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As a model for streaming multimedia applications, we study an unreliable retrial
queue with infinite-capacity orbit and normal queue for which the retrial rate and
the server repair rate are controllable. Customers join the retrial orbit if and only
if their service is interrupted by a server failure. Interrupted customers do not rejoin
the normal queue but repeatedly attempt to access the server at independent and
identically distributed intervals until it is found functioning and idle. We provide
stability conditions, queue length distributions, stochastic decomposition results, and
performance measures. The joint optimization of the retrial and server repair rates is
also studied.
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1. INTRODUCTION

In this article we analyze an M/G/1 retrial queue with an unreliable server whose
orbit and normal queue have infinite storage capacity and whose retrial and server
repair rates are controllable. Customers in service join the retrial orbit if and only
if they are interrupted by a server breakdown and do not rejoin the normal queue,
but rather attempt to access the server directly at random intervals independently of
arrivals or other retrial customers. However, these interrupted customers can regain
access to the server only when it is operational and idle and repeat service until they
have been completed. Arriving customers who find a failed server join the normal
queue. We allow for both active breakdowns, which occur during a service cycle, and
idle breakdowns, which occur while the server is not failed but idle. The server does
not breakdown while under repair. The times between customer arrivals, breakdowns,
retrials, and repairs are assumed to be exponentially distributed and the service times
are general.

Over the past two decades, advances in telecommunications and computer net-
working technologies have reinvigorated the study of queueing systems in general
and retrial queueing systems in particular. The model we present here is well suited to
model computer network streaming multimedia applications. The primary (or normal)
queue is similar to a 1-persistent carrier-sense multiple-access (CSMA) system. When
the oldest packet in the normal queue detects that the transmission medium (or server)
is free, transmission begins immediately. If the communication medium fails during
transmission, the packet is sent to a retrial queue, which is analogous to a nonpersis-
tent CSMA system. If the medium is unavailable (i.e., busy or failed), then the retrial
packet waits a random amount of time before checking the status of the medium again.
This process repeats until the retrial packet finds the transmission medium operational
and idle. In this sense, the model is a priority queue wherein the packets that are not
interrupted by a transmission failure have nonpreemptive priority over those awaiting
availability of the transmission medium. An important application is that of streaming
voice or video wherein transmitted packets are used for playback upon reception and
also stored for future use. The packets used for immediate playback are time sensitive
in that if they are not received within a given time threshold, they are effectively use-
less. These packets correspond to the priority customers. Packets that are interrupted
during transmission can still be used for later playback from the stored copy of the
stream, but their transmission time is no longer important. These packets constitute
customers in the orbit. By developing analytical expressions for congestion and delay
measures in stable systems, it is possible to simultaneously select a packet retrial rate
and server repair rate that minimize the long-run average cost of holding customers
in either queue.

In addition to its practical relevance, the model we present also exhibits extremely
interesting mathematical properties that warrant investigation in their own right. The
presence of an infinite waiting space for primary customers introduces an interaction
between the two infinite queues. This dynamic does not exist in the vast majority of
retrial queueing models that include only an infinite retrial orbit and do not consider
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an infinite waiting space for primary arrivals. We will show that the steady state orbit
size and the overall system size both possess a stochastic decomposition property.
Moreover, an interesting stability result emerges, namely that the normal queue may
remain stable even if the condition for system stability is violated. Using the steady
state distributions and corresponding queueing performance measures, we illustrate
the means by which to simultaneously select the optimal retrial rate and repair capacity
to minimize a long-run average cost criterion.

The literature addressing retrial queues with unreliable servers is relatively sparse
but growing at a rapid pace. The seminal articles in this area are [1] and [15]. All
models considering retrial queues with server breakdowns assume an M/G/1/1 loss
system with the exception of [6] and [21]. Although [10] considered an M/G/1 retrial
queue with infinite-capacity orbit and normal queue, the authors did not consider an
unreliable server. For retrial models with no waiting room and server breakdowns,
customers arriving to find the server unavailable (busy or failed) join the orbit. Some
models (cf. [2,3,7,16,20,23,24,27]) force these customers into the orbit, whereas oth-
ers [4–6,11,15,26] provide the option of joining the orbit or departing the system. With
the exception of two cases ([3,24]), these models also either force or provide the option
for in-service customers interrupted by a server failure to join the orbit. Our model
differs from these in that arriving customers who find the server busy or failed join
the normal queue, whereas interrupted customers always join the orbit and attempt
to reaccess the server at random intervals. A variety of failure types are considered
in the literature, including starting failures [16,20,27], vacations [7,23], active break-
downs [6,24,26], and, like our model, both active and idle breakdowns [2–5,11,15].
Most orbits are assumed to behave as infinite-server queues with identical exponential
service times; however, some models (cf. [7,16,26]) consider orbits as first come–first
served (FCFS) queues.

For retrial systems with no breakdowns and zero capacity in the normal queue,
the most common optimal control strategies include the optimal routing of arriving
customers [9,10,22] and selection of the optimal retrial rate [8,13,14]. For general
queueing systems (nonretrial queues), researchers such as Lam, Zhang, and Liu [17],
Lee [19], and Wang, Kao, and Chen [25] have considered optimal N-policies wherein
the server remains idle until exactly N (N ≥ 1) customers are present in the queue. The
current literature addressing the optimal design or control of unreliable retrial queues
is very sparse. It appears that only Artalejo [7] formally addressed these issues for a
retrial queue with vacations. In that work, the author presented an optimal N-policy
and are optimal T -policy and he computed the optimal retrial rate that minimizes costs
using an N-policy. An informal, graphical approach to the optimal control and design
of a retrial queue with vacations was presented in [20], wherein the authors examined
the impact of the retrial rate, the number of input sources, the arrival rate, and the
service rate on the mean waiting time and throughput.

