debnath 1994), which cannot describe jetting.

1.2. Utility of the IVP approach
It is clear that the nonlinear IVP approach has not been employed to study jetting. As we
show, this approach coupled with modal decomposition of the interface provides insight
into the mechanics. In our simulations we inject the total initial (potential) energy into a
single mode, labelled the primary mode. By systematically increasing ε for this mode, we
obtain dimple formation and jetting. Modal analysis of the dimple and the jet shape at its
maximum overshoot, shows that when these occur, a part of the initial (potential) energy
in the primary mode gets transferred to other modes. Clearly, this cannot occur through a
linear mechanism which prohibits any intermodal energy transfer. The weakly nonlinear
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IVP solution overcomes this limitation of linear theory by allowing for energy transfer
among modes. We show that while the pressure, velocity fields, inception of dimple and
maximum overshoot of the jet are qualitatively captured by our second-order theory, the
surface velocity and the temporal evolution of the pronounced dimple and the thinning of
the jet leading to pinchoff are not, and resolving these require higher-order corrections.
The aforementioned insights obtained through a first principles IVP approach are novel
and complement prior seminal studies investigating the problem from a wave-focussing,
singularity formation, self-similarity and scaling perspective, cf. MacIntyre (1972), Zeff
et al. (2000), Duchemin et al. (2002), Gordillo (2008), Gañán-Calvo (2017), Gordillo &
Rodríguez-Rodríguez (2018), Lai et al. (2018), Ismail et al. (2018) and Blanco-Rodríguez
& Gordillo (2020).

Our study is organised as follows. We present the weakly nonlinear solution in § 2. In
§ 3, we describe numerical simulations followed by § 4 where analytical predictions are
compared with simulations. Section 5 discusses energy conservation and surface energy
redistribution through modal analysis. Section 6 discusses the singular values of σ (inverse
Bond number) in our theory connecting these to triadic resonant interactions among
capillary-gravity waves in a cylindrical confined geometry.

2. Weakly nonlinear solution

2.1. Governing equations

Figure 3 shows a cylindrical container of radius R̂0 containing fluid whose surface is
perturbed in the form of a Bessel mode. The displacement of the perturbed surface is
measured from the flat undisturbed level and is given initially by η̂(r̂, 0) = a0J0(kr̂) =
a0J0((lq/R̂0)r̂) where J0 is the zeroth-order Bessel function of first kind and lq is
explained below (2.6a,b). Surface oscillations arise due to the initial perturbation,
and for a sufficiently large value of ε ≡ a0(lq/R̂0) (the precise value depends on the
non-dimensional number σ ), a jet is formed at the axis of symmetry towards the end of
a surface oscillation. We study the IVP corresponding to this surface perturbation under
the inviscid, irrotational approximation. Here we assume the liquid to be water and the gas
above it to be air. Due to the large density ratio between the two, we may safely ignore
the dynamic effect of air assuming that it exerts negligible pressure on the water surface.
Thus the interface is treated as a free surface with a pressure jump across it due to surface
tension.

The Laplace equation along with the nonlinear boundary conditions (kinematic
boundary condition (2.2) and the Bernoulli equation with surface tension (2.3)) at the
free surface and the mass conservation condition (2.4) govern the perturbation velocity
potential and the perturbed interface. Equations for these are

∇̂ · ∇̂φ̂ = 0, (2.1)

Dη̂

Dt̂
−

(
∇̂φ̂ · eẑ

)
ẑ=η̂

= 0, (2.2)(
∂φ̂

∂ t̂
+ 1

2
|∇̂φ̂|2 + gẑ + T

ρ
∇̂ · n

)
ẑ=η̂

= 0, (2.3)

∫ R̂0

0
r̂η̂(r̂, t̂) dr̂ = 0, (2.4)
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r̂
lq

r̂

R̂0

R̂0

ẑ

η̂(r̂, 0) = a0J0

FIGURE 3. Three-dimensional visualisation of surface perturbation (grey). Surface perturbation
imposed at t̂ = 0 leads to a jet at the end of one oscillation for sufficiently large ε. The coordinate
system is centred at the axis of symmetry and ẑ is measured from the unperturbed free surface.

where T is the coefficient of surface tension, eẑ and n are unit normals to the unperturbed
and perturbed free surface, respectively, and ∇̂ is the gradient operator to be expressed
in axisymmetric, cylindrical coordinates. We propose to solve the nonlinear IVP for (2.1),
(2.2) and (2.3) up to O(ε2) in cylindrical coordinates with an imposed surface perturbation
(see figure 3 and (2.6a,b)). Appropriate boundary conditions are imposed on the velocity
potential φ̂ at the axis of symmetry (r̂ = 0) and the wall of the container at r̂ = R̂0
(no-penetration). In addition, we impose symmetry conditions on the free-surface at r̂ = 0
as well as the free-end edge boundary condition at r̂ = R̂0 through (2.5a,b);

(
∂φ̂

∂ r̂

)
r̂=0

=
(

∂φ̂

∂ r̂

)
r̂=R̂0

= 0,

(
∂η̂

∂ r̂

)
r̂=0

=
(

∂η̂

∂ r̂

)
r̂=R̂0

= 0, (2.5a,b)

η̂(r̂, 0) = a0J0

(
lq

R̂0

r̂
)

,
∂η̂

∂ t̂
(r̂, 0) = 0, φ̂(r̂, ẑ, 0) = 0 (2.6a,b)

In (2.6a,b), lq belongs to the set of (non-trivial) zeroes of J1(·) with q = 1, 2, 3 . . ., i.e.
J1(lq) = 0. This choice ensures that the initial condition satisfies (2.5a,b). For ease of
algebra, we operate on (2.3) by D/Dt̂ replacing η̂ in the gravity term with derivatives of φ̂

using (2.2) (Penney et al. 1952). In further calculations, we replace the kinematic boundary
condition (2.2) with this equation. The resulting equations are then written in cylindrical
axisymmetric coordinates ((1.1)–(1.6) in accompanying supplementary material available
at https://doi.org/10.1017/jfm.2020.851) and non-dimensionalised using

r = lqr̂

R̂0

, z = lqẑ

R̂0

, t =
(

glq

R̂0

)1/2

t̂, η = lqη̂

R̂0

and φ =
(

l3
q

gR̂3
0

)1/2

φ̂. (2.7a–e)
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This leads to the following set:

∂2φ

∂r2
+ 1

r
∂φ

∂r
+ ∂2φ

∂z2
= 0, (2.8)(

∂2φ

∂t2
+ ∂φ

∂z
+

{
∂

∂t
+ 1

2

(
∂φ

∂r

)
∂

∂r
+ 1

2

(
∂φ

∂z

)
∂

∂z

}
|∇φ|2

)
z=η

− σ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∂

∂t
+

(
∂φ

∂r

)
z=η

∂

∂r

]
⎛
⎜⎜⎜⎜⎜⎝

∂2η

∂r2{
1 +

(
∂η

∂r

)2
}3/2 + 1

r

∂η

∂r{
1 +

(
∂η

∂r

)2
}1/2

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 0,

(2.9)

(
∂φ

∂t
+ 1

2
|∇φ|2 + z

)
z=η

− σ

⎛
⎜⎜⎜⎜⎜⎝

∂2η

∂r2{
1 +

(
∂η

∂r

)2
}3/2 + 1

r

∂η

∂r{
1 +

(
∂η

∂r

)2
}1/2

⎞
⎟⎟⎟⎟⎟⎠ = 0, (2.10)

∫ lq

0
rη(r, t) dr = 0, (2.11)

(
∂φ

∂r

)
r=0

=
(

∂φ

∂r

)
r=lq

= 0,

(
∂η

∂r

)
r=0

=
(

∂η

∂r

)
r=lq

= 0, (2.12a,b)

and η(r, 0) = εJ0(r),
∂η

∂t
(r, 0) = 0, φ(r, z, 0) = 0, (2.13a–c)

