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Algorithmic entropy can be viewed as a special case of the entropy studied in statistical

mechanics. This viewpoint allows us to apply many techniques developed for use in

thermodynamics to the subject of algorithmic information theory. In particular, suppose we

fix a universal prefix-free Turing machine and let X be the set of programs that halt for this

machine. Then we can regard X as a set of ‘microstates’, and treat any function on X as an

‘observable’. For any collection of observables, we can study the Gibbs ensemble that

maximises entropy subject to constraints on the expected values of these observables. We

illustrate this by taking the log runtime, length and output of a program as observables

analogous to the energy E, volume V and number of molecules N in a container of gas. The

conjugate variables of these observables allow us to define quantities we call the ‘algorithmic

temperature’ T , ‘algorithmic pressure’ P and ‘algorithmic potential’ µ, since they are

analogous to the temperature, pressure and chemical potential. We derive an analogue of the

fundamental thermodynamic relation dE = TdS − PdV + µdN, and use it to study

thermodynamic cycles analogous to those for heat engines. We also investigate the values of

T , P and µ for which the partition function converges. At some points on the boundary of

this domain of convergence, the partition function becomes uncomputable – indeed, at these

points the partition function itself has non-trivial algorithmic entropy.

1. Introduction

Many authors (see Bennett et al. (1999), Chaitin (1975), Fredkin and Toffoli (1982),

Kolmogorov (1965), Levin and Zvonkin (1970), Solomonoff (1964), Szilard (1929) and

Tadaki (2008)) have discussed the analogy between algorithmic entropy and entropy as

defined in statistical mechanics: that is, the entropy of a probability measure p on a set

X. It is perhaps insufficiently appreciated that algorithmic entropy can be viewed as a

special case of the entropy defined in statistical mechanics – we will describe how to do

this in Section 3.

This allows all the basic techniques of thermodynamics to be imported into algorithmic

information theory. The key idea is to take X to be some version of ‘the set of all programs

that eventually halt and output a natural number’, and let p be a Gibbs ensemble on X.

A Gibbs ensemble is a probability measure that maximises entropy subject to constraints

on the mean values of some observables – that is, real-valued functions on X.
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In most traditional work on algorithmic entropy, the relevant observable is the length of

the program. However, much of the interesting structure of thermodynamics only becomes

visible when we consider several observables. When X is the set of programs that halt

and output a natural number, some other important observables include the output of

the program and the logarithm of its runtime. So, in Section 4 we illustrate how ideas

from thermodynamics can be applied to algorithmic information theory using these three

observables.

To do this, we consider a Gibbs ensemble of programs that maximises entropy subject

to constraints on:

— E, the expected value of the logarithm of the program’s runtime (which we treat as

analogous to the energy of a container of gas);

— V , the expected value of the length of the program (analogous to the volume of the

container); and

— N, the expected value of the program’s output (analogous to the number of molecules

in the gas).

This measure is of the form

p =
1

Z
e−βE(x)−γV (x)−δN(x)

for certain numbers β, γ, δ, where the normalising factor

Z =
∑
x∈X

e−βE(x)−γV (x)−δN(x)

is called the ‘partition function’ of the ensemble. The partition function reduces to Chaitin’s

number Ω when β = 0, γ = ln 2 and δ = 0. This number is uncomputable (Chaitin 1975).

However, we will show that the partition function Z is computable when β > 0, γ � ln 2

and δ � 0.

We derive an algorithmic analogue of the basic thermodynamic relation

dE = TdS − PdV + µdN,

where:

— S is the entropy of the Gibbs emsemble.

— T = 1/β is the ‘algorithmic temperature’ (which is analogous to the temperature of

a container of gas). Roughly speaking, this counts how many times you must double

the runtime in order to double the number of programs in the ensemble while holding

their mean length and output fixed.

— P = γ/β is the ‘algorithmic pressure’ (which is analogous to pressure). This measures

the tradeoff between runtime and length. Roughly speaking, it counts how much

you need to decrease the mean length to increase the mean log runtime by a specified

amount, while holding the number of programs in the ensemble and their mean output

fixed.

