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This review paper is concerned with the stability analysis of the continuity equation
in the DiPerna–Lions setting in which the advecting velocity field is Sobolev regular.
Quantitative estimates for the equation were derived only recently, but optimality
was not discussed. We revisit the results from our 2017 paper, compare the new
estimates with previously known estimates for Lagrangian flows and demonstrate
how these can be applied to produce optimal bounds in applications from physics,
engineering and numerical analysis.
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1. Introduction

The linear continuity equation is one of the most elementary partial differential
equations. It describes the conservative transport of a quantity by a vector field.
We shall study this equation in a convex and bounded Lipschitz domain Ω in R

d

and denote by ρ(t, x) ∈ R and u(t, x) ∈ R
d the quantity and the vector field,

respectively. (All the results in this work can be extended to arbitrary Lipschitz
domains, the periodic torus or all of R

d with suitable modifications.) For a given
initial configuration ρ̄(x) ∈ R, the Cauchy problem for the continuity equation reads

∂tρ + ∇ · (uρ) = 0 in (0,∞) × Ω,

ρ(0, ·) = ρ̄ in Ω.

}
(1.1)

If the vector field is tangential at the boundary of Ω, which we assume from here
on, the quantity ρ is (formally) conserved by the flow:

∀t > 0,

∫
Ω

ρ(t, x) dx =
∫

Ω

ρ̄(x) dx.

Despite its simplicity, the continuity equation plays an important role in fluid
dynamics and the theory of conservation laws. In typical applications, ρ represents
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mass or number density, temperature, energy or phase indicator. In the following,
we shall frequently refer to ρ as a (possibly negative) mass density, or simply a
density. Note that the vector field has dimensions of length divided by time, and
we shall accordingly often refer to u as a velocity field. In fluids applications, u is
the velocity of the fluid.

There is a close link between the partial differential equation (PDE) (1.1) and
the following ordinary differential equation (ODE):

∂tφ(t, x) = u(t, φ(t, x)),
φ(0, x) = x.

}
(1.2)

While the PDE represents the Eulerian specification of the flow field, i.e. the descrip-
tion of the dynamics at a fixed location and time, the ODE is the Lagrangian
specification, which traces single particles through space and time. The two specifi-
cations are in fact equivalent: in the smooth setting, the solution to the continuity
equation takes the nice form

ρ(t, φ(t, x)) det ∇φ(t, x) = ρ̄(x), or simply ρ(t, ·) = (φ(t, ·))#ρ̄, (1.3)

i.e. ρ is the push-forward of ρ̄ by the flow φ, and a similar formula holds in the
non-smooth setting, as long as (1.1) and (1.2) are well-posed. This superposition
principle is reviewed in [3, § 3]. Note that, for any fixed time t, the mapping φ(t, ·) is
a diffeomorphism on Ω, whose existence is obtained by the classical Picard–Lindelöf
theorem, and det∇φ(t, ·) is the Jacobian determinant, denoted by Jφ(t, ·) in the
following. The solution φ of (1.2) is called the flow of the vector field u.

Outside the smooth setting, well-posedness theory for both the PDE (1.1) and
the ODE (1.2) is more challenging. We focus on the continuity equation from here
on, and we start with a suitable concept of generalized solutions in the case where
ρ̄ ∈ Lq(Ω) for some q ∈ [1,∞]. We call ρ a distributional solution to the continuity
equation (1.1) in the time interval [0, T ] if it conserves the integrability class of the
initial datum ρ ∈ L∞((0, T ); Lq(Ω)) and satisfies

−
∫ T

0

∫
Ω

(∂tζ + u · ∇ζ)ρ dxdt =
∫

Ω

ρ̄ζ(0, ·) dx

for any ζ ∈ C∞
c ([0, T ) × Ω). This distributional formulation is reasonable if u ∈

L1((0, T ); Lp(Ω)) with 1/p + 1/q = 1.
In order to prove the existence of distributional solutions, we shall impose a

condition on the compressibility of the vector field: if u is weakly compressible, i.e.

(∇ · u)− ∈ L1((0, T ); L∞(Ω)), (1.4)

then the existence is easily obtained by approximation with smooth functions. Here
we have used the superscript minus sign to denote the negative part of the diver-
gence.

The questions of uniqueness and continuous dependence on the initial data are
more delicate, and were first answered positively by DiPerna and Lions in their
groundbreaking paper [20]. Their theory is based on a new solution concept: the
theory of renormalized solutions. A renormalized solution is a distributional solution
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ρ with the property that, for any bounded function β ∈ C1(R) with bounded
derivatives and β(0) = 0, the composition β(ρ) satisfies the continuity equation
with source

∂tβ(ρ) + ∇ · (uβ(ρ)) = (∇ · u)(β(ρ) − ρβ′(ρ))

in the sense of distributions. In fact, under the additional assumption that u is in
L1((0, T ); W 1,p(Ω)), DiPerna and Lions showed that distributional solutions are
renormalized solutions. (Their result has been extended by Ambrosio [2] to vector
fields with bounded variation (BV) regularity, and, more recently, by Crippa et
al . [12] to the case where the velocity gradient is given by a singular integral of an
L1 function.) The advantage of this solution concept is apparent: by choosing β(s)
as a suitable approximation of |s|q, we obtain, by integration over Ω, that

d
dt

∫
Ω

|ρ|q dx = −(q − 1)
∫

Ω

(∇ · u)|ρ|q dx � (q − 1)‖(∇ · u)−‖L∞(Ω)

∫
Ω

|ρ|q dx,

and thus, with the help of the Gronwall lemma,

sup
(0,T )

‖ρ‖Lq(Ω) � exp
( ∫ T

0
‖(∇ · u)−‖L∞(Ω) dt

)1−1/q

‖ρ̄‖Lq(Ω). (1.5)

By the linearity of the continuity equation, this estimate implies both uniqueness
and continuous dependence on the initial data.