Equations (2.8)–(2.13a–c) contain two non-dimensional groups viz. the nonlinearity
parameter ε ≡ a0(lq/R̂0) and σ ≡ T(lq/R̂0)

2/ρg which measures the relative strength of
surface tension to gravity and is the inverse of Bond number. Note that ε appears in the
initial condition while σ appears in the boundary condition. It is important to remember
in further analysis that q is a fixed integer serving as an index for the primary mode. In this
study q has been chosen to be 5, to remain consistent with the deep water approximation
treated here. We treat ε as a small parameter with σ = O(1) expanding φ, η and t in
(2.8)–(2.12a,b) as

φ(r, z, t) = 0 + εφ1(r, z, t) + ε2φ2(r, z, t) + ε3φ3(r, z, t) + O(ε4), (2.14)

η(r, t) = 0 + εη1(r, t) + ε2η2(r, t) + ε3η3(r, t) + O(ε4), (2.15)

τ = t
[
1 + ε2Ω2 + O(ε3)

]
. (2.16)

The expansion of t in (2.16) is a standard Lindstedt–Poincaré technique and is necessary
in order to take into account the nonlinear dependence of the oscillation frequency on
the amplitude ε of the Bessel modes. Substituting (2.14)–(2.16) into (2.8)–(2.13a–c)
and using Taylor series expansions about z = 0, we may generically write at any
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O(ε i) (i = 1, 2, 3, . . .)

∂2φi

∂r2
+ 1

r
∂φi

∂r
+ ∂2φi

∂z2
= 0, (2.17)(

∂2φi

∂τ 2
+ ∂φi

∂z

)
z=0

− σ

[(
∂3ηi

∂τ∂r2

)
+ 1

r

(
∂2ηi

∂τ∂r

)]
= Gi(r, τ ), (2.18)

(
∂φi

∂τ

)
z=0

+ ηi − σ

[(
∂2ηi

∂r2

)
+ 1

r

(
∂ηi

∂r

)]
= Fi(r, τ ), (2.19)

∫ lq

0
rηi(r, t) dr = 0, (2.20)

(
∂φi

∂r

)
r=0

=
(

∂φi

∂r

)
r=lq

= 0,

(
∂ηi

∂r

)
r=0

=
(

∂ηi

∂r

)
r=lq

= 0, (2.21a,b)

ηi(r, 0) = J0(r)δ1i,
∂ηi

∂τ
(r, 0) = φi(r, z, 0) = 0, (2.22a,b)

where δij is the Kronecker delta. As is usual in perturbative methods, the only difference
at different orders in (2.18) and (2.19) are the expressions Fi and Gi on the right-hand side.
Here F1(r, τ ) = G1(r, τ ) = 0 while F2(r, τ ), G2(r, τ ), F3(r, τ ), G3(r, τ ) have lengthy
expressions provided in appendix A. Our task is to now solve (2.17)–(2.22a,b) up to
i = 2 (second order). Note that for determining the solution up to i = 2 completely, it
is necessary to also obtain the equations at i = 3.

Observe that φ(r, z, τ ) = p(τ )J0(αr) exp[αz] satisfies the axisymmetric Laplace
equation (2.17) for any (real) α and p(τ ). In addition, if we choose η(r, τ ) =
a(τ )J0(lj(r/lq)) and φ(r, z, τ ) = p(τ )J0(lj(r/lq)) exp(lj(z/lq)), the identity

∫ lq
0 J0(lj(r/lq))

r dr = 0 and the equation J1(lj) = 0 ∀j ∈ Z+ ensure that (2.20) and (2.21a,b) are also
satisfied. Thus the general solution for φi and ηi satisfying (2.17) and conditions (2.20)
and (2.21a,b) may be posed as an eigenfunction expansion (Dini series, Mack 1962)

φi(r, z, τ ) =
∞∑

j=0

p( j)
i (τ )J0

(
αjr

)
exp

(
αjz

)
, (2.23)

ηi(r, τ ) =
∞∑

j=0

a( j)
i (τ )J0

(
αjr

)
with αj ≡ lj

lq
. (2.24)

Substituting (2.23) and (2.24) into (2.18) and (2.19) and using orthogonality relations
among Bessel functions (see supplementary material), we obtain the following equations
governing the coefficients pm

i (τ ) and am
i (τ ) at any order O(ε i):

d2p(m)

i

dτ 2
+ ω2

mp( j)
i (τ ) = (

1 + σα2
m

)
G

(m)

i (τ ) − σα2
m

dF
(m)

i

dτ
, (2.25)

a(m)

i (τ ) = 1
1 + σα2

m

(
F

(m)

i (τ ) − dp(m)

i

dτ

)
, m = 0, 1, 2 . . . . (2.26)
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Here ω2
m ≡ αm(1 + σα2

m) is the deep-water linear dispersion relation for capillary-gravity
waves written in scaled variables. F

(m)

i (τ ) and G
(m)

i (τ ) in (2.25) and (2.26) are defined as

G
(m)

i (τ ) ≡ 2
l2
qJ2

0 (lm)

∫ lq

0
drrJ0 (αmr) Gi(r, τ ),

F
(m)

i (τ ) ≡ 2
l2
qJ2

0 (lm)

∫ lq

0
drrJ0 (αmr) Fi(r, τ ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.27)

Equation (2.25) may now be solved for p(m)

i (τ ) (with suitable initial conditions) and
the resultant solution determines a(m)

i (τ ) using (2.26). With m = 0, 1, 2, 3 . . . and
i = 1, 2, 3 . . . , the initial conditions from (2.22a,b) are

p(m)

i (0) = 0,
dpi

dτ

(m)

(0) = F
(m)

i (0) − (
1 + σα2

m

)
δmqδi1, (2.28a,b)

a(m)

i (0) = δmqδi1,
da(m)

i

dτ
(0) = 0. (2.29a,b)

We determine pm
i (τ ) and am

i (τ ) using (2.25) and (2.26), respectively, at various orders
using initial conditions (2.28a,b) and (2.29a,b).

2.2. Linear solution: O(ε)

At O(ε), the solution is elementary. It is shown in the accompanying supplementary
material that at linear order, the only non-zero term in the eigenfunction expansion in
(2.23) and (2.24) is for j = q, the primary mode. With ω2

q = 1 + σ , this leads to,

φ1(r, z, τ ) = −ωq sin(ωqτ)J0(r) exp (z) , η1(r, τ ) = cos(ωqτ)J0(r). (2.30a,b)

2.3. Nonlinear corrections: O(ε2)

At O(ε2), the calculation is algebraically tedious and quite lengthy, but otherwise standard.
We outline the key results below, referring the interested reader to the accompanying
supplementary material for the detailed derivation. Using (2.23) and (2.24), we obtain
at O(ε2),

η2(r, τ ) =
∞∑

k=1

[
ζ

(k)
1 cos(ωkτ) + ζ

(k)
2 cos(2ωqτ) + ζ

(k)
3

]
J0(αkr), (2.31)

φ2(r, z, τ ) = J2
0(lq)

2
sin

(
2ωqτ

)
+ √

1 + σ

∞∑
k=1

[
ξ

(k)
1 sin (ωkτ) + ξ

(k)
2 sin

(
2ωqτ

)]
J0 (αkr) exp (αkz) , (2.32)

where expressions for ζ
(k)
1 , ζ

(k)
2 , ζ

(k)
3 and ξ

(k)
1 , ξ

(k)
2 are provided in appendix B. Note

the presence of terms in (2.31) and (2.32), which are pure functions of space and
time, respectively. This implies that there is a nonlinear correction to the (temporal)
mean interface level, note the third term in (2.31) whose time average is non-zero.
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Similarly there is a nonlinear correction in φ whose spatial average is non-zero. An
important thing to note in the nonlinear solution (2.31) and (2.32) is the presence of the
entire spectrum (and not just the qth primary mode) at this order, which implies a nonlinear
transfer of energy to the entire spectrum. This transfer of energy will be seen to be crucial
to jetting.

