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When subjected to a steady cross-flow, the deformation of flexible blades is known to
result in the alleviation of the internal stresses in comparison to rigid structures. In the
field of biomechanics, the flow-induced deformations of flexible structures leading to
stress reduction have been often referred to as ‘reconfiguration’ in order to highlight
the alleged benefits of such an adaptive process. In this paper, we investigate the
reconfiguration of thin elastic blades and the resulting internal stresses when the flow
about the blade is oscillatory. Our approach, based on numerical simulations using
reduced order fluid force models, is validated by experimental observations. Through
a systematic investigation of the response of the structure, we identify four kinematic
regimes depending on the excursion of the fluid particles relative to the dimensions
of the blade and on the frequency of the flow oscillations relative to the characteristic
frequency of the blade. When the flow amplitude is smaller than the structural width,
fluid inertia dominates over drag and the fluid–structure coupling triggers resonances
that may cause a magnification of the internal stresses. But the small magnitude of the
fluid load in this regime is unlikely to cause any severe damage in practice. Otherwise,
when drag is the dominant load, flexibility always permits a reduction of the internal
stresses. As in the static case, dynamic reconfiguration results in the concentration of
the stresses within a small bending length whose scaling depends on the kinematic
regime. The magnitude of the stresses does not depend on the actual length of the
structure anymore, which suggests the absence of mechanical limitations to the axial
growth of wave-swept plants. However, the risk of resonances originating from the
inertial load when the blade width compares with the flow excursion favours elongated
shapes that best accommodate the oscillatory fluid loadings.

Key words: aerodynamics, flow–structure interactions

1. Introduction

The deformation of flexible bodies subject to a transverse oscillatory flow has
raised the attention of the scientific community for some time and with different
motivations. The propulsive performances of deformable bodies depend on the
flexibility of the structure (Lighthill 1960, 1971; Katz & Weihs 1978, 1979). More
specifically, the dynamic coupling with the deformation resulting from the oscillatory
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forcing may trigger resonances or involve nonlinear effects of paramount importance
(Alben 2008; Michelin & Llewellyn Smith 2009; Ramananarivo, Godoy-Diana &
Thiria 2011; Paraz, Eloy & Schouveiler 2014; Paraz, Schouveiler & Eloy 2016;
Piñeirua, Thiria & Godoy-Diana 2017). Similarly, flexible structures forced into a
transverse motion within an axial flow may harvest energy from the fluid, and the
nature of the deformation depending on the features of the forcing influences the
efficiency of the process (Liu, Xiao & Cheng 2013).

The transverse fluid loads are also responsible for internal stresses that may
endanger the structural integrity. As a strategy for survival, large plants living in
flow-dominated habitats are usually very flexible (Harder et al. 2004). Thanks to
their ability to deform under the influence of the current, flexible structures are able
to reduce their frontal area, reshape themselves in a more streamlined fashion, or
even shelter in regions where the flow is slower. The work of Vogel (1984) and Vogel
(1989) has highlighted that this instantaneous, passive and reversible change of shape
leads to a significant reduction of the internal stresses in the flexible plants subjected
to high velocity flows. Because of the alleged adaptive nature of these flow-induced
deformations, Vogel (1984) has suggested the use of the word ‘reconfiguration’
owing to the more positive overtone associated with this term. Thereafter, several
authors have contributed to quantitatively evaluate the drag reduction due to elastic
reconfiguration in steady currents on model systems (Alben, Shelley & Zhang 2002,
2004; Gosselin, de Langre & Machado-Almeida 2010; Luhar & Nepf 2011; Hassani,
Mureithi & Gosselin 2016; Leclercq & de Langre 2016).

But the question arises of whether the benefits of flexibility would still prevail
in an oscillatory flow such as that encountered by salt marsh vegetation, seagrasses,
or macroalgae in the near-shore waves. Koehl (1984) pointed out that the fluid
acceleration forces in an oscillatory flow, proportional to the volume of the plant
when the drag is only proportional to its frontal area, may be the dominant load that
bulk organisms have to withstand (see also Denny, Daniel & Koehl 1985). On the
other hand, flexible organisms long enough to move significantly with the flow may
endure less severe relative flow and possibly benefit from a reduction of the associated
loads. But the displacement of the structure is also responsible for additional inertial
loads, so the actual consequences of flexibility in an oscillatory flow may be strongly
dependent on the nature of the dynamic response of the deformable structure. Different
mechanical models have been proposed to replicate the motion of macroalgae under
the action of waves. For instance, see Friedland & Denny (1995) for fully submerged
flexible plants, Utter & Denny (1996), Denny & Cowen (1997) for algae larger than
the water depth and Gaylord & Denny (1997) for stipitate kelps. But the question of
how the dynamical response and the associated loads may change when the rigidity
of the structure is varied was first addressed by Luhar & Nepf (2016). Their study
suggests, based on experimental results, that the drag on deformable structures may
be expressed as that on a rigid structure with an effective length corresponding to
the part of the actual structure over which significant relative fluid motion occurs.
A scaling of this effective length with the flexibility was provided, with the aim to
provide a tool to account for the deformability of near-bed organisms in the models
of wave-energy dissipation (see also Luhar, Infantes & Nepf 2017). But the work of
Luhar & Nepf (2016) focuses on the specific case where the amplitude of the flow
is at most of the order of the length of the structure. They do not investigate either
the dynamic interactions (such as possible resonance effects) due to high frequency
loading. Besides, for particular values of the parameters, Luhar & Nepf (2016) notice
an increase of the drag compared to the rigid case that is still not fully understood.
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FIGURE 1. (a) Side view of the bending structure. (b) Dimensions of the undeformed
blade.

In order to identify and understand the different mechanisms involved, a systematic
analysis exploring the space of forcing parameters is therefore still required. In this
paper, we intend to elucidate the nature of the dynamical response of such a cantilever
structure depending on the amplitude and frequency of the oscillating cross-flow,
in the ideal case of a uniform flow. Our approach is mostly based on numerical
simulations using reduced-order force models, with experimental validation. Our
goal is then to assess how the structural stresses vary compared to the rigid case,
depending on the different dynamical regimes.

In § 2 we introduce the theoretical model and the numerical method we chose to
reproduce the dynamics of the system. In § 3 we present an experimental set-up used
for visualizing the actual deformation of blades in oscillatory forced motion and to
validate the model. We then identify four different kinematic regimes for varying
ranges of the forcing amplitude and frequency in § 4, before discussing the resulting
flexibility-induced variations of the structural stress in § 5. Finally, § 6 extends the
discussion to provide general findings and to comment on previous work.

2. Model
2.1. Theory

We consider a neutrally buoyant, cantilever beam of length L, width W and thickness
D, placed perpendicular to a uniform oscillatory flow of velocity U(t)=AΩ sin(Ωt)ex
in a fluid of density ρ (see figure 1). The amplitude A corresponds to the maximal
horizontal excursion of the fluid particles over one cycle, while Ω is the angular
frequency of the oscillations.

