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We consider asymptotic problems for coupled equations modelling interactions
between particles and a viscous ° uid. The particles are driven by a Vlasov-like
equation, involving the velocity of the ° uid. We obtain, as certain parameters tend
to 0, hydrodynamic equations for the macroscopic density and the velocity.

1. Introduction

In this work we are interested in asymptotic problems for a simple kinetic model
for two-phase ®ows where a dispersed phase interacts with a ®uid. Such equations
arise in the description of various combustion phenomena, e.g. diesel engines. The
dispersed phase is a spray of droplets having the same radius r > 0. Let » l be the
mass density of the material contained in these droplets. We describe the evolution
of this phase by the distribution function f (t; x; v) of particles occupying, at time t,
the position x with velocity v. These particles move in a viscous gas characterized
by its mass density » g, its kinematic viscosity ¸ g > 0 (assumed to be constant)
and its velocity u. Let us collect the assumptions we make in order to derive the
model. (We refer to [5, 7, 8, 16] and K. Hamdache (personal communication) for
detailed discussions on these hypothesis and further information on the model. A
comprehensive presentation of the problem, as well as a deep discussion on the
relevant scalings, can be found in [4].)

(i) We restrict the model to a situation where the ®ow is directed towards the
x direction: the problem is mono-dimensional, so that x 2 R, v 2 R. With
this in mind, let us introduce the following macroscopic quantities

» p(t; x) =

Z

R
f (t; x; v) dv; » pVp(t; x) =

Z

R
vf (t; x; v) dv:

Hence » l » p is the mass density of the cloud of droplets, while » l » pVp is its
momentum.

(ii) We neglect interactions between particles. Indeed, the size of the droplets is
constant, thus coalescence or break-up processes are prohibited. Moreover, we
assume that the spray is dilute enough to neglect inter-particle collisions. In
turn, we can assume that the gas density » g > 0 is constant, since the volume
fraction occupied by the particles is small compared to that of the gas.
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(iii) We neglect gravity e¬ects. Hence the force on the particles is given by the
following Stokes drag force,

F =
9 · g

2 » lr2
(u(t; x) ¡ v); (1.1)

which describes the friction of the viscous ®uid on the droplets. In (1.1), we
have used the dynamic viscosity · g = » g ¸ g and u is the bulk velocity of the
®uid. Therefore, the spray equation reads as

@tf + v@xf + @v(Ff ) = 0: (1.2)

(iv) Finally, the evolution of the gas is governed by the following viscous Burgers
equation for the velocity u(t; x):

» g(@tu + @xu2 ¡ ¸ g@2
xu) = E: (1.3)

In (1.3), the force E describes the exchange of impulse between the gas and
the particles, hence it is related to the drag force as follows:

E(t; x) =
9 · g

2 » lr2
» l » p(t; x)(Vp(t; x) ¡ u(t; x)): (1.4)

Equations (1.1), (1.2), coupled to (1.3), (1.4), have been considered in [7], where
existence{uniqueness results, considering regular data, are obtained, with an exten-
sive study of travelling waves for this system. More complicated ®uid equation is
dealt with by Hamdache [8], with a complete discussion on existence and time
asymptotic behaviour of the solutions. Other models of interactions between ®uid
and particles are studied in [9,14]. We also mention interesting works of Jabin [10,11]
and Jabin and Perthame [12], who treat questions of singular perturbations similar
to ours for related models. Such problems also arise in astrophysics and plasmas
physics, as studied by Nieto et al . [13], and it is certainly worth referring to the
situation of granular media recently introduced by Benedetto et al . [1{3].

Here we investigate hydrodynamic limits for the simple model (1.1){(1.4), sup-
plemented by initial conditions

ujt = 0 = u0; fjt = 0 = f0 > 0:

Introducing a reference time T , two parameters without dimension appear in the
equations: 9T ¸ g=2r2 = T=½ and » g=» l. Therefore, writing the equations in an adi-
mensionalized form, we are interested in the behaviour of solutions (f"; u") of the
following systems,

@tf" + v@xf" +
1

"
@v((u" ¡ v)f") = 0;

@tu" + @xu2
" ¡ ¸ @2

xu" =
1

"
» "(V" ¡ u");

9
>=

>;
(1.5)

where 1=" = T=½ , » g=» l = 1 and

@tf" + v@xf" +
1

"
@v((u" ¡ v)f") = 0;

@tu" + @xu2
" ¡ ¸ @2

xu" = » "(V" ¡ u");

9
=

; (1.6)
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when 1=" = » g=» l, T=½ = 1. We recall that in both (1.5) and (1.6) we denote

» "(t; x) =

Z

R
f"(t; x; v) dv; » "V"(t; x) =

Z

R
vf"(t; x; v) dv:

Following K. Hamdache (personal communication), the ­ rst asymptotic will be
referred to as the hydrodymamic limit, while the second will be the strati­ ed limit.
Our main results are stated as follows.

