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In this paper a one-dimensional numerical study on the nonlinear behaviour of an
electrically charged jet of Oldroyd-B viscoelastic, Taylor–Melcher leaky dielectric
liquid is carried out. The effect of surface charge level, axial wavenumber and finite
conductivity on the nonlinear evolution of the jet is investigated. Different structures
including beads-on-a-string with/without satellite droplets, quasi-spikes and spikes are
detected, and their domains in the plane of the non-dimensional axial wavenumber
and the electrical Bond number are illustrated. The underlying mechanisms in the
formation of the structures are examined. It is found that tangential electrostatic
force plays a key role in the formation of a quasi-spike structure. Decreasing liquid
conductivity may lead to a decrease in the size of satellite droplets or even the
complete removal of them from a beads-on-a-string structure, induce the transition
from a beads-on-a-string to a quasi-spike structure or postpone the appearance of a
spike. On the other hand, finite conductivity has little influence on filament thinning
in a beads-on-a-string structure, owing to the fact that the electrostatic forces are of
secondary importance compared with the capillary force. The difference between the
finite conductivity, large conductivity and other cases is elucidated. An experiment is
carried out to observe spike structures.

Key words: jets, nonlinear instability, viscoelasticity

1. Introduction
1.1. Nonlinear dynamics of viscoelastic liquid jets

Non-Newtonian viscoelastic liquid jets are often encountered in applications such
as inkjet printing, fuel atomization, micro/nano-fibre manufacture, industrial prilling,
microfluidics, pharmaceuticals and rheological measurements (Eggers & Villermaux
2008; Zell et al. 2010; Basaran, Gao & Bhat 2013; Alsharif, Uddin & Afzaal 2015).
The study of the instability and break-up of viscoelastic jets is of both theoretical
and practical interest. Upon a small axisymmetric disturbance being imposed, a jet
is perturbed and starts to deform. It has been well recognized that the growth of the
disturbance at initial times can be predicted by linear theory (Rayleigh 1878, 1879).
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However, as the deformation of the jet grows, a nonlinear effect comes into play.
Particularly for a viscoelastic jet, due to viscoelasticity, break-up can be greatly
postponed: the jet experiences a slow necking process and evolves into a quasistatic
beads-on-a-string structure with large primary droplets connected by a thin filament,
sometimes accompanied by small secondary droplets between the primary ones
(Bousfield et al. 1986; Entov & Hinch 1997; Chang, Demekhin & Kalaidin 1999;
Anna & McKinley 2001; Christanti & Walker 2001, 2002; Clasen et al. 2006;
Oliveira, Yeh & McKinley 2006; Malkin, Arinstein & Kulichikhin 2014; Wagner,
Bourouiba & McKinley 2015; Deblais, Velikov & Bonn 2018).

To date the nonlinear behaviour of viscoelastic jets has been extensively studied
theoretically, numerically and experimentally. To facilitate the theoretical and
numerical aspects, many researchers employed one-dimensional (1-D) viscoelastic
models based on the slender body approximation (Bousfield et al. 1986; Schümmer &
Thelen 1988; Chang et al. 1999; Li & Fontelos 2003; Clasen et al. 2006; Ardekani,
Sharma & McKinley 2010; Bhat et al. 2010, 2012). The validity of these 1-D
viscous or viscoelastic models has been examined and justified by comparing with
the two-dimensional (2-D) algorithms and experimental results (Ambravaneswaran,
Wilkes & Basaran 2002; López-Herrera & Gañán-Calvo 2004; Wagner et al. 2005;
Collins, Harris & Basaran 2007; Eggers & Villermaux 2008; Tembely et al. 2012;
Turkoz et al. 2018). In the 1-D analyses, the most significant finding is the scaling
laws followed by the thinning of the filament for a viscoelastic jet of Oldroyd-B
type. That is, the thickness of the filament decreases exponentially with time at
a rate of 1/3De (De is the Deborah number defined as the ratio of the stress
relaxation time to the capillary time), whereas the polymeric stress inside the filament
increases exponentially with time at the same rate (Chang et al. 1999; Clasen et al.
2006). Besides, the self-similarity in the corner region joining the droplet to the
filament was explored theoretically with the aid of 1-D models (Clasen et al. 2006;
Bhat et al. 2012). The dynamics of droplets in highly stretched viscoelastic jets
was investigated by Li & Fontelos (2003). The formation of satellite droplets in
beads-on-a-string structures as well as the way to eliminate them was explored by
Ardekani et al. (2010) and Bhat et al. (2010). Beyond Oldroyd-B liquids, other types
such as upper-convected Jeffreys, Giesekus and FENE-P fluids were also examined
(Schümmer & Thelen 1988; Fontelos & Li 2004; Ardekani et al. 2010).

In addition to the 1-D studies, a few direct numerical simulations have been carried
out. Morrison & Harlen (2010) used a Lagrangian–Eulerian finite-element method to
simulate the deformation and break-up of FENE-CR viscoelastic liquid flows ejected
from a nozzle in the drop-on-demand inkjet printing process. Gupta & Chokshi (2015)
conducted a weakly nonlinear stability analysis of the extensional flow of an extended
Pom-Pom polymer jet perturbed by a finite-amplitude disturbance. Using the volume-
of-fluid method to track the interface and the log-conformation transformation to solve
the constitutive equation, Turkoz et al. (2018) performed a direct numerical simulation
of the axisymmetric thinning of a viscoelastic filament of Oldroyd-B liquid. Their 2-D
simulations provided some details of the velocity and the stresses in the entire thread.

The relevant experimental investigation is much more prosperous. A great number of
experiments have been dedicated to the capillary thinning and break-up of viscoelastic
liquid jets (Tirtaatmadja, McKinley & Cooper-White 2006; Bazilevskii & Rozhkov
2014; Kulichikhin et al. 2014; Malkin et al. 2014; Greiciunas et al. 2017; Jimenez
et al. 2018; Mathues et al. 2018; Varchanis et al. 2018). These experimental studies
elucidated the nonlinear pinch-off dynamics of viscoelastic jets, the formation of
primary and satellite droplets, the extensional rheological properties of viscoelastic
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liquids, the effect of the molecular weight and concentration of the polymer, the phase
separation phenomenon, as well as the feasibility and productivity of extensional flows
in distinct applications such as inkjet printing, fibre spinning, rheometers and blood
plasma. Among them, Wagner et al. (2005) found that the addition of a small amount
of polymer may significantly delay the detachment of a water drop and lead to the
formation of a long-lived filament with secondary beads on it in certain conditions.
Clasen et al. (2009) explored the mechanism in the transition from dripping to jetting
and found that the viscoelastic filament exerts an axial tensile force on the adjacent
drops, which, together with the capillary, inertial and gravitational forces, controls
the detachment of the terminal drop. Sattler, Wagner & Eggers (2008), Sattler et al.
(2012), Kulichikhin et al. (2014), and Eggers (2014) studied the blistering pattern
with different generations of small droplets on the filament as well as the instability
and phase separation in it.

1.2. Nonlinear dynamics of electrified liquid jets
In electrospraying and electrospinning experiments, the electric field has been shown
to be a novel, easy way to control the linear and nonlinear behaviour of liquid jets (Yu,
Fridrikh & Rutledge 2006; Eda & Shivkumar 2007; Ismail et al. 2016; Wang, Wang
& Hashimoto 2016; Wang et al. 2018). The coupling of the electric field with the flow
field gives rise to new phenomena of instability and rupture of jets, and exploring the
underlying mechanisms undoubtedly enriches the fundamentals in electrokinetics and
electrohydrodynamics. On the other hand, owing to simplicity, efficiency and flexibility
in producing monodisperse droplets and ultra-thin fibres at micro/nanometre scales,
electrified jets are very popular in various applications involving electrohydrodynamic,
electrochemical or biomechanical processes. The relevant experimental studies are too
numerous to mention. To gain a comprehensive understanding of those fundamentals
in physics and the latest progress in diverse applications, the interested readers are
referred to several recent reviews contributed by Onses et al. (2015), Gañán-Calvo
et al. (2018), Rosell-Llompart, Grifoll & Loscertales (2018) and Yoon et al. (2018).

Due to the complexity of the problem, only a few theoretical and numerical reports
have addressed the nonlinear axisymmetric instability of electrified jets in the literature.
As in the study of viscoelastic jets, 1-D models were used to facilitate theoretical
analysis and save computational time (López-Herrera, Gañán-Calvo & Perez-Saborid
1999; Feng 2003; Elcoot 2007; Wang, Mählmann & Papageorgiou 2009; Li, Yin &
Yin 2016, 2017b). Among them, López-Herrera et al. (1999) developed a 1-D model
to investigate the nonlinear deformation and break-up of an electrically charged
viscous liquid jet of infinite conductivity. Feng (2003) studied the stretching of a
straight electrically charged viscoelastic jet of Giesekus liquid. Wang et al. (2009)
simulated the axisymmetric nonlinear dynamics of a perfectly conducting, viscous
liquid jet under the action of a radial electric field. Li et al. (2016) built a 1-D
model to study the nonlinear behaviour of a perfectly conducting, slightly viscoelastic
liquid jet under a radial electric field. Later, they investigated the transition from
beads-on-a-string to spike structure under a sufficiently large electric field (Li et al.
2017b). As in a viscous flow (Wang et al. 2009), the singular spike structure arising
in a viscoelastic jet was found to possess a self-similar characteristic.