We assume the thickness of the plate is small compared to its width (D � W)
so that deflection under the effect of the flow is confined in the xz-plane. We also
assume the structure is slender (L� W) so we can model it as a two-dimensional
inextensible Euler–Bernoulli beam of bending stiffness EI and mass per unit length
m (see Audoly & Pomeau 2010). The curvilinear coordinate s represents the distance
from the clamped edge along the span, and we use the prime symbol (·)′ to denote
differentiation with respect to s. Hereafter, θ is the local angle of the tangent τ = r′
with the vertical axis ez, where r= x(s, t)ex+ z(s, t)ez is the position vector. Following
Audoly & Pomeau (2010), the dynamic equilibrium reads

mr̈=F′+ q, (2.1)
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where q is the external load per unit length on the structure, F = Tτ + Qn is the
internal force vector, with T the tension and Q the shear force and the overdot stands
for time derivation. The internal bending moment M is related to the local curvature
κ = θ ′ by M = EIκ , and the shear force Q is given by Q=−M′ =−EIκ ′. Clamping
implies x = z= θ = 0 at s= 0, while the free tip condition reads T =M = Q= 0 at
s= L.

Because the structure is neutrally buoyant, its density is also ρ and gravity and
buoyancy forces cancel each other. We assume large Reynolds number so that friction
forces are negligible. Following Eloy, Kofman & Schouveiler (2012), Singh, Michelin
& de Langre (2012), Michelin & Doaré (2013), Piñeirua et al. (2017) we model the
effect of the relative flow as a combination of two external loads distributed along the
span. First, the resistive drag (Taylor 1952)

qd =−1/2ρCDW|Un|Unn (2.2)

due to the pressure in the wake is purely normal. It is proportional to the square
of the normal component Un of the relative velocity Ur = Uττ + Unn = ṙ − U. The
drag coefficient CD depends on the geometry of the cross-section and is typically of
order O(1). In pure sinusoidal flow, it slightly varies with the frequency through the
Keulegan–Carpenter number KC=U/Wf = 2πA/W (Keulegan & Carpenter 1958). But
in the case of a deformable body, the relative flow varies along the span and is not
purely sinusoidal because of the motion of the structure itself. The exact value of CD
is however not critical here so we will simply use the value for steady flows. We
will also assume a rectangular cross-section so we will use CD= 2. The second force
component is the reactive (or added mass) force (Lighthill 1971; Candelier, Boyer &
Leroyer 2011)

qam =−ma
[
∂t(Unn)− ∂s(UnUτn)+ 1

2∂s(U2
nτ )
]
, (2.3)

where the added mass is given by ma= ρπW2/4. This expression involves the normal
component but also the tangential component Uτ of the relative velocity. In the case
of an inextensible beam, this force becomes purely normal and its expression may be
simplified in

qam =−ma
[
(r̈− U̇) · n− 2θ̇Uτ + κ

(
U2
τ −

1
2 U2

n

)]
n. (2.4)

Finally, because the fluid itself is accelerated, a third force component has to be
considered, called the virtual buoyancy force (Blevins 1990)

qvb =mdU̇. (2.5)

This term is due to the pressure gradient induced by the acceleration of the fluid. It
is equivalent to the Archimedes force, only the acceleration of gravity is replaced by
the acceleration of the fluid. It is proportional to the displaced mass per unit length
md=ρWD. We have assumed so far that the structure is fixed in an oscillating fluid. If
the clamped edge of the structure was set into a forced horizontal motion of velocity
Uf = Uf ex, then the equilibrium equation in the frame of the structure (2.1) would
include an additional load due to the inertial pseudo-force qi=−mU̇f . For a neutrally
buoyant structure the displaced mass is equal to the structural mass (md =m), so this
inertial force has the same expression as the virtual buoyancy term (2.5) if Uf =−U.
Thus, oscillating a plate in a still fluid is actually equivalent to having a fixed structure
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610 T. Leclercq and E. de Langre

in an oscillating flow, providing that the structure has the same density as the fluid.
For practical reasons, in the experiments of § 3, we set the structure into motion rather
than the fluid.

In the following, we will only consider very thin blades D�W (equivalently m=
md�ma) so that we may neglect the structural inertia and the virtual buoyancy. The
dynamic equilibrium (2.1) then reads[

T + 1
2 EIκ2

]′
τ + [κT − EIκ ′′]n+ qd + qam = 0. (2.6)

After projection on the tangential and normal directions and elimination of the
unknown tension T , we finally obtain a single differential equation for the kinematic
variables κ , θ , r

EI
[
κ ′′ + 1

2κ
3
]
+

1
2ρCDW|Un|Un

+ma
[
r̈ · n+ κ

(
U2
τ −

1
2 U2

n

)
− 2θ̇Uτ −Ω

2A cos θ cos(Ωt)
]
= 0. (2.7)

We non-dimensionalize all the variables using the length of the structure L and the
scale of the natural period of the structure in small-amplitude oscillations in the fluid
Ts = L2√ma/EI. We finally obtain, in non-dimensional form

κ ′′ + 1
2κ

3
+ λ|Un|Un + r̈ · n+ κ

(
U2
τ −

1
2 U2

n

)
− 2θ̇Uτ −ω

2α cos θ cos(ωt)= 0, (2.8)

with boundary conditions r= 0 and θ = 0 at the clamped edge s= 0 and κ = κ ′ = 0
at the free tip s = 1, and the tangential and normal relative velocities Uτ = ṙ · τ −
αω sin(ωt) sin θ and Un = ṙ · n− αω sin(ωt) cos θ . This system is ruled by three non-
dimensional parameters that are

α =
A
L
, ω=ΩTs, λ=

ρCDWL
2ma

=

(
2
π

CD

)
L
W
. (2.9a−c)

The first two parameters α and ω respectively scale the amplitude and frequency
of the background flow to the length and natural frequency of the structure, while
λ=O(L/W) is mostly a slenderness parameter specific to the structure alone. Because
our model is only valid for slender structures, we are restricted to λ� 1. Note that,
when studying the influence of flexibility on the loads endured by a structure,
the classical non-dimensional parameter that describes the competition between
the fluid loading stemming from the resistive drag and the elastic restoring force
is the Cauchy number CY (Tickner & Sacks 1969; Chakrabarti 2002; de Langre
2008). Following the definition of Gosselin et al. (2010) in the case of the static
reconfiguration of cantilever beams, we may here define a Cauchy number based on
the maximum velocity of the flow (AΩ) as CY = ρCDWL3(AΩ)2/EI = λα2ω2. In the
governing equation (2.8), given the scaling of the normal relative velocity component
Un =O(αω), the resistive drag term λ|Un|Un directly scales as λα2ω2

= CY owing to
the choice of characteristic length and time chosen for normalization.

2.2. Numerical resolution
We numerically solve (2.8) along with the boundary conditions using a time stepping
scheme. The one-dimensional structure is discretized using the Gauss–Lobatto
distribution sk = 1/2(1− cos((k− 1)/(N − 1)π)) with N = 100 points. The curvilinear
derivatives and integrals are computed respectively by Chebyshev collocation and the
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A

Flexible blade

FIGURE 2. Schematic view of the experimental set-up.