As a model for streaming multimedia applications, this article is concerned with
the analysis and control of an M/G/1 retrial queue with an infinite-capacity orbit
and normal queue. In particular, we consider the problem of simultaneously selecting
an optimal retrial rate and optimal repair rate with the objective of minimizing the
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long-run average operating cost, which is a function of the key queueing performance
measures. To this end, using the method of supplementary variables and a classical
generating function approach, we derive the steady state joint distribution of the orbit
size and normal queue size when the server is idle (operational and not occupied),
failed (nonoperational and being repaired), or busy (operational and occupied). Using
these results, we obtain the joint generating function of the orbit size and normal queue
size as well as the generating function for the overall system size (the total number of
customers in orbit, normal queue, and in service), independent of the server’s status.
We provide a necessary and sufficient condition for stability of the orbit and system as
well as a (distinct) condition for stability of the normal queue. Moreover, we show that
the steady state length of the retrial queue and the system size can be stochastically
decomposed.

The remainder of the article is organized as follows. Section 2 provides the model
description and mathematical notation. In Section 3 we establish stability conditions
and, by means of generating functions, derive the queue length distributions, key
queueing performance measures, as well as the steady state distribution of the server’s
status. In Section 4 we present stochastic decomposability results for queue length dis-
tributions. Finally, Section 5 presents and illustrates a nonlinear optimization problem
for the optimal selection of the retrial and server repair rates.

2. MODEL DESCRIPTION

Customers arrive to the system according to a homogeneous Poisson process with
rate λ > 0. Service times form an independent and identically distributed (i.i.d.)
sequence of random variables with absolutely continuous distribution function (d.f.)
B, probability density function (p.d.f.) b, and service completion rate

μ(x) = b(x)

1 − B(x)
, x ≥ 0.

For s ≥ 0, let

b∗(s) =
∫ ∞

0
e−sxb(x) dx

denote the Laplace transform of b. Server failures occur according to a Poisson process
with rate ξ > 0 when the server is not being repaired. The repair time is exponentially
distributed with rate parameter α > 0. An in-service customer interrupted by a server
failure enters the orbit and spends an exponential amount of time there with rate
θ > 0, after which it either enters service (if possible) or remains in the orbit for
an additional exponentially distributed time with rate θ . The arrival, service, failure,
repair, and retrial processes are assumed to be mutually independent. Denote by Qt

the number of customers in the normal queue at time t, excluding any customer that
might be in service, and let Rt denote the number of customers in the orbit at time t.
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The random variable Ut is the occupation status of the server given by

Ut =
{

1 if the server is occupied at time t

0 if the server is not occupied at time t

and St describes the operational status of the server at time t defined by

St =
{

1 if the server is not failed at time t

0 if the server is failed at time t.

Let Xt denote the elapsed service time of the customer in service at time t so that the
continuous-time stochastic process {(Qt , Ut , Rt , St , Xt) : t ≥ 0} describes the state of
the system. Let Nt denote the total number of customers in the system at time t (i.e.,
in orbit, normal queue, and in service). Assume that as t → ∞, Qt ⇒ Q, Rt ⇒ R,
St ⇒ S, and Nt ⇒ N , where ⇒ denotes weak convergence.

Now, define

π0,0,j,1 = lim
t→∞ P(Qt = 0, Ut = 0, Rt = j, St = 1), j ≥ 0,

πk,0,j,0 = lim
t→∞ P(Qt = k, Ut = 0, Rt = j, St = 0), j, k ≥ 0,

πk,1,j,1(x) = lim
t→∞ P(Qt = k, Ut = 1, Rt = j, St = 1, Xt < x), j, k ≥ 0,

as the limiting probabilities that the system is in an idle, failed, or busy state, respec-
tively. With the transform variables z1 and z2 corresponding to the orbit size and normal
queue size, respectively, define

φ0,0,1(z1) =
∞∑

j=0

z j
1π0,0, j,1,

φk,0,0(z1) =
∞∑

j=0

z j
1πk,0, j,0,

φk,1,1(x, z1) =
∞∑

j=0

z j
1πk,1, j,1(x).

These are respectively the generating functions for π0,0, j,1, πk,0, j,0, and πk,1, j,1(x) with
respect to the orbit size. Further define

ψ0,0(z1, z2) =
∞∑

k=0

zk
2φk,0,0(z1),

ψ1,1(x, z1, z2) =
∞∑

k=0

zk
2φk,1,1(x, z1),

the generating functions for φk,0,0(z1) and φk,1,1(x, z1), respectively, with respect to
the normal queue size. The joint p.g.f. of the orbit and normal queue size when the
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server is not failed and busy is given by

ψ1,1(z1, z2) =
∫ ∞

0
ψ1,1(x, z1, z2) dx.

Let p denote the joint probability mass function (p.m.f.) of R and Q and let q denote
the p.m.f. of N . By summing over the three distinct and exhaustive server states, we
denote by

G(z1, z2) =
∞∑

k=0

∞∑
j=0

p( j, k)z j
1zk

2 = φ0,0,1(z1) + ψ0,0(z1, z2) + ψ1,1(z1, z2),

the joint generating function for the orbit and normal queue size. In a similar manner,
we denote by

H(z) =
∞∑

j=0

q( j)z j = φ0,0,1(z) + ψ0,0(z, z) + zψ1,1(z, z),

the generating function for the overall system size.
In the next section, we provide stability conditions and formally derive the gen-

erating functions defined in this section. Subsequently, we use these to characterize
queue length distributions and performance measures.

3. STABILITY ANALYSIS AND STEADY STATE EQUATIONS

In this section, we provide a necessary and sufficient condition for stability of the
overall queueing system and derive the steady state joint distribution of the orbit and
normal queue size when the server is idle, failed, or busy. Subsequently, we obtain
the joint distribution of the orbit size and normal queue size and the distribution of
the system size, independent of the server’s status. Additionally, we obtain standard
queueing performance measures as well as the limiting distribution of the server’s
status.