Some direct numerical simulations have been performed (Setiawan & Heister
1997; Higuera 2003, 2006; Collins et al. 2007; Wang & Papageorgiou 2011; Wang
2012; López-Herrera et al. 2015; Lakdawala, Sharma & Thaokar 2016). Setiawan &
Heister (1997) utilized the boundary element method to calculate the time-dependent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

45
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.451


8 F. Li, S.-Y. Ke, X.-Y. Yin and X.-Z. Yin

evolution of a perfectly conducting, inviscid liquid jet subjected to a radial electric
field. Higuera (2003, 2006) numerically simulated the cone-to-jet structure of a
conducting viscous liquid jet in electrospraying. Collins et al. (2007) developed a
robust Galerkin finite-element algorithm to solve the 2-D Navier–Stokes equation
and Laplace equation governing the axisymmetric deformation and break-up of a
perfectly conducting, incompressible Newtonian liquid jet under a radial electric
field. With the aid of the boundary integral method, Wang & Papageorgiou (2011)
studied the axisymmetric break-up of a perfectly conducting, viscous liquid thread
immersed in another non-conducting, viscous liquid, in the limit of zero Reynolds
number. Later, Wang (2012) extended this study to the poorly conducting case. Using
a volume-of-fluid method, López-Herrera et al. (2015) simulated the break-up of
an electrically charged liquid jet at time scales comparable to or smaller than the
diffusion and electroosmotic migration times. Lakdawala et al. (2016) presented a
dual grid level set method (DGLSM) to numerically study the nonlinear break-up
dynamics of a perfectly conducting, Newtonian viscous liquid jet under a radial
electric field.

1.3. The present work
In the present work we incorporate the Oldroyd-B viscoelastic model with the
Taylor–Melcher leaky dielectric theory and elaborate on the nonlinear dynamics of
an electrically charged viscoelastic liquid jet of finite conductivity. The Oldroyd-B
model, which requires constant viscosity and high elasticity of the liquid, is the
simplest nonlinear viscoelastic model suitable to describe large deformations of dilute
polymer solutions (Prilutski et al. 1983; James 2009). It has been successfully used
to investigate the asymptotic behaviour, scaling laws and self-similar characteristic
at the late stages of capillary thinning of viscoelastic liquid jets (Chang et al. 1999;
Clasen et al. 2006; Ardekani et al. 2010; Bhat et al. 2010; Turkoz et al. 2018).
The disadvantage of the model is that it cannot describe the final pinch-off of a
viscoelastic jet, for its hypothesis of infinite extensibility of macromolecular chains.
To study the pinch-off of viscoelastic jets, a more complicated constitutive equation
that allows finite extensibility should be used, such as the Giesekus or FENE-P
model. Nevertheless, for primary research on the deformation process of an electrified
viscoelastic jet from the initial to large times, the Oldroyd-B model is appropriate.
In electrohydrodynamics, the Taylor–Melcher leaky dielectric theory has been widely
used to formulate flows of poorly conducting liquids. It consists of the Navier–Stokes
equation describing fluid motion, an expression for the conservation of bulk electric
current, an equation describing the conservation of surface charge, the Gauss law
and the balance of forces on a fluid–fluid interface (Melcher & Taylor 1969; Saville
1997; Gañán-Calvo et al. 2018). The theory states that there is no charge in the fluid
bulk. All charges are located on the interface between the fluids, and only on the
interface does the electric field couple with the flow field. Different from a perfect
conductor, for which the electrical force is perpendicular to the interface, a leaky
dielectric permits the existence of a tangential electric field and tangential electrical
force on the interface, which may influence the fluid motion significantly.

The paper is organized as follows. In § 2, the 1-D model is presented. In § 3,
the equations and boundary conditions are solved numerically by means of a
hybrid algorithm; different nonlinear structures are identified, the mechanisms in
the formation of the structures are elucidated and the domains in the plane of the
axial wavenumber and the electrical Bond number are delineated; the effect of
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FIGURE 1. (Colour online) Schematic of the theoretical model.

finite conductivity on the beads-on-a-string and the spike structures is illustrated; the
difference between the finite conductivity and large conductivity cases is discussed.
In § 4, an experimental observation of the spike structure is presented. In § 5, the
main conclusion is drawn.

2. One-dimensional model
Consider an infinitely long cylindrical liquid jet of radius R and velocity U

surrounded by quiescent atmospheric air, as sketched in figure 1. For mathematical
convenience, a relative cylindrical coordinate system (r, θ, z) moving together with
the jet is used to formulate the problem, where r, θ and z are the radial, azimuthal
and axial coordinates, respectively. The hydrodynamic effect of the air, as well as
the effect of the gravitational force, temperature, mass transfer and magnetic field,
is neglected. In practical applications such as inkjet printing, electrospraying and
electrospinning, a viscoelastic liquid jet emitted from a capillary tube or the tip of
a Taylor cone is inevitably accompanied by unrelaxed elastic stresses. The unrelaxed
stresses have been shown to play a significant role in the instability and nonlinear
behaviour of viscoelastic jets (Ruo et al. 2012; Mohamed et al. 2015; Mathues et al.
2018). Nevertheless, in the present study, we focus on the effect of finite conductivity
on the nonlinear evolution of charged viscoelastic jets, and simply assume that there
is no unrelaxed elastic stress in the base flow.

The liquid is assumed to be a dilute polymer solution of Oldroyd-B type. For an
Oldroyd-B viscoelastic liquid, the deviatoric stress τ can be decomposed into two
parts, i.e. τ = τs + τp, where τs and τp are the contributions from the solvent and
the polymer to the stress, respectively (James 2009). The constitutive equation for the
solvent stress τs is

τs = 2ηsD, (2.1)

where ηs is the solvent viscosity, and D= 1/2(∇v+ (∇v)T) with v the velocity vector
and superscript T denoting transpose is the rate-of-strain tensor. The constitutive
equation for the polymeric stress τp is

τp + λ1τ̂p = 2ηpD, (2.2)

where λ1 is the stress relaxation time, ηp is the polymeric viscosity and the hat denotes
the upper convected time derivative,

τ̂p =
∂τp

∂t
+ (v · ∇)τp − (∇v)T · τp − τp · ∇v. (2.3)
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On the other hand, the liquid is assumed to be a poor conductor of finite electrical
conductivity K and electrical permittivity ε. The electrical relaxation time of the
liquid, te = ε/K, is supposed to be comparable to or larger than the characteristic
hydrodynamic time, say, the capillary time tc =

√
ρR3/σ with ρ the density of the

liquid and σ the surface tension coefficient. At the initial time, free charges of density
Q0 are imposed uniformly on the surface of the jet. Meanwhile, a grounded annular
electrode is positioned coaxially surrounding the jet at r = R0. Considering that the
air is a dielectric of negligible electrical conductivity, a basic radial electric field of
strength Q0R/εar, where εa is the electrical permittivity of the air, is sustained in
the air phase. The entire jet is equipotential. Once the jet is perturbed, it begins to
deform. Due to its large electrical relaxation time, charges cannot be redistributed
in time on the surface, and the jet becomes non-equipotential. In such a case, the
Taylor–Melcher leaky dielectric theory applies, in which the motion of the charges
is governed by the following conservation equation (Melcher & Taylor 1969; Saville
1997),

∂q
∂t
+∇s · (qv)−KE · n= 0, (2.4)

where q is the surface charge density, ∇s = (I − nn) · ∇ with I the unit tensor is the
surface gradient, n the outward unit vector normal to the surface and E the electric
field strength in the liquid phase.

The equations governing the flow field are the continuity and the momentum
equations for incompressible flow, i.e.

∇ · v = 0, (2.5)

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+∇ · τ , (2.6)

where p is the pressure.
Since the electric field is irrotational, an electrical potential function φ can be

introduced. Due to the absence of bulk charge, φ satisfies the Laplace equation,

∇
2φ ,a = 0, (2.7)

where subscript a represents the air phase and no subscript represents the liquid phase.
The electric field strength E,a =−∇φ,a.

At the grounded electrode r=R0, the electrical potential is maintained at zero, i.e.

φa(r= R0, z, t)= 0. (2.8)

The boundary conditions at the perturbed jet surface, r = h(z, t), include the
kinematic condition

v =

(
∂

∂t
+ v · ∇

)
h, (2.9)

where v is the velocity component in the radial direction, the dynamic condition

(T e
a − T h

− T e) · n= σ∇ · nn, (2.10)
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where T h
= −pI + τ is the hydrodynamic stress, T e

= εEE − (ε/2)E · EI is the
electrical Maxwell stress, and ∇ · n is twice the local mean curvature, the continuity
of the tangential electric fields,

n× (Ea −E)= 0, (2.11)

and the Gauss law,

n · (εaEa − εE)= q. (2.12)

An equivalent condition of (2.11) is the continuity of the electrical potentials across
the air–liquid interface, i.e.