Despite having expressions for φ(r, z, τ ) and η(r, τ ) up to O(ε2), our calculation
is incomplete, as a nonlinear correction to the dispersion relation ω2

m = αm(1 + α2
mσ)

[1 + O(ε2)] is expected at this order, through Ω2 in (2.16). For determining this, it is
necessary to proceed to the third order (O(ε3)) where elimination of resonant forcing of the
primary mode (subscript q) will determine this correction. We emphasise that we do not
determine the O(ε3) corrections to φ(r, z, τ ) and η(r, τ ). A minimal O(ε3) calculation is
carried out for determining Ω2. This is done by obtaining the equations governing p(m)

3 (τ )
and setting the coefficient of the resonant forcing term (for the primary mode) to zero.
In this way, we obtain after some lengthy algebraic manipulations (see supplementary
material)

Ω2 = 1
2J2

0(lq)

[ ∞∑
l=1

[{[
αl (2 + σ) − α2

l

]
ξ

(l)
2 + 2σζ

(l)
2

}
I0−l,0−q,0−q

−
{

2 (1 + σ) αlξ
(l)
2 + α3

l σζ
(l)
2 − 2α3

l σζ
(l)
3

}
I0−q,1−q,1−l

]

− (1 + σ)

2
I0−q,0−q,0−q,0−q +

(
1 − 4σ + σ 2

)
4 (1 + σ)

I0−q,0−q,1−q,1−q

+3
(
1 + 3σ + σ 2

)
4 (1 + σ)

I0−q,1−q,1−q,2−q

]
. (2.33)

Note that as shorthand notation in (2.33) we have used

Iν1−m1,ν2−m2,... ≡
∫ 1

0
dr̃ r̃ Jν1

(
lm1 r̃

)
Jν2

(
lm2 r̃

)
. . . (2.34)

where r̃ ≡ r/lq and νi, mi = 0, 1, 2, . . ., e.g.

I0−m,1−q,1−q ≡
∫ 1

0
dr̃ r̃ J0 (lmr̃) J2

1

(
lqr̃

)
. (2.35)

With σ = 1.086 and parameters corresponding to air–water (see table 3), the amplitude
correction to the dispersion relation for the primary mode q = 5 evaluates to Ω2 ≈
−0.0332, using expression (2.33).

2.4. Summary of weakly nonlinear theory
We may now combine results up to O(ε2) to predict

η(r, τ ) = εJ0(r) cos
(
ωqτ

) + ε2
∞∑

k=1

[
ζ

(k)
1 cos (ωkτ) + ζ

(k)
2 cos

(
2ωqτ

) + ζ
(k)
3

]
J0 (αkr)

+ O(ε3), (2.36)
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FIGURE 4. Here, ζ
(k)
1 , ζ

(k)
2 , ζ

(k)
3 and ξ

(k)
1 , ξ

(k)
2 for q = 5 as a function of k. After k = 12, the

values are quite small permitting truncation of the infinite series in (2.36) and (2.37).

φ(r, z, τ ) = −εωqJ0(r) exp (z) sin
(
ωqτ

) + ε2 J2
0(lq)

2
sin

(
2ωqτ

)

+ ε2
√

1 + σ

∞∑
k=1

[
ξ

(k)
1 sin (ωkτ) + ξ

(k)
2 sin

(
2ωqτ

)]
J0 (αkr) exp (αkz) + O(ε3)

(2.37)

and ω2
k = αk

(
1 + σα2

k

) [
1 + ε2Ω2 + O(ε3)

]
, (2.38)

where Ω2 is given by (2.33). It may be checked that (2.36) and (2.37) satisfy the initial
conditions (2.13a–c). In particular ζ

(k)
1 + ζ

(k)
2 + ζ

(k)
3 = 0 for all k = 1, 2 . . . which ensures

that η(r, 0) = εJ0(r). Other initial conditions in (2.13a–c) involving the time derivative
of η(r, t) and on φ(r, z, 0) are trivially verified. The singularity of the expressions for
ξ

(k)
1 , ξ

(k)
2 , etc. at a possible ωk = 2ωq is discussed further in § 6. As (2.36) and (2.37) are

an infinite series, we truncate them for numerical evaluation in later sections. For any r,
z and τ , it may be expected that the infinite sums in (2.36) and (2.37) have progressively
smaller contributions at higher values of k. This is seen in figures 4(a) and 4(b) where we
have evaluated the coefficients ζ

(k)
1 , ζ

(k)
2 , ζ

(k)
3 and ξ

(k)
1 , ξ

(k)
2 for the primary mode q = 5 as

a function of k in (2.36) and (2.37). It is seen that the peak values are at around k = 10
which is expected, as this is the second multiple of q = 5 and our calculation is accurate
up to O(ε2). Thus for q = 5, one needs to retain at least 10 terms while numerically
evaluating the infinite series (2.36) and (2.37). For high accuracy, we have retained the
first 85 terms in our expansions. All the integrals that appear in ζ

(k)
1 , ζ

(k)
2 . . . have been

evaluated numerically using MATLAB (MAT 2018).

3. Numerical simulations

In this section, we provide a brief description of the code used for numerical
simulations of the incompressible Euler equation with surface tension supplemented
with an equation for tracking the interface, viz. (3.1a,b) and (3.2). The simulations have
been performed using the open-source code Basilisk (Popinet 2020), a successor to the
well-known open-source solver Gerris (Popinet 2003, 2009). These codes have been
carefully benchmarked on a suite of interfacial flow problems over many years and
results using these have extensively appeared in the literature, e.g. Agbaglah et al.
(2011), Dasgupta, Tomar & Govindarajan (2015), Farsoiya et al. (2017), Fuster & Popinet
(2018), Deike et al. (2018), Lai et al. (2018), Singh, Farsoiya & Dasgupta (2019),
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1

2.5 cm

4

3

2

r̂

R̂0

R̂0

ẑ

FIGURE 5. Initial condition.

Blanco-Rodríguez & Gordillo (2020) and Dhar, Das & Das (2020), to mention only a small
set. Basilisk implements the finite-volume algorithm using the Bell–Collela–Glaz (Bell,
Colella & Glaz 1989) advection scheme. A semi-implicit scheme is utilised to calculate
velocity and pressure fields. For capturing the interface, the geometric volume of fluid
method (Scardovelli & Zaleski 1999) is used along with the continuum surface force model
for including surface tension as a body force into the momentum equations (Brackbill,
Kothe & Zemach 1992; Popinet 2018). An important point to note in the context of the
present study is that Basilisk implements the one-fluid model, and hence necessarily solves
for both air and water. In contrast, the weakly nonlinear analysis described earlier ignores
the inertial effect of air, assuming it to be a relatively low density gas compared with
water. Thus, when comparing our numerical simulations, minor differences are expected
between theory and simulations near the interface;

∇ · u = 0,
∂u
∂t

+ ∇ · (u ⊗ u) = − 1
ρ

∇p + g + T
ρ

κδsn, (3.1a,b)

∂f
∂t

+ ∇ · ( f u) = 0. (3.2)

In (3.1a,b) and (3.2), u, p, T , κ and f are velocity, pressure, surface tension coefficient,
curvature and volume fraction fields, respectively. The computational box is depicted in
figure 5 with boundary conditions in table 2. Note that boundary #1 in figure 5 is the
axis of symmetry. Parameters for the simulations are reported in table 3. Case 9 in table 3
represent a set of numerical simulations used for scaling analysis. The parameters for
these are numerous and listed in the accompanying supplementary material. Note that
some of the simulations for this case deviate from air–water parameters with respect to
surface tension. The density of air (in the centimetre–gram–second system of units ) has
been chosen to be 0.001. Simulations are done with uniform 1024 × 1024 and 2048 ×
2048 grids and are tested for convergence, with grid refinement (see accompanying
supplementary material). A repository with script files has been set up in Basak, Farsoiya
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Boundary Velocity (û) Pressure (P̂) f

# ûr ûz
1 D N N N
2 N D N N
3 D N N N
4 N D N N

D: Dirichlet N: Neumann

TABLE 2. Boundary conditions.