Before proceeding to the main result, we first provide a lemma that is needed
to characterize the stability conditions and steady state distributions. As in Aissani
and Artalejo [4], define the fundamental server period as the time from which a
service cycle begins until the next time at which the server is able to initiate a new
service cycle. Denote this random duration by T . Let Nr and Nq, respectively, denote
the number of customers entering the orbit and normal queue during (0, T ], and let
a(i, j) = P(Nr = i, Nq = j), i, j ≥ 0. Define the generating function

Q(z1, z2) =
∞∑

i=0

∞∑
j=0

a(i, j)zi
1zj

2, |z1| ≤ 1, |z2| ≤ 1.
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Then one can verify (see [4]) that

Q(z1, z2) = b∗(ξ + λ(1 − z2)) + αz1ξ(1 − b∗(ξ + λ(1 − z2))

(α + λ(1 − z2))(ξ + λ(1 − z2))
.

Now, let us define the quantity

ρ1 = − d

dε
Q(1, 1 − ε)

∣∣∣
ε=0

= λ(1 − b∗(ξ))(α + ξ)

αξ
,

where b∗(ξ) is the Laplace transform of the service time p.d.f. evaluated at ξ . Using
these definitions, we have the following important result, which is needed to obtain
our main results.

LEMMA 1: For either |z1| < 1 or |z1| ≤ 1 and ρ1 > 1, the relation

z2 − Q(z1, z2)

has, as a function of z2, one and only one zero, g(z1), inside the region |z2| < 1. In
the case z1 = 1, g(1) is the smallest positive real zero with g(1) < 1 if ρ1 > 1 and
g(1) = 1 if ρ1 ≤ 1.

PROOF: The proof is similar to that of Theorem 3 in [18, pp. 351–352]. Now for the
first part, on |z1| < 1, applying Rouche’s theorem to the function z2 and the generating
function Q(z1, z2), we conclude that there is one and only one zero, g(z1), for each z2

inside the unit disk |z2| < 1. For the second part, consider the quantity ρ1 and the case
when z1 = 1. The function Q(z1, z2) is monotonically increasing in z2 for z2 ∈ [0, 1]
such that 0 < Q(1, 0) < 1 and Q(1, 1) = 1. Thus, if z1 = 1 and ρ1 > 1, then g(1) is
the minimal, positive real zero with g(1) < 1. On the other hand, if ρ1 ≤ 1, g(1) = 1
is the unique zero, and this completes the proof. �

Using Lemma 1, we now characterize the stability condition for the overall system
size (and orbit size), as well as the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and
ψ1,1(z1, z2). Theorem 1 states that the long-run proportion of time the server is available
for serving customers must exceed the long-run proportion of time the server is busy
if the system is to remain stable.

THEOREM 1: The queueing system is stable if and only if ρ < 1, where

ρ = λ(1 − b∗(ξ))(α + ξ)

αb∗(ξ)ξ
. (1)
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In such a case, the generating functions φ0,0,1(z1), ψ0,0(z1, z2), and ψ1,1(z1, z2) are,
respectively, given by

φ0,0,1(z1) = αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)

ξb∗(ξ)(α + ξ)

× exp

⎧⎨
⎩−1

θ

∫ 1

z1

λ(1 − g(u)) + ξ
(

1 − α
α+λ(1−g(u))

)
g(u) − u

du

⎫⎬
⎭, (2)

ψ0,0(z1, z2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(g(z1) − z1)[α + λ(1 − g(z1))][ξ + λ(1 − z2)]
× [z2 − B̂(z2) − z1(1 − B̂(z2))]

(z2 − B̂(z2))[α + λ(1 − z2)][ξ + λ(1 − z2)] − αξ(1 − B̂(z2))z1

+ λz1(1 − B̂(z2))(z2 − z1)(1 − g(z1))[α + ξ + λ(1 − g(z1))]
(z2 − B̂(z2))[α + λ(1 − z2)][ξ + λ(1 − z2)] − αξ(1 − B̂(z2))z1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× ξφ0,0,1(z1)

(g(z1) − z1)[α + λ(1 − g(z1))] , (3)

and

ψ1,1(z1, z2) =
{

(z2 − z1)(1 − g(z1))[α + ξ + λ(1 − g(z1))][α + λ(1 − z2)]
(z2 − B̂(z2))[α + λ(1 − z2)][ξ + λ(1 − z2)] − αξ(1 − B̂(z2))z1

− (1 − z2)(g(z1) − z1)[α + λ(1 − g(z1))][α + ξ + λ(1 − z2)]
(z2 − B̂(z2)) [α + λ(1 − z2)] [ξ + λ(1 − z2)] − αξ(1 − B̂(z2))z1

}

× λ(1 − B̂(z2))φ0,0,1(z1)

(g(z1) − z1)[α + λ(1 − g(z1))] , (4)

where

B̂(z2) = b∗(ξ + λ(1 − z2)),

and for z1 ∈ [0, 1], g(z1) verifies

g(z1) = b∗(ξ + λ(1 − g(z1))) + αξz1[1 − b∗(ξ + λ(1 − g(z1)))]
[α + λ(1 − g(z1))][ξ + λ(1 − g(z1))] .
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PROOF: For j ≥ 0 and k ≥ 1 with πk,i,−1,l(x) = 0, the balance equations are

(α + λ)π0,0,j,0 = ξπ0,0,j,1 + ξ

∫ ∞

0
π0,1,j−1,1(x) dx, (5)

(α + λ)πk,0,j,0 = λπk−1,0,j,0 + ξ

∫ ∞

0
πk,1,j−1,1(x) dx, (6)

(λ + ξ + jθ)π0,0,j,1 = απ0,0,j,0 +
∫ ∞

0
μ(x)π0,1,j,1(x) dx, (7)

d

dx
π0,1,j,1(x) = −[μ(x) + λ + ξ ]π0,1,j,1(x), (8)

d

dx
πk,1,j,1(x) = −[μ(x) + λ + ξ ]πk,1,j,1(x) + λπk−1,1,j,1(x) (9)

with boundary conditions

π0,1,j,1(0) = απ1,0,j,0 + λπ0,0,j,1 +
∫ ∞

0
μ(x)π1,1,j,1(x) dx + (j + 1)θπ{0,0,1}(z1), (10)