φa(r= h, z, t)= φ(r= h, z, t). (2.13)

If the variation of the radius of the jet along the axial direction is gradual, the jet
can be regarded as a slender body and a 1-D analysis can be implemented. Under
the slender body approximation, the governing equations (2.5) and (2.6) together with
the constitutive equations (2.1)–(2.3) and the boundary conditions (2.4), (2.9)–(2.12)
yield

∂h
∂t
+ u

∂h
∂z
=−

h
2
∂u
∂z
, (2.14)

∂u
∂t
+ u

∂u
∂z
= χ

∂

∂z

[
(E2

an − E2
t )− εr(E2

n − E2
t )
]
+

4χEtq
h

[
1+

(
∂h
∂z

)2
]

−
∂(∇ · n)
∂z

+ 3βOh
1
h2

∂

∂z
(h2 ∂u

∂z
)+

1
h2

∂

∂z
[h2(τzz − τrr)], (2.15)

∇ · n=
1[

1+
(
∂h
∂z

)2
]3/2


1+

(
∂h
∂z

)2

h
−
∂2h
∂z2

 , (2.16)

τzz +De
(
∂τzz

∂t
+ u

∂τzz

∂z
− 2τzz

∂u
∂z

)
= 2(1− β)Oh

∂u
∂z
, (2.17)

τrr +De
(
∂τrr

∂t
+ u

∂τrr

∂z
+ τrr

∂u
∂z

)
=−(1− β)Oh

∂u
∂z
, (2.18)

∂q
∂t
+ u

∂q
∂z
+

q
2
∂u
∂z
− τεrEn = 0, (2.19)

where u is the velocity component in the axial direction, En and Et are the normal and
tangential electric fields, respectively, and τzz and τrr are the zz− and rr− components
of the polymeric stress τp, respectively. Note that the 1-D equations (2.14)–(2.19) are
non-dimensionalized by choosing the radius of the jet R, the capillary time tc, the zero-
shear viscosity η0 = ηs + ηp, the capillary force σ/R, the electric field strength at the
jet surface Q0/εa and the electrical permittivity of the air εa as scales of length, time,
viscosity, pressure, electric field and electrical permittivity, respectively. For the sake
of simplicity, the same symbols are used in the equations to denote the corresponding
dimensionless quantities. The derivation process of the above 1-D equations can be
found in appendix A. The non-dimensional parameters involved are
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(i) the Ohnesorge number Oh = η0/
√
ρσR representing the relative importance of

viscosity and capillarity;
(ii) the Deborah number De= λ1/tc representing the relative importance of elasticity

and capillarity;
(iii) the solvent to solution viscosity ratio β = ηs/η0;
(iv) the electrical Bond number χ =Q2

0R/2εaσ measuring the ratio of the electrostatic
to the capillary force;

(v) the relative electrical permittivity εr = ε/εa;
(vi) the relative electrical relaxation time τ = tc/te.

In this 1-D system, equations (2.14) and (2.15) express the conservation of mass
and momentum, respectively; equation (2.16) is the full expression of the curvature;
equations (2.17) and (2.18) are the constitutive equations of the polymeric stress
components τzz and τrr, respectively; equation (2.19) expresses the conservation of
surface charge. To facilitate the calculation, the long wave approximation was applied
to the electric field in Wang (2012). Upon doing so, only two terms related to the
electric field, i.e. χq2 (a simplified electrostatic pressure) and −4χ(q/h)(∂φ/∂z) (a
simplified tangential electrostatic force), remain in the momentum equation. However,
this simplification might lead to significant inaccuracy, since the electrostatic forces
are important factors influencing the flow. In order to make the 1-D simulation more
accurate, we choose not to simplify the electric field, as performed in López-Herrera
et al. (1999) and Collins et al. (2007).

Different from the 1-D models for perfectly conducting liquid jets in which only
one term related to the electric field, i.e. the electrostatic pressure originating from
the normal electric field in the air phase, −χE2

an, appears in the momentum equation
(Setiawan & Heister 1997; López-Herrera et al. 1999; Li et al. 2016), here in the
leaky dielectric case, besides Ean, both the normal electric field in the liquid phase En
and the tangential electric field Et exist, which contribute to the electrostatic pressure.
Moreover, the existence of surface charge and tangential electric field gives rise to
a tangential electrostatic force on the jet surface, which plays a role in the balance
of the forces. The simplicity of the 1-D models for perfectly conducting liquid jets
also lies in the fact that the surface conservation (2.19) is absent (Setiawan & Heister
1997; López-Herrera et al. 1999; Li et al. 2016).

Also note that an alternative form of the momentum equation (2.15) is

du
dt
=−

∂(pσ + pe)

∂z
+ fet +

1
h2

∂

∂z

[
h2

(
3βOh

∂u
∂z
+Φ

)]
, (2.20)

where du/dt is the material derivative of the axial velocity u of a fluid element, and
the terms on the right-hand side are the factors (the capillary, electrical, viscous and
elastic forces) influencing the motion of the fluid element. Among them, pσ =∇ · n is
the capillary pressure, pe =−χ [(E2

an − E2
t )− εr(E2

n − E2
t )] is the jump in electrostatic

pressure across the jet surface (hereafter this is called the electrostatic pressure for
brevity), fet = 4χEtqh−1

[1 + (∂h/∂z)2] is the tangential electrostatic force and Φ =
τzz − τrr is the first normal stress difference.

At the initial time t= 0, a small harmonic disturbance is imposed on the surface of
the jet, i.e.

h(z, t= 0)=

√
1−

ε2
0

2
+ ε0 cos(kz), (2.21)
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u(z, t= 0)= τzz(z, t= 0)= τrr(z, t= 0)= 0, (2.22)
q(z, t= 0)= 1, (2.23)

where ε0 is the initial amplitude of the disturbance, and k is the non-dimensional axial
wavenumber. The value of ε0 is supposed to be small. In the calculation we take
ε0 = 0.05.

Due to periodicity and symmetry, only a half-wavelength segment of the jet is
calculated. At the ends of the segment z = 0 and z = λ/2, where λ = 2π/k is the
wavelength of the disturbance, the following periodic boundary conditions are used:

∂h
∂z
(z= 0, t)=

∂h
∂z

(
z=
λ

2
, t
)
= 0, (2.24)

u(z= 0, t)= u
(

z=
λ

2
, t
)
= 0, (2.25)

∂τzz

∂z
(z= 0, t)=

∂τzz

∂z

(
z=
λ

2
, t
)
= 0, (2.26)

∂τrr

∂z
(z= 0, t)=

∂τrr

∂z

(
z=
λ

2
, t
)
= 0, (2.27)

∂q
∂z
(z= 0, t)=

∂q
∂z

(
z=
λ

2
, t
)
= 0, (2.28)

∂φ,a

∂z
(r, z= 0, t)=

∂φ,a

∂z

(
r, z=

λ

2
, t
)
= 0. (2.29)

3. Numerical results
A hybrid algorithm is used to solve the coupled flow field and electric field in

this problem. That is, the 1-D equations (2.14)–(2.19) are solved using an implicit
finite-difference scheme with adaptive mesh refinement technique, and the Laplace
equation (2.7) is solved using the boundary element method with the boundary
conditions (2.8), (2.12), (2.13) and (2.29). The procedure is as follows: first, the
normal electric fields En and Ean and the tangential electric field Et at time t= tn are
assigned to the discretized 1-D equations (the momentum equation and the surface
charge conservation equation) to calculate the jet radius h, the axial velocity u, the
polymeric stress components τzz and τrr and the surface charge density q at time
t = tn+1; then, the obtained jet radius h and surface charge density q are used in
the boundary conditions of the electric field to calculate the electrical potentials at
t = tn+1; subsequently, the electric fields En, Ean and Et at t = tn+1 are calculated
and substituted into the 1-D equations to update the values of h, u, τzz, τrr and q
at t = tn+1. The iteration goes on until all the quantities converge to a requested
accuracy. The calculation is stopped when the minimum radius of the jet drops below
0.01 for beads-on-a-string structures or the quantities alter too violently for spike or
quasi-spike structures. The validity of the code has been checked by comparing with
the results in Li et al. (2016).

The values of the dimensionless parameters are estimated in the following way.
Consider a dilute polymer aqueous solution of density 1000 kg m−3, zero-shear
viscosity 0.01 Pa s, stress relaxation time 0.5 ms and surface tension 0.05 N m−1.
The radius of the jet is 100 µm. Thus we have Oh = 0.14 and De = 3.5. Recalling
that the Ohnesorge number is essentially the ratio of the viscous–capillary time scale
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tν = η0R/σ to the inertia–capillary time scale tc (Turkoz et al. 2018), a value as
small as 0.14 indicates that viscosity is a factor less important than surface tension
in the situation considered here. The Deborah number is the ratio of the stress
relaxation time λ to the capillary time tc, and a value of 3.5 indicates that elasticity
is comparable to capillarity. As to the solvent to solution viscosity ratio, with loss
of generality, we take β = 0.1. In addition, the radius ratio of the grounded electrode
to the jet, b= R0/R, is set to 5. In the calculation these four dimensionless numbers
(Oh, De, β and b) remain unchanged. What we are concerned about is the other
four parameters, among which, the axial wavenumber k must be smaller than the
corresponding cutoff wavenumber, the electrical Bond number χ varies from 0 to 0.8,
the relative electrical permittivity εr ranges from 3 to 80 and the relative electrical
relaxation time τ from 0.001 to 100.