Case Grid a0 ρ T R̂0 lq(q = 5) σ ≡ T(lq/R̂0)
2

ρg
ε ≡ a0lq

R̂0

0 (a) 0.052 1.0 72 4.282 16.4706 1.086 0.2
1 (a),(b) 0.130 ” ” ” ” ” 0.5
2 (a) 0.208 ” ” ” ” ” 0.8
3 (a) 0.260 ” ” ” ” ” 1.0
4 (a) 0.286 ” ” ” ” ” 1.1
5 (a),(b) 0.312 ” ” ” ” ” 1.2
6 (a) 0.338 ” ” ” ” ” 1.3
7 (a) 0.364 ” ” ” ” ” 1.4
8 (a),(b) 0.442 ” ” ” ” ” 1.7
9 (a) {a0i} ” {Ti} ” ” {σi} {εi}

TABLE 3. Simulation parameters in the centimetre–gram–second system of units.
Grid (a) 1024 × 1024; grid (b) 2048 × 2048.

& Dasgupta (2020), using which the results discussed below may be reproduced. The
Basilisk script file is also provided as additional supplementary material.

4. Results and analysis

We test theoretical predictions against numerical simulations here and provide detailed
comparisons and analysis in the following subsections.

4.1. Tracking the interface at r = 0
In figure 6, we show the time signals obtained by tracking the interface at r = 0. For
ε = 0.2 in figure 6(a) a very good match is seen with the linearised theoretical predictions.
Already at ε = 0.5 (figure 6b), visible differences appear with the linearised prediction.
The insets in all panels in figure 6 depict the instantaneous shape of the interface at the
time instant indicated by the arrow. In figures 6(c) and 6(d) we have plotted the signals
for ε = 1.2 and ε = 1.7, respectively. While the agreement with theory is moderately
good in figure 6(c), the linearised signal clearly shows a poor match. In figure 6(d), where
ε = 1.7, a slender jet is produced in numerical simulations ejecting a drop from its tip.
Here the nonlinear theory significantly improves over the linear prediction but produces
a somewhat broader jet without the droplet ejection at the tip, see inset. As seen in
figures 6(c) and 6(d), at the end of one oscillation the height of the (scaled) interface
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FIGURE 6. Motion of the interface at r = 0 with time t: (a) ε = 0.2 � 1, no jetting in linear
regime; (b) at moderately large ε = 0.5 interface shows dimple formation, see insets depicting
instantaneous interface shape (η/ε versus r) at the data point indicated by arrow. Weakly
nonlinear model captures the onset of dimple at t ≈ 1.228 but does not describe it well later
at t ≈ 3.133 when it narrows and sharpens. Pronounced dimple and a clear overshoot (above
unity) is observed in panel (c) for ε = 1.2. (d) For ε = 1.7, a slender jet with large overshoot and
droplet ejection at the tip. While weakly nonlinear theory captures the qualitative features, linear
theory is unable to describe any of these.

at r = 0 is significantly more than unity. This overshoot is a signature of jetting which
the nonlinear theory manages to capture reasonably well. Another interesting feature seen
in the upper insets of figures 6(b) and 6(c) is the appearance of a small dimple which
is a known precursor to jet formation in other scenarios such as bubble bursting (Deike
et al. 2018; Gañán-Calvo 2017). Note that this dimple already starts appearing as a broader
structure during the earlier downward motion of the cavity and at that instant is well
described by the nonlinear theory (bottom insets in figures 6b and 6c). This, however,
gets smoothed out as the cavity reaches its lower extremity. Note that the abrupt drop in
amplitude around t ≈ 3.8 in figure 6(d) is due to ejection of a droplet. A point worth noting
here is that for ε = 1.2, we see that the O(ε2) predictions work reasonably well (figure 6c)
despite the fact that the theory is strictly valid only for ε < 1. This is a recurrent situation
in fluid dynamical problems involving a small parameter, e.g. in boundary layer theory the
parallel flow assumption involves errors at least of O(Re−1/3) (Govindarajan & Narasimha
1999; Govindarajan 2004). However, despite this it provides very good predictions for
instability down to Re < 10, although the magnitude of the error is nearly an order-one
number at these Re.
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FIGURE 7. (a–h) Comparison of the (non-dimensional) interface shape η/ε versus radius r at
various (non-dimensional) time instants for ε = 0.5: (a) t = 0; (b) t = 1.228; (c) t = 1.658;
(d) t = 3.133; (e) t = 3.378; ( f ) t = 3.685; (g) t = 4.177; (h) t = 4.607. Simulation profiles
(—, black), linear theory (�, red) and weakly nonlinear theory (•, blue). Dimple formation
initiates in panel (b), is suppressed as the trough reaches its lowest point and reappears with
significant shortening in scale as seen in inset of panel (d). Weakly nonlinear model qualitatively
and significantly improves over the linearised model in this regime. For parameters, see case 1
in table 3, grid (a).

4.2. Comparison of interface shape
Comparisons of the interface shape as a function of time are provided in figures 7 and
8 for ε = 0.5 and ε = 1.2, respectively. Significant nonlinear effects are manifested for
a moderately large ε = 0.5 in figure 7. In figure 7(b), it is seen that at the instant when
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FIGURE 8. (a–h) Comparison of the (non-dimensional) interface shape η/ε versus radius r at
various (non-dimensional) time instants for ε = 1.2: (a) t = 0; (b) t = 1.228 s; (c) t = 1.658;
(d) t = 3.071; (e) t = 3.378; ( f ) t = 3.685; (g) t = 4.177; (h) t = 4.607. Simulation profiles
(—, black) are compared with linear (�, red) and weakly nonlinear predictions (•, blue). Dimple
initiation is well captured by the nonlinear theory in panel (c) but not later on in panel (d) where
the dimple becomes sharper and more pronounced, see inset. The thinning of the neck of the jet
is not captured by the nonlinear model in panel (e). Near maximum overshoot, the jet shape near
r = 0 is well described by theory, see panel ( f ,g). For parameters see case 5 in table 3, grid (b).

dimple formation commences, linear theory makes a large error near r = 0, while a good
match is seen with the weakly nonlinear theory. As the dimple shrinks in horizontal extent
during the upward motion of the cavity in figure 7(d), the nonlinear theory captures the
interface shape but does not capture the dimple. In the next few snapshots in figure 7(e–h),
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FIGURE 9. Comparison of (non-dimensional) vertical component of velocity uz at the axis of
symmetry (r = 0) for ε = 0.5 at two time instants: (a) ε = 0.5, t = 3.133; (b) ε = 0.5, t = 4.177.
Insets show the instantaneous interface shapes. (a) Vertical velocity profile when a pronounced
dimple forms at the bottom of the trough. (b) Velocity profile around the time instant when the
interface is at its maximum height. Note the qualitatively good agreement between the weakly
nonlinear model and simulations in both cases, although the kinks in the profile are not captured
by the nonlinear model. For parameters, see case 1 in table 3, grid (a).

the nonlinear theory captures the time evolution accurately. Similarly for ε = 1.2 in
figure 8, strong nonlinear effects are visible around r = 0 in figure 8(b), and particularly
in figure 8(c) as dimple formation commences. Here weakly nonlinear theory provides
an accurate description. However, like in figure 7, the pronounced dimple and its time
evolution involving thinning of the jet neck, are not well resolved by the nonlinear
prediction as seen in figures 8(d) and 8(e). Interestingly, the nonlinear theory describes
the shape well later in figure 8(g), capturing the extent of overshoot (over unity) at r = 0
quite well. An important feature is that as ε is increased from 0.5 to 1.7 (comparison for
ε = 1.7 is provided in the supplementary material), the width of the dimple decreases (see
insets in figures 7d and 8d), while the speed at which the tip of the dimple rises upwards
increases with increasing ε. This may be inferred from the slope of the ascending part of
the curve in figures 6(c) and 6(d).