In addition to proving well-posedness, DiPerna and Lions studied stability under
approximations of the vector fields and under diffusive perturbations of the equa-
tion. (Note that this gives two different ways of regularizing the PDE.) While qual-
itative stability is obtained easily via renormalization, the theory fails to provide
quantitative stability estimates that capture the rate of convergence of approximate
or perturbative solutions to the original equation. Such estimates were recently
developed in [38].

The aim of the present paper is to revisit the stability estimates from [38] and to
reformulate them in a new and optimal way. We shall mainly focus on two aspects.
Firstly, our intention is to compare the new results with earlier achievements in
the theory of Lagrangian flows [11] (which, in fact, strongly inspired the estimates
in [38]). By doing so, we hope to convince the reader that the quantities considered
in [38] appear naturally in the context of continuity equations. Secondly, we shall
present applications of the estimates that allow us to compute optimal convergence
rates in examples of approximate vector fields, zero-diffusivity limits, fluid mixing
and numerical upwind schemes. The last two examples are taken from [36, 37].
We include these results in order to demonstrate the strength of the estimates
from [38], and to underline the intrinsic connection between the respective works
(in particular [37,38]). The first example partly extends the recent analysis in [15].

We conclude this introduction by noting that, as a by-product of the stability
estimates, in [38], a new proof of uniqueness is given for (1.1). This new proof
does not rely on the theory of renormalized solutions but is based solely on the
distributional formulation of the equation. In a way, the theory in [38] is the PDE
counterpart of the quantitative theory for Lagrangian flows developed by Crippa
and De Lellis in [11]. In fact, some of the key estimates were successively transferred
from [11] to [38].
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Notation In the following, we shall use the shorter notation Lr for the Lebesgue
space Lr(Ω), and, similarly, Lr(Ls) for Lr((0, T ); Ls(Ω)). Further function spaces
such as L1(W 1,p) are defined analogously.

We shall omit the domain of integration in the spatial integrals for notational
convenience. For instance, we write

∫
· dx for

∫
Ω

· dx.
We use the sloppy notation a � b if a � Cb for some constant C that may

depend only on the dimension d, the domain Ω or the Sobolev exponent p. We
write a �r1,...,rn b if C also depends on the quantities r1, . . . , rn. Finally, we shall
sometimes use the notation a ∼ b if a � b and b � a.

2. Stability estimates for Lagrangian flows

To motivate our new perspective on the results from [38], we start by recalling
some facts from the theory of particles moving in a weakly compressible fluid. The
trajectory of a particle moving with the flow is given by the solution of the ODE
(1.2). In the classical setting, when the advecting velocity field u is smooth, or at
least Lipschitz continuous in the spatial variable, the existence and uniqueness of
a solution are given by the Picard–Lindelöf theorem. The Lipschitz regularity also
yields simple estimates on the distance between particle trajectories at any time
during the evolution. Indeed, as a consequence of the elementary computation∣∣∣∣ d

dt
|φ(t, x) − φ(t, y)|

∣∣∣∣ � |u(t, φ(t, x)) − u(t, φ(t, y))| � ‖∇u‖L∞ |φ(t, x) − φ(t, y)|

and the Gronwall lemma, we easily derive the estimate

exp
(

−
∫ t

0
‖∇u‖L∞ dt

)
� |φ(t, x) − φ(t, y)|

|x − y| � exp
( ∫ t

0
‖∇u‖L∞ dt

)
. (2.1)

Here we have used Rademacher’s identification of Lipschitz functions with the
Sobolev class W 1,∞, so that ‖∇u‖L∞ is the Lipschitz constant of u. This esti-
mate illustrates the well-known fact that two particles transported by the flow can
neither converge more slowly nor diverge more quickly than exponentially in time.

This classical result can equivalently be rewritten as

−
∫ t

0
‖∇u‖L∞ dt � log

(
|φ(t, x) − φ(t, y)|

|x − y|

)
�

∫ t

0
‖∇u‖L∞ dt, (2.2)

which shows that the velocity gradient controls the logarithmic relative distance
between two particles. Here ‘relative distance’ refers to the actual distance between
particles relative to their initial distance. We shall see in the following that it is the
latter perspective rather than the classical one (2.1) that allows a generalization to
the case of flows for less regular vector fields and to the Eulerian setting.

Note that both the estimates (2.1) and (2.2) contain some information on the
regularity of the flow: the flow itself is spatially Lipschitz uniformly in time, with
the Lipschitz constant depending on the gradient of u.