3.1. Linear instability of an electrically charged, poorly conducting, viscoelastic
liquid jet

Linearizing the 1-D equations (2.14)–(2.19) and substituting the following normal
mode decomposition into them,

h = 1+ ĥ exp(ωt+ ikz), (3.1)
u = û exp(ωt+ ikz), (3.2)
τzz = τ̂zz exp(ωt+ ikz), (3.3)
τrr = τ̂rr exp(ωt+ ikz), (3.4)

q = 1+ q̂ exp(ωt+ ikz), (3.5)

where the hat denotes the initial amplitude of the disturbance, ω is the complex
frequency with the real part ωr the temporal growth rate and the imaginary part ωi
the speed of wave propagation and i is the imaginary unit, one obtains the dispersion
relation

ω

(
ω+ 3βOhk2

+
3(1− β)Ohk2

1+ωDe
+
χΞk2(2+ k∆)
ωζ + τεr

)
−

1
2

k2(1− k2)

+χk2 ξ

ζ

(
εr + 2Ξ −

τεrΞ(2+ k∆)
ωζ + τεr

)
= 0, (3.6)

where

∆=
I1(k)K0(kb)+K1(k)I0(kb)
I0(k)K0(kb)−K0(k)I0(kb)

, ξ = 1+ k∆, ζ = εr −
I0(k)
I1(k)

∆, Ξ =
I0(k)
kI1(k)

,

(3.7a−d)

In(x) and Kn(x), n= 0, 1, are the nth-order modified Bessel functions of the first and
second kinds, respectively. Letting τεr→∞ in (3.6), one gets the dispersion relation
for the perfectly conducting case,

ω

(
ω+ 3βOhk2

+
3(1− β)Ohk2

1+ωDe

)
−

1
2

k2(1− k2
− 2χ(1+ k∆))= 0. (3.8)

Further, in the absence of an electric field, equation (3.8) reduces to that for a non-
electrified viscoelastic liquid jet, i.e.

ω

(
ω+ 3βOhk2

+
3(1− β)Ohk2

1+ωDe

)
−

1
2

k2
(
1− k2

)
= 0. (3.9)
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Effect of finite conductivity on charged viscoelastic jets 15

If De= 0 in (3.6), (3.8) or (3.9), these dispersion relations become the corresponding
ones for purely viscous liquid jets.

Abandoning the slender body approximation, one can derive a dispersion relation
for the 2-D linear instability of the jet. Substituting the normal mode decomposition
into the governing equations and boundary conditions (2.1)–(2.12) and omitting the
high-order terms, one obtains a set of linear homogeneous equations. To ensure the
equations have non-trivial solutions, the determinant of the coefficient matrix should
be zero, which yields the dispersion relation (Li, Yin & Yin 2011)∣∣∣∣∣∣∣∣∣∣∣∣∣∣

kI1(k) iI1(l) 0 −ω

2ikI1(k) −

(
1+

l2

k2

)
I1(l)

2iχ I0(k)
kC∗ζ I1(k)

2iχ I0(k)
kC∗ζ I1(k)

ξ

−ωI0(k)− 2C∗k2I′1(k) −2iC∗lI′1(l) 2χ
(

1−
εr

ζ

)
1− k2

−
2χεrξ

ζ

−k2I′1(k) −ilI′1(l) ω+
εrτ

ζ

εrτξ

ζ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

(3.10)

where

C∗ =Oh
1+ βωDe
1+ωDe

, l=
√

k2 +
ω

C∗
, (3.11a,b)

in which the prime denotes the first derivative of the Bessel function with respect
to the argument, i.e. I′1(x) = I0(x) − 1/xI1(x). Ruo et al. (2012) considered a more
complicated model taking into account the effect of the inertial force, the surrounding
gas and a constant basic axial elastic tension. Mohamed et al. (2015) investigated the
transition from convective to absolute instability of a viscoelastic jet in the presence of
unrelaxed axial elastic tension, and they pointed out that the effects of the unrelaxed
tension were not accounted for correctly in Ruo et al. (2012). On the other hand,
some simpler models can be directly obtained from (3.10). For instance, if the product
of τ and εr approaches infinity, the dispersion relation (3.10) reduces to the one for
perfectly conducting, viscoelastic liquid jets (Li et al. 2011; Yang, Liu & Fu 2012; Li
et al. 2016). If De is equal to zero, the parameter C∗ in (3.10) is replaced by Oh, and
the dispersion relation becomes the one for poorly conducting, purely viscous liquid
jets as derived by López-Herrera, Riesco-Chueca & Gañán-Calvo (2005).

The comparison of the 1-D slender body approximation with the 2-D result is
shown in figure 2. As shown in the figure, both the 1-D and 2-D results predict the
suppression of the electric field to the temporal growth rate ωr at small wavenumbers.
However, the 1-D approximation overestimates the suppression effect of the electric
field.

3.2. Different structures and their domains in the k–χ plane
Four different structures are detected in the simulation, i.e. the beads-on-a-string
structure with satellite droplets, the beads-on-a-string with no satellite droplets, the
quasi-spike structure and the spike structure. The profiles of these structures are shown
in figure 3(b–e), respectively. As illustrated in the figure, for the beads-on-a-string
structure with no satellite droplets, the jet evolves into a morphology of main droplets
connected by a fine filament. For the beads-on-a-string structure with satellite droplets,
small secondary droplets appear between large primary ones. The singular spike
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k

1.5 2.0

FIGURE 2. The temporal growth rate ωr versus the axial wavenumber k for different
values of the electrical Bond number χ , χ = 0 (@), 0.2 (A), 0.4 (E), 0.6 (C), 0.8 (6)
and 1.0 (B). The solid lines are the 1-D results, and the dashed lines are the 2-D results.
Oh= 0.14, β = 0.1, De= 3.5, εr = 3, τ = 0.1, b= 5.
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ç

(a)

FIGURE 3. (Colour online) (a) The domains in the k-χ plane. The symbols represent
the data points being calculated. Squares: the beads-on-a-string structure with satellite
droplets; circles: the beads-on-a-string structure with no satellite droplets; triangles: the
quasi-spike structure; diamonds: the spike structure. Solid line: the fitted result of the
cutoff wavenumbers; dashed line: the fitted result of the most unstable wavenumbers,
according to linear theory. Oh=0.14, β=0.1, De=3.5, εr=3, τ =0.1, b=5. The profiles
of (b) the beads-on-a-string structure with satellite droplets, (c) the beads-on-a-string
structure with no satellite droplets, (d) the quasi-spike structure and (e) the spike structure.
In (b–e), a two-wavelength segment of the jet is plotted.

structure is characterized by pointed spikes quickly formed before the jet undergoes
unidirectional elongation. The quasi-spike structure also exhibits singularity, for
which the shape of the droplets becomes abnormal, like a blunt spike, with an almost
infinite slope at some points (see where the arrow points at in figure 3(d)). Further
development of the quasi-spike structure cannot be predicted by the present 1-D
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Effect of finite conductivity on charged viscoelastic jets 17

model, for the 1-D model prohibits infinite slopes and requires that the quantities
h, u, τzz, τrr and q be single-valued functions of the axial coordinate z. From a
physical point of view, the quasi-spike structure can be regarded as a transitional
morphology between the beads-on-a-string and the spike structures. It was not found
in the previous study of perfectly conducting jets (Li et al. 2016, 2017b). Therefore
its formation is naturally attributed to finite conductivity of the liquid.

The domains of the structures in the k–χ plane are shown in figure 3(a). In the
parametric plane, the beads-on-a-string structure with satellite droplets is located at
small axial wavenumbers and small electrical Bond numbers. When k exceeds 0.5,
satellite droplets disappear and only main droplets stay on the filament. The quasi-
spike or spike structure may arise at a value of the electrical Bond number χ as small
as 0.2. When χ is increased to 0.4, the beads-on-a-string structure disappears over all
axial wavenumbers. When χ is further increased to 0.6, only the spike structure exists.
In general, the existence of the electric field damages beads-on-a-string structures and
leads to the formation of quasi-spike or spike structures, and obviously the charge
level does not necessarily have to be high.

To reveal the mechanisms in the formation of different structures, the properties of
the jet at the late stages are shown in figure 4, where the axial wavenumber k= 0.8.
In the figure, due to periodicity and symmetry, the physical quantities are illustrated
only over a half-wavelength distance in the axial direction. In the left column, the
electric field is small (χ = 0.2), and a beads-on-a-string structure with no satellite
droplets is developed; in the middle column, χ is increased to 0.4, and a quasi-spike
structure is formed; in the right column, where χ is as large as 0.8, a spike structure
is observed. For the beads-on-a-string structure, the filament undergoes uniaxial
elongation and the jet is fully stretched. The liquid in the filament is directed into
the droplet continuously, the thickness of the filament decreases monotonically and
the droplet oscillates periodically. For the quasi-spike structure, an irregular droplet
with a relatively thick filament is formed. The droplet experiences no oscillation and
is elongated monotonically in the radial direction. For the spike structure, the droplet
becomes more irregular with a pointed spike. For the beads-on-a-string structure, the
axial elongation results in a large first normal stress difference τzz− τrr in the filament.
For the spike structure, the first normal stress difference in the entire jet is small.