4.3. Comparison of vertical velocity and pressure profiles
Comparisons of the vertical velocity profile at two instants of time are provided in
figures 9(a) and 9(b). It is seen from figure 9(a) which corresponds to the pronounced
dimple event, that a large vertical velocity develops at the base of the interface. An
order-of-magnitude estimate of this velocity maybe obtained using the width of the dimple
using the capillary velocity scale (Gordillo & Rodríguez-Rodríguez 2019)

√
T/ρWdimple,

where Wdimple = 0.42 cm is the dimple width. This yields a (scaled) capillary velocity
estimate of around 0.814 in good agreement with the maximum velocity seen in numerical
simulations in figure 9(a). A good match of the velocity profile with nonlinear theory is
seen in figure 9(a). Close to the instant of maximum interface height in figure 9(b), the
velocity profile is almost zero everywhere except in a small region below the interface.
In this region, the nonlinear theory predicts the qualitative profile correctly including the
negative sign, although some details near the surface are not captured accurately. Note that
linear theory predicts an incorrect sign, at this instant.
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In figure 10, we show non-dimensional perturbation pressure profile P(r, z, t) at the
axis of symmetry r = 0 at various instants for ε = 0.5 (and ε = 1.2 in the supplementary
material). The perturbation pressure field is calculated using P(r, z, t) = −∂φ/∂t −
1/2|∇φ|2. The panels on the right-hand side in figure 10 are perturbation pressure contours
from numerical simulations, and the insets show the instantaneous shape of the interface.
The plots on the left-hand side show the pressure profile at r = 0 as a function of the
vertical coordinate z. It is seen clearly from these figures that the formation of the dimple
is associated with a region of high positive pressure. When the weakly nonlinear theory is
able to capture the onset of the dimple (t = 1.228), the agreement between simulations and
theory is very good, as verified from figure 10(a). However, at t = 3.133 when the dimple
shrinks in horizontal extent during the upward motion of the cavity, weakly nonlinear
theory does not describe the dimple shape accurately and differences are seen between
nonlinear theory and simulations especially close to the interface where an incorrect sign
of pressure is predicted. It should be noted that an arbitrary shift has been carried out on the
pressure data obtained from numerical simulations. This does not affect the conclusions
as in the incompressible limit, only gradients of pressure are important.

4.4. Jet overshoot analysis
In figure 11, we depict the interface towards the end of one oscillation. Only cases with
larger values of ε are shown, as in this regime the overshoot of the interface at r = 0
above unity is pronounced with the maximum overshoot even exceeding 50 % (figure 11e).
While the linear theory clearly does not have any overshoot, it is seen that nonlinear theory
predicts an overshoot, albeit with varying accuracy. The extent of overshoot depends not
only on ε but also on σ . This dependence is captured in figure 12 which plots the overshoot
(âmax ≡ η̂(0, tmax)) at the end of one oscillation as a function of ε at different values of
σ . The extent of overshoot is seen to be a strong function of σ as one may intuitively
expect. This is because the emergence of the jet involves development of large curvature
at the base (pronounced dimple). Surface tension has an opposing effect on this process,
and thus for a given ε we expect that decreasing surface tension (decreasing σ ) promotes
jetting and thus overshoot. For moderate to large ε, we have fitted the simulation data to
an exponential profile of the form âmax/a0 = 1 + A(σ ) exp[B(σ )ε] with A(σ ) � 1. Note
that for all σ , some data points numerically very close to unity have been removed as
these cause ln[âmax/a0 − 1] to be undefined. The inset shows a reasonably good match
to a straight line y = x on a semi-log scale. The subplots on the right-hand side of
figure 12 show the dependence of A(σ ) and B(σ ) on σ . Due to clustering of singularities
in σ in the analytical model (see discussion in § 6) in the range 0.02 ≤ σ ≤ 0.6, it
is not possible to compare analytical predictions of overshoot with simulation data in
figure 12. To obtain this comparison, we choose σ far away from these singularities
viz. σ = 1.086, consistent with our perturbation analysis which assumes that σ = O(1).
A comparison of the overshoot at the end of one oscillation predicted by the nonlinear
expression (2.36) against simulation data is shown in figure 13(a). It is seen that there
is approximately an 8 %–10 % difference in the extent of overshoot predicted by (2.36)
to that seen in simulations, with the former overpredicting the extent of overshoot up to
ε < 1.3. In figure 13(b), we obtain the boundary demarcating the regime where <10 %
overshoot is observed in our simulations. Here too it is seen that increasing σ requires
one to go to increasingly higher values of ε in order to obtain overshoot and subsequent
jetting.
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FIGURE 10. Left panels: (non-dimensional) pressure profiles P(r, z, t) at the axis of symmetry
r = 0 at various time instants for ε = 0.5. Right panels: pressure contours from numerical
simulations. The dashed line on the contour plots represents the depth of the unperturbed liquid
at t = 0. The insets depict the instantaneous interface shape. As the weakly nonlinear theory
has been derived using a Taylor series expansion about the unperturbed state for the liquid side
only, we plot data at most up to the (scaled) unperturbed depth (z = 9.6154). For parameters, see
case 1 in table 3, grid (a). (a) Time t = 1.228; pressure profiles (left) and contours (right) at the
onset of dimple formation. (b) Time t = 3.133; pressure profiles and contours with a sharper and
narrower dimple. (c) Time t = 4.177; pressure profiles and contours when the jet is close to its
maximum height.

5. Energy and modal analysis

For our system, the total energy is a conserved quantity. Due to truncation of
higher-order terms, the weakly nonlinear approximation does not conserve energy exactly
and the fluctuations are quantified here. As shown in Zakharov (1968) and Segur & Stewart
(2020), the depth averaged total energy per unit horizontal surface area ρÊtot(r̂, t̂), is
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FIGURE 11. The interface shape when the jet is at its maximum height towards
the end of one oscillation, for various values of ε: (a) ε = 1.0, t = 4.177;
(b) ε = 1.1, t = 4.115; (c) ε = 1.2, t = 4.177; (d) ε = 1.3, t = 4.177; (e) ε = 1.4, t = 4.3.
Overshoot occurs when the scaled interface η(r, t)/ε exceeds unity and is always observed at
r = 0, the axis of symmetry. In the above figures, we show only the ε range where a sizeable
overshoot (ranging from 7 %–51 %) is observed. Note that weakly nonlinear theory (blue dots)
captures the interface shape and the maximum height quite well for all the cases seen here. For
parameters see: (a) case 3, (b) case 4, (c) case 5, (d) case 6 and (e) case 7 in table 3, grid (a)
for all cases here. The percentage values for overshoot reported in each panel is calculated from
data obtained from numerical simulations.

defined as

Êtot

g

(
R̂0

lq

)2 ≡ Etot(r, t) = Ekin + Epot

=
∫ η

−∞
1
2 |∇φ|2 dz + 1

2η
2 + σ

(√
1 + |∇H η|2 − 1

)
. (5.1)