Clenshaw–Curtis quadrature formulae. We evaluate the time derivatives at time tn

with implicit second-order accurate finite differences with 103 time steps per forcing
cycle in most cases. The time step is reduced further to maintain good accuracy when
a smaller time scale is involved in §§ 4.2 and 5.4. At each time step, we solve the
boundary value problem in κn(s) with a pseudo-Newton solver (method of Broyden
1965). The computations are carried on until a limit cycle is found.

3. Experiments and validation of the model

We conducted experiments to visualize the actual kinematics of slender blades in
an oscillatory flow and validate our model. The set-up of the experiment is depicted
in figure 2.

The flexible object is a rectangular piece of 20 × 2 cm (so that λ = 12.7) and
bending stiffness EI= 1.68× 10−4 N m2 that was cut out of a plastic document cover
of thickness 0.49 mm and density 895 kg m−3. This plate has a mass per unit length
m = 8.72 × 10−3 kg m−1, displaced mass per unit length md = 9.74 × 10−3 kg m−1

and added mass per unit length ma = 3.14× 10−1 kg m−1. Thus, m/ma = 2.8× 10−2

and md/ma = 3.1 × 10−2 so that the structural inertia and the virtual buoyancy are
indeed negligible. In order to get the desired relative flow, we forced the clamped
edge of the blade into an oscillatory translation of opposite velocity −U(t) and
analysed the dynamic deformation of the structure in the oscillating frame. The
flexible structure is clamped at the bottom of a vertical rigid rod and fully immersed
in a rectangular water tank of horizontal dimensions 58 × 35 cm and 48 cm of water
depth. The rod crossing the free surface is streamlined in the direction of the motion
in order to induce as little perturbation as possible in the fluid. The forcing motion
is obtained through a DC motor driving an arm of length A in rotation. The speed
of rotation Ω is tuned by changing the voltage at the terminals of the motor. The
arm is attached to a carriage freely translating on a vertical rail, which in turn is
fixed on an another carriage sliding on an horizontal rail. The mounting rod is linked
to the latter carriage so that it is driven into the desired sinusoidal translation of
amplitude A and angular frequency Ω as the arm rotates. The amplitude A could be
varied continuously between 5.4 (α= 0.27) and 13 cm (α= 0.65), and the frequency
between 0.21 (ω = 2.3) and 1.08 Hz (ω = 12.0). The motion of the whole structure
is filmed with a fixed camera in front of the tank at 100 fps and the position and
deformation of the blade through time is extracted from each frame. The deformation
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FIGURE 3. Phase-averaged experimental oscillation cycle for varying amplitudes α and
frequencies ω. Snapshots of the structural shape (——) and tip trajectory (– –).

in the oscillating frame is then phase averaged over a minimum of 10 cycles to get
a unique cycle representative of the whole run.

The results for three different amplitudes and frequencies spanning the experimental
domain are shown in figure 3. In this range of forcing parameters, we notice a
diversity of behaviours. For a given frequency ratio ω, the maximum deflection of
the blade increases with the amplitude of the forcing α. However, the horizontal
excursion of the structure is obviously limited by its own length, so the amplitude
of the motion has to saturate when α is increased even more. Besides, the maximum
deflection is clearly increasing with the forcing frequency for the largest forcing
amplitude α = 0.65, but this is much less obvious for the smallest amplitude
α = 0.27. On the other hand, for any given forcing amplitude α, the dynamics
of the deformation is greatly affected when the forcing frequency is increased. For
the smallest frequency ratio ω = 2.3, the tip follows the same trajectory during both
half-cycles and remains close to the unit circle. The motion of the whole blade is
therefore approximately in phase, and curvature is concentrated near the clamped
edge while the rest of the beam remains straight. This deforming shape is similar to
the static reconfiguration that occurs in steady flow (Gosselin et al. 2010). Conversely,
when the frequency is increased, the tip follows a figure-of-eight trajectory and we
notice curvature waves propagating along the span in the course of the cycle indicating
an increasing spanwise phase shift. This indicates a highly dynamic response that
cannot be considered quasi-steady a priori. Besides, the propagation of curvature
waves may induce large loads anywhere along the span and not restricted to the
clamping point.

In order to validate the numerical model of § 2, we also compared these
experimental observations to the output of the numerical simulations. As shown
in figure 4(a), the numerical results for the amplitude of deflection at the tip Xtip
match very closely the experimental measurements. The snapshots displayed in
figure 4(b) for two cases at the boundaries of our experimental domain (indicated
in figure 4a) also show very good agreement between the observations and the
simulations. Additional experimental validation of the model for smaller forcing
amplitudes can be found in Piñeirua et al. (2017).
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FIGURE 4. Comparison between experimental observations and numerical simulations.
(a) Amplitude of the deflection at the tip against the frequency ratio, for α = 0.27
(numerical – –, experimentalE), α= 0.65 (numerical ——, experimentalA). (b) Deformed
shape found experimentally (left) and numerically (right), in case A (top, α = 0.27, ω=
2.3) and case B (bottom, α = 0.65, ω= 12.0).

These results confirm the validity of our model, and we will therefore use it in
the following to systematically explore the parameter space within and beyond the
experimentally accessible range.

4. Kinematics
4.1. Small amplitude of flow oscillation α = A/L� 1

Let us first consider the situation where the amplitude of forcing is small (α � 1).
The excursion of the fluid particles being small compared to the length of the blade,
we may also assume that the deflection remains small as well |x(s, t)|� 1. Neglecting
all the geometrical nonlinearities in (2.8) thus yields the small-amplitude equation

x(4) + ẍ= αω2 cos(ωt)− λ|ẋ− αω sin(ωt)|(ẋ− αω sin(ωt)), (4.1)
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with boundary conditions x= x′= 0 at s= 0 and x′′= x′′′= 0 at s= 1. Equation (4.1) is
the standard cantilever beam linear oscillator, forced on the right-hand side by the fluid
inertia and the resistive drag. Note that only the nonlinearities of geometrical nature
have been removed but the quadratic relative velocity term of the resistive drag has
been retained at this point. Indeed, the slenderness parameter λ that scales this term
is large and the order of magnitude of the whole resistive drag term depends as much
on the scaling of λ as it depends on that of α. Besides, no assumption has been made
regarding the characteristic time scale for the variations of x, and there is no reason
to presume that ẋ should be small compared to the free-stream velocity based on the
sole assumption that x is small.

If the period of the forcing is large compared to the characteristic response time of
the structure (ω<1), we may assume that the structure is in static equilibrium with the
fluid forcing at all times. Consequently, we may neglect the velocity and acceleration
of the structure and (4.1) reduces to the small-amplitude static equation

x(4) = αω2
[cos(ωt)+ (λα)|sin(ωt)| sin(ωt)]. (4.2)

The left-hand side of this equation now involves only the linearized stiffness force,
while the fluid forcing on the right-hand side is the same as that a perfectly rigid
blade would endure.