πk,1,j,1(0) = απk+1,0,j,0 +
∫ ∞

0
μ(x)πk+1,1,j,1(x) dx. (11)

Multiplying both sides of (5)–(11) by z j
1 and summing over all j, we obtain respectively

the following equations:

(α + λ)φ0,0,0(z1) = ξφ0,0,1(z1) + ξz1

∫ ∞

0
φ0,1,1(x, z1) dx, (12)

(α + λ)φk,0,0(z1) = λφk−1,0,0(z1) + ξz1

∫ ∞

0
φk,1,1(x, z1) dx,

(13)

(λ + ξ)φ0,0,1(z1) + θz1
d

dz1
φ0,0,1(z1) = αφ0,0,0(z1) +

∫ ∞

0
μ(x)φ0,1,1(x, z1) dx, (14)

∂

∂x
φ0,1,1(x, z1) = −[μ(x) + λ + ξ ]φ0,1,1(x, z1), (15)

∂

∂x
φk,1,1(x, z1) = −[μ(x) + λ + ξ ]φk,1,1(x, z1)

+ λφk−1,1,1(x, z1), (16)

with boundary conditions

φ0,1,1(0, z1) = αφ1,0,0(z1) + λφ0,0,1(z1) +
∫ ∞

0
μ(x)φ1,1,1(x, z1) dx + θ

d

dz1
φ0,0,1(z1),

(17)

φk,1,1(0, z1) = αφk+1,0,0(z1) +
∫ ∞

0
μ(x)φk+1,1,1(x, z1) dx. (18)
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Multiplying both sides of (12) by z0
2 and (13) by zk

2 and summing over all k ≥ 0, we
obtain

[α + λ(1 − z2)]ψ0,0(z1, z2) = ξφ0,0,1(z1) + ξz1

∫ ∞

0
ψ1,1(x, z1, z2) dx. (19)

Performing a similar operation on (15) and (16) as well as (17) and (18), we obtain,
respectively,

∂

∂x
ψ1,1(x, z1, z2) = −[μ(x) + ξ + λ(1 − z2)]ψ1,1(x, z1, z2) (20)

and

ψ1,1(0, z1, z2) = λφ0,0,1(z1) + θ
d

dz1
φ0,0,1(z1) + α

z2

[
ψ0,0(z1, z2) − φ0,0,0(z1)

]
+ 1

z2

∫ ∞

0
μ(x)[ψ1,1(x, z1, z2) − φ0,1,1(x, z1)] dx. (21)

Solving (20), we obtain

ψ1,1(x, z1, z2) = ψ1,1(0, z1, z2)e
−[ξ+λ(1−z2)]x(1 − B(x)). (22)

Using (14), (19), and (22) in (21), we obtain

ψ1,1(0, z1, z2) = θ(z2 − z1)
d

dz1
φ0,0,1(z1)

−
[
λ(1 − z2) + ξ

(
1 − α

α + λ(1 − z2)

)]
φ0,0,1(z1)

×
(

z2 −
[
b∗(ξ + λ(1 − z2)) + αz1ξ(1 − b∗(ξ + λ(1 − z2)))

(α + λ(1 − z2))(ξ + λ(1 − z2))

])−1

.

(23)

Now, by Lemma 1, the denominator of (23) has, for any z1 in the unit disk, a zero
in the region |z2| < 1. This must also be a zero for the numerator; therefore, we have
from (23),

θ(z1 − g(z1))
d

dz1
φ0,0,1(z1) +

[
λ(1 − g(z1)) + ξ

(
1 − α

α + λ(1 − g(z1))

)]

× φ0,0,1(z1) = 0. (24)

In order to solve the differential equation (24), we first examine the function k(z1) =
z1 − g(z1) = z1 − Q(z1, g(z1)). Note that

d

dz1
g(z1)

∣∣∣∣
z1=1

= d

dz1
Q(z1, g(z1))

∣∣∣∣
z1=1

= αξ(1−b∗(ξ))

αξ −λ(1−b∗(ξ))(α + ξ)
= [1/b∗(ξ)]−1

[1/b∗(ξ)]−ρ
,

where ρ is defined in (1). We then observe that, for ρ ≤ 1, the quantity k(z1) never
becomes zero in |z1| < 1, whereas for ρ > 1, this quantity has one and only one
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zero—call it β—such that β ∈ (0, 1) (see, e.g., [12] or [18]). Now, rearranging (24),
define the function

h(z1) = λ(1 − g(z1)) + ξ(1 − α/[α + λ(1 − g(z1))])
z1 − g(z1)

,

and note that, for ρ < 1,

lim
z1→1

h(z1) = − λξ(1 − b∗(ξ))(α + ξ)

αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)
= − ξρ

1 − ρ
< ∞.

Thus, we conclude that h(z1) is analytic on the open disk |z1| < 1 and that h(z1) can
be defined at the point z1 = 1. Therefore, on the closed disk |z1| ≤ 1, the differential
equation

d

dz1
φ0,0,1(z1) + h(z1)φ0,0,1(z1) = 0

is verified by the function

φ0,0,1(z1) = K exp

{
−1

θ

∫ 1

z1

λ(1 − g(u)) + ξ(1 − α/[α + λ(1 − g(u))])
g(u) − u

du

}
, (25)

where K is a constant of integration. For ρ < 1, φ0,0,1(z1) in (25) makes all gener-
ating functions analytic in |z1| ≤ 1, |z2| ≤ 1. In particular, (2)–(4) are obtained up to
the multiplicative constant K . To obtain this constant, we apply the normalization
condition, φ0,0,1(1) + ψ0,0(1, 1) + ψ1,1(1, 1) = 1, which yields

K = αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)

ξb∗(ξ)(α + ξ)
= φ0,0,1(1),

the steady state probability that the server is not failed and idle.
To see that ρ < 1 is also necessary for system stability, assume that ρ > 1 and

the system is stable. By Lemma 1, when ρ > 1, the function z1 − Q(z1, g(z1)) has
one and only one zero, denoted by β, with 0 < β < 1. Thus, the function h(z1) is not
analytic in |z1| < 1. Substituting z1 = β in (24) yields[

λ(1 − β) + ξ

(
1 − α

α + λ(1 − β)

)]
φ0,0,1(β) = 0,

which implies that φ0,0,1(β) = 0 since the coefficient of φ0,0,1(β) does not equal zero.
We must therefore conclude that

φ0,0,1(β) =
∞∑

j=0

β jπ0,0,j,1 = 0.