As shown in the figure, the distributions of the electric fields are quite different
in three structures. Particularly, in the beads-on-a-string structure, the normal electric
field Ean is large and increases mildly towards the peak of the droplet; in the quasi-
spike structure, Ean is larger and increases more rapidly towards the peak; in the spike
structure, Ean increases much more rapidly and becomes much larger at the peak.
Another difference lies in the tangential electric field Et, which is visibly non-zero in
the filament of the beads-on-a-string structure, near the peak of the droplet of the spike
structure and becomes non-negligible in both the droplet and the filament of the quasi-
spike structure. As a result, in the beads-on-a-string structure, a non-zero tangential
electrostatic force fet exists in the filament, which is particularly large in the corner
region joining the droplet to the filament. It serves as a resistance force, preventing
the liquid in the filament from getting into the droplet and hindering the thinning
of the filament. The electrostatic pressure pe is negligible in the whole jet, and the
capillary force pσ is responsible for the formation of the beads-on-a-string structure.
The great jump of the electro-capillary pressure pσ + pe in the corner region results
in a large negative pressure gradient there, which results in the continuous drainage
of the filament. For the quasi-spike structure, the electro-capillary pressure pσ + pe in
the droplet is small, whereas the tangential electrostatic force fet is extremely large at
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FIGURE 4. (Colour online) Comparison between different structures, where h is the jet
radius, u is the axial velocity, τzz − τrr is the first normal stress difference, En is the
normal electric field intensity, Et is the tangential electric field intensity, pσ is the capillary
pressure, pe is the electrostatic pressure, pσ + pe is the electro-capillary pressure and fet is
the tangential electrostatic force. Due to periodicity and symmetry, only a half-wavelength
segment of the jet is shown. (a) The beads-on-a-string structure with no satellite droplets
at time t= 45, χ = 0.2, k= 0.8, εr = 3, τ = 0.1; (b) the quasi-spike structure at t= 27.05,
χ = 0.4, k = 0.8, εr = 3, τ = 0.1; (c) the spike structure at t = 8.131, χ = 0.8, k = 0.8,
εr = 3, τ = 100. Oh= 0.14, β = 0.1, De= 3.5, b= 5.

the singular point where the slope of the droplet surface rises abruptly. This tangential
electrostatic force acts to push the liquid towards the peak and promotes the formation
of the quasi-spike structure. In the study of perfectly conducting jets (Li et al. 2017b),
the jet is equipotential all the time and the tangential electrostatic force is absent, and
as a consequence the quasi-spike structure is not formed. For the spike structure, the
electrostatic pressure pe can be very large in the neighbourhood of the peak. So is the
capillary pressure pσ , but with the opposite sign. The interplay of the capillary and
electrostatic forces, with a negative gradient near the peak, tries to enhance the radial
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FIGURE 5. (Colour online) Effect of finite conductivity on the transition between
structures: (a–d) τ = 0.1; (e–h) εr = 3. Oh= 0.14, β = 0.1, De= 3.5, b= 5.

deformation of the droplet. The negative tangential electrostatic force fet accelerates
the formation of the spike structure as well. In general, the tangential electric field
appears to play different roles in the formation of different structures: it hinders the
thinning of the filament in the beads-on-a-string structure, accounts for the emergence
of the quasi-spike structure and accelerates the formation of the spike structure.

3.3. Effect of finite conductivity on the beads-on-a-string structure
In this 1-D model, finite conductivity is represented by two dimensionless parameters,
i.e. the relative electrical permittivity εr and the relative electrical relaxation time
τ . The larger the product of εr and τ , the larger the conductivity of the liquid.
The calculation result shows that varying the value of εr or τ may influence the
formation of the beads-on-a-string structure. For instance, decreasing εr may shrink
satellite droplets or eliminate them entirely, as shown in figure 5(a,b). In addition,
decreasing εr may lead to the collapse of the beads-on-a-string structure and the
emergence of the quasi-spike structure, as shown in figure 5(c,d). Decreasing τ may
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FIGURE 6. (Colour online) Time evolution of (a,c) the jet radius h, and (b,d) the first
normal stress difference Φ(= τzz− τrr) at the midpoint of the filament. Oh= 0.14, β = 0.1,
De= 3.5, b= 5.

also remove secondary or higher-order droplets from a beads-on-a-string structure,
see figure 5(e–h).

In our previous study of perfectly conducting viscoelastic liquid jets (Li et al.
2016), we found that under the action of the radial electric field, the decrease in
the filament thickness and the increase in the first normal stress difference deviate
a little from (are slower than) the 1/3De exponential law of the non-electrified jets
(Chang et al. 1999; Clasen et al. 2006; Ardekani et al. 2010). Unexpectedly, here the
thinning of leaky dielectric liquid jets is another scenario. As shown in figure 6, for
a poorly conducting liquid jet, the filament thins with time, basically following the
1/3De law. Moreover, varying the value of εr or τ influences the trend little. This
is understandable, considering that in the finite conductivity case, the electrostatic
pressure pe is extremely small in the entire jet; the tangential electrostatic force fet is
non-zero, but compared with the large gradients of the capillary pressure pσ and the
first normal stress difference τzz− τrr at the corner joining the droplet to the filament,
it is of secondary importance (see figure 4(a)).

In the beads-on-a-string structure, due to the interplay between viscoelastic, inertial,
capillary and electrostatic forces, the droplets undergo periodic oscillations with
time-decreasing amplitude. The effect of finite conductivity on the oscillation of the
main droplets is shown in figure 7, where the radius of the jet at the peak position,
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FIGURE 7. (Colour online) Effect of (a) the relative electrical permittivity εr and (b) the
relative electrical relaxation time τ on the time evolution of the jet radius at the peak hp.
Oh= 0.14, β = 0.1, De= 3.5, b= 5.

εr 2 5 10 20 3 3 3
τ 0.1 0.1 0.1 0.1 0.001 0.01 0.1
t1D 5.22 5.30 5.32 5.53 4.96 5.24 5.24

TABLE 1. The period of oscillation of the droplet, t1D, for different values of the relative
electrical permittivity εr and the relative electrical relaxation time τ , extracted from
figure 7.

hp, is drawn as a function of time t. It can be seen in the figure that as εr or τ
increases, both the amplitude and the period of oscillation of the droplet increase
slightly. The period of oscillation, t1D, is extracted from the figure and collected
in table 1. According to linear theory, for an isolated viscoelastic liquid droplet of
the same volume, in the absence of an electric field, the period of oscillation is
approximately 5.22 (Khismatullin & Nadim 2001; Brenn & Teichtmeister 2013; Li,
Yin & Yin 2017a). In the beads-on-a-string structure, Li et al. (2017a) detected that
the period of oscillation of the droplet decreases with time due to the existence of the
filament, which exerts an extra time-increasing resistance force on the droplet. The
resistance force leads to an increase in energy dissipation in the droplet. For a purely
viscous droplet, with the increase in energy dissipation, the frequency of oscillation of
the droplet is decreased. However, for a non-Newtonian viscoelastic liquid droplet, the
frequency of oscillation can be increased (Brenn & Teichtmeister 2013). By contrast,
as shown in table 1, in the presence of the electric field, the period of oscillation
is larger than that of its non-electrified counterpart in most situations. The electric
field is the only possible factor accounting for this opposite tendency. In addition,
the tendency that increasing εr or τ slightly increases the period of oscillation is
coincident with that found in the study of oscillations of isolated electrically charged
viscoelastic droplets of finite conductivity (Li, Yin & Yin 2019).

3.4. Effect of finite conductivity on the spike structure
Typical evolution of the spike structure is shown in figure 8, where the shape of the jet
is drawn for a sequence of time instants. As shown in the figure, when sharp spikes
are formed, the jet is still thick everywhere, there being no thin filament visible. The
spikes exhibit a self-similar characteristic. The similarity in the spike structure has
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FIGURE 8. (Colour online) Formation of the spike structure; χ = 0.8, k = 0.8, εr = 10,
τ = 0.1, Oh= 0.14, β = 0.1, De= 3.5, b= 5.

been examined by Wang et al. (2009) for the highly viscous case and by Li et al.
(2017b) for the viscoelastic case.

The effect of finite conductivity on the time evolution of the spike structure is
illustrated in figure 9, for the axial wavenumber k = 0.8 and the electrical Bond
number χ = 0.8. As shown in figure 9(a,b), linear theory predicts that the temporal
growth rate ωr increases slightly with εr or τ increasing, indicating that the jet is
more unstable for larger εr or τ . The tendency at the nonlinear stages is similar.
As shown in figure 9(c,d), the radius of the jet at the peak position, hp, increases
faster at larger values of εr or τ . That is, increasing the conductivity of the liquid
accelerates the formation of the spike structure. In these two plots, the linear results
are also shown (the dashed lines) for comparison.