Here Etot(r, t) satisfies the conservation equation ∂Etot/∂t + ∇H · F = 0 with the energy
flux defined as F (r, t) ≡ − ∫ η

−∞(∇H φ)(∂φ/∂t) dz − σ [∂η/∂t(∇H η)/
√

1 + |∇H η|2].
With ∇H ≡ er∂/∂r and ∇ ≡ (∇H , ∂/∂z) and integrating the energy per unit area in

(5.1) over the entire horizontal surface area, with the two-dimensional divergence theorem,
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FIGURE 12. We define âmax ≡ η̂(0, tmax ) where tmax is the instant when the jet reaches it
maximum height. (a) Variation of âmax/a0 with ε for various values of σ (see legend), from
numerical simulations. For moderate to large values of ε, the inset shows an approximate
data collapse using the empirical relation âmax/a0 = 1 + A(σ ) exp[B(σ )ε]. Note that A(σ ) � 1
which ensures that âmax/a0 ≈ 1 as ε → 0.
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FIGURE 13. (a) Comparison of the variation of overshoot given by (âmax/a0) with ε for σ =
1.086, A(σ ) = 1.562 × 10−4 and B(σ ) = 5.8864. It is seen that the weakly nonlinear theory
(blue symbols) follows the qualitative trend seen in numerical simulations (black symbols). The
solid (pink) line is âmax/a0 = 1 + A(σ ) exp[B(σ )ε] where the values of A and B are provided in
the captions. (b) Simulation data. The curve is obtained from simulations and separates points
where >10 % overshoot is observed from those with <10 % overshoot. It is clear from this curve
that a higher value of ε is needed for jetting as surface tension is made stronger relative to gravity.

we see that F (lq, t) = 0 due to boundary conditions at the radial wall. We thus obtain
the energy conservation condition dE/dt ≡ d/dt(

∫ lq
0 E(r, t)r dr) = 0. At the linearised

approximation, E(r, t) has quadratic terms in ε whence it may be checked that E is a
constant. In figure 14(a), we show comparisons of the potential energy (gravitational
potential energy plus the surface energy) of the system as a function of time (E0 is
the initial value of potential or total energy under each approximation) and a good
agreement is seen, including that at the instant when the dimple becomes pronounced.
In figure 14(b), we see the variation of total energy. Due to the truncation of O(ε3) terms,
the weakly nonlinear model does not conserve energy exactly and the oscillatory nature
of these fluctuations is because we solve simple harmonic oscillator equations at every
order. Figures 14(a) and 14(b) together imply that the weakly nonlinear model estimates
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FIGURE 14. (a) Temporal variation of the ratio of instantaneous potential energy
(surface energy + gravitational energy) Epot to the initial potential energy Epot0 (see text below
for definition of E) with time t. The potential energy of the weakly nonlinear model (panel a)
shows very good agreement with numerical simulations (inset shows when pronounced dimple
forms). (b) Variation of total energy (Etot/Etot0) with time. The linearised approximation (dashed
red line) is constant. The total energy of the weakly nonlinear solution (solid blue line) fluctuates
in time (up to a maximum of <4 %) due to truncation of O(ε3) terms. The increase in total energy
at t > 3.133 is mainly due to overestimation of the velocity near the interface which causes an
overestimation of the total kinetic energy (see figure 9).

the surface energy relatively more accurately than the kinetic energy, the latter being
over-estimated by a maximum of around 4 %. This conclusion is also verified from the
velocity profiles in figure 9, where close to the interface it is seen that the weakly nonlinear
model overestimates the kinetic energy of the surface layer.

5.1. Nonlinear redistribution of potential energy
We have seen that while the weakly nonlinear prediction is able to describe dimple
inception and jet overshoot, it does not resolve the formation of the pronounced dimple
during the second half of the oscillation or the thinning of the neck of the jet which causes
droplet pinchoff. Here, we use modal analysis to understand the reasons why this is so. The
interface η̂ may be expressed at any time t̂0 using the Dini series in (5.2) with coefficients
Ĥ(lj; t̂0) (related to the Hankel transform). Here Ĥ(lj; t̂0) may be evaluated from (5.3)
(Bagrov et al. 2012) using η̂(r̂, t̂0) obtained either from theory or simulations,

η̂(r̂, t̂0) =
∞∑

j=1

Ĥ(lj; t̂0)J0

(
lj

r̂

R̂0

)
, (5.2)

Ĥ(lj; t̂0) ≡ 1
1
2 R̂2

0J2
0(lj)

∫ R̂0

0
r̂η̂(r̂, t̂0)J0

(
lj

r̂

R̂0

)
dr̂, j = 1, 2, 3 . . . . (5.3)

In (5.2) and (5.3), |Ĥ(lj; t̂0)| may be thought of as a measure of the potential energy in
mode j at time t̂0. In this study, we inject the entire initial energy as potential energy into
the primary mode (q = 5). Nonlinearity subsequently causes a part of this energy to be
redistributed to modes which did not have any energy to start with. It will be seen here
that this redistribution plays a crucial role in dimple formation events. The integral in
(5.3) is evaluated numerically for each j. Figures 15(a) and 15(b) show |Ĥ(lj; t̂0)| at the
inception of dimple formation and later when a pronounced dimple forms, respectively.
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FIGURE 15. (a) Here Ĥ(lj; t̂0) versus j (ε = 0.5) at dimple inception, t̂0 = 0.02 s, see inset
for interface. At this instant, the dimple is captured by theory as significant energy transfer
has occurred up to j = 10 only. (b) Time t̂0 = 0.051 s. Dimple is sharper and narrower with
significant surface energy in modes > j = 10 also, which is not captured by the O(ε2) theory
(c) Time t̂0 = 0.051 s. Interface shape obtained from (5.2) with Ĥ(lj; 0.051) obtained from
simulations up to j = 10 (pink symbols) and j = 20 (blue symbols) while the remaining are
from theory (2.36).

It is seen that at dimple inception, a large number of modes up to j = 10 (second harmonic)
share a sizeable fraction of the initial energy. At this time instant, the weakly nonlinear
theory estimates the energy contained in the higher modes accurately leading to the good
agreement for the dimple shape seen in the inset. At later time t̂0 = 0.051 s (figure 15b),
when the dimple becomes more pronounced (narrower and sharper), many higher modes
including noticeable peaks at j = 15 and 20 are seen. The potential energy for modes up to
j = 10 is well predicted by the theory, but for larger j the theory suffers a significant error;
this in turn leads to an unresolved dimple as seen in the inset of figure 15(b).

In order to analyse the unresolved dimple in figure 15(b) further, we perform a simple
numerical test. In figure 15(c), we compare predictions from (5.2) where the first N values
of Ĥ(lj; t̂0) (i.e. j = 1 to N) have been obtained from simulations while the remainder
( j > N) are from theory (2.36). It is seen clearly that in order to obtain the pronounced
dimple seen in the inset of figure 15(b), one has to estimate Ĥ(lj; t̂0) accurately up to
j = 20. Correcting Ĥ(lj; t̂0) up to j = 10 only in figure 15(c) is seen not to capture the
shape of the dimple. This is consistent with the figure 15(b) where noticeable peaks are
observed up to j = 20.

Similar conclusions may be drawn from figure 16 where ε = 1.2. It is seen in
figure 16(a) that at t̂0 = 0.02 s, dimple initiation is well described by the weakly nonlinear
model as significant energy transfer has occurred up to j = 10 only. However, pronounced
dimple formation is not well resolved later at t̂0 = 0.05 s in figure 16(b). The spread of
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FIGURE 16. (a) Here Ĥ(lj; t̂0) versus j at first dimple formation (ε = 1.2), t̂0 = 0.02 s.
(a) Significant energy transfer has occurred only up to modes ≤ j = 10. (b) A pronounced dimple
with significant potential energy in modes > j = 10, t̂0 = 0.05 s.

the energy becomes more delocalised now with small but noticeable potential energy in
modes up to j = 50 in figure 16(b), see lower inset.