However, it is not possible to find positive values π0,0,j,1, j ≥ 0, to satisfy the above
relation, so the system is not stable; thus, a contradiction.
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Finally, suppose that ρ = 1 and the system is stable. When ρ = 1, the function
z1 − Q(z1, g(z1)) never becomes zero in the unit disk |z1| < 1; however, in this case

lim
z1→1

h(z1) = − ξρ

1 − ρ
= −∞.

Differentiating (24) and evaluating at the point z1 = 1, we obtain the relation

−λ

(
α + ξ

α

)
d

dz1
g(z1)

∣∣∣∣
z1=1

φ0,0,1(1) = 0,

implying that φ0,0,1(1) = 0 since dg(z1)/dz1|z1=1 = 1 when ρ = 1. However, this con-
tradicts the hypothesis that the system is stable. Therefore, we conclude that the system
cannot be stable unless ρ < 1. �

Using Theorem 1, we next obtain the joint distribution of the orbit and normal
queue size, as well as the distribution of the overall system size, independent of server
status.

COROLLARY 1: For ρ < 1, the probability generating functions G(z1, z2) and H(z) are
given by

G(z1, z2)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ(1 − B̂(z2))[α + ξz1 + λ(1 − z2)](z2 − z1)(1 − g(z1))

[α + ξ + λ(1 − g(z1))]
[g(z1) − z1][α + λ(1 − g(z1))]{(z2 − B̂(z2))[α + λ(1 − z2)]

[ξ + λ(1 − z2)] − αξz1(1 − B̂(z2))}

− λ(1 − B̂(z2))[α + ξz1 + λ(1 − z2)](1 − z2)[α + ξ + λ(1 − z2)]
[α + λ(1 − z2)]{(z2 − B̂(z2))[α + λ(1 − z2)][ξ + λ(1 − z2)]

− αξz1(1 − B̂(z2))}

+ [α + ξ + λ(1 − z2)]
[α + λ(1 − z2)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

φ0,0,1(z1) (26)

and

H(z) =
[α + ξ + λ(1 − z)]

{
αξ B̂(z) + λB̂(z)(1 − z)[α + ξ + λ(1 − z)]

}
[α + λ(1 − z)]

{
αξ B̂(z) − λ(z − B̂(z))[α + ξ + λ(1 − z)]

} φ0,0,1(z).

(27)
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Using standard methods, (26) and (27) can be used to obtain the mth moment
(m ≥ 1) of R, Q, and N , as well as their probability distributions. The first moments
are provided in the following corollary.

COROLLARY 2: The steady state mean orbit size, mean normal queue size, and mean
number in system are, respectively, given by

E(R) = ρ

1 − ρ

⎡
⎢⎢⎢⎣ α

α + ξ
·
ξb∗(ξ)[ξ − λ(1 − b∗(ξ))] + (α + ξ)

[λ(1 − b∗(ξ)) − ξ B̂′]
b∗(ξ)[αξ − λ(1 − b∗(ξ))(α + ξ)] + ξ

θ

⎤
⎥⎥⎥⎦, (28)

E(Q) = λ
ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))]

ξb∗(ξ)(α + ξ) [αξ − λ(1 − b∗(ξ))(α + ξ)]
, (29)

and

E(N) = λb∗(ξ)
{
ξ 3 + (1 − b∗(ξ))[αξ(α + 2ξ) + λ(α + ξ)2]} − λξ(α + ξ)2B̂′

ξb∗(ξ)(α + ξ)[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]
+ ξρ

θ(1 − ρ)
, (30)

where

B̂′ = d

dz2
B̂(z2)

∣∣∣∣
z2=1

= λ

∫ ∞

0
xe−ξxb(x) dx.

Let S denote the duration of an arbitrary service time with cumulative distribution
function (c.d.f.) B. Then, as ξ → 0 in (28) to (30), it can be shown that

E(R) = 0,

E(Q) = λ2
E(S2)

2(1 − λE(S))
,

and

E(N) = λE(S) + λ2
E(S2)

2(1 − λE(S))
.

These expressions are consistent with results for the standard M/G/1 queue with no
failures and no retrials. Furthermore, denote by WR, WQ, and W , the time spent in the
orbit, normal queue, and system by an arbitrary customer in the long run, respectively.
The expected values of these random variables are obtained by applying Little’s law
to (28)–(30); that is, E(WR) = λ−1

E(R), E(WQ) = λ−1
E(Q), and E(W) = λ−1

E(N).
Corollary 2 also confirms that ρ < 1 is necessary for the stability of R (and N),

and by (29) we see that ρ1 < 1 is necessary for the stability of Q; that is, the normal
queue can be stable even if the orbit stability condition is violated. Because of the
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nature of the orbit dynamics, retrial customers are subordinate to normal customers
and can be served only when the server is idle and operational. Hence, normal queue
customers experience a greater effective service rate than do retrial customers and,
thus, it is possible that the orbit might continue to grow while the normal queue
remains stable.

Finally, we characterize the steady state distribution of the server’s status by
directly applying the results of Theorem 1. Let pI , pF , and pB, respectively, denote the
limiting probability that the server is idle, failed, or busy.

COROLLARY 3: For ρ < 1, the steady state distribution of the server’s status is
given by

pI = lim
z1→1

φ0,0,1(z1) = α

α + ξ
− λ(1 − b∗(ξ))

ξb∗(ξ)
,

pF = lim
z1→1
z2→1

ψ0,0(z1, z2) = ξ

α + ξ
,

and

pB = lim
z1→1
z2→1

ψ1,1(z1, z2) = λ(1 − b∗(ξ))

ξb∗(ξ)
.