— µ = −δ/β is the ‘algorithmic potential’ (which is analogous to chemical potential).

Roughly speaking, this counts how much the mean log runtime increases when you

increase the mean output while holding the number of programs in the ensemble and

their mean length fixed.
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Starting from this relation, we derive analogues of Maxwell’s relations and consider

thermodynamic cycles such as the Carnot cycle or Stoddard cycle. For this we must

introduce concepts of ‘algorithmic heat’ and ‘algorithmic work’.

Charles Babbage described a computer powered by a steam engine; we describe a heat

engine powered by programs! We admit that the significance of this line of thinking

remains a bit mysterious. However, we hope it points the way toward a further synthesis

of algorithmic information theory and thermodynamics. We call this hoped-for synthesis

‘algorithmic thermodynamics’.

2. Related work

Li and Vitányi use the term ‘algorithmic thermodynamics’ for the description of physical

states using a universal prefix-free Turing machine U. They look at the smallest program

p that outputs a description x of a particular microstate to some accuracy, and define the

physical entropy to be

SA(x) = (k ln 2)(K(x) + Hx),

where K(x) = |p| and Hx embodies the uncertainty in the actual state given x. They

summarise both their own work and subsequent work by others in Chapter eight of their

book Li and Vitányi (2008). While they consider x = U(p) to be a microstate, we consider

p to be the microstate and x to be the value of the observable U. Then their observables

O(x) become observables of the form O(U(p)) in our model.

Tadaki (2002) generalised Chaitin’s number Ω to a function ΩD and showed that the

value of this function is compressible by a factor of exactly D when D is computable.

Calude and Stay (2006b) pointed out that this generalisation was formally equivalent

to the partition function of a statistical mechanical system, where temperature played

the role of the compressibility factor, and studied various observables of such a system.

Tadaki (2008) then explicitly constructed a system with that partition function: given a

total length E and number of programs N, the entropy of the system is the log of the

number of E-bit strings in dom(U)N. The temperature is

1

T
=

∆E

∆S

∣∣∣∣
N

.
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The follow-up paper Tadaki (2009) showed that various other quantities, such as the

free energy, shared the same compressibility properties as ΩD . In this paper, we consider

multiple variables, which will be necessary for the study thermodynamic cycles, chemical

reactions, and so forth.

Manin and Marcolli (2009) derived similar results in a broader context and studied

phase transitions in those systems. Manin (2011; 2012) also outlined an ambitious pro-

gramme for treating the infinite runtimes one finds in undecidable problems as singularities

to be removed through the process of renormalisation. In a manner reminiscent of

hunting for the proper definition of the ‘one-element field’ Fun, he collected ideas from

many different places and considered how they all touch on this central theme. While he

mentioned a runtime cutoff as being analogous to an energy cutoff, the renormalisations

he presented are uncomputable. In this paper, we take the log of the runtime as being

analogous to the energy; the randomness described by Chaitin and Tadaki then arises as

the infinite-temperature limit.

3. Algorithmic entropy

To see algorithmic entropy as a special case of the entropy of a probability measure, it is

useful to follow Solomonoff (1964) and take a Bayesian viewpoint. In Bayesian probability

theory, we always start with a probability measure called a ‘prior’, which describes our

assumptions about the situation at hand before we make any further observations. As we

learn more, we may update this prior. This approach suggests that we should define the

entropy of a probability measure relative to another probability measure – the prior.

A probability measure p on a finite set X is simply a function p : X → [0, 1] whose

values sum to 1, and its entropy is defined as follows:

S(p) = −
∑
x∈X

p(x) ln p(x).

But we can also define the entropy of p relative to another probability measure q:

S(p, q) = −
∑
x∈X

p(x) ln
p(x)

q(x)
.

This relative entropy has been extensively studied and goes by various other names,

including ‘Kullback–Leibler divergence’ (Kullback and Leibler 1951) and ‘information

gain’ (Rényi 1960).

The term ‘information gain’ is nicely descriptive. Suppose we initially assume the

outcome of an experiment is distributed according to the probability measure q. Suppose

we then repeatedly do the experiment and discover its outcome is distributed according

to the measure p. Then the information gained is S(p, q).