We have seen that the dimple becomes narrower with energy transfer to an increasingly
broader set of modes, as ε is increased. The widest pronounced dimple seen in the present
analysis is ≈4.2 mm wide (for ε = 0.5) and thus well below the air–water capillary-gravity
wavelength of ≈17 mm. Consequently, these dimples can be treated as pure capillary
waves, despite the primary perturbation being a much longer capillary-gravity wave. Our
weakly nonlinear model is unable to capture the time evolution of the dimple due to its
inability to resolve energy transfer beyond j = 10. Despite this limitation, at the end of
one oscillation when the jet is close to its maximum height, the local shape of the jet
around r̂ = 0 is well approximated by the nonlinear theory (see figure 11a–e). In order
to understand this apparent paradoxical behaviour, Ĥ(lj; t̂0) versus j is plotted close to the
instant of maximum jet height, in figures 17(a) and 17(b). It is seen that the maximum
height of the jet is well described by the theory but the ‘shoulders’ of the jet are not. It
may thus be inferred that in order to obtain the maximum height of the jet accurately,
lower mode contributions ( j = 1–10) are important which our O(ε2) analysis achieves
quite accurately. In contrast, in order to get the entire jet shape accurately, the ‘shoulder’
also needs to be resolved. This requires accurate estimation of higher-mode coefficients
which require corrections presumably at O(ε3) and O(ε4). To sum up what we learn from
this analysis so far, a short tabular summary of the relative strengths and weaknesses of
the nonlinear model is provided in table 4.

6. Critical values of σ : a special case of triadic resonance

The expressions for η, φ and Ω2 in (2.33), (2.36) and (2.37) are singular at certain
critical values of σ . This is easily seen from the denominators of the expressions in
appendix B, where singularities occur when ωk = 2ωq. With the definition ω2

k = αk(1 +
σα2

k ), this leads to the set of critical values of σ viz.

σ (k)
c = 4 − αk

α3
k − 4

, k = 1, 2, 3 . . . . (6.1a,b)

This is the cylindrical analogue of the well-known second harmonic resonance condition
known in the case of Wilton ripples (Wilton 1915). In two-dimensional Cartesian
geometry, second harmonic resonance for capillary-gravity waves was analysed first by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.851


909 A3-28 S. Basak, P. K. Farsoiya and R. Dasgupta

Strengths Weaknesses

(i) Captures energy transfer from the primary
capillary-gravity mode to small-scale pure
capillary modes in the spectrum, in agreement
with numerical simulations. Reasonably
accurate estimate of energy transfer to modes
up to the second harmonic (see figures 15a and
16a).

(i) The O(ε2) theory does not capture energy
transfer to modes beyond the second (spatial)
harmonic (i.e. j > 10 in this study) (see
figures 15b and 16b). Energy transfer to higher
modes ( j ≥ 10) (figures 15b and 16b) requires
O(ε3) and higher-order corrections.

(ii) Captures initiation of dimple formation
(figures 7b and 8c), qualitative aspects of
velocity (figures 9a and 9b) and pressure
profiles (figures 10a and 10c) at dimple
inception and at maximum jet height. Predicts
the overshoot of the jet to within 10 % accuracy
(figure 13a) and the jet shape at its tip at
maximum overshoot (figure 11)

(ii) Time evolution of pronounced dimple
including its narrowing, thinning of the neck
and developing into a slender jet and pressure
profile at pronounced dimple is not captured
(figures 8 f, 8g and 10b, respectively).

(iii) Captures aforementioned qualitative
features even beyond ε > 1. Total surface
energy quite accurate for moderate ε

(figure 14a). Assigns the contribution of
higher-order modes to various jet attributes,
e.g. maximum height ( j ≤ 10), shoulder
( j ≥ 10), etc.

(iii) The O(ε2) theory loses accuracy at large ε,
necessitating higher-order corrections. Energy
is not conserved exactly (due to truncation) and
due to this, the nonlinear model overestimates
the liquid layer velocities near the surface (at
moderate ε) with fluctuations in total energy up
to 4 % (figure 14b).

(iv) Singularities in σ points to possibility of
bifurcations and instabilities at critical values
of σ due to triadic resonant interactions in a
cylindrical confined geometry (see § 6)

(iv) Theory diverges at the critical σ making a
series of σ values inaccessible. Near these σ ,
the theory needs reformulation (see § 6).

(v) A systematic method for higher-order
approximations. Leads to analytical
expressions which can be efficiently evaluated,
e.g. η(r, t) in (2.36) evaluates within a few
minutes on a desktop computer, for one
oscillation.

(v) Nonlinear derivation is mathematically
laborious, and obtaining O(ε3) and
higher-order corrections, although
conceptually not significantly more difficult,
requires lengthy algebra.

(vi) Offers an alternative approach to
understanding jetting and dimple formation
complementing earlier insights based on
wave-focussing, singularity, self-similar
solutions and scaling analysis. An analogy
of our approach may be drawn with studies
investigating the steepest standing wave (in
Cartesian geometry) which can develop a cusp
(singularity) at its peak (cf. classical studies by
Lord Rayleigh (Strutt 1915) and G. I. Taylor
(1953) and the perturbative expansions by
Price & Penneyand (1952) and Schwartz &
Whitney (1981))

(vi) The curvature is not singular at dimple
inception in the model. Accessing this
singularity presumably requires higher-order
corrections.

TABLE 4. Strengths and weaknesses of the O(ε2) solution to the IVP.
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FIGURE 17. Here Ĥ(lj; t̂0) versus j when the jet is at its maximum height: (a) ε = 1.2;
(b) ε = 1.3. As seen from the jet shape in the insets, the nonlinear model estimates the maximum
height of the jet well but not the ‘shoulder’ of the jet, instead developing a broader base. It is
concluded that in order to predict maximum height, one needs to estimate potential energy in
modes up to j = 10 only which the theory does well. However, for resolving the jet ‘shoulder’,
one has to estimate the potential energy in modes > j = 10 accurately which the O(ε2) theory
cannot capture. Here t̂0 = 0.067 s.

Wilton (1915) and since then has been studied extensively in Cartesian geometry (see
Christodoulides & Dias (1994) for a compilation of the literature). In the same notation as
used here with j ∈ Z+ as index for the Fourier modes cos( jx) and j = 1 being the primary
mode, the Cartesian dispersion relation for capillary-gravity waves is ω( j) = √

j(1 + j2σ).
The second harmonic resonance condition ω(2) = 2ω(1) leads to a single critical value
of σ , viz. σ = 1

2 . This is due to the fact that at O(ε2), the product of the primary
mode, viz. cos2(x), has projections on only the zeroth and the second Fourier modes,
i.e. cos2(x) = 1

2 [cos(0x) + cos(2x)]. This leads to a single critical value σc = 1
2 at this

order. In contrast, in the cylindrical axisymmetric geometry studied here, the product
of the primary mode, viz. J2

0(r), has projections on every mode in the spectrum, viz.
J2

0(r) = ∑∞
k=0 ckJ0(αkr) (k = 1, 2, 3 . . .). This leads to a countably infinite sequence of

critical values for σ (k)
c out of which, we are interested in positive values only. These

critical values of σ are plotted in figure 18 for three different choices of the primary mode
q = 2, 5 and 7. It is seen that for every q, there is an upper limit on σ (k)

c . In this study
for comparisons with weakly nonlinear predictions, we have chosen σ to be far from these
singular values. For the case q = 5 studied here, σ = 1.086 (indicated with a dotted line in
figure 18) is chosen to be far from the two neighbouring critical values of σ . This order of
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FIGURE 18. Critical values σ
(k)
c for various choices of the primary mode q. In this study we

have chosen σ = 1.086 (dotted red line) which is far from the two neighbouring critical values
of sigma, indicated by red dots for q = 5.

magnitude is consistent with our necessity of σ = O(1) for ε → 0, see discussion above
(2.14).