Instead of tracing the distance between two different particles in a fluid, we
can similarly study the distance between trajectories corresponding to a particle
transported by different vector fields: if φ and φk denote the flows associated via
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(1.2) to the vector fields u and uk, respectively, where uk may be thought of as a
Lipschitz continuous perturbation of u, then a computation similar to that above
yields the estimate

log
(

|φ(t, x) − φk(t, x)|
δ

+ 1
)

�
∫ t

0
‖∇u‖L∞ dt +

1
δ

∫ t

0
‖u − uk‖L∞ dt (2.3)

for any δ > 0. Thus, by choosing δ = δk(t) =
∫ t

0 ‖u − uk‖L∞ dt, we see that

log
(

|φ(t, x) − φk(t, x)|
δk(t)

+ 1
)

�
∫ t

0
‖∇u‖L∞ dt + 1, (2.4)

so that, as before, the velocity gradient controls the logarithmic relative distance
between particles moving with two different flows. Observe that δk(t) scales like a
length, and can thus be interpreted as the (maximal) distance between the velocity
fields. Hence, we control the distance between particles relative to the distance
between vector fields.

Inequality (2.4) is an estimate on the rate of convergence of trajectories associated
with the vector fields u and uk, if the approximating vector field uk converges to u
in the sense that δk(t) → 0. Inequality (2.4) then shows that the particle trajectories
approach each other with a rate of at least δk(t).

Note that (2.3) also implies uniqueness of (1.2) when the existence of a solution
to the ODE is known. Indeed, if u = uk is spatially Lipschitz and φ and φk are
two solutions to (1.2), the right-hand side of (2.3) is bounded independently of δ.
Hence, choosing δ arbitrarily small, we see that φ and φk must be identical.

Outside of the smooth setting, the notion of flows for vector fields has to be appro-
priately generalized. A common generalization is the notion of regular Lagrangian
flows that are well defined if u is merely Sobolev (or even BV) regular in the spatial
variable and weakly compressible [2,11,20]. The latter is expressed by the require-
ment that

−∞ < ∇ · u(t, x) for almost every (t, x) ∈ (0, T ) × Ω

(cf. (1.4)), which in turn implies that the Jacobi determinant is bounded from
below:

Jφ(t, x) = exp
( ∫ t

0
∇ · u(t, φ(t, x)

)
dt) � exp

(
−

∫ T

0
‖(∇ · u)−‖L∞ dt

)
=: Λ.

(2.5)
The weak compressibility condition excludes the possibility of infinitely strong sinks
in which particles collide in finite time.

The existence, uniqueness and stability of regular Lagrangian flows were estab-
lished in the case of vector fields with spatial Sobolev regularity (under the assump-
tion that the divergence is uniformly bounded) by DiPerna and Lions in their sem-
inal paper [20]. This theory has been substantially extended to BV vector fields by
Ambrosio [2]. We refer the interested reader to [3,13,14] for more details and further
references, and remark in addition that a comprehensive analysis of the Jacobian
is given in [10].

Interestingly, DiPerna and Lions’s theory for the ODE (1.2) is built on a well-
posedness theory for the associated transport (cf. (3.9)) and continuity equations,
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that is, on the Eulerian (and thus PDE) perspective on particle dynamics. The
drawback of the qualitative theory is that no quantitative estimates can be provided.
Stability estimates of the type (2.4) in the DiPerna–Lions setting were derived later
by Crippa and De Lellis [11]. These are of the form∫

log
(

|φ(t, x) − φk(t, x)|
δk(t)

+ 1
)

dx �Λ

∫ t

0
‖∇u‖Lp dt + 1, (2.6)

where we now have

δk(t) =
∫ t

0
‖u − uk‖Lp dt.

We decided to work with averaged spatial integrals in all formulae in this paper.
Therefore,

∫ t

0 ‖∇u‖Lp dt is dimensionless and δk(t) scales like a length, which we
interpret, as before, as the distance between the vector fields u and uk.

The papers [3,13,14] provide reviews of DiPerna and Lions’s theory and of Crippa
and De Lellis’s contribution.

Obviously, the above result confirms that the earlier principle remains valid: the
velocity gradient provides control over the logarithmic relative distance between
particle trajectories in the Sobolev case too. Moreover, the rate of convergence of
the trajectory φk to the trajectory φ is at least of order δk(t) if the latter is tending
to zero.

In this weaker setting, the control of the logarithmic distance ceases to hold
uniformly in space. Nevertheless, Crippa and De Lellis are able to deduce local
Lipschitz bounds for the generalized flow. (See also [4] for earlier similar results
in this direction.) Moreover, uniqueness can be obtained in a similar way to that
outlined above in the case of Lipschitz vector fields.

The quantitative theory of Crippa and De Lellis fails to cover the full range of
vector fields considered earlier by DiPerna and Lions [20] and Ambrosio [2]. Instead,
Crippa and De Lellis had to restrict the setting to Sobolev regular vector fields
u ∈ L1((0, T ); W 1,p(Ω)) with p > 1. The reason for this is technical: they cleverly
exploited standard tools from harmonic analysis (maximal functions) whose strong
properties just cease to hold if p = 1. Stability estimates in the case p = 1 (and also
the BV case) are still open. On the positive side, in [25], Jabin manages to extend
estimate (2.6) to the W 1,1 setting modulo an o(| log δ|) factor. This estimate is still
strong enough to yield uniqueness and stability, but without rates. A direct proof
of uniqueness in the BV setting, i.e. without using the uniqueness of the associated
partial differential equations as in [2], was (partially) obtained by Jabin [25] and by
Hauray and Le Bris [23]. A further extension to the case where the velocity gradient
is given by a singular integral is treated by Bouchut and Crippa [5].