We can see why this is the case if we think in terms of coding. Suppose X is a finite set

of signals that are randomly emitted by some source and that we wish to encode these

signals as efficiently as possible in the form of bit strings. Suppose the source emits the

signal x with probability p(x), but we erroneously believe it is emitted with probability

q(x). Then S(p, q)/ ln 2 is the expected extra message-length per signal that is required if
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we use a code that is optimal for the measure q instead of a code that is optimal for the

true measure, p.

The ordinary entropy S(p) is, up to a constant, just the relative entropy in the special

case where the prior assigns an equal probability to each outcome. In other words,

S(p) = S(p, q0) + S(q0)

when q0 is the so-called ‘uninformative prior’, with q0(x) = 1/|X| for all x ∈ X.

We can also define relative entropy when the set X is countably infinite. As before, a

probability measure on X is a function p : X → [0, 1] whose values sum to 1. And as

before, if p and q are two probability measures on X, the entropy of p relative to q is

defined by

S(p, q) = −
∑
x∈X

p(x) ln
p(x)

q(x)
. (1)

But now the role of the prior becomes more clear, because there is no probability measure

that assigns the same value to each outcome!

In the following, we will take X to be, roughly speaking, the set of all programs that

eventually halt and output a natural number. As we shall see, while this set is countably

infinite, there are still some natural probability measures on it, and we may take them as

priors.

To make this precise, we recall the concept of a universal prefix-free Turing machine.

In the following, we will use string to mean a bit string, that is, a finite, possibly empty,

list of 0’s and 1’s. If x and y are strings, let x||y be the concatenation of x and y. A prefix

of a string z is a substring beginning with the first letter, that is, a string x such that

z = x||y for some y. A prefix-free set of strings is one in which no element is a prefix of

any other. The domain dom(M) of a Turing machine M is the set of strings that cause

M to halt eventually. We call the strings in dom(M) programs. We assume that when the

M halts on the program x it outputs a natural number M(x). Thus we may think of the

machine M as giving a function M : dom(M) → �.

A prefix-free Turing machine is one whose halting programs form a prefix-free set. A

prefix-free machine U is universal if for any prefix-free Turing machine M, there exists a

constant c such that for each string x there exists a string y with

U(y) = M(x) and |y| < |x| + c.

Let U be a universal prefix-free Turing machine. Then we can define some probability

measures on X = dom(U) as follows. Let

| · | : X → �

be the function assigning to each bit string its length. Then there is for any constant

γ > ln 2 a probability measure p given by

p(x) =
1

Z
e−γ|x|.
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Here the normalisation constant Z is chosen to make the numbers p(x) sum to 1:

Z =
∑
x∈X

e−γ|x|.

It is worth noting that for computable real numbers γ � ln 2, the normalisation constant

Z is uncomputable (Tadaki 2002). Indeed, when γ = ln 2, Z is Chaitin’s famous number

Ω – we will return to this issue in Section 4.5.

Let us assume that each program prints out some natural number as its output. Thus

we have a function

N : X → �

where N(x) equals i when program x prints out the number i. We may use this function

to ‘push forward’ p to a probability measure q on the set n. Explicitly,

q(i) =
∑

x∈X:N(x)=i

e−γ|x| .

In other words, if i is some natural number, q(i) is the probability that a program randomly

chosen according to the measure p will print out this number.

Given any natural number n, there is a probability measure δn on n that assigns

probability 1 to this number:

δn(m) =

{
1 if m = n

0 otherwise.

We can now compute the entropy of δn relative to q:

S(δn, q) = −
∑
i∈n

δn(i) ln
δn(i)

q(i)

= − ln

⎛
⎝ ∑

x∈X : N(x)=n

e−γ|x|

⎞
⎠ + lnZ.

(2)

Since the quantity lnZ is independent of the number n, and uncomputable, it makes sense

to focus attention on the other part of the relative entropy:

− ln

⎛
⎝ ∑

x∈X : N(x)=n

e−γ|x|

⎞
⎠ .