On the other hand, if the forcing varies with a period comparable to the
characteristic structural response time or faster (ω > 1), we may then assume that
the amplitude and the frequency of the response will scale as those of the forcing,
as is usually the case for linear oscillators (see for instance Blevins 1990). We thus
define the rescaled deflection and time x̃ = x/α, t̃ = ωt, so that the small-amplitude
equation (4.1) can be written

1
ω2

x̃(4) + ¨̃x= cos(t̃)−KC|
˙̃x− sin(t̃)|( ˙̃x− sin(t̃)), (4.3)

which now only depends on two parameters: the frequency parameter ω and a new
amplitude parameter KC = λα = (2CD/π)A/W that compares the fluid particles
excursion to the width instead of the length of the blade. This parameter is
a problem-specific formulation of the classical Keulegan–Carpenter number that
compares the respective magnitudes of the drag and the fluid inertial forces. When
KC is small, the fluid inertia dominates over drag and vice versa.

Let us first look at the asymptotic limit of infinitely small amplitude of the forcing
KC→ 0. The nonlinear drag term can be neglected and (4.3) then simply describes a
linear oscillator with sinusoidal forcing due to the fluid inertial term. It can be solved
analytically and the solution is

x̃(s, t̃)= 2
+∞∑
m=0

σm

km

ω2

k4
m −ω

2
Xm(s) cos t̃, (4.4)

with the wavenumbers km satisfying cos km cosh km + 1 = 0, the classical cantilever
beam modes Xm(s) = [cosh(kms) − cos(kms)] − σm[sinh(kms) − sin(kms)] and σm =

(sinh km − sin km)/(cosh km + cos km) (see Weaver, Timoshenko & Young 1990).
Figure 5(a) compares the amplitude of the maximum deflection for different values

of KC, and for the asymptotic solution (4.4), as a function of ω. This analytical
solution is in good agreement with the model predictions for any KC 6 1, and it
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shows that the system behaves as a high-pass filter in this range of the parameter
space. As the frequency increases, successive beam modes are excited and resonances
occur when the frequency of the forcing matches one of the natural modes of the
structure ω= k2

m. For finite but small KC, drag acts as a damping term that saturates
the amplitude of the resonances but does not seem to affect significantly the modal
shape of the deforming structure. The deformation of the beam close to the first three
resonances (ω1 = 3.5, ω2 = 22.0, ω3 = 61.7) for KC = 10−2 in figure 5(b) is indeed
similar to the corresponding beam modes X1, X2, X3 involved in the asymptotic
solution (4.4). Note that when KC is close to 1, the nonlinear drag term is also
responsible for a drift of the resonance frequencies that has been studied in Arellano
Castro et al. (2014). This effect is not obvious in figure 5(a) because of the very
strong attenuation of the resonance peak for KC = 1, but is more visible in the
structural stress analysis of figure 9(a).

On the other hand, if we increase the fluid particles excursion beyond the width
of the structure (KC � 1), a change in physical behaviour occurs. Drag becomes
the dominant term in (4.3). The leading-order solution now is x̃(s, t̃) = cos t̃, which
amounts to considering that the structure is convected exactly with the fluid particles.
Therefore, we may call this regime the convective regime. This solution is however
incompatible with the boundary condition at the clamped edge x̃(0, t̃) = 0, so an
elastic boundary layer develops close to the clamping point. The relative magnitude
of the terms in (4.3) suggests that the thickness of the boundary layer scales as
δ = (KC ω

2)−1/4. Rescaling the curvilinear coordinate ŝ = s/δ in (4.3) provides the
leading-order equation for the inner solution

∂4
ŝ x̃= |˙̃x− sin(t̃)|( ˙̃x− sin(t̃)), (4.5)

with boundary conditions x̃= ∂ŝx̃= 0 at ŝ= 0 and ∂2
ŝ x̃= ∂3

ŝ x̃= 0 at ŝ= 1/δ.
The dynamic deformation of the structure displayed in figure 5(c) for KC = 102 for

the same values of frequency ratios as in figure 5(b) clearly shows the concentration
of the curvature close to the clamped edge and the passive convection of the main
part of the structure. The resonances previously observed in the modal regime in
figure 5(a) are now completely damped out when KC = 102. Compared to the case
KC = 1, this curve is shifted one decade to the left as the proper scaling parameter is
now
√

KC ω instead of ω, and
√

KC = 10 for KC = 102. The scaling of the boundary
layer thickness δ is similar to that of the effective length of Luhar & Nepf (2016), as
it is based on the equilibrium between the same forces. A similar problem had also
been considered in Mullarney & Henderson (2010). In the case of a wave-like flow,
the authors neglected the quadratic nonlinearity in order to get an analytical solution.

4.2. Large amplitude of flow oscillation α = A/L� 1
In the convective regime discussed above, the structure is purely convected with the
fluid particles on most of its span over the whole cycle. But when the amplitude
becomes larger than the length of the structure, geometric saturation of the deflection
occurs because the structure cannot extend further than its own length. The deflection
is now of order x=O(1) and so we cannot neglect the geometrical nonlinearities of
(2.8) anymore. The slenderness λ becomes the relevant parameter to compare drag
to the fluid inertial forces in lieu of the Keulegan–Carpenter number KC. Because
we only consider elongated structures λ� 1 in this study, drag will always be the
dominant term in the large-amplitude regime.
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FIGURE 5. (a) Amplitude of the maximum scaled deflection obtained with (4.3) against
the frequency ratio. KC = 10−2 (——), KC = 100 (– – –), KC = 102 (— · —). Analytical
solution for KC→0 (· · · · · ·). (b) Snapshots of the beam over one cycle obtained with (4.3)
for KC = 10−2 (modal regime) and for ω=ω1 (resonance of mode 1), ω=ω2 (resonance
of mode 2), ω=ω3 (resonance of mode 3). (c) Same as (b) but with KC= 102 (convective
regime).

The dynamic deformations obtained with (2.8) in two cases with similar amplitude
α = 102 and slenderness λ= 12.7 but different frequencies are compared in figure 6
with 100 snapshots per cycle with constant time interval. In the small frequency
case (a), the deformation looks quasi-static. Transition from one side to the other is
slow (many snapshots distributed from left to right) and the curvature is essentially
concentrated near the clamped edge during the whole cycle. On the other hand, in
the larger frequency case (b), the structure switches sides very fast (few snapshots
visible in the centre while many are superimposed on the sides) and curvature waves
propagate very quickly along the span during reversal. Therefore, the cycle may be
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FIGURE 6. Snapshots of the deforming structure over one cycle (——) and tip trajectory
(– – –) obtained with (2.8) for λ= 12.7, α = 102. (a) ω= 10−2, (b) ω= 1.

decomposed into two steps: first, a fast reversal period during which the structure
switches from one side to the other immediately after flow reversal, followed by
a longer period of quasi-static adaptation to the increasing magnitude of the drag.
Because the dominant drag force λ|Un|Un∝λα

2ω2 is proportional to ω2, the maximum
drag is larger in the large frequency case in figure 6, which explains why the
maximum deflection is enhanced.