To better understand the effect of finite conductivity on the development of the spike
structure, the distributions of the electro-capillary pressure pσ + pe and the tangential
electrostatic force fet along the z axis at different time instants t= 3, 5, 7 are illustrated
in figure 9(e–j), for different values of εr and τ . It can be seen that both pσ + pe and
fet increase with time, regardless of the value of εr or τ . Relatively, the tangential
electrostatic force fet grows much faster. At t = 3, fet is approximately one order of
magnitude smaller than the electro-capillary pressure gradient. As time proceeds, fet

becomes comparable to the gradient of pσ + pe (see the lines for t= 7). Spatially, in
most situations, the electro-capillary pressure pσ + pe increases monotonically along
the z axis, resulting in a negative pressure gradient which drives the flow towards the
peak and promotes the deformation of the jet. Moreover, as εr or τ increases, pσ +
pe varies more mildly along the z axis, indicating that the electro-capillary pressure
gradient is larger for less conducting liquids. The tangential electrostatic force also
decreases as εr or τ increases, much faster than the electro-capillary pressure gradient.
When εr is as large as 80 or τ as large as 100, fet can even become negative at large
times, as shown in figure 9(i,j), serving as a force pushing the liquid towards the peak.
Nevertheless, fet is generally greater than zero. Different from the negative gradient
of the electro-capillary pressure, this positive tangential electrostatic force tends to
drive the flow away from the peak and inhibit the deformation of the jet. Due to
the suppressing effect of the tangential electrical force on jet deformation, the spike
structure forms more slowly for less conducting liquids, as shown in figure 9(c,d).
In § 3.2, we conclude that the tangential electrical force accelerates the formation of
spike structure. The results shown in figure 9 seem to be against this statement. But
in § 3.2 what we examine is the late stages of the evolution of the spike structure,
and here it is the early stages prior to the rapid increase in jet radius at the peak
position. There is no paradox. These findings just reflect that the tangential electrical
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FIGURE 9. (Colour online) Effect of finite conductivity on the evolution of the spike
structure. Variation of the temporal growth rate ωr with (a) the relative electrical
permittivity εr and (b) the relative electrical relaxation time τ , according to linear theory.
Time evolution of the radius of the jet at the peak, hp, for different values of (c) εr and
(d) τ . (e–j) Distributions of the electro-capillary pressure pσ + pe (lines with a circle) and
the tangential electrostatic force fet (lines with a square) at different time instants, (e, f )
t= 3, (g,h) t= 5, (i,j) t= 7. In (e,g,i), the results for εr = 2 (solid lines), 5 (dashed lines),
80 (dash-dotted lines) and τ = 0.1 are represented; in ( f,h,j), the results for τ = 0.1 (solid
lines), 1 (dashed lines), 100 (dash-dotted lines) and εr=3 are represented. χ =0.8, k=0.8,
Oh= 0.14, β = 0.1, De= 3.5, b= 5.
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FIGURE 10. (Colour online) Variation of (a) the shape of the jet and (b) the electrical
potential at the surface of the jet, φs, for a sequence of time instants (numbered from
1 to 10) during the evolution process of the beads-on-a-string structure with no satellite
droplets, the case of large conductivity, εr = 80, τ = 100. χ = 0.1, k = 0.9, Oh = 0.14,
β = 0.1, De= 3.5, b= 5.

force plays different roles at the early and late stages during the evolution of the spike
structure.

3.5. Difference between the finite conductivity, large conductivity, infinite conductivity
and constant-voltage cases

The finite conductivity case refers to the leaky dielectric model studied in this work,
in which the conductivity of the liquid is moderate or poor, i.e. τεr has a small
limited value. In the large conductivity case, τεr is large but still limited, where the
leaky dielectric theory applies. The infinite conductivity case is the limit of the large
conductivity case when τεr approaches infinity. In the infinite conductivity case, the
liquid is practically a perfect conductor. Over a distance of one wavelength in the axial
direction, all the finite, large and infinite conductivity cases obey the conservation law
of surface charge given by (2.4), but the electrical potential at the surface of the jet
varies as the jet deforms. In Li et al. (2016, 2017b), the liquid is a perfect conductor
and a constant voltage is imposed on the jet (which is referred to as the constant-
voltage case). In such a case, as the jet deforms, the electrical potential of the jet
remains unchanged, but charges are not conserved within a one-wavelength distance,
different from the infinite conductivity case here. For a perfectly conducting liquid
jet, surface charge conservation seems incompatible with constant electrical potential,
owing to the fact that the jet is deforming.

Figure 10 shows the shape of the jet and the electrical potential at the surface of
the jet at different time instants during the evolution of the beads-on-a-string structure
with no satellite droplets, for the large conductivity case εr = 80 and τ = 100. Clearly,
at the initial time t = 0 (the line labelled ‘1’), the electrical potential at the surface
of the jet, φs, is uniform with a value of 1.6094 (i.e. ln b with b= 5), equal to that
of the corresponding constant-voltage case. At the times labelled ‘2’, ‘3’ and ‘4’, the
surface of the jet remains equipotential but the potential is not equal to the initial
value anymore. At the larger times labelled ‘5’ to ‘10’, the jet becomes visibly non-
equipotential. Based on the tendency illustrated in figure 10, it is predicted that in the
infinite conductivity case the jet remains equipotential at larger deformations, but the
potential at the jet surface varies with time, different from the constant-voltage case.
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The comparison of the finite conductivity case with the large conductivity case is
shown in figure 11, for the electrical Bond number χ = 0.3 and the axial wavenumber
k = 0.6. (a) shows the properties of the jet in the finite conductivity case εr = 3,
τ = 0.1, and (b) shows the results for the large conductivity case εr = 80, τ = 100.
In the large conductivity case, a beads-on-a-string structure with satellite droplets is
developed. By contrast, in the finite conductivity case, satellite droplets disappear, and
main droplets are deformed and elongated in the radial direction, with a quasi-spike
structure ultimately formed. As illustrated in the figure, the distributions of the
properties of the two structures, such as the axial velocity, the first normal stress
different, the normal and tangential electric fields, as well as the forces, are quite
different from each other. In particular, the surface charge density q in the filament
is much larger than that in the droplet in the large conductivity case, whereas in the
finite conductivity case, the surface charge density in the droplet is large and in the
filament is nearly zero. The difference of the normal electric field Ean between the
two cases is similar. In the finite conductivity case, the electrostatic pressure pe is
small everywhere, but in the large conductivity case, it can be large in the filament.
In the large conductivity case, the non-uniform electro-capillary pressure pσ + pe in
the filament exerts an extra drag force which intends to hinder the thinning of the
filament as in the constant-voltage case (Li et al. 2016). In the finite conductivity
case, a sharp pulse of the tangential electrostatic force fet exists at the singular point
with extremely large surface slope, which results in the formation of the quasi-spike
structure. Differently, in the large conductivity case, the tangential electrostatic force
in the droplet is negligible, but in the filament it can be large and basically acts as
a drag during the thinning of the filament.

4. Experimental observation of spike structures

To the best of our knowledge, the singular spike structure resulting from the large
radial elongation of droplets during the nonlinear evolution of an electrified viscous
or non-Newtonian liquid jet has not been observed in experiments yet. Motivated by
this, we perform a preliminary experimental observation of the spike structure. The
schematic of the experimental set-up is shown in figure 12. In the experiment, a liquid
jet is injected by a syringe into the air from a stainless steel needle of inner diameter
0.21 mm. The needle is connected to a high-voltage electric source. A high-speed
camera with a macro lens in front of it is used to capture the motion of the jet.
The frame rate is 105 fps. To facilitate the observation, two parallel plane grounded
electrodes instead of an annular grounded electrode surround the needle at a distance
of 5.5 mm (when the parallel plane electrodes are far enough away from the needle,
the electric field is nearly radial).

Four different liquids are tested in the experiment: distilled water (small viscosity
and large surface tension), ethanol (small viscosity and small surface tension), a
mixture of ethanol and glycerol (large viscosity and small surface tension) and a
slightly viscoelastic aqueous solution of polyethylene oxide (PEO, molecular weight
2× 106). As shown in figures 13 and 14, for ethanol or the ethanol–glycerol mixture,
whose surface tension is small, when an sufficiently large electric voltage is imposed
on the jet, the continuous radial elongation of droplets and the resulting pointed spikes
quite similar to those predicted by the 1-D model are observed in the experiment.
However, for water or the viscoelastic PEO aqueous solution, whose surface tension is
large, the formation of spikes is not observed, because corona discharge occurs before
the electrostatic force is large enough to overcome the capillary force and trigger the
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FIGURE 11. (Colour online) Comparison between the finite conductivity case εr = 3,
τ = 0.1 (a) and the large conductivity case εr = 80, τ = 100 (b). In the figure, h is the
jet radius, u is the axial velocity, τzz − τrr is the first normal stress difference, φs is the
electrical potential at the jet surface, q is the surface charge density, Ean is the normal
electric field intensity in the air, En is the normal electric field intensity in the liquid, Et
is the tangential electric field intensity at the surface, pσ is the capillary pressure, pe is
the electrostatic pressure, pσ + pe is the electro-capillary pressure and fet is the tangential
electrostatic force. χ = 0.3, k= 0.6, Oh= 0.14, β = 0.1, De= 3.5, b= 5.
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FIGURE 12. Schematic of the experimental set-up.

100 µm

t = 0 ms t = 0.21 ms t = 0.34 ms t = 0.60 ms t = 0.82 ms

FIGURE 13. Formation of spike structure on the liquid jet of ethanol at electric voltage
6.3 kV and flow rate 2500 µl min−1.

occurrence of spikes. In the future we will conduct a systematic experimental study
on spike structures.

In addition, an interesting phenomenon observed in the experiment is the secondary
break-up of a spike occurring at its periphery, as illustrated in figures (13) and (14).
Also note that, prior to this secondary break-up, the spike may be fully elongated in
the radial direction and develop an extremely oblate configuration, which is possibly
due to the radial flow in it. A close-up in figure 15 clearly shows that tens of fine jets
are emitted from the periphery of the spike. These jets undergo the Rayleigh instability
and are expected to break up into super-small droplets ultimately, although the details
of break-up and the resulting droplets are indiscernible in the figure due to the poor
resolution. The second break-up of the spike structure and the subsequent atomization
is apparently three-dimensional and cannot be predicted by a simplified 1-D model. It
is of interest to study theoretically and experimentally this instability as well as the
effect of the relevant factors including inertia, electric field and viscoelasticity on it.
Many open problems remain in the formation and subsequent break-up of the spike
structure.
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100 µm

t = 0 ms t = 0.21 ms t = 0.28 ms t = 0.34 ms t = 0.65 ms

FIGURE 14. Formation of spike structure on the liquid jet of a mixture of ethanol and
glycerol at electric voltage 6.4 kV and flow rate 3000 µl min−1.