If we take γ = ln 2, this is precisely the algorithmic entropy of the number n (Chaitin 1976;

Levin and Zvonkin 1970). So, up to the additive constant lnZ , we can see that algorithmic

entropy is a special case of relative entropy.

One way to think about entropy is as a measure of surprise: if you can predict what

comes next, that is, if you have a program that can compute it for you, then then you

are not surprised. For example, the first 2000 bits of the binary fraction for 1/3 can be

produced with this short Python program:

print "01" * 1000
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But if the number is complicated, if every bit is surprising and unpredictable, then the

shortest program to print the number does not do any computation at all! It just looks

something like

print "101000011001010010100101000101111101101101001010"

Levin’s coding theorem (Levin 1974) says that the difference between the algorithmic

entropy of a number and its Kolmogorov complexity – the length of the shortest program

that outputs it – is bounded by a constant that only depends on the programming

language.

So, what we see here is that up to some error bounded by a constant, Kolmogorov

complexity is information gain: the information gained upon learning a number, if our

prior assumption was that this number is the output of a program randomly chosen

according to the measure p where γ = ln 2.

More importantly, we have seen that algorithmic entropy is not just analogous to

entropy as defined in statistical mechanics: it is a special case, as long as we take seriously

the Bayesian philosophy that entropy should be understood as relative entropy. This real-

isation opens up the possibility of taking many familiar concepts from thermodynamics,

expressed in the language of statistical mechanics, and finding their counterparts in the

realm of algorithmic information theory.

But in order to proceed we must also understand more precisely the role of the measure

p. In the next section, we shall see that this type of measure is already familiar in statistical

mechanics: it is a Gibbs ensemble.

4. Algorithmic thermodynamics

Suppose we have a countable set X, finite or infinite, and suppose C1, . . . , Cn : X → � is

some collection of functions. Then we may seek a probability measure p that maximises

entropy subject to the constraints that the mean value of each observable Ci is a given

real number Ci: ∑
x∈X

p(x)Ci(x) = Ci.

As nicely discussed in Jaynes (1957; 2003), the solution, if it exists, is the so-called Gibbs

ensemble:

p(x) =
1

Z
e−(s1C1(x)+···+snCn(x))

for some numbers si ∈ � depending on the desired mean values Ci. Here the normalising

factor Z is called the partition function:

Z =
∑
x∈X

e−(s1C1(x)+···+snCn(x)) .

In thermodynamics, X represents the set of microstates of some physical system. A

probability measure on X is also known as an ensemble. Each function Ci : X → � is

called an observable, and the corresponding quantity si is called the conjugate variable of

that observable. For example, the conjugate of the energy E is the inverse of temperature

T , in units where Boltzmann’s constant equals 1. The conjugate of the volume V , of a
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THERMODYNAMICS

Observable Conjugate Variable

energy: E
1

T

volume: V
P

T

number: Ni −µi

T

Table 1.

piston full of gas, for example, is the pressure P divided by the temperature. And in a gas

containing molecules of various types, the conjugate of the number Ni of molecules of

the ith type is minus the ‘chemical potential’ µi, again divided by temperature. For easy

reference, we list these observables and their conjugate variables in Table 1.

Now let us return to the case where X = dom(U). Recalling that programs are bit

strings, one important observable for programs is the length:

| · | : X → �.

We have already seen the measure

p(x) =
1

Z
e−γ|x|.

Now its significance should be clear! This is the probability measure on programs that

maximises entropy subject to the constraint that the mean length is some constant �:∑
x∈X

p(x) |x| = �.

So, γ is the conjugate variable to program length.

There are, however, other important observables that can be defined for programs, and

each of these has a conjugate quantity. To make the analogy to thermodynamics as vivid

as possible, let us arbitrarily choose two more observables and treat them as analogues of

energy and the number of some type of molecule. Two of the most obvious observables

are ‘output’ and ‘runtime’. Since Levin’s computable complexity measure (Levin 1973)

uses the logarithm of runtime as a kind of ‘cutoff’ reminiscent of an energy cutoff in

renormalisation, we shall arbitrarily choose the log of the runtime to be analogous to the

energy, and denote it by

E : X → [0,∞)

Following the chart in Table 1, we use 1/T to stand for the variable conjugate to E. We

arbitrarily treat the output of a program as analogous to the number of a certain kind of

molecule, and denote it as

N : X → �.
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ALGORITHMS

Observable Conjugate Variable

log runtime: E
1

T

length: V
P

T

output: N − µ

T

Table 2.