To estimate the time scale of reversal Tr, let us assume that shortly before flow
reversal, the structure is fully reconfigured on one side x(s= 1, t= 0)=−1. At flow
reversal t= 0, drag starts pushing the structure to the other side. Let us assume that
the blade is purely convected until it is fully reconfigured on the other side at the end
of the reversal time x(s= 1, t= Tr)= 1. In that case, we may write

2= xtip(Tr)− xtip(0)=
∫ Tr

0
αω sin(ωt) dt'

∫ Tr

0
αω2t dt=

1
2
α(ωTr)

2, (4.6)

where the linearization holds owing to the fact that reversal occurs on a time
scale much smaller than the period of the cycle (ωTr � 2π). We finally obtain
Tr = 2/(ω

√
α). This expression of the reversal time is normalized by the scale of the

natural period of the structure. It is more relevant than ω to assess the quasi-steady
nature of the deformation in the large-amplitude regime because it compares only
the time scale on which structural motion is significant (instead of the whole cycle
period) to the characteristic structural response time. Indeed, in figure 6(a), the large
reversal time Tr = 20 allows the structure to be in quasi-static equilibrium with the
fluid loading at all times. Conversely, in figure 6(b) the small reversal time Tr = 0.2
is responsible for the propagation of curvature waves during reversal. Hence, when
Tr � 1, the structure is in static equilibrium with the fluid forces during the whole
cycle, while the quasi-static character of the deformation is lost during the fast
reversal when Tr� 1.

A zoom on the trajectory of the tip around flow reversal in the case of figure 6(b)
shown in figure 7 (solid line) confirms that reversal occurs approximately between
t/Tr= 0 and t/Tr= 1. When the slenderness parameter is increased (broken lines, λ=
127), the time scale of the dynamics remains unchanged. The same graphs for the
same Tr but for a smaller or a larger amplitude (α= 10 and α= 103 respectively), not
shown here, are practically indistinguishable from that in figure 7. This result confirms
that the amplitude and frequency parameters influence the kinematics of the reversal
exclusively through the combined parameter Tr. Besides, because the structural mass
was neglected, no dynamic excitation possibly resulting from the violent reversal is
allowed to persist after Tr.
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FIGURE 7. Horizontal displacement of the tip during flow reversal against the rescaled
time t/Tr, for α = 102, Tr = 0.2 (ω= 1) and λ= 12.7 (——), λ= 127 (– – –).

Modal regime

Convective regime

Large-amplitude regime
static reconfiguration with fast reversal

Fully static
regime

FIGURE 8. Schematic view of the kinematic regimes in the amplitude–frequency space.

4.3. Summary of the kinematic regimes
So far we have found that depending on the amplitude and frequency of the oscillating
flow with respect to the dimensions and natural frequencies of the blade, four different
kinematic regimes may exist. Their respective locations in the parameter space are
summarized in figure 8.

First, if the amplitude is much smaller than the length of the blade (α � 1 or
equivalently A� L) and the frequency of the flow smaller than that of the structure
(ω < 1 or equivalently Ω < 1/Ts), the structure is in static equilibrium with the fluid
forces at all times. On the other hand, if the frequency is now comparable or larger
than the characteristic structural frequency (ω > 1 or equivalently Ω > 1/Ts), the
kinematics further depends on the ratio of the amplitude of the flow to the width of
the structure. If the amplitude is much smaller than the width of the blade (A�W,
or equivalently KC = λα � 1), the structure behaves as a linear oscillator and we
are in the modal regime. If the amplitude is large compared to the width, but small
compared to the length (W � A � L, or equivalently KC = λα � 1 and α � 1),
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an elastic boundary layer develops close to the clamped edge in which all the
curvature is confined, while the rest of the structure is passively convected with the
fluid particles. This convective regime occurs because of the saturation of the drag
term in the small-amplitude equation (4.1).

Now, if the amplitude is increased further and becomes larger than the length
of the blade (A � L or equivalently α � 1), the convection of the blade by the
fluid is limited to its own length and the blade deformation is subject to geometric
saturation. The convection process is therefore limited in time to a short reversal
period, right after flow reversal, and during which the blade switches side at the
speed of the fluid particles, followed by a longer period of quasi-static adaptation to
the increasing magnitude of the drag force. If reversal occurs on a longer time scale
than the characteristic structural response time (Tr ∼ 1/(ω

√
α)� 1), the structure has

time to reach the static equilibrium with the fluid forces at all time. Conversely, if
reversal is faster than the characteristic time of the structure (Tr ∼ 1/(ω

√
α)� 1), the

quasi-static nature of the large-amplitude structural response is lost during the short
time needed for reversal.

5. Structural stress analysis
5.1. Stress reduction due to flexibility

Depending on the kinematic regime, we expect that the consequences of flexibility in
terms of magnitude and repartition of the internal stresses will vary. Our main interest
is to assess whether flexibility makes a blade more or less likely to break in a given
flow. Structural failure may occur when, at a given time t, the stress due to the loads
exceeds a given threshold called the breaking strength, at some location within the
structure. For an Euler–Bernoulli beam in two-dimensional bending, the stress tensor
may essentially be reduced to two components, the tensile (or compressive) stress στ
and the shear stress σn. Both quantities vary along the span but also within the cross-
section. The maximum tensile stress is reached at the edges of the cross-section and
depends linearly on the internal bending moment στ ∝MD/I ∝M/WD2. Conversely,
the shear stress reaches its maximum on the neutral axis and it is proportional to
the internal shear force σn ∝ Q/WD. Thus, following the dedicated terminology of
Gosselin et al. (2010), we may define two reconfiguration numbers

Rτ =
max |M(s, t)|

max |Mrigid(s, t)|
, Rn =

max |Q(s, t)|
max |Qrigid(s, t)|

(5.1a,b)

that compare the maximum stresses endured over a cycle at any point along the
structure to the maximum value the same structure would have to endure if it
were rigid. The reconfiguration numbers are smaller than one if the flexibility is
beneficial in terms of internal stresses, and larger than unity if it is detrimental.

Our shear reconfiguration number Rn is equivalent to the reconfiguration number
defined in Gosselin et al. (2010) and Leclercq & de Langre (2016) in the static case.
Their definition is based on the total drag Q(s = 0) instead of the maximum of the
shear force max |Q|, but the shear force is in fact maximum at the clamped edge in
their case so it is equal to the total drag. Our Rn is also quite similar to the effective
length defined by Luhar & Nepf (2016), only the latter was based on the root-mean-
square value of the total drag Q(s = 0) instead of the spatio-temporal maximum of
Q. This is so because the goal of Luhar & Nepf (2016) was to provide insight about
how flexibility affects energy dissipation in the background flow, while our focus is
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FIGURE 9. Shear reconfiguration number (a) and location of maximum shear stress along
the span (b), in the modal regime, against the frequency ratio, for KC= 10−2 (——), KC=

10−1 (— · —), KC = 100 (– – –) and analytical solution for KC→ 0 (· · · · · ·).

the ability of the structure to withstand the fluid loads. For the sake of simplicity,
in the rest of this article we will only present results about the shear stress σn and
shear reconfiguration number Rn. The results about the tensile stress are actually quite
similar and will be provided in appendix A.