It remains to remark that stability estimates in the p = 1 case are closely related
to a mixing conjecture by Bressan [8]. Indeed, in [11] Crippa and De Lellis derive
the p > 1 analogue of this conjecture from an estimate similar to (2.6). See also
§ 3.5 (or [24,37]) for the corresponding result in the Eulerian setting.

3. Stability estimates for continuity equations

In this section, we shall present stability estimates in the Eulerian framework that
are similar to the ODE theory in [11]. That is, instead of tracing single particles in
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a fluid, we shall study the evolution of macroscopic density functions. Our initial
intention here is to work out analogies to the Lagrangian framework. We therefore
study the case of approximate vector fields in § 3.2. Like the estimates in (2.4)
and (2.6), the result will be quite general, as no relation between the two advecting
velocity fields is assumed. In § 3.3, we study convergence rates for the zero-diffusivity
limit. Section 3.4 is devoted to the convergence order of the numerical upwind
scheme. We conclude in § 3.5 with an estimate on mixing rates.

We start by introducing some notation.

3.1. Kantorovich–Rubinstein distance

In order to transfer the Lagrangian stability estimate (2.6) to the Eulerian spec-
ification we need some preliminaries. The quantity that will replace Crippa and
De Lellis’s logarithmic trajectory distance is a Kantorovich–Rubinstein distance
with logarithmic cost function taken from the theory of optimal transportation and
given by

Dδ(ρ1, ρ2) = inf
π∈Π(ρ1,ρ2)

∫ ∫
log

(
|x − y|

δ
+ 1

)
dπ(x, y). (3.1)

Functionals of this type were initially introduced to model minimal costs for trans-
porting mass from one configuration to the other. For two non-negative distribu-
tions ρ1 and ρ2, the set Π(ρ1, ρ2) consists of all transport plans π that realize this
transport, i.e.

π[A × Ω] =
∫

A

ρ1 dx, π[Ω × A] =
∫

A

ρ2 dx

for any measurable set A. The integrand in (3.1) is the so-called cost function that
determines the price for the transport between two points.1 We refer the interested
reader to Villani’s monograph [44] for a comprehensive introduction to this topic.

In order to compare this Kantorovich–Rubinstein distance with the trajectory
distance considered by Crippa and De Lellis, we note that, in the case where ρ1 and
ρ2 can be written as push-forwards of the same configuration, which is, for instance,
the case if ρ1 and ρ2 are transported by different flow fields φ1 and φ2 while having
the same initial configuration ρ̄ (cf. (1.3)), dπ = (φ1 ⊗ φ2)#δx=y ⊗ dρ̄ defines an
admissible transport plan in Π(ρ1, ρ2) = Π((φ1)#ρ̄, (φ2)#ρ̄). In particular,

Dδ(ρ1, ρ2) �
∫

log
(

|φ1(x) − φ2(x)|
δ

+ 1
)

ρ̄(x) dx, (3.2)

which means that the Kantorovich–Rubinstein distance Dδ(ρ1, ρ2) is controlled by
a weighted variant of Crippa and De Lellis’s logarithmic trajectory distance.

Let us now review some of the properties that make Kantorovich–Rubinstein
distances convenient in the study of stability estimates for continuity equations. In
fact, what is important in our theory is that the quantity Dδ(ρ1, ρ2) constitutes a
mathematical distance on the space of configurations with the same total mass [44,
theorem 7.3], and it metrizes weak convergence [44, theorem 7.12]. That is,

Dδ(ρk, ρ) → 0 ⇐⇒ ρk → 0 weakly. (3.3)

1 Concave cost functions are indeed natural in economics applications as they allow the economy
of scale to be incorporated into the mathematical model.
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If there exists a sequence of δk decaying to zero as k → ∞ and such that Dδk
(ρk, ρ)

is uniformly bounded, (3.3) thus yields that ρk converges weakly to ρ with a rate
not higher than δk.

A crucial notion on which the stability analysis of [38] is based is the dual for-
mulation in the Kantorovich–Rubinstein theorem:

Dδ(ρ1, ρ2) = sup
ζ

{ ∫
ζ(ρ1 − ρ2) dx : |ζ(x) − ζ(y)| � log

(
|x − y|

δ
+ 1

)}

(cf. [44, theorem 1.14]). One of its immediate consequences is that Dδ(ρ1, ρ2) is a
transshipment cost that only sees the difference between ρ1 and ρ2 (‘shared mass
stays in place’). We can thus write

Dδ(ρ1, ρ2) = Dδ(ρ1 − ρ2) or Dδ(ρ) = Dδ(ρ+, ρ−)

where ρ+ and ρ− denote, respectively, the positive and negative parts of ρ. It follows
that Kantorovich–Rubinstein distances can be considered as distances between any
two not necessarily non-negative configurations with same the average.