FIGURE 15. Secondary break-up of a spike with the emission of tens of ultra-fine jets
from its periphery.

5. Conclusion
In this work a 1-D model is built to numerically study the nonlinear dynamics

of an electrically charged viscoelastic liquid jet of finite conductivity. The effect
of the charge level, axial wavenumber and finite conductivity on the nonlinear
behaviour of the viscoelastic jet is explored. Four different structures, i.e. the
beads-on-a-string structure with satellite droplets, the beads-on-a-string structure with
no satellite droplets, the quasi-spike structure and the spike structure, are identified.
At small charge levels, the perturbed jet evolves into a quasistatic beads-on-a-string
structure with satellite droplets at small wavenumbers and with no satellites at large
wavenumbers; at large charge levels, an unstable quasi-spike or spike structure is
formed. The quasi-spike structure occurs only in the finite conductivity case, in
which the non-zero tangential electrostatic force is responsible for its formation. The
tangential electrostatic force also plays a role in the formation of the beads-on-a-string
and the spike structures: for the former, it hinders the thinning of the filament; for
the latter, it accelerates the formation of spikes at the late stages. Finite conductivity
may also decrease the size of satellite droplets in the beads-on-a-string structure
and leads to the transition from beads-on-a-string to quasi-spike structure. In the
finite conductivity case the thinning of the filament in the beads-on-a-string structure
deviates little from the 1/3De exponential law of non-electrified viscoelastic jets.
A comparison between the finite conductivity and large conductivity cases is made.
It is found that, in the large conductivity case, the axial non-uniformity of the forces,
including the first normal stress difference, the capillary pressure, the electrostatic
pressure and the tangential electrical force are remarkable, whereas in the finite
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conductivity case their distributions are almost uniform in the filament. In addition, a
preliminary experiment is carried out to observe spikes. The spike structure captured
in the experiment is similar in appearance to that predicted by the 1-D model.

Under the slender body approximation, the flow field is simplified in the present 1-D
model. On the other hand, the experimental result proves that when the deformation
of the droplets gets large, the 2-D effect becomes significant, and in such a case the
use of the 1-D model inevitably introduces inaccuracy. The actual 2-D motion of the
liquid at large deformations is of particular interest. To test the validity of the 1-D
model and to explore the 2-D nonlinear dynamics of electrically charged viscoelastic
liquid jets, a robust 2-D algorithm needs to be developed.
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Appendix A. The derivation of the 1-D equations

Considering symmetry, in the cylindrical coordinate system, the continuity equation
is

1
r
∂

∂r
(rv)+

∂u
∂z
= 0, (A 1)

the momentum equation in the radial direction is

ρ
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, (A 2)

where τrz and τθθ are the rz− and θθ− components of the polymeric stress tensor τp,
respectively, and in the axial direction is
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, (A 3)

and the constitutive equations for the polymeric stress components τrr, τθθ , τzz and τrz

are
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The kinematic boundary condition at the jet surface r= h(z, t) is

v =
∂h
∂t
+ u

∂h
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, (A 8)

and the normal and tangential dynamic boundary conditions are
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+ τrz

)]
,

(A 9)

and

−Etq

[
1+

(
∂h
∂z

)2
]
+

[
ηs

(
∂v

∂z
+
∂u
∂r

)
+ τrz

] [
1−

(
∂h
∂z

)2
]

+
∂h
∂z

(
2ηs

∂v

∂r
+ τrr − 2ηs

∂u
∂z
− τzz

)
= 0, (A 10)

respectively.
An alternative form of the surface charge conservation equation is

∂q
∂t
+ v ·∇sq− qn · (n · ∇)v −KEn = 0. (A 11)

Let `r be the typical thickness and `z be the typical axial length of the perturbed
liquid jet. When the jet is a slender body, `r is much smaller than `z, that is,

`r = ε`z, (A 12)

where ε is a small parameter. Let ϑ be the typical time scale. In this problem, the
balance of inertia, surface tension, viscoelastic and electrostatic forces indicates that
(Eggers & Villermaux 2008)

η0 ≈ ρ`
2
z/ϑ, σ ≈ ρ`r`

2
z/ϑ

2, λ1 ≈ ϑ, Q2
0/εa ≈ `

2
z/ϑ

2, (A 13a−d)

and

`z ≈ ε`ν, `r ≈ ε
2`ν, ϑ ≈ ε2tν, (A 14a−c)

where `v = η2
0/ρσ and tν = η3

0/ρσ
2.

Using `r, `z and ϑ to non-dimensionalize the quantities, gives

r= `r r̃, z= `zz̃, t= ϑ t̃, h= `rh̃, v = `r
ϑ
ṽ, u=

`z

ϑ
ũ,

p=
ρ`2

z

ϑ2
p̃, τrr =

ρ`2
z

ϑ2
τ̃rr, τθθ =

ρ`2
z

ϑ2
τ̃θθ , τzz =

ρ`2
z

ϑ2
τ̃zz, τrz =

ρ`3
z

ϑ2`r
τ̃rz,

 (A 15)
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where the tilde denotes the corresponding non-dimensional quantities. In addition, the
quantities related to the electric field are non-dimensionalized by Q0 and εa, i.e.

Ean =
Q0

εa
Ẽan, En =

Q0

εa
Ẽn, Et =

Q0

εa

`r

`z
Ẽt, q=Q0q̃. (A 16a−d)

Hence the non-dimensionalized governing equations are expressed as

∂ṽ

∂ r̃
+
ṽ

r̃
+
∂ ũ
∂ z̃
= 0, (A 17)

∂ṽ

∂ t̃
+ ṽ

∂ṽ

∂ r̃
+ ũ

∂ṽ

∂ z̃
= −

1
ε2

∂ p̃
∂ r̃
+ β

1
ε2

(
∂2ṽ

∂ r̃2
+

1
r̃
∂ṽ

∂ r̃
−
ṽ

r̃2

)
+ β

∂2ṽ

∂ z̃2

+
1
ε2

∂τ̃rr

∂ r̃
+

1
ε2

∂τ̃rz

∂ z̃
+

1
ε2

τ̃rr − τ̃θθ

r̃
, (A 18)

∂ ũ
∂ t̃
+ ṽ

∂ ũ
∂ r̃
+ ũ

∂ ũ
∂ z̃
= −

∂ p̃
∂ z̃
+ β

1
ε2

(
∂2ũ
∂ r̃2
+

1
r̃
∂ ũ
∂ r̃

)
+ β

∂2ũ
∂ z̃2

+
1
ε2

∂τ̃rz

∂ r̃
+

1
ε2

τ̃rz

r̃
+
∂τ̃zz

∂ z̃
, (A 19)

τ̃rr +
∂τ̃rr

∂ t̃
+ ṽ

∂τ̃rr

∂ r̃
+ ũ

∂τ̃rr

∂ z̃
− 2τ̃rr

∂ṽ

∂ r̃
− 2τ̃rz

∂ṽ

∂ z̃
= 2(1− β)

∂ṽ

∂ r̃
, (A 20)

τ̃θθ +
∂τ̃θθ

∂ t̃
+ ṽ

∂τ̃θθ

∂ r̃
+ ũ

∂τ̃θθ

∂ z̃
−

2ṽ
r̃
τ̃θθ = 2(1− β)

ṽ

r̃
, (A 21)

τ̃zz +
∂τ̃zz

∂ t̃
+ ṽ

∂τ̃zz

∂ r̃
+ ũ

∂τ̃zz

∂ z̃
− 2

1
ε2
τ̃rz
∂ ũ
∂ r̃
− 2τ̃zz

∂ ũ
∂ z̃
= 2(1− β)

∂ ũ
∂ z̃
, (A 22)

τ̃rz +
∂τ̃rz

∂ t̃
+ ṽ

∂τ̃rz

∂ r̃
+ ũ

∂τ̃rz

∂ z̃
+
τ̃rzṽ

r̃
− τ̃rr

∂ ũ
∂ r̃
− ε2τ̃zz

∂ṽ

∂ z̃
= (1− β)

(
ε2 ∂ṽ

∂ z̃
+
∂ ũ
∂ r̃

)
,

(A 23)

and the non-dimensionalized boundary conditions at the jet surface r̃= h̃(z̃, t̃) are

ṽ =
∂ h̃
∂ t̃
+ ũ

∂ h̃
∂ z̃
, (A 24)

p̃ = −
1
2

[(
Ẽ2

an − Ẽ2
t

)
− εr

(
Ẽ2

n − Ẽ2
t

)]
+ ∇̃ · ñ+

1

1+ ε2

(
∂ h̃
∂ z̃

)2

×

2β
∂ṽ

∂ r̃
+ τ̃rr + ε

2

(
∂ h̃
∂ z̃

)2 (
2β
∂ ũ
∂ z̃
+ τ̃zz

)
− 2

∂ h̃
∂ z̃

(
β

(
ε2 ∂ṽ

∂ z̃
+
∂ ũ
∂ r̃

)
+ τ̃rz

) ,
(A 25)