5.2. Rigid case
In the case of a perfectly rigid structure, the combination of the external fluid forces
(2.2) and (2.4) results in a span-invariant, purely horizontal load

qrigid(t)= αω2
[cos(ωt)+ (λα)|sin(ωt)| sin(ωt)] (5.2)

that also reads, in terms of the Cauchy number (CY = λα
2ω2) and Keulegan–Carpenter

number (KC = λα)

qrigid(t)=
CY

KC
[cos(ωt)+KC|sin(ωt)| sin(ωt)]. (5.3)

The first term is an inertia term, proportional to the flow acceleration, while the second
term is the resistive drag force proportional to the velocity squared. Integration from
the free tip provides the internal bending moment and shear force

Mrigid(s, t)=− 1
2 qrigid(t)(1− s)2, Qrigid(s, t)=−qrigid(t)(1− s) (5.4a,b)

that are maximum at the clamped edge and max |Mrigid(s, t)| = 1/2 max |Qrigid(s, t)| =
1/2 max |qrigid(t)| with

max |qrigid(t)| =
CY

KC
if KC 6

1
2
; CY

(
1+

1
4K2

C

)
if KC >

1
2
. (5.5a,b)

5.3. Small amplitude of flow oscillation α = A/L� 1
As for the kinematics, let us first consider the case where the amplitude of forcing
is small compared to the length of the structure (α� 1). Depending on the value of
the Keulegan–Carpenter number KC, the system will be in the modal or convective
regime.

The variations of the shear reconfiguration number with the frequency ratio are
shown in figure 9(a) for different values of KC in the modal regime. Because the
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system behaves as a high-pass filter, the blade remains rigid in the quasi-static
limit ω < 1 and so there is no drag reduction in this regime Rn ∼ 1. For larger
frequencies, the reconfiguration number decreases overall but peaks at the successive
resonances. The magnitude of the peaks is mitigated when the Keulegan–Carpenter
number is increased due to damping by the drag term. The resonance frequencies
are decreased as well owing to the nonlinearity of the drag term, as explained in
Arellano Castro et al. (2014). But when KC is small enough, the reconfiguration
number may even exceed unity close to the first resonances. In these particular cases,
flexibility may therefore be responsible for a magnification of the shear stress. Apart
from the resonances, the slope of the overall decay may be estimated by a scaling
argument. Far from the resonances, the amplitude of the deflection is of the order
of the fluid particles excursion x=O(α). The non-dimensional shear force Q= κ ′, is
thus of order O(α × k3) with the wavenumber of the dominant mode k∼

√
ω, while

the rigid shear force is of order O(CY/KC) = O(αω2) according to (5.5). Thus, the
shear reconfiguration number is Rn ∼ k−1

∼ ω−1/2, which is consistent with the slope
observed in figure 9(a).

As shown in figure 9(b), the location sn along the span of the blade where the
maximum shear stress max(σn) is reached varies with the frequency. In the rigid
domain ω < 1 the maximum stress remains at the clamped edge, until the first
resonance is reached. After ω1, the maximum stress starts moving from the clamped
edge towards the free tip as Rn decreases, before suddenly going back to the
clamping point as Rn starts increasing again, until the second resonance is attained.
Similarly, after ω2, the locus moves again as Rn decreases and then comes back
as Rn starts increasing towards the next resonance, and so on. This trajectory of
the most solicited spot is independent of KC, except close to the transition towards
the convective regime. Indeed, for KC = 1, the maximum shear stress remains at the
clamping point for any value of the frequency ratio.

In the convective regime KC > 1, we have shown that all the curvature concentrates
within an elastic boundary layer of typical size δ= (KC ω

2)−1/4 close to the attachment
point. Consequently, the location of the maximum stress is always located at
the clamping point in the convective regime. Besides, the variations of the shear
reconfiguration number Rn, displayed as a function of the frequency ratio in
figure 10(a), all collapse on the same curve when replotted as a function of KC ω

2 in
figure 10(b). Even the transition case KC = 1 also follows the same trend on average,
but still exhibits some variations and small resonances due to the persistent modal
nature of the response. When KC ω

2 < 1, the scale of the boundary layer exceeds the
length of the structure so the blade behaves rigidly and Rn ∼ 1. Conversely when
KC ω

2 > 1, the motion allowed by the flexibility is responsible for an alleviation of
the internal shear stress. We may estimate the slope of the asymptotic decay by a
similar argument as in the modal regime. Assuming that the characteristic bending
length scales as the boundary layer thickness δ, we now have Q∼O(α× δ−3) and the
rigid shear force of order O(CY)=O(αδ−4). We thus obtain Rn ∼ δ∼ (KC ω

2)−1/4, in
agreement with figure 10(b). Note that, as illustrated in figure 10(a), reconfiguration
in the elastic boundary layer occurs even in the quasi-static regime ω < 1 provided
that KC ω

2 > 1. Indeed, in this particular case, the rigid force qrigid that appears on
the right-hand side of the small-amplitude static equation (4.2) would actually lead to
static deformations exceeding the excursion of the fluid particles. This is not possible
in this drag-dominated regime as only strong inertial forces can cause the structure to
overshoot the fluid particles. The drag term of (4.3) thus ensures the limitation of the
structural excursion to that of the fluid particles, while only the elastic boundary layer
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FIGURE 10. Shear reconfiguration number in the convective regime against (a) the
frequency ratio ω, (b) the rescaled parameter KC ω

2, for KC = 100 (– – –), KC = 101

(— · —), KC = 102 (——).

that develops close to the clamped edge actually satisfies the quasi-static equilibrium
between the elasticity forces and the drag (which amounts to neglecting the ˙̃x terms
in the boundary layer equation (4.5)). Consequently, the scaling of the drag associated
with reconfiguration in the elastic boundary layer remains valid in this domain as
well.

5.4. Large amplitude of flow oscillation α = A/L� 1
In the large-amplitude regime (α > 1), we have proven that significant structural
motion may only occur during a short period of time Tr following flow reversal
(ωt= 0). During that time, the flow magnitude is close to zero and the drag force is
at its minimum. Drag being the dominant term of the equation, we expect the largest
stress to be experienced when it is at its maximum around ωt = ±π/2, at a time
where the structure is in quasi-static equilibrium with the flow forces. Besides, the
flow acceleration cancels out when the flow magnitude is maximum so that, at the
time where the stress peaks, equation (2.8) reduces to the static equation

κ ′′ +
1
2
κ3
−CY

[
|cos θ | cos θ −

1
λ
κ

(
sin2 θ −

1
2

cos2 θ

)]
= 0. (5.6)

In the quasi-static part of the cycle, the amplitude and frequency parameter influence
the shape of the structure and the internal stress only through the Cauchy number
CY = λα

2ω2. Consequently, the evolution of the shear reconfiguration number shown
in figure 11(a) as a function of the frequency ratio ω (for λ= 12.7) collapse very well
on the static curve obtained with (5.6) when replotted as a function of the Cauchy
number in figure 11(b). The curves are perfectly superimposed for α = 10, but even
for α as small as 1, agreement is already very good. When the Cauchy number is
less than 1, deflection is negligible so (5.6) actually reduces to the small-amplitude
static equation (4.2). In this limit, even though the amplitude of the forcing is large
α > 1, we actually recover the small-amplitude static regime in which the structure
experiences the same amount of stress as if it were rigid Rn ∼ 1.