In [38], Seis computed the rate of change of the Kantorovich–Rubinstein distance
under the continuity equation with source

∂tρ + ∇ · (uρ) = ∇ · σ.

By extending some of the earlier techniques developed in [7,11,34,37] in the Lagran-
gian setting, he found that∣∣∣∣ d

dt
Dδ(ρ)

∣∣∣∣ �Λ,ρ̄ ‖∇u‖Lp +
1
δ
‖σ‖L1 (3.4)

(cf. [38, proposition 1]) if ρ has zero mean.

3.2. Approximating the vector field

We now consider the situation from (2.6). We thus let u and uk be two vector
fields in L1(W 1,p) (with p > 1) satisfying the compressibility condition (2.5), and
we denote by ρ and ρk the corresponding solutions to the continuity equation (1.1),
starting with the same initial datum ρ̄ in Lq with 1/p + 1/q = 1. As an immediate
consequence of (3.4) and (1.5), we obtain our first result.

Theorem 3.1 (Seis [38]). If δk(t) denotes the distance between the vector fields u
and uk given by

δk(t) =
∫ t

0
‖u − uk‖Lp dt,

then

sup
[0,T ]

Dδk
(ρ, ρk) �Λ,ρ̄

∫ T

0
‖∇u‖Lp dt + 1 (3.5)

holds.

Note that there is similarity to the control principle we found earlier in the ODE
case: the velocity gradient controls the logarithmic relative distance between two
configurations.
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Figure 1. The figure shows the oscillating density ρ10 at time t = 1. The corresponding
Kantorovich–Rubinstein distance Dδ10(ρ10, ρ) measures the transport between (ρ10 − ρ)+

(light grey region) and (ρ10 − ρ)− (dark grey region).

Regarding the fact that Kantorovich–Rubinstein distances metrize weak conver-
gence, in the situation where δk → 0, (3.5) now shows that

ρk → ρ weakly with rate not larger than δk.

This estimate is sharp, as can be seen from the following example, suggested by
De Lellis et al . [15].

Example 3.2. Consider the oscillating vector field uk(x) = sin(2πkx)/2πk on the
interval Ω = [0, 1]. Solving the continuity equation with the initial datum ρ̄ = 1
yields the oscillating solution

ρk(t, x) =
1 + tan2(πkx)

et + e−t tan2(πkx)

(see figure 1). Because uk converges strongly to zero as k → ∞, it is clear that the
limiting problem is stationary, i.e. ρ ≡ 1.

In view of the oscillatory behaviour of ρk, the convergence to ρ ≡ 1 is merely
weak:

‖ρ − ρk‖L1(L1) �→ 0.

In order to quantify the rate of weak convergence, we note that

δk(t) =
∫ t

0
‖u − uk‖Lp dt =

t

2πk

( ∫ 1

0
| sin(2πkx)|p dx

)1/p

∼ t

k

because u = 0. By the periodicity and symmetry of the problem, we furthermore
compute

Dδk
(ρ, ρk) = kDδk

(ρ|[0,1/k], ρk|[0,1/k]) = Dδ1(ρ, ρ1) ∼t 1,

where we have rescaled length in the last identity.

This example shows that theorem 3.1 is sharp in two respects: strong convergence
of ρk to ρ does not generally hold; the result captures the correct rate of convergence.
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Even though the result in theorem 3.1 already appeared in [38], a weaker sta-
bility estimate was deduced in [38] in order to replace the unwieldy Kantorovich–
Rubinstein distance by a standard negative Sobolev norm. In fact, Seis proved that

‖ρ − ρk‖W −1,1 �Λ,ρ̄,u
1

| log δk(t)|

(see [38, theorem 2]). The new formulation in theorem 3.1 has the advantage that
it is sharp and naturally extends the analogous estimates in the Lagrangian set-
ting (2.6).

3.3. The zero-diffusivity limit

In this subsection, we expand the model (1.1) by a second parallel transport
mechanism in addition to advection, namely diffusion. Advection–diffusion models
are ubiquitous in thermodynamics, fluid dynamics and engineering, e.g. in the con-
text of thermal convection [41], spinodal decomposition [40] or mixing [42]. While
convection enhances the efficient transport of particles or fluid parcels over large
distances and tends to create sharp gradients in the density (or temperature) dis-
tribution, diffusion compensates density (or temperature) differences locally.

In the following, we thus consider the Cauchy problem for the advection–diffusion
equation:

∂tρκ + ∇ · (uρκ) = κ∆ρκ in (0,∞) × Ω,

ρκ(0, ·) = ρ̄ in Ω,

}
(3.6)

where κ is the (positive) diffusivity constant. Equipping the equation with the no-
flux condition ∇ρκ · ν = 0 on the boundary of Ω implies that the evolution is still
mass conserving: ∫

ρκ(t, x) dx =
∫

ρ̄ dx. (3.7)

We assume furthermore that ρ̄ is non-negative, and so ρκ is as a consequence of the
maximum principle for (3.6). Note that (1.5) remains valid for ρκ, which can easily
be seen by testing (3.6) with ρq−1

κ .
We are interested in the vanishing diffusivity limit κ → 0. In order to quantify the

rate of convergence of solutions of (3.6) towards solutions of the purely advective
model (1.1), we shall make use of a standard decay estimate from relaxation theory
for the diffusion (or heat) equation. A common way to identify the equilibration
rate in the diffusive model is by studying the decay behaviour of the entropy:

H(ρ) =
∫

ρ log ρ dx.