It is known that the second harmonic resonance condition arises only when capillarity as
well as gravity are accounted for in the nonlinear calculation. This is due to the existence of
a minimum in the linearised phase speed for capillary-gravity waves (McGoldrick 1970).
At any speed above this minimum, there is a certain wavenumber at which the primary
mode and its second harmonic travel at the same speed leading to resonance. For air–water
parameters, the critical wavenumber corresponding to this occurs at a wavelength of
approximately 2.44 cm, in two-dimensional Cartesian geometry. Since two-dimensional
Cartesian, (η(x, τ ) ∝ cos(kx)), and cylindrical axisymmetric surface waves, (η(r, τ ) ∝
J0(kr)), share the same dispersion relation at linear order, it is natural to expect this
resonance to also occur in cylindrical geometry. As a consistency check, when we consider
pure gravity axisymmetric waves, the condition ωk = 2ωq leads to αk = 4, while for pure
capillary axisymmetric waves, the same condition leads to αk = 41/3 ≈ 1.5874. It may be
checked numerically that these relations cannot be exactly satisfied by the ratio of any
two non-trivial roots of J1(αj) = 0, demonstrating that second harmonic resonance is not
possible for pure capillary or pure gravity waves in cylindrical, axisymmetric geometry.

Finally, we note that in Cartesian geometry, the second harmonic resonance condition is
easily seen to be a special case of the triadic resonance condition ω(1) + ω(1) − ω(2) = 0
and 1 + 1 − 2 = 0, where two of the members in the triad are the primary modes
(repeated) and the third member is the second harmonic of the primary mode (McGoldrick
1970). Interestingly in cylindrical confined geometry, this resonance condition depends
not only on the fluid properties and the primary mode chosen, but also on the size of
the container R̂0, e.g. for each the symbols in red corresponding to q = 5 in figure 18,
a condition of the form 2ω5 = ±ω9, 2ω5 = ±ω10, . . . , 2ω5 = ±ω21 is satisfied (see
Natarajan & Brown (1986) for similar conditions for second harmonic resonance for
capillary oscillations of a liquid spherical droplet). Each of these relations leads to a
critical value of R̂0 for air–water parameters. As there are finite number of critical points
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for any q (see figure 18), there is consequently an upper and lower limit on R̂0. For
air–water parameters and q = 5 we obtain R̂min

0 = 3.64 cm and R̂max
0 = 87.98 cm. Radii

larger or smaller than these upper and lower values are free from singularities at this order.
In the vicinity of the critical points, our weakly nonlinear solution ceases to be uniformly
valid and needs to be reformulated, and this is proposed as future work.

7. Conclusions

In this study, we have investigated jetting from finite amplitude, axisymmetric
capillary-gravity waves on a deep cylindrical pool, using a first principles weakly nonlinear
analysis. The primary conclusions are as follows.

(i) Jets may be obtained from smooth initial perturbations. These are large amplitude,
surface perturbations on a deep liquid pool which produce nonlinear axisymmetric,
capillary-gravity waves and a subsequent jet. The jet shares some of its attributes
to those seen in bubble bursting and other similar cavity collapse phenomena.
Analogous to the latter, the birth of the jet commences as a dimple (with associated
curvature reversal) at the wave trough. The dimple width (at inception) varies
inversely while the velocity at its tip varies directly with ε.

(ii) At large ε when well formed, slender jets are obtained, the acceleration at the
base of the dimple can exceed gravity by nearly an order of magnitude (see
accompanying supplementary material for acceleration plots). The birth of the jet
is thus predominantly a capillary event, despite the parent perturbation being a
capillary-gravity wave.

(iii) The formation of this jet, right from its inception as a dimple to becoming a
well-formed jet, is a nonlinear process. Its inception and subsequent evolution
involve energy transfer to a large number of harmonics of the primary mode along
with many intermediate modes. Some of the jet features, e.g. dimple inception, the
maximum height reached and its shape around r̂ = 0, require an accurate description
of energy transfer only up to the second harmonic, and are well described by
the O(ε2) calculation. Other features such as dimple evolution, thinning of the
neck leading to a slender jet with droplet pinchoff, involve energy transfer to an
increasingly broader band of modes, as ε is increased. Describing the energy in these
high modes accurately requires higher-order corrections and cannot be captured by
the theory presented here.

(iv) The weakly nonlinear theory is able to capture the qualitative dependence of the
jet overshoot on ε. Quantitative differences between theory and simulations up to
a maximum of ≈10 % exist. The maximum height of the jet and its local shape
around r̂ = 0 are captured with reasonable accuracy in the range ε ∈ [0.2–1.2] with
σ = O(1).

(v) There exists a finite number of critical values of σ where the weakly nonlinear
theory is singular. These critical points are the cylindrical analogues of the
corresponding singularities known in the case of Wilton ripples (Wilton 1915) and
are a special case of triadic resonance (McGoldrick 1970; Hammack & Henderson
1993). The possibility of instabilities at these critical values of σ requires a detailed
investigation planned in the near future.

Certain attributes have been neglected in our analysis but will nevertheless retain an
important role in the physics of jetting. Firstly, we have not taken into account the role of
viscosity (μ). Figures 12 and 13(b) maybe visualised as a slice obtained for zero Ohnesorge
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number (Oh) which in this case can be defined as Oh ≡ μ/
√

ρTa0 (square of an inverse
Laplace number (Deike et al. 2018)). It was first shown by Duchemin et al. (2002) that
the jet velocity has a non-monotonic dependence on viscosity, increasing initially with
increasing viscosity but showing a peak at a critical value of viscosity (see figure 12
in Duchemin et al. (2002)). A predictive model of jetting recently proposed in Gordillo
& Rodríguez-Rodríguez (2019) and validated through direct numerical simulations in
Blanco-Rodríguez & Gordillo (2020) supports this conclusion, where the jet velocity
increases as Oh1/2 before reaching a peak at a critical Ohc and subsequently decreasing
as Oh−1. These interesting predictions need to be tested on the jets reported here using
a nonlinear viscous IVP solution. A viscous analysis is also expected to be free from
the singularities in σ that are obtained here. A related physics not taken into account is
the dissipation at the three-phase contact line which will be encountered in the confined
cylindrical geometry studied here. As has been shown recently in Viola, Brun & Gallaire
(2018), capillary effects are particularly important in the limit of small amplitude waves.
We conclude with the observation that the present study is a first step towards solving the
IVP for jetting from a collapsing cavity. While we have investigated the physics of jetting
formed from a single Fourier–Bessel mode, tools, results and insights presented here are
of utility in investigating the nonlinear IVP, when a spectrum of modes are present in the
initial perturbation. These studies are underway and will be reported subsequently.
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Appendix A

The expressions for inhomogenous terms Fi(r, τ ) and Gi(r, τ ) in (2.25) and (2.26) are

F1(r, τ ) = 0, F2(r, τ ) = −
[
η1

(
∂2φ1

∂z∂τ

)
+ 1

2

{(
∂φ1

∂r

)2

+
(

∂φ1

∂z

)2
}]

z=0

, (A 1a,b)
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F3(r, τ ) = −
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Appendix B

At O(ε2) the solution is given by

η2(r, τ ) =
∞∑
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(k)
1 cos(ωkτ) + ζ
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