On the other hand, when the Cauchy number is large CY > 1, the stress is much
reduced. In the limit where drag dominates over the added mass corrective term (limit
of infinite slenderness λ→∞), the static equation (5.6) has a self-similar structure.
The scaling of the terms of the equation provides the length of the self-similar
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FIGURE 11. Shear reconfiguration number in the large-amplitude regime for λ = 12.7,
against (a) the frequency ratio ω, (b) the Cauchy number CY , for α= 100 (– – –), α= 101

(——). Static solution obtained with (5.6) (· · · · · ·, on (b) only).

boundary layer `s = C−1/3
Y within which all the curvature concentrates. Consequently

we may here again estimate the asymptotic behaviour of the shear reconfiguration
number by a scaling argument. In this case, the saturated angle θ is of order O(1) so
the shear force Q= κ ′∼O(1× `−2

s ). The rigid shear force is of order O(CY)=O(`−3
s )

so we get Rn∼ `s∼C−1/3
Y . The slope in figure 11(b) is close but differs slightly from

that estimation. The analysis of appendix B shows that this discrepancy is due to
the rather small value of λ= 12.7. For any larger slenderness, the asymptotic scaling
provided here matches very well the numerical results. Note that this bending length
is similar to that previously found by Gosselin et al. (2010) who neglected the cubic
term in curvature in their governing equation, as well as that found by Alben et al.
(2004) for the case of a two-dimensional plate (opposite limit of infinite width). The
extended validity of this static bending length to the case of large-amplitude unsteady
flows was moreover suggested in Luhar & Nepf (2016).

Note finally that this analysis is independent of the magnitude of the reversal time
Tr. The key point of this analysis lies in the fact that even if significant dynamics
may be involved during reversal when Tr � 1, the maximum stress is endured at a
time when the structure is in static equilibrium with the fluid forces. This remains
obviously true when Tr� 1 and static equilibrium is enforced at all times.

6. Discussion
6.1. Stress alleviation due to flexibility and bending length

Depending on the values of the amplitude and frequency of the oscillating flow,
we have identified four distinct kinematic regimes summarized in figure 8. In each
regime, the consequences of the flexibility on the magnitude of the internal stress are
different. The varying scalings of the shear reconfiguration number Rn depending on
the amplitude and frequency of the flow are schematically displayed in figure 12.

As long as the forcing is dominated by the inertial forces (in the modal regime
A� W), there exists a risk of resonance if the frequency of the flow matches one
of the natural frequencies of the structure. This is a case where the dynamical motion
allowed by the flexibility may be responsible for a magnification of the internal stress.
However, this is also the region in the parameter space where the loading is the lowest
and so this is unlikely to cause any severe damage. Far from the resonances and in
all other cases, flexibility always alleviates the magnitude of the internal stress.
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Modal reconfiguration

Reconfiguration in the elastic boundary layer

Static reconfiguration

Rigid behaviour

FIGURE 12. Schematic view of the reconfiguration regimes in the amplitude–frequency
space.

The general scaling of the reconfiguration numbers is related to some characteristic
bending length `b such that Rn∼ `b and Rτ ∼ `

2
b (see appendix A), but the scaling of

that very bending length depends on the reconfiguration regime. In the modal regime
(A�W), the bending length is proportional to the wavelength of the dominant mode
that varies as `b = k−1

= ω−1/2. In the convective regime (W � A � L), curvature
is confined in the elastic boundary layer so naturally `b = δ = (λα)

−1/4ω−1/2. The
characteristic bending length varies continuously between the two small-amplitude
regimes as their expressions are similar at the transition when KC = λα = 1. On the
other hand, in the large-amplitude regime (A � L) the bending length transitions
to `b = `s = C−1/3

Y = (λα2ω2)−1/3. The boundary of the rigid domain with the three
different reconfiguration regimes is nonetheless continuous as illustrated in figure 12.

6.2. Consequences in terms of growth pattern of aquatic flexible plants
In any of the three reconfiguration regimes, the reconfiguration numbers scale in
dimensional form with the length of the blade as Rn ∼ L−1 and Rτ ∼ L−2. Given
the scalings of the rigid loads and of the internal stresses in § 5.1, we thus obtain
the cancellation of the dependency of the dimensional forces and internal stresses on
the actual length of the blade σn ∝ Q ∼ L0 and στ ∝M ∼ L0. This loss of relevance
of the true length of the structure in aid of a smaller characteristic bending length
was already pointed out in the steady case (see de Langre, Gutierrez & Cossé 2012)
and remains valid in the oscillatory case. Consequently, it does not seem as if there
is any mechanical limit to size in wave-swept flexible kelps, as long as growth is
concentrated in the axial direction.

But real plants grow according to more complex allometric patterns (Denny
& Cowen 1997; Gaylord & Denny 1997). Following the growth of a plant in
the variables of figure 12 amounts to decreasing α from the top. In the static
reconfiguration regime, the internal stresses σn and στ are both independent of any
of the three dimensions D, W, L and so growth does not affect the magnitude of
the stresses in a given environment, no matter the allometry of the plant. When
the structure reaches the convective regime (L > A), the stresses become decreasing
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functions of the thickness D but remain independent of W and L. One might think
that a growth pattern favouring thickness would be advantageous, but this is only
so for thin plates D < W for which the elastic effects are confined in the plane
of the flow. A thicker structure might experience three-dimensional deformations
that would make the dynamics considerably more complex. Finally, in the modal
regime (W > A), the stresses now start increasing with the width W, and the risk of
resonances may enhance the stresses even more depending on the frequency of the
flow. It thus appears detrimental for a flexible plant to grow in width in excess of
the fluid particle excursion.

These remarks come as complementary answers to the work of Koehl (1984) and
especially Denny et al. (1985), Gaylord, Blanchette & Denny (1994) and Denny
(1999). Koehl (1984) first noted that ‘flexibility in combination with great length
provides a mechanism of avoiding bearing large forces in habitats subjected to
oscillating flow’, in comparison to rigid organisms that need to remain small. However
the question of whether there might be size limits imposed on wave-swept flexible
organisms due to the oscillatory fluid loading has never received a definitive answer.
Our results indicate that for slender, neutrally buoyant blades, the hydrodynamic loads
do limit the width, but put no constraints on the axial growth.