We compute the rate of change of entropy under the evolution equation (3.6) using
multiple integrations by parts:

d
dt

H(ρκ) = κ

∫
∆ρκ log ρκ dx −

∫
∇ · (uρκ) log ρκ dx

= −κ

∫ |∇ρκ|2
ρκ

dx −
∫

(∇ · u)ρκ dx,
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where in the first equality we have used the fact that the evolution is mass con-
serving (3.7). Moreover, since ρκ is a non-negative function, integration in time
yields

H(ρκ(t, ·)) + κ

∫ t

0

∫ |∇ρκ|2
ρκ

dxdt � H(ρ̄) +
( ∫ t

0
‖(∇ · u)−‖L∞ dt

)
‖ρκ‖L∞(L1)

for any t ∈ (0, T ). Then, if the initial density has finite entropy, by the Hölder
inequality and mass conservation (3.7),

∫ t

0

∫
|∇ρκ| dxdt �

∫ t

0

( ∫
ρκ dx

∫ |∇ρκ|2
ρκ

dx

)1/2

dt �ρ̄,Λ

√
t

κ
.

Using the theory developed in [38], cf. (3.4), and the a priori estimate (1.5), it can
now be shown that

d
dt

Dδ(ρ, ρκ) �Λ,ρ̄ ‖∇u‖Lp +
κ

δ
‖∇ρκ‖L1 .

Integration in time and a combination of the previous two estimates then yield the
following result.

Theorem 3.3. Let δκ(t) be the diffusion distance per time t, i.e. δκ(t) =
√

tκ. Then

sup
[0,T ]

Dδκ(ρ, ρκ) �
∫ T

0
‖∇u‖Lp + 1.

In other words, the diffusive approximation converges weakly to the unique solu-
tion of the continuity equation with a rate not larger than

√
tκ. The latter is

approximately equal to the distance a particle can travel by diffusion in time t. A
qualitative convergence result was previously established for this case in [20] but,
to the best of our knowledge, this is the first time that a convergence rate for the
zero-diffusivity limit has been obtained.

In fact, a simple calculation shows that theorem 3.3 is optimal.

Example 3.4. Consider the advection–diffusion equation on the real line with con-
stant velocity u ≡ U > 0 and initial datum

ρ̄(x) =

{
x−(1−ε) for x ∈ (0, 1),
0 otherwise,

where ε ∈ (0, 1). The corresponding solution is then of the form

ρκ(t, x) =
1√

4πκt

∫ 1

0
exp

(
−|x − tU − y|2

4κt

)
1

y1−ε
dy,

and strongly converges to the solution ρ(t, x) = ρ̄(x−tU) of the continuity equation.
A short calculation then shows that ‖ρκ − ρ‖L1((0,1)×R) � √

κ
ε, and thus, for any

ε ∈ (0, 1), there is an initial configuration such that
√

κ
−ε‖ρκ − ρ‖L1(L1) �→ 0.
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This estimate entails that, for general rough initial data, universal (power-law)
convergence rates cannot exist in a strong norm. It is thus natural to investigate
the order of weak convergence. For the 1-Wasserstein distance

W1(ρ1, ρ2) = inf
π∈Π(ρ1,ρ2)

∫ ∫
|x − y| dπ(x, y),

which controls the logarithmic Kantorovich–Rubinstein distance Dδ(ρ1, ρ2) with
the factor δ−1, we compute the lower bound

W1(ρ, ρκ) �
√

κ
1−ε

.

Since Wasserstein distances metrize weak convergence [44, theorem 7.12], this esti-
mate shows that ρκ converges weakly to ρ with rate at most

√
κ

1−ε. Even though the
measures of weak convergence differ, this lower bound on the rate of weak conver-
gence (almost) matches the upper bound found in theorem 3.3. (For details on the
above estimates, we refer the reader to the very similar computations in [36, § 7].)

3.4. Convergence rates for the upwind scheme

The upwind scheme is a numerical scheme for approximating solutions to the
continuity equation. The scheme is a finite volume scheme, which means that the
domain is decomposed into control volumes (or cells) of small diameter and the
evolving density is approximated by averages over each control volume.

To be more specific, we consider a domain Ω that can be written as a finite
union of rectangular boxes. We decompose Ω into a family of rectangular cells with
disjoint interiors, Ω =

⋃
K∈T K, where T is the tessellation and K is a translation

of the cube [0, h1] × · · · × [0, hd]. The size h of the tessellation is the maximal edge
length, i.e.

h =
d

max
i=1

hi.

We suppose that the tessellation is regular in the sense that hi ∼ h for all i. For
two neighbouring cells K ∼ L, we denote by K|L the joint boundary. The normal
vector on K|L pointing from K to L is denoted by νKL.

We choose a fixed time step size δt so that the nth time step reads tn = nδt. To
guarantee the stability of the explicit scheme, we impose the following Courant–
Friedrichs–Lewy condition on the time step size:

∀n,

∫ tn+1

tn

‖u‖L∞ dt � h.