We use −µ/T to stand for the conjugate variable of N. Finally, as already hinted, we

denote program length as

V : X → �

so that in terms of our earlier notation, V (x) = |x|. We use P/T to stand for the variable

conjugate to V – see Table 2.

Before proceeding, we should emphasise that our choice of analogies here was somewhat

arbitrary and are just an illustration of the application of thermodynamics to the study

of algorithms. There may or may not be a specific ‘best’ mapping between observables for

programs and observables for a container of gas! Indeed, Tadaki (2008) explored another

analogy, where length rather than log run time is treated as the analogue of energy. There

is nothing wrong with this. However, he did not introduce enough other observables to

see the whole structure of thermodynamics, as developed in Sections 4.1–4.2 below.

Having made our choice of observables, we define the partition function by

Z =
∑
x∈X

e− 1
T

(E(x)+PV (x)−µN(x)) .

When this sum converges, we can define a probability measure on X, the Gibbs ensemble,

by

p(x) =
1

Z
e− 1

T
(E(x)+PV (x)−µN(x)) .

Both the partition function and the probability measure are functions of T , P and µ.

From these we can compute the mean values of the observables to which these variables

are conjugate:

E =
∑
x∈X

p(x)E(x)

V =
∑
x∈X

p(x)V (x)

N =
∑
x∈X

p(x)N(x)
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In certain ranges, the map (T , P , µ) �→ (E, V ,N) will be invertible. This allows us to

alternatively think of Z and p as functions of E, V and N. In this situation, it is typical

to abuse language by omitting the overlines denoting ‘mean value’.

4.1. Elementary relations

The entropy S of the Gibbs ensemble is given by

S = −
∑
x∈X

p(x) ln p(x).

We may think of this as a function of T , P and µ, or alternatively, as explained above,

as functions of the mean values E, V and N. Then simple calculations, familiar from

statistical mechanics (Reif 1965), show that

∂S

∂E

∣∣∣∣
V ,N

=
1

T
(3)

∂S

∂V

∣∣∣∣
E,N

=
P

T
(4)

∂S

∂N

∣∣∣∣
E,V

= − µ

T
. (5)

We may summarise all these by writing

dS =
1

T
dE +

P

T
dV − µ

T
dN

or, equivalently,

dE = TdS − PdV + µdN. (6)

Starting from the latter equation, we see

∂E

∂S

∣∣∣∣
V ,N

= T (7)

∂E

∂V

∣∣∣∣
S,N

= −P (8)

∂E

∂N

∣∣∣∣
S,V

= µ. (9)

With these definitions, we can start to get a feel for what the conjugate variables

are measuring. To build intuition, it is useful to think of the entropy S as roughly the

logarithm of the number of programs whose log runtimes, length and output lie in small

ranges E ± ∆E, V ± ∆V and N ± ∆N. This is at best approximately true, but in ordinary

thermodynamics this approximation is commonly employed and yields spectacularly good

results. That is why in thermodynamics people often say the entropy is the logarithm of

the number of microstates for which the observables E, V and N lie within a small range

of their specified values (Reif 1965).
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If you allow programs to run longer, more of them will halt and give an answer. The

algorithmic temperature T is roughly the number of times you have to double the runtime

in order to double the number of ways to satisfy the constraints on length and output.

The algorithmic pressure P measures the trade-off between runtime and length (Calude

and Stay 2006a): if you want to keep the number of ways to satisfy the constraints

constant, then the freedom gained by having longer runtimes has to be counterbalanced

by shortening the programs. This is analogous to the pressure of gas in a piston: if you

want to keep the number of microstates of the gas constant, then the freedom gained by

increasing its energy has to be counterbalanced by decreasing its volume.