−Ẽtq̃

1+ ε2

(
∂ h̃
∂ z̃

)2
+ [β (∂ṽ

∂ z̃
+

1
ε2

∂ ũ
∂ r̃

)
+

1
ε2
τ̃rz

] 1− ε2

(
∂ h̃
∂ z̃

)2
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+
∂ h̃
∂ z̃

[
2β
∂ṽ

∂ r̃
+ τ̃rr − 2β

∂ ũ
∂ z̃
− τ̃zz

]
= 0, (A 26)

∂ q̃
∂ t̃
+ ṽ · ∇̃sq̃− q̃ñ · (ñ · ∇̃)ṽ − τεrẼn = 0. (A 27)

Under the slender body approximation, the quantities can be expanded into a Taylor
series of the radial coordinate εr̃ as follows (Chang et al. 1999; López-Herrera et al.
1999; Eggers & Villermaux 2008),

ũ = ũ0(z̃, t̃)+ ũ2(z̃, t̃)
(εr̃)2

2
+ · · · , (A 28)

εṽ = −
∂ ũ0

∂ z̃
(z̃, t̃)

εr̃
2
−
∂ ũ2

∂ z̃
(z̃, t̃)

(εr̃)3

8
+ · · · , (A 29)

p̃ = p̃0(z̃, t̃)+ p̃2(z̃, t̃)(εr̃)2 + · · · , (A 30)
τ̃rr = τ̃rr0(z̃, t̃)+ τ̃rr2(z̃, t̃)(εr̃)2 + · · · , (A 31)
τ̃θθ = τ̃θθ0(z̃, t̃)+ τ̃θθ2(z̃, t̃)(εr̃)2 + · · · , (A 32)
τ̃zz = τ̃zz0(z̃, t̃)+ τ̃zz2(z̃, t̃)(εr̃)2 + · · · , (A 33)

r̃τ̃rz = τ̃rz0(z̃, t̃)+ τ̃rz2(z̃, t̃)(εr̃)2 + · · · . (A 34)

The above expansions of the velocity components ũ and ṽ automatically satisfy
the continuity equation (A 17). Substituting the expansions (A 28)–(A 34) into (A 18)–
(A 27) and keeping only those leading-order terms yields

τ̃rr0 = τ̃θθ0, τ̃rz0 = 0, (A 35)
∂ ũ0

∂ t̃
+ ũ0

∂ ũ0

∂ z̃
=−

∂ p̃0

∂ z̃
+ β

(
2ũ2 +

∂2ũ0

∂ z̃2

)
+ 2τ̃rz2 +

∂τ̃zz0

∂ z̃
, (A 36)

τ̃rr0 +
∂τ̃rr0

∂ t̃
+ ũ0

∂τ̃rr0

∂ z̃
+ τ̃rr0

∂ ũ0

∂ z̃
=− (1− β)

∂ ũ0

∂ z̃
, (A 37)

τ̃θθ0 +
∂τ̃θθ0

∂ t̃
+ ũ0

∂τ̃θθ0

∂ z̃
+ τ̃θθ0

∂ ũ0

∂ z̃
=− (1− β)

∂ ũ0

∂ z̃
, (A 38)

τ̃zz0 +
∂τ̃zz0

∂ t̃
+ ũ0

∂τ̃zz0

∂ z̃
− 2τ̃zz0

∂ ũ0

∂ z̃
= 2(1− β)

∂ ũ0

∂ z̃
, (A 39)

τ̃rz2 +
∂τ̃rz2

∂ t̃
− τ̃rz2

∂ ũ0

∂ z̃
+ ũ0

∂τ̃rz2

∂ z̃
− τ̃rr0ũ2 +

1
2
τ̃zz0

∂2ũ0

∂ z̃2

= (1− β)
(

ũ2 −
1
2
∂2ũ0

∂ z̃2

)
, (A 40)

∂ h̃
∂ t̃
+ ũ0

∂ h̃
∂ z̃
=−

h̃
2
∂ ũ0

∂ z̃
, (A 41)

p̃0 =−
1
2

[
(Ẽ2

an − Ẽ2
t )− εr(Ẽ2

n − Ẽ2
t )
]
+ ∇̃ · ñ− β

∂ ũ0

∂ z̃
+ τ̃rr0, (A 42)

∇̃ · ñ=
11+ ε2

(
∂ h̃
∂ z̃

)2
3/2


1+ ε2

(
∂ h̃
∂ z̃

)2

h̃
− ε2 ∂

2h̃
∂ z̃2

 , (A 43)
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βũ2 + τ̃rz2 =
1
2
β
∂2ũ0

∂ z̃2
+

1

h̃

∂ h̃
∂ z̃

(
3β
∂ ũ0

∂ z̃
− τ̃rr0 + τ̃zz0

)
+

Ẽtq̃

h̃

1+ ε2

(
∂ h̃
∂ z̃

)2
 ,

(A 44)

∂ q̃
∂ t̃
+ ũ0

∂ q̃
∂ z̃
+

q̃
2
∂ ũ0

∂ z̃
− τεrẼn = 0. (A 45)

Substituting the tangential dynamic boundary condition (A 44) into the z−
momentum equation (A 36) to replace the terms related to ũ2 and τ̃rz2 yields

∂ ũ0

∂ t̃
+ ũ0

∂ ũ0

∂ z̃
= −

∂ p̃0

∂ z̃
+ β

(
2
∂2ũ0

∂ z̃2
+

6

h̃

∂ h̃
∂ z̃
∂ ũ0

∂ z̃

)
+

2

h̃

∂ h̃
∂ z̃
(τ̃zz0 − τ̃rr0)

+
∂τ̃zz0

∂ z̃
+

2Ẽtq̃

h̃

1+ ε2

(
∂ h̃
∂ z̃

)2
 . (A 46)

Differentiating the normal dynamic boundary condition (A 42) with respect to z̃
yields

∂ p̃0

∂ z̃
=−

1
2
∂

∂ z̃

[
(Ẽ2

an − Ẽ2
t )− εr

(
Ẽ2

n − Ẽ2
t

)]
+
∂

∂ z̃
(∇̃ · ñ)− β

∂2ũ0

∂ z̃2
+
∂τ̃rr0

∂ z̃
. (A 47)

Finally, substituting (A 47) into (A 46) to replace the pressure gradient there, one
gets

∂ ũ0

∂ t̃
+ ũ0

∂ ũ0

∂ z̃
=

1
2
∂

∂ z̃

[
(Ẽ2

an − Ẽ2
t )− εr(Ẽ2

n − Ẽ2
t )
]
+

2Ẽtq̃

h̃

1+ ε2

(
∂ h̃
∂ z̃

)2


−
∂

∂ z̃

(
∇̃ · ñ

)
+ 3β

1

h̃2

∂

∂ z̃

(
h̃2 ∂ ũ0

∂ z̃

)
+

1

h̃2

∂

∂ z̃

[
h̃2(τ̃zz0 − τ̃rr0)

]
. (A 48)

The equations (A 41), (A 48), (A 43), (A 37), (A 39) and (A 45) constitute our 1-D
system. It should be emphasized that in this 1-D system the full expression of the
curvature is retained and the electric field is not simplified under the slender body
approximation. As other researchers suggested (Ambravaneswaran et al. 2002; Li &
Fontelos 2003; Clasen et al. 2006; Collins et al. 2007; Eggers & Villermaux 2008),
this strategy may ensure the accuracy of the 1-D simulation to a great extent when
the deformation of the jet is large.

The 1-D equations restored to their dimensional form are written as

∂h
∂t
+ u

∂h
∂z
=−

h
2
∂u
∂z
, (A 49)

ρ

(
∂u
∂t
+ u

∂u
∂z

)
=

1
2
∂

∂z

[
εa(E2

an − E2
t )− ε

(
E2

n − E2
t

)]
+

2Etq
h

[
1+

(
∂h
∂z

)2
]

− σ
∂(∇ · n)
∂z

+ 3ηs
1
h2

∂

∂z

(
h2 ∂u
∂z

)
+

1
h2

∂

∂z

[
h2(τzz − τrr)

]
,(A 50)
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∇ · n=
1[

1+
(
∂h
∂z

)2
]3/2


1+

(
∂h
∂z

)2

h
−
∂2h
∂z2

 , (A 51)

τzz + λ1

(
∂τzz

∂t
+ u

∂τzz

∂z
− 2τzz

∂u
∂z

)
= 2ηp

∂u
∂z
, (A 52)

τrr + λ1

(
∂τrr

∂t
+ u

∂τrr

∂z
+ τrr

∂u
∂z

)
=−ηp

∂u
∂z
, (A 53)

∂q
∂t
+ u

∂q
∂z
+

q
2
∂u
∂z
−KEn = 0, (A 54)

where the subscript 0 is dropped for brevity. Now using the radius of the jet R, the
capillary time tc =

√
ρR3/σ , the capillary force σ/R, the zero-shear viscosity η0, the

electric field strength Q0/εa and the electrical permittivity of the air εa as scales to
non-dimensionalize (A 49)–(A 54), one obtains the 1-D equations (2.14)–(2.19) in non-
dimensional form.
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