We thus assume in this subsection that u ∈ L1(L∞).
To approximate the transport term, we consider the net flow from K to L defined

by

un
KL =

∫ tn+1

tn

∫
K|L

u · νKL dHd−1 dt.

We remark that these quantities are well defined owing to the trace estimate for
Sobolev functions. Furthermore, the initial configuration of the scheme is the volume
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average over each K ∈ T , i.e.

ρ0
K =

∫
K

ρ̄ dx.

We are now in a position to define the explicit upwind finite volume scheme for the
continuity equation (1.1):

ρn+1
K = ρn

K +
dt

h

∑
L∼K

(un+
LKρn

L − un+
KLρn

K), (3.8)

where un+
KL = (un

KL)+. The approximate solution is given by

ρh(t, x) = ρn
K if (t, x) ∈ [tn, tn+1) × K, K ∈ T .

See [22,28] for properties and references. Under the DiPerna–Lions setting, conver-
gence of the scheme, i.e. ρh → ρ as h → 0, is proved in [6, 36,45].

Even though the numerical scheme is formally first order, one observes a break-
down in the convergence rate to order 1

2 in the case of non-smooth initial data.√
h-rates were numerically observed in [6,36] for the DiPerna–Lions setting consid-

ered here. The reason for this lack of convergence is the occurrence of numerical
diffusion that smooths out sharp interfaces. Such irregularities, however, are simply
transported in the continuous model. In a certain sense, approximate solutions show
a behaviour similar to those of the advection–diffusion equation (3.6), where κ ∼ h.
It is this similarity that determines the

√
h-rate of convergence (cf. theorem 3.3).

The effect of numerical diffusion is illustrated in [36, § 2.4].
In the case of regular (i.e. at least spatially Lipschitz continuous) vector fields,

this breakdown in the order of convergence has long been known. The first rigorous
results on optimal convergence rates date back to the 1970s (see, for example,
[9,16,17,19,27,32,33,35,43]). To the best of our knowledge, the only available result
in the DiPerna–Lions setting is very recent: Schlichting and Seis [36] established an
upper bound on the rate of weak convergence that captures the optimal order.

Theorem 3.5 (Schlichting and Seis [36]). Let δh(t) be the numerical diffusion dis-
tance per time t, i.e.

δh(t) =

√
h

∫ t

0
‖u‖L∞ dt.

Then

sup
[0,T ]

Dδh
(ρ, ρh) �Λ,ρ̄

∫ T

0
‖∇u‖Lp dt + 1.

The work of Schlichting and Seis [36] builds not only on the quantitative theory
from [38] but on the probabilistic interpretation of the upwind scheme suggested
by Delarue et al . [16, 17]. In fact, in [36], (3.8) is interpreted as a Markov chain,
which comes as a time-discretized version of the stochastic differential equation

dψt = u(t, ψt) dt +
√

2h dWt,

with a noise term depending on the details of the mesh. In a certain sense, the above
equation is the Lagrangian analogue of the advection–diffusion equation (3.6). It
turns out that the noise term determines the

√
h-rate of convergence.
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In fact, the result of [36] is optimal.

Example 3.6 (Schlichting and Seis [36]). Consider the continuity equation on the
real line with constant velocity u ≡ U > 0 and the same singular initial datum as
in example 3.4. If the control volumes are taken to be K = [k, k+1)h for k ∈ Z and
δtU = 1

2h is the time step size, the upwind scheme reduces to ρn+1
k = 1

2 (ρn
k + ρn

k−1),
and thus, by iteration

ρn
k =

1
2n

n∑
m=0

(
n

m

)
ρ0

k−m.

As a consequence of the numerical diffusion, one cannot expect strong (power-law)
convergence rates to hold for rough initial data. Indeed,

√
h

−ε
‖ρh − ρ‖L1(L1) �→ 0.

On the other hand, in view of the lower bound

W1(ρ, ρh) �
√

h
1−ε

,

where W1 denotes the 1-Wasserstein distance introduced in example 3.4, we find
that, for this particular example, the rate of weak convergence is at most of order
1
2 (1 − ε). Even though the measures of weak convergence differ, this lower bound
on W1(ρ, ρh) and the upper bound on Dδh

(ρ, ρh) in theorem 3.5 indicate that the
optimal rate of weak convergence is indeed of order 1

2 .

3.5. Mixing by stirring

In recent years, mixing by stirring attracted much interest in both the applied
mathematics and engineering communities. Mixing refers to the homogenization of
an inhomogeneous substance by being stirred by an agent. The major goals are the
quantification of mixing rates and the design of mixing strategies. In order to opti-
mize mixing strategies, absolute lower bounds on the mixing rate are indispensable.
In this subsection, we present a lower bound on mixing by the stirring of incom-
pressible viscous fluids obtained in [37]. A nice review on the mathematical side of
mixing was written by Thiffeault [42].

A natural constraint in the experimental mixing set-up is the amount of mechan-
ical work the engineer is willing to do in order to overcome viscous friction to
maintain stirring. Mathematically, this amounts to limiting the budget of the vis-
cous dissipation rate (or enstrophy) given by ‖∇u‖L2 . In the following, we shall
slightly generalize this constraint by assuming that u ∈ L1(W 1,p) for some p > 1
as in the previous part of this paper.