Finally, the algorithmic potential describes the relation between log runtime and output:

it is a quantitative measure of the principle that most large outputs must be produced by

long programs.

4.2. Thermodynamic cycles

One of the first applications of thermodynamics was in the analysis of heat engines. The

underlying mathematics applies equally well to algorithmic thermodynamics. Suppose C

is a loop in (T , P , µ) space and that we are in a region that can also be coordinatised by

the variables E, V ,N. Then the change in algorithmic heat around the loop C is defined

to be

∆Q =

∮
C

TdS.

Suppose the loop C bounds a surface Σ. Then Stokes’ theorem implies that

∆Q =

∮
C

TdS =

∫
Σ

dTdS.

However, Equation (6) implies that

dTdS = d(TdS) = d(dE + PdV − µdN) = +dPdV − dµdN

since d2 = 0. So we have

∆Q =

∫
Σ

(dPdV − dµdN),

or using Stokes’ theorem again,

∆Q =

∫
C

(PdV − µdN). (10)

In ordinary thermodynamics, N is constant for a heat engine using gas in a sealed

piston. In this situation we have

∆Q =

∫
C

PdV .

This equation says that the change in heat of the gas equals the work done on the gas, or,

equivalently, minus the work done by the gas. So, in algorithmic thermodynamics, let us

define
∫
C
PdV to be the algorithmic work done on our ensemble of programs as we carry

it around the loop C – beware, this concept is unrelated to ‘computational work’, which

means the amount of computation done by a program as it runs.
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To see an example of a cycle in algorithmic thermodynamics, consider the analogue

of the heat engine patented by Stoddard in 1919 (Stoddard 1919). Here we fix N to a

constant value and consider the following loop in the PV plane:

P

V

1 2

3
4

(P1, V1)

(P2, V1)

(P3, V2)

(P4, V2)

We start with an ensemble with algorithmic pressure P1 and mean length V1. We then

trace out a loop consisting of four parts:

(1) Isometric: We increase the pressure from P1 to P2 while keeping the mean length

constant. No algorithmic work is done on the ensemble of programs during this step.

(2) Isentropic: We increase the length from V1 to V2 while keeping the number of halting

programs constant. High pressure means that we are operating in a range of runtimes

where if we increase the length a little bit, many more programs halt. In order to keep

the number of halting programs constant, we need to shorten the runtime significantly.

As we gradually increase the length and lower the runtime, the pressure drops to P3.

The total difference in log runtime is the algorithmic work done on the ensemble

during this step.

(3) Isometric: Now we decrease the pressure from P3 to P4 while keeping the length

constant. No algorithmic work is done during this step.

(4) Isentropic: Finally, we decrease the length from V2 back to V1 while keeping the

number of halting programs constant. Since we are at low pressure, we need only

increase the runtime a little. As we gradually decrease the length and increase the

runtime, the pressure rises slightly back to P1. The total increase in log runtime is

minus the algorithmic work done on the ensemble of programs during this step.

The total algorithmic work done on the ensemble per cycle is the difference in log runtimes

between Steps 2 and 4.

4.3. Further relations

From the elementary thermodynamic relations in Section 4.1, we can derive various others.

For example, the so-called ‘Maxwell relations’ are obtained by computing the second

derivatives of thermodynamic quantities in two different orders and then applying the

basic derivative relations given in Equations (7–9). While trivial to prove, these relations

say some things about algorithmic thermodynamics which may not seem intuitively

obvious.

We will just give one example here. Since mixed partials commute, we have

∂2E

∂V∂S

∣∣∣∣
N

=
∂2E

∂S∂V

∣∣∣∣
N

.
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Using Equation (7), the left-hand side can be computed as follows:

∂2E

∂V∂S

∣∣∣∣
N

=
∂

∂V

∣∣∣∣
S,N

∂E

∂S

∣∣∣∣
V ,N

=
∂T

∂V

∣∣∣∣
S,N

.