In the following section we show that the orbit and system size can be stochas-
tically decomposed before considering the optimal selection of the retrial and repair
rates in Section 5.

4. STOCHASTIC DECOMPOSITION

In this section, we demonstrate that both the orbit and system size exhibit a stochastic
decomposition property that has been observed for the system size distribution of
many M/G/1 models, including those with vacations, retrial queues, and breakdowns
(cf. [4,11,16,27]). Falin and Templeton [12] provided several stochastic decomposition
results, including the decomposability of the vector of server status and the orbit size,
in the standard M/G/1 retrial queue (i.e., one with no infinite waiting space and no
server breakdowns).

Allowing θ → ∞ in our model yields a model in which retrial customers instan-
taneously attempt to reaccess the server (i.e., an instantaneous feedback model). Let
R̂ denote the steady state orbit size in the instantaneous feedback model and denote
the generating function of R̂ by E(zR̂) for |z| ≤ 1. Let N̂ denote the steady state total
number of customers in the system in the instantaneous feedback model and denote
its generating function by E(zN̂ ) for |z| ≤ 1. Finally, let V be a random variable whose
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generating function is given by

E(zV ) = exp

{
−1

θ

∫ 1

z1

λ(1 − g(u)) + ξ(1 − α/[α + λ(1 − g(u))])
g(u) − u

du

}
, |z| ≤ 1.

(31)
The following two propositions describe the decomposability of the orbit and system
size distributions.

PROPOSITION 1: The random variable R can be expressed as the sum of two independent
random variables, one of which is the steady state orbit size in the instantaneous
feedback model and the other is V; that is,

R = R̂ + V . (32)

PROOF: Note that (2)–(4), (26), and (27) depend on the retrial rate θ only through the
generating function E(zV

1 ). Therefore, we may write the generating function for R̂ as

E(zR̂
1 ) = lim

θ→∞ G(z1, 1) = AG(z1),

where, using L’Hospital’s rule, it can be shown that

AG(z1) = (1 − ρ)

[
1 + λ(α + ξz1)(1 − g(z1))[α + ξ + λ(1 − g(z1))]

ξ(α + ξ)(g(z1) − z1)[α + λ(1 − g(z1))]
]

.

Now, since E(zR
1 ) ≡ G(z1, 1), we can write

E(zR
1 ) = AG(z1) exp

{
−1

θ

∫ 1

z1

λ(1 − g(u)) + ξ(1 − α/[α + λ(1 − g(u))])
g(u) − u

du

}

= E(zR̂
1 )E(zV

1 )

= E(zR̂+V
1 ). �

Similar behavior can be observed for the steady state system size, as noted in
Proposition 2.

PROPOSITION 2: The random variable N can be expressed as the sum of two indepen-
dent random variables, one of which is the steady state system size in the instantaneous
feedback model and the other is V; that is,

N = N̂ + V . (33)
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PROOF: The proof is analogous to that of Proposition 1. Note that by setting z1 = z2 =
z in (2)–(4), we obtain

E(zN ) ≡ H(z) = φ0,0,1(z) + ψ0,0(z, z) + zψ1,1(z, z).

The generating function of N̂ is given by

E(zN̂ ) = lim
θ→∞ H(z) = AH(z),

where

AH(z) = α(1 − ρ)[α + ξ + λ(1 − z)]{αξ B̂(z) + λB̂(z)(1 − z)[α + ξ + λ(1 − z)]}
(α + ξ)[α + λ(1 − z)]{αξ B̂(z) − λ(z − B̂(z))[α + ξ + λ(1 − z)]} .

The generating function for N is the product of these two; that is,

E(zN ) = AH(z) exp

{
−1

θ

∫ 1

z1

λ(1 − g(u)) + ξ(1 − α/[α + λ(1 − g(u))])
g(u) − u

du

}

= E(zN̂ )E(zV )

= E(zN̂+V ). �

In the next section we formulate an optimization problem for the selection of the
optimal retrial and repair rates that minimize the long-run average cost of operating
the queueing system, subject to a budget constraint. We also provide two illustrative
examples using distinct service time distributions.

5. OPTIMAL RETRIAL AND REPAIR RATES

We now consider the simultaneous optimal selection of the retrial and repair rates that
minimize the long-run average operating costs. The cost function includes the cost of
service, the cost of holding customers in the normal queue, and the cost of holding
customers in the orbit. Required for the optimization are the queueing performance
measures E(R), E(Q), E(WR), and E(WQ), as well as the expected number of cus-
tomers in service, λ(1 − b∗(ξ))/ξb∗(ξ), and the expected time to complete service,
(1 − b∗(ξ))/ξb∗(ξ). The cost per unit time per customer in service is cS and the hold-
ing costs per unit time per customer in the orbit and normal queue are respectively
denoted by cR and cQ. The coefficient cθ is the cost of one “unit"of retrial rate and cα

is the cost of one “unit"of repair rate. Using (28) and (29), we solve the optimization
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problem

Minimize

C(θ , α) = cS
λ(1 − b∗(ξ))2

ξ 2b∗(ξ)2
+ cRE(R)E(WR) + cQE(Q)E(WQ)

Subject to

λ(1 − b∗(ξ))(α + ξ) − αξb∗(ξ) < 0, (34)

cθ θ + cαα ≤ D, (35)

θ , α > 0, (36)

where D is a fixed budget (D < ∞). Constraint (34) enforces the stability condition
(ρ < 1) and (35) is a budget constraint that limits the attainable repair capacity and
the rate at which interrupted customers may attempt to reaccess the server.

5.1. Convexity Analysis

The uniqueness of a global solution to the above optimization problem can be estab-
lished by showing that it is a convex program. The existence of a solution will then
be shown directly.