6.3. Remarks on previous work about the convective regime
Most aquatic plants are close to neutrally buoyant and the horizontal amplitude
of the passing waves is typically much larger than the width if not the length of
these plants (see Gaylord et al. 1994; Denny & Cowen 1997; Gaylord & Denny
1997). Thus it seems that plants growing larger than the fluid particles excursion
are likely to remain in the convective regime in order to avoid large flow-induced
stresses. The work of Mullarney & Henderson (2010) and Luhar & Nepf (2016) has
focused mainly on this convective regime. The latter show on their figure 11 that
their effective length (analogous to our normal reconfiguration number Rn) seems to
scale as (CY/α)

−1/4
= (λαω2)−1/4

= δ. This result is consistent with the scaling of the
elastic boundary layer that develops in the convective regime, and indeed almost all
the experimental cases of Luhar & Nepf (2016) were obtained within the appropriate
range α 6 1 and KC > 1 (more precisely 0.06 6 α 6 1.32 and 0.76 6 KC 6 4.2).
However, because the slenderness parameter of their blades is rather low (between
λ= 3.2 and λ= 12.7), α and KC are quite close to each other and consequently most
of their points are very close to either one of the boundaries of that regime. Some
particular points in that study show an increase of the load compared to the rigid case.
The authors suggested that this might result from an interaction between the blade
and the vortex shed at the tip. But these points are characterized by a rather small
amplitude α = O(10−1) and Keulegan–Carpenter number KC ∼ 0.7− 1.2, and forcing
frequencies close to the resonance frequency ω∼ 1− 5. For instance, the largest load
was obtained for (α = 0.12, KC = 0.76 and ω = 2.30). It is thus a possibility that
the load enhancement is simply the consequence of a resonance of the impinging
wave with the first natural mode of the structure, due to the persistent modal nature
of the dynamic response for such values of the parameters. Conversely, other points
obtained for α = O(1) seem to collapse quite well with the others. We have shown
that for such high values of the amplitude parameter, at least when λ = 12.7, the
reconfiguration number should be close to its static equivalent. But if very slender
structures exhibit a clear asymptotic regime Rn ∼ C−1/3

Y , decreasing the slenderness
below O(10) mitigates the efficiency of the reconfiguration and increases the slope
so that it may be difficult to know the difference with the scaling of the convective
regime.
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6.4. Limits and extensions of the model
In all this study we have focused exclusively on the case of an infinitely thin,
neutrally buoyant blade. These two assumptions have allowed us to neglect both the
displaced mass and the structural mass. In practice however, aquatic plants are not
strictly speaking of the same density as the water and their thicknesses might not be
negligible.

First, if the thickness of the neutrally buoyant blade is not negligible anymore,
we need to consider the inertial and virtual buoyancy forces. These forces might
be responsible for additional inertial effects in the large-amplitude regime, such
as persistent oscillations following the quick reversal with Tr < 1, or a flutter
instability similar to that observed on axial flags. The dynamics induced would
then be responsible for additional loads that may challenge the findings of that study.
However, we expect the consequences to remain marginal, as damping by the drag
term would still dominate. This is even more so as the slenderness is increased
and for infinite slenderness, we do not expect any significant discrepancy with the
present work. Besides, the small-amplitude regimes would not be affected in any
way as (4.1) would remain the same, providing that the characteristic time of the
structure used for non-dimensionalization is redefined to account for the structural
mass Ts = L2√(ma +m)/EI.

If the structure is now lighter than the fluid, then its inertia is even more negligible.
Buoyancy may still modify our results, but this effect should become negligible as
soon as the fluid loading is dominant as explained in Luhar & Nepf (2011) and Luhar
& Nepf (2016).

On the other hand, if the structure is much denser than the fluid, some more
complicated dynamical effects might come into play due to the large structural inertia
possibly overcoming even drag. We do not expect the conclusions of the present
work to hold in that case.

7. Conclusion
This work provides a dynamical extension of the theory of reconfiguration to the

case of oscillatory flow. Focusing on neutrally buoyant cantilever slender blades,
we proved that flexibility is always favourable to reducing the internal stresses as
long as drag dominates the fluid inertial forces. In fact, drag appears as the motor
of reconfiguration. In large-amplitude oscillations (or equivalently in steady flow),
drag is responsible for the static deflection that reduces the stress. In small-amplitude
oscillations, it is also the saturation of the drag term that forces the passive convection
of the structure with the fluid particles if the Keulegan–Carpenter number is large.
Even in the less favourable case of small Keulegan–Carpenter numbers, it is the small
drag term that saturates the resonances that occur due to the fluid inertia, even when
the structural inertia is negligible. We also expect that drag would saturate flutter-like
oscillations that might occur if the structural mass were not negligible, thus limiting
the enhancement of the internal stresses to a bearable extent.

As in the static case, we have shown that dynamic reconfiguration results in the
concentration of the stresses on a short bending length near the clamped edge, only the
scaling of that bending length varies depending on the dynamic regime. Consequently,
the dependency of the internal stresses on the actual length of the structure disappears,
and there does not seem to be any mechanical limitation to the axial growth of plants
living in wave-swept environment due to the hydrodynamic loads. However, in order
to avoid deleterious inertial effects, it seems better to keep a much smaller width than
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FIGURE 13. (a) Tensile reconfiguration number and (b) location of maximum tensile stress
along the span in the modal regime, against the frequency ratio, for KC = 10−2 (——),
KC = 10−1 (— · —), KC = 100 (– – –) and analytical solution for KC → 0 (· · · · · ·). (c)
Tensile reconfiguration number against KC ω

2 in the convective regime KC = 100 (– – –),
KC = 101 (— · —), KC = 102 (——). (d) Tensile reconfiguration number in the large-
amplitude regime for λ= 12.7, against the Cauchy number CY for α= 100 (– – –), α= 101

(——) and static solution obtained with (5.6) (· · · · · ·).

the excursion of the fluid particles. In other words, if there is no limitations to growth
in itself, there is an incentive to grow slender based on mechanical considerations. Of
course, the actual growth pattern of aquatic plants also involves other aspects such as
the optimization of its biological functions that we do not take into account here.

Up to here, only the inertia of the fluid has been accounted for. We expect the
inclusion of significant structural inertia should considerably modify the results of the
present work.
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Appendix A. Tensile stress
Similarly to the shear reconfiguration number, the variations of the tensile

reconfiguration number are displayed in figure 13(a) for the modal regime, along
with the location of the maximum stress in figure 13(b). Figures 13(c) and 13(d)
respectively show the results in the convective and large-amplitude regime. All the
conclusions drawn about the shear reconfiguration number are still valid for the tensile
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FIGURE 14. Variations of the static reconfiguration numbers obtained with (5.6) ((a) shear,
(b) tensile) as a function of the Cauchy number CY , for λ= 12.7 (——), λ= 127 (– – –),
λ= 1270 (· · · · · ·).

number. The only noticeable difference is the asymptotic scaling for large loadings.
Indeed, the non-dimensional bending moment M = κ involves one less derivative in
space than the shear force Q so that M ∼ Q × `b, while the non-dimensional rigid
load is unchanged. Therefore, Rτ ∼Rn × `b ∼ `

2
b. Finally, this provides Rτ ∼ ω

−1 in
the modal regime, Rτ ∼ (KC ω

2)−1/2 in the convective regime and Rτ ∼ C−2/3
Y in the

large-amplitude regime, in agreement with the results shown.

Appendix B. Influence of the slenderness on the static reconfiguration
In the large-amplitude regime, most of the cycle is quasi-static and the system

is well modelled by (5.6). The different static reconfiguration curves for varying
slenderness parameters shown in figure 14 prove that the reconfiguration numbers
converge on an asymptotic trend as the slenderness is increased. For any finite λ,
the discrepancy with the asymptotic curve remains quite small for the shear stress,
and almost completely imperceptible for the tensile stress. The asymptotic scaling
provided in § 5 can therefore be used even for moderately large slenderness.
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