Similarly, we can compute the right-hand side with the help of Equation (8):

∂2E

∂S∂V

∣∣∣∣
N

=
∂

∂S

∣∣∣∣
V ,N

∂E

∂V

∣∣∣∣
S,N

= − ∂P

∂S

∣∣∣∣
V ,N

.

As a result, we obtain

∂T

∂V

∣∣∣∣
S,N

= − ∂P

∂S

∣∣∣∣
V ,N

.

We can also derive interesting relations involving derivatives of the partition function.

These become more manageable if we rewrite the partition function in terms of the

conjugate variables of the observables E, V and N:

β =
1

T
, γ =

P

T
, δ = − µ

T
. (11)

Then we have

Z =
∑
x∈X

e−βE(x)−γV (x)−δN(x)

Simple calculations, which are standard in statistical mechanics (Reif 1965), then allow

us to compute the mean values of observables as derivatives of the logarithm of Z with

respect to their conjugate variables. Here we will revert to using overlines to denote mean

values:

E =
∑
x∈X

p(x)E(x) = − ∂

∂β
lnZ

V =
∑
x∈X

p(x)V (x) = − ∂

∂γ
lnZ

N =
∑
x∈X

p(x)N(x) = − ∂

∂δ
lnZ.

We can go further and compute the variance of these observables using second derivatives:

(∆E)2 =
∑
x∈X

p(x)(E(x)2 − E
2
) =

∂2

∂2β
lnZ,

and similarly for V and N. Higher moments of E, V and N can also be computed by

taking higher derivatives of lnZ .

4.4. Convergence

So far we have postponed the crucial question of convergence: for which values of T , P

and µ does the partition function Z converge? For this it is most convenient to treat Z as
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a function of the variables β, γ and δ introduced in Equation (11). The question is then,

for which values of β, γ and δ does the partition function converge?

(1) When β = γ = δ = 0, the contribution of each program is 1. Since there are infinitely

many halting programs, Z(0, 0, 0) does not converge.

(2) When β = 0, γ = ln 2 and δ = 0, the partition function converges to Chaitin’s number

Ω =
∑
x∈X

2−V (x).

To see that the partition function converges in this case, consider the following

mapping of strings to segments of the unit interval:

empty

0 1

00 01 10 11

000 001 010 011 100 101 110 111
...

Each segment consists of all the real numbers whose binary expansion begins with

that string. For example, the set of real numbers whose binary expansion begins

0.101 . . . is [0.101, 0.110) and has measure 2−|101| = 2−3 = 1/8. Since the set of halting

programs for our universal machine is prefix-free, we never count any segment more

than once, so the sum of all the segments corresponding to halting programs is at

most 1.

(3) Tadaki (2002) showed that the expression∑
x∈X

e−γV (x)

converges for γ � ln 2 but diverges for γ < ln 2. It follows that Z(β, γ, δ) converges

whenever γ � ln 2 and β, δ � 0.

(4) When β > 0 and γ = δ = 0, convergence depends on the machine. There are

machines where infinitely many programs halt immediately. For these, Z(β, 0, 0) does

not converge. However, there are also machines where program x takes at least V (x)

steps to halt, and for these machines, Z(β, 0, 0) will converge when β � ln 2. Other

machines take much longer to run. For these, Z(β, 0, 0) will converge for even smaller

values of β.

(5) Finally, when β = γ = 0 and δ > 0, we get that Z(β, γ, δ) fails to converge, since there

are infinitely many programs that halt and output 0.

4.5. Computability

Even when the partition function Z converges, it may not be computable. The theory of

computable real numbers was independently introduced by Church, Post and Turing, and

later blossomed into the field of computable analysis (Pour-El and Richards 1989). We

will only need the basic definition: a real number a is computable if there is a recursive
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function that maps any natural number n > 0 to an integer f(n) such that

f(n)

n
� a �

f(n) + 1

n
.

In other words, for any n > 0, we can compute a rational number that approximates a

with an error of at most 1/n. This definition can be formulated in various other equivalent

ways: for example, the computability of binary digits.