The feasible region, defined by

X = {(θ , α) : λ(1 − b∗(ξ))(α + ξ) − αξb∗(ξ) < 0; cθ θ + cαα ≤ D; θ , α > 0},
is a convex set since it is defined by a finite set of linear constraints. Strict convexity
of the objective function, which will now be proved, will complete the uniqueness
proof. Expanding the terms of C(θ , α) gives

C(θ , α) = cS
λ(1 − b∗(ξ))2

ξ 2b∗(ξ)2
+ cQλ

(
ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))]

ξb∗(ξ)(α + ξ) [αξ − λ(1 − b∗(ξ))(α + ξ)]

)2

+ cRλ

⎛
⎜⎜⎜⎝αλ(1 − b∗(ξ))

ξb∗(ξ)[ξ − λ(1 − b∗(ξ))] + (α + ξ)

× [λ(1 − b∗(ξ)) − ξ B̂′]
b∗(ξ)[αξ − λ(1 − b∗(ξ))(α + ξ)]

× [αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]

+ λξ(α + ξ)(1 − b∗(ξ))

θ [αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]

⎞
⎟⎟⎟⎠

2

. (37)

The first term on the right-hand side of (37) depends on neither θ nor α and, hence,
does not affect the convexity of C. To prove the convexity of the other two terms, the
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following functions are defined:

fR1(α) = α
ξb∗(ξ)[ξ − λ(1 − b∗(ξ))] + (α + ξ)[λ(1 − b∗(ξ)) − ξ B̂′]

[αξ − λ(1 − b∗(ξ))(α + ξ)][αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)] ,

fR2(θ , α) = λξ(α + ξ)(1 − b∗(ξ))

θ [αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)] ,

fR(θ , α) = λ(1 − b∗(ξ))

b∗(ξ)
fR1(α) + fR2(θ , α),

and

fQ(α) = ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))]
(α + ξ)[αξ − λ(1 − b∗(ξ))(α + ξ)] .

The next two lemmas are needed to prove the strict convexity of C(θ , α) on X.

LEMMA 2: The function f 2
R (θ , α) is strictly convex on X.

PROOF: We first establish the positivity of the quantity

λ(1 − b∗(ξ)) − ξ B̂′ = λ(1 −
∫ ∞

0
(ξx + 1)b(x)e−ξx dx).

Since its derivative with respect to ξ ,

λξ

∫ ∞

0
x2b(x)e−ξx dx,

is strictly positive, λ(1 − b∗(ξ)) − ξ B̂′ is strictly increasing for ξ ∈ [0, ∞) and thus
attains its minimum value of zero at the left endpoint ξ = 0. Now, the second derivative
of fR1 with respect to α is given by

∂2fR1(α)

∂α2 = 2ξ

⎧⎪⎪⎨
⎪⎪⎩

αb∗(ξ)[ξ − λ(1 − b∗(ξ))]2[ξb∗(ξ) − λ(1 − b∗(ξ))]
[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]2[αξ − λ(1 − b∗(ξ))(α + ξ)]2

+
[λ(1 − b∗(ξ)) − ξ B̂′]{α[ξ − λ(1 − b∗(ξ))][ξb∗(ξ) − λ(1 − b∗(ξ))]

+ λ2ξ(1 − b∗(ξ))2}
[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]2[αξ − λ(1 − b∗(ξ))(α + ξ)]2

+
λ(1 − b∗(ξ))(α + ξ)[ξ − λ(1 − b∗(ξ))][λ(1 − b∗(ξ)) − ξ B̂′][αξb∗(ξ)

− λ(1 − b∗(ξ))(α + ξ)]2

[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]3[αξ − λ(1 − b∗(ξ))(α + ξ)]3
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+
λξb∗(ξ)(1 − b∗(ξ))[ξ − λ(1 − b∗(ξ))]2[αξb∗(ξ)

− λ(1 − b∗(ξ))(α + ξ)]2

[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]3[αξ − λ(1 − b∗(ξ))(α + ξ)]3

+
λ(1 − b∗(ξ))(α + ξ)[ξb∗(ξ) − λ(1 − b∗(ξ))][λ(1 − b∗(ξ)) − ξ B̂′]

× [αξ − λ(1 − b∗(ξ))(α + ξ)]2

[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]3[αξ − λ(1 − b∗(ξ))(α + ξ)]3

+
λξb∗(ξ)(1 − b∗(ξ))[ξ − λ(1 − b∗(ξ))][ξb∗(ξ) − λ(1 − b∗(ξ))][αξ

− λ(1 − b∗(ξ))(α + ξ)]2

[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]3[αξ − λ(1 − b∗(ξ))(α + ξ)]3

⎫⎪⎪⎬
⎪⎪⎭.

It follows from the stability condition that [αξ − λ(1 − b∗(ξ))(α + ξ)] > 0,
[ξb∗(ξ) − λ(1 − b∗(ξ))] > 0, and [ξ − λ(1 − b∗(ξ))] > 0. Since λ(1 − b∗(ξ)) −
ξ B̂′ is nonnegative,

∂2fR1(α)

∂α2
> 0

and, thus, fR1(α) is strictly convex for all α > 0. Taking second partial derivatives of
fR2 with respect to θ and α, respectively, and assuming stability shows that

∂2fR2(θ , α)

∂θ2
= 2λξ(1 − b∗(ξ))(α + ξ)

θ3[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)] > 0

and

∂2fR2(θ , α)

∂α2
= 2λξ 3b∗(ξ)(1 − b∗(ξ))[ξb∗(ξ) − λ(1 − b∗(ξ))]

θ [αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]3
> 0.

Let H(θ , α) denote the Hessian matrix of fR2(θ , α). Then it can be shown that

det(H(θ , α)) =
λ2ξ 4b∗(ξ)(1 − b∗(ξ))2{3ξ 2b∗(ξ) + 4[αξb∗(ξ)

− λ(1 − b∗(ξ))(α + ξ)]}
θ4[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]4

> 0.