While our intuition is strong about whether a substance is well mixed or not,
the choice of a measure that quantifies the degree of mixedness depends on the
mathematical communities. Homogeneous negative Sobolev norms, in particular
the Ḣ−1/2 norm [30,31] and the Ḣ−1 norm [21,29,39] are favoured by fluid dynam-
icists. These norms measure oscillations: the greater the length scales, the larger
the norms.
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In [37] Seis introduces a new mixing measure: a variant of the Kantorovich–
Rubinstein distance introduced earlier in the present paper. We accordingly consider

M(ρ) = inf
π∈Π(ρ+,ρ−)

exp
( ∫ ∫

log |x − y| dπ(x, y)
)

.

Note that M(ρ) = limδ→0 exp(Dδ(ρ) + (log δ)‖ρ‖L1). In the case of a two-phase
mixture, modelled by ρ ∈ {±1}, this distance formally scales as a length, so M(ρ)
heuristically agrees with the average size of the unmixed regions.

The mixing process can be modelled by the continuity equation (1.1), which turns
into the transport equation

∂tρ + u · ∇ρ = 0 (3.9)

under the assumption that the fluid is incompressible (i.e. ∇ · u = 0), which we
shall make for convenience. For simplicity, we restrict our attention to two-phase
mixtures with equal volume fraction, so that

|{x ∈ Ω : ρ(t, x) = 1}| = |{x ∈ Ω : ρ(t, x) = −1}|

for any t > 0, or, equivalently,
∫

ρ dx = 0.
Seis [37] derives a lower bound on mixing rates in incompressible viscous fluids,

building on an estimate similar to (3.4).

Theorem 3.7 (Seis [37]). For any T � 0, it holds that

M(ρ(T, ·)) � M(ρ̄) exp
(

− 1
C

∫ T

0
‖∇u‖Lp dt

)
, (3.10)

where C is a constant depending only on p and d.

This estimate shows the impossibility of perfect mixing, i.e. ρ → 0 weakly, in
finite time. A similar statement was obtained earlier by Crippa and De Lellis [11]
for a certain geometric mixing measure suggested by Bressan [8]. In fact, Bressan
conjectures the p = 1 analogue of Crippa and De Lellis’s estimate.

It is not difficult to deduce a lower bound on the decay rate of the Ḣ−1 norm
from (3.10). Indeed, in [37] it is proved that

1
|ρ|BV

� M(ρ) � |ρ|H−1 , (3.11)

where |ρ|BV and |ρ|H−1 denote, respectively, the homogeneous part of the BV norm
(and thus |ρ|BV = 2|∂{ρ = 1}|/|Ω|) and the homogeneous part of the H−1 norm.
The first inequality in (3.11) is an interpolation inequality, whereas the second
follows immediately via Jensen’s inequality and the Kantorovich–Rubinstein theo-
rem [44, theorem 1.14]. Plugging (3.11) into theorem 3.7 yields

|ρ(T, ·)|H−1 � 1
|ρ̄|BV

exp
(

− 1
C

∫ T

0
‖∇u‖Lp dt

)
. (3.12)

A similar decay estimate for the Ḣ−1 norm was obtained simultaneously by Iyer et
al . [24] by using the geometric results from [11].
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Estimates (3.10) and (3.12) are sharp. This was proved independently by Yao and
Zlatoš [46] and by Alberti et al . [1]. In fact, in both works, explicit mixing flows
are constructed that saturate the lower bounds from [24, 37]. Numerical evidence
for the optimality of this mixing rate was given in [29].

There is a close relation between theorem 3.7 and the lower bound in (2.1); in
fact, the upper bound

M(ρ(T, ·)) � M(ρ̄) exp
(

1
C

∫ T

0
‖∇u‖Lp dt

)

is also valid. Estimate (3.10) can be seen as the Eulerian (and Sobolev) analogue
of (2.1), in the sense that in theorem 3.7 we compute the distance between the
configuration described by the mixing process and the stationary fully mixed state
ρ = 0. While (2.1) shows that trajectories cannot converge faster than exponentially
in time, the Eulerian analogue shows that different density configurations cannot
converge faster than exponentially in time. This observation also underlines the link
between mixing and the question of uniqueness for the partial differential equation
(1.1) (or (3.9)): a system is perfectly mixing in finite time precisely if solutions to
(1.1) are generally not unique. Note that, in the case of finite-time mixing, upon
reversing time, one gains non-trivial solutions to (1.1) with initial datum zero. An
explicit construction of such an unmixing solution is due to Depauw [18].

It remains to note that upper bounds on the rates of unmixing (or coarsening) in
viscous fluids were obtained in [7,34]; the analysis in these papers combines (3.10)
and the lower bound of (3.11) with the Kohn–Otto upper bound method [26].
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de France, 2008).
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31 G. Mathew, I. Mezić, S. Grivopoulos, U. Vaidya and L. Petzold. Optimal control of mixing
in Stokes fluid flows. J. Fluid Mech. 580 (2007), 261–281.

32 B. Merlet. L∞- and L2-error estimates for a finite volume approximation of linear advection.
SIAM J. Numer. Analysis 46 (2007), 124–150.

33 B. Merlet and J. Vovelle. Error estimate for finite volume scheme. Numer. Math. 106
(2007), 129–155.
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