Chaitin (1975) proved that the number

Ω = Z(0, ln 2, 0)

is uncomputable. In fact, he showed that for any universal machine, the values of all but

finitely many bits of Ω are not only uncomputable, but random: knowing the value of

some of them tells you nothing about the rest – they are independent, like separate flips

of a fair coin.

More generally, for any computable number γ � ln 2, we have Z(0, γ, 0) is ‘partially

random’ in the sense of Tadaki (Calude et al. 2004; Tadaki 2002). This deserves a word of

explanation. A fixed formal system with finitely many axioms can only prove that finitely

many bits of Z(0, γ, 0) have the values they do; after that, one has to add more axioms

or rules to the system to make any progress. The number Ω is completely random in the

following sense: for each bit of axiom or rule one adds, one can prove that at most one

more bit of its binary expansion has the value it does. So the most efficient way to prove

the values of these bits is simply to add them as axioms! But for Z(0, γ, 0) with γ > ln 2,

the ratio of bits of axiom per bits of sequence is less than 1. In fact, Tadaki showed that

for any computable γ � ln 2, the ratio can be reduced to exactly (ln 2)/γ.

On the other hand, Z(β, γ, δ) is computable for all computable real numbers β > 0,

γ � ln 2 and δ � 0. The reason is that β > 0 exponentially suppresses the contribution of

machines with long runtimes, eliminating the problem posed by the undecidability of the

halting problem. The fundamental insight here is due to Levin (Levin 1973). His idea was

to ‘dovetail’ all programs: on turn n, run each of the first n programs a single step and

look to see which ones have halted. As they halt, add their contribution to the running

estimate of Z . For any k � 0 and turn t � 0, let kt be the location of the first zero bit after

position k in the estimation of Z . Then because −βE(x) is a monotonically decreasing

function of the runtime and decreases faster than kt, there will be a time step where the

total contribution of all the programs that have not halted yet is less than 2−kt .

5. Conclusions

We will just mention three of the many further directions to explore. First, as already

mentioned, the ‘Kolmogorov complexity’ (Kolmogorov 1965) of a number n is the number

of bits in the shortest program that produces n as output. However, a very short program

that runs for a million years before giving an answer is not very practical. To address

this problem, the Levin complexity (Levin 1974) of n is defined using the program’s length

plus the logarithm of its runtime, again minimised over all programs that produce n

as output. Unlike the Kolmogorov complexity, the Levin complexity is computable. But

like the Kolmogorov complexity, the Levin complexity can be seen as a relative entropy
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– at least, up to some error bounded by a constant. The only difference is that now

we compute this entropy relative to a different probability measure: instead of using the

Gibbs distribution at infinite algorithmic temperature, we drop the temperature to ln 2.

Indeed, the Kolmogorov and Levin complexities are just two examples from a continuum

of options. By adjusting the algorithmic pressure and temperature, we get complexities

involving other linear combinations of length and log runtime. The same formalism

works for complexities involving other observables: for example, the maximum amount

of memory the program uses while running.

Second, instead of considering Turing machines that output a single natural number,

we can consider machines that output a finite list of natural numbers (N1, . . . , Nj); we can

treat these as populations of different ‘chemical species’ and define algorithmic potentials

for each of them. Processes analogous to chemical reactions are paths through this space

that preserve certain invariants of the lists. With chemical reactions we can consider things

like internal combustion cycles.

Finally, in ordinary thermodynamics, the partition function Z is simply a number

after we fix the values of the conjugate variables. The same is true in algorithmic

thermodynamics. However, in algorithmic thermodynamics, it is natural to express this

number in binary and inquire about the algorithmic entropy of the first n bits. For

example, we have seen that for suitable values of temperature, pressure and chemical

potential, Z is Chaitin’s number Ω. For each universal machine there exists a constant c

such that the first n bits of the number Ω have at least n − c bits of algorithmic entropy

with respect to that machine. Tadaki (2002) generalised this computation to other cases.

So, in algorithmic thermodynamics, the partition function itself has non-trivial entropy.

Tadaki has shown that the same is true for algorithmic pressure (which in his analogy he

calls ‘temperature’). This reflects the self-referential nature of computation. It would be

worthwhile to understand this more deeply.
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