Hence, fR2(θ , α) is strictly convex on X . Consequently, fR = fR1 + fR2 is strictly convex
on X and, thus, f 2

R is strictly convex on X . �

LEMMA 3: The function f 2
Q(α) is strictly convex for all α > 0.
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PROOF: The second derivative of fQ with respect to α is given by

d2fQ(α)

dα2
= 2ξ 2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(α + ξ)[ξ − λ(1 − b∗(ξ))]{ξ 3b∗(ξ) − (α + ξ)2[ξ B̂′
− λ(1 − b∗(ξ))]}

(α + ξ)3[αξ − λ(1 − b∗(ξ))(α + ξ)]3

+
[ξb∗(ξ)[αξ − λ(1 − b∗(ξ))(α + ξ)]{2ξ 2 + 3[αξ

− λ(1 − b∗(ξ))(α + ξ)]}
(α + ξ)3[αξ − λ(1 − b∗(ξ))(α + ξ)]3

⎫⎪⎪⎬
⎪⎪⎭.

It follows from the stability condition that [αξ − λ(1 − b∗(ξ))(α + ξ)] > 0 and [ξ −
λ(1 − b∗(ξ))] > 0, and Lemma 2 ensures that λ(1 − b∗(ξ)) − ξ B̂′ is nonnegative.
Hence,

d2fQ(α)

dα2
> 0,

which establishes strict convexity of fQ for α > 0. The strict convexity of f 2
Q(α) follows

directly. �

The following theorem is the main result of this section.

THEOREM 2: The cost function C(θ , α) is strictly convex on X.

PROOF: The proof follows directly from Lemmas 2 and 3. In particular, the strict
convexity of f 2

Q(α) for all α > 0 ensures that f 2
R (θ , α) + f 2

Q(α), and thus C(θ , α), is
strictly convex on X. �

Theorem 2 along with the convexity of X show that the optimization problem is
a convex program (CP). A CP guarantees that any stationary point (Karush–Kuhn–
Tucker point) is a global minimizer, but to ensure the existence of a solution, the
feasible region must be closed and bounded. Although X is bounded, it is not closed.
To circumvent this complication, we note that, for all values of θ and α,

∂C(θ , α)

∂θ
= −2cRλ2ξ(α + ξ)(1 − b∗(ξ))

θ2[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)] fR(θ , α) < 0
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and

∂C(θ , α)

∂α

= −2cRλ2ξ(1 − b∗(ξ))fR(θ , α)

×
⎧⎨
⎩

λ(1 − b∗(ξ))
{
(α + ξ)[λ(1 − b∗(ξ)) − ξ B̂′] + ξb∗(ξ)[ξ −λ(1−b∗(ξ))]

}
b∗(ξ)[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]2[αξ − λ(1 − b∗(ξ))(α + ξ)]

+ ξ2b∗(ξ)

θ [αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)]

+
α
{
ξ [λ(1 − b∗(ξ)) − ξ B̂′] + b∗(ξ)[αξ − λ(1 − b∗(ξ))(α + ξ)]2

}
b∗(ξ)[αξb∗(ξ) − λ(1 − b∗(ξ))(α + ξ)][αξ − λ(1 − b∗(ξ))(α + ξ)]2

⎫⎬
⎭

− 2λcQfQ(α)

⎧⎪⎪⎨
⎪⎪⎩

ξ3b∗(ξ) − (α + ξ)2[ξ B̂′ − λ(1 − b∗(ξ))] + 2ξb∗(ξ)[αξ
−λ(1 − b∗(ξ))(α + ξ)]

b∗(ξ)2(α + ξ)2[αξ − λ(1 − b∗(ξ))(α + ξ)]2

⎫⎪⎪⎬
⎪⎪⎭

< 0.

Hence, the cost function C(θ , α) is monotonically decreasing in both θ and α and is
bounded below by

cS
λ(1 − b∗(ξ))2

ξ 2b∗(ξ)2
+ cR

λ3(1 − b∗(ξ))2[λ(1 − b∗(ξ)) − ξ B̂′]2

b∗(ξ)2[ξb∗(ξ) − λ(1 − b∗(ξ))]2[ξ − λ(1 − b∗(ξ))]2

+ cQ
λ[ξ B̂′ − (1 − b∗(ξ))]2

ξ 2b∗(ξ)2[ξ − λ(1 − b∗(ξ))]2
.

Therefore, the budget constraint (35) is always binding, and we can substitute

θ = D − cαα

cθ

into C(θ , α). Differentiating the objective function with respect to α and setting it
equal to zero, the optimal repair rate, denoted by α∗, is the unique root that satisfies
(34). Subsequently, the equation

θ∗ = D − cαα∗

cθ

can be solved to obtain the optimal retrial rate θ∗. Thus, (θ∗, α∗) is a stationary point
of C on X and, hence, the global minimizer.
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5.2. Numerical Examples

We now illustrate the solution procedure in two distinct scenarios. In the first case, we
assume the service times are exponentially distributed with positive rate parameter μ.
In this case, the Laplace transform of the service time distribution is given by

b∗(s) = μ

μ + s
,

which gives

b∗(ξ) = μ

(μ + ξ)

and

B̂′ = λμ

(μ + ξ)2
.

In the second scenario, we assume the service times are uniformly distributed on the
interval (0, 2/μ). In this case, the Laplace transform of the service time distribution is

b∗(s) = μ(1 − e−2s/μ)

2s

so that

b∗(ξ) = μ(1 − e−2ξ/μ)

2ξ

and

B̂′ = λμ

2ξ 2

[
1 − exp

(−2ξ

μ

)(
1 + 2ξ

μ

)]
.

The cost coefficients in both cases are cθ = cα = cS = 1 and cR = cQ = 100. The
remaining parameters, as well as the optimal solutions (indicated by ∗), are specified
in Table 1.

As expected, Table 1 verifies that the budget constraint is binding at the opti-
mal solution. In particular, with cθ = cα = 1, we have θ∗ + α∗ = D = 30.0 in both
examples.

TABLE 1. Optimal Repair and Retrial rates for Two Numerical Examples

Service Time Distribution λ μ ξ D θ∗ α∗ C(θ∗, α∗)

Exponential (μ) 5.0 10.0 1.5 30.0 11.23 18.77 5.85
Uniform on (0,2/μ) 5.0 10.0 1.5 30.0 11.69 18.31 5.18
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