Theorem 1.1. Let u0
" and f 0

" satisfy

u0
" * u0 weakly in L2(R);

f 0
" * f 0 weakly¤ in M1(R £ R);

f 0
" > 0;

Z

R

Z

R
(1 + v2)f 0

" dvdx = C0 < 1:

9
>>>=

>>>;
(1.7)

Then, up to a subsequence, solutions of (1.5) satisfy

» " ! » strongly in C0([0; T ]; H¡1
loc (R)) and weakly¤ in L 1 (R; M1(R));

u" * u weakly in L2(0; T ; H1(R));

where ( » ; u) satisfy

@t » + @x( » u) = 0;

@t((1 + » )u) + @x((1 + » )uu) ¡ ¸ @2
xu = 0

and initial data

» jt = 0 =

Z

R
f 0 dv; f(1 + » )ugjt= 0 = u0 +

Z

R
v df 0(v):

(This trace in time makes sense since it will be shown that (1 + » ")u" lies in a
compact set of C0([0; T ]; H¡1(I)) for any bounded set I .)

Theorem 1.2. Let u0
" and f 0

" satisfy (1.7). Then, up to a subsequence, solutions
of (1.6) satisfy

f" * » (t; x) ¯ v = u(t;x) weakly¤ in L 1 (R + ; M1(R £ R));

» " ! » strongly in C0([0; T ]; H¡1
loc (R)) and weakly¤ in L 1 (R; M1(R));

u" ! u strongly in L2(0; T ; C0
loc(R)) and in C0([0; T ]; H¡1

loc (R))

and weakly in L2(0; T ; H1(R));

where ( » ; u) satisfy

@t » + @x( » u) = 0;

@tu + @xu2 ¡ ¸ @2
xu = 0

and initial data

» jt = 0 =

Z

R
df0(v); ujt = 0 = u0:
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2. Hydrodynamic limit

This section is devoted to the proof of theorem 1.1. The proof falls into two steps:
­ rst, we derive some estimates, which provide compactness properties that we then
use in the next step to pass to the limit.

2.1. A priori estimates

First of all, a simple integration of the kinetic equation leads to the following
natural conservation relation:

d

dt

Z

R

Z

R
f" dvdx = 0: (2.1)

Next, multiply the kinetic equation by 1
2v2 and integrate. This yields

d

dt

Z

R

Z

R

1
2 v2f" dvdx ¡ 1

"

Z

R

Z

R
v(u" ¡ v)f" dvdx = 0;

while integrating the ®uid equation multiplied by u" gives

d

dt

Z

R

1
2 u2

" dx + ¸

Z

R
j@xu"j2 dx +

1

"

Z

R
» "u"(u" ¡ V") dx = 0:

We note that
Z

R
» "u"(u" ¡ V") dx =

Z

R

Z

R
f"u"(u" ¡ v) dvdx:

Therefore, by adding the two previous relations, we get

d

dt

»Z

R

Z

R

1
2v2f" dvdx +

Z

R

1
2u2

" dx

¼

+ ¸

Z

R
j@xu"j2 dx + 1="

Z

R

Z

R
f"(u" ¡ v)2 dvdx = 0:

We can now estimate the momentum by the mass and energy as follows:
Z

R
j » "V"j dx =

Z

R

­­­­
Z

R
vf" dv

­­­­dx 6
Z

R

Z

R

1
2 (1 + v2)f" dvdx:

We can collect this information in the following statement.

Proposition 2.1. Let u0
" and f 0

" satisfy (1.7). Then

(i) (1 + v2)f" is bounded in L 1 (R + ; L1(R £ R)),

(ii) » " is bounded in L 1 (R + ; L1(R)),

(iii) J" = » "V" is bounded in L 1 (R + ; L1(R)),

(iv) u" is bounded in L 1 (R + ; L2(R)) \ L2(0; T ; H1(R)),

(v) (1=")(v ¡ u")2f" is bounded in L1(R + £ R £ R).
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2.2. Moment equations and limit

Having disposed of this preliminary, we can deal with a subsequence such that

u" * u weakly in L2(0; T ; H1(R));

f" * f weakly¤ in L 1 (R + ; M1(R £ R));

» " * » weakly¤ in L 1 (R + ; M1(R));

J" = » "V" * J weakly¤ in L 1 (R + ; M1(R)):

9
>>>>=

>>>>;

(2.2)

Here, M1( « ) stands for the set of bounded measures on the domain « . Then, inte-
grating the kinetic equation with respect to v, we obtain the following conservation
relation,

@t » " + @xJ" = 0; (2.3)

which gives, at least in D0(R+ £ R),

@t » + @xJ = 0

as " goes to 0. Furthermore, equation (2.3) combined with the estimate (iii) on J",
says that @t » " belongs to a bounded set in L 1 (R + ; W ¡1;1(R)). Let 0 < R < 1
and I = ( ¡ R; +R). Since the embeddings W 1; 1

0 (I) » H1
0 (I) »com p C0(·I) hold, we

have

L1(I) » M1(I) = (C0(·I))0 »com p H¡1(I) = (H1
0 (I))0 » W ¡1;1(I) = (W 1; 1

0 (I))0:

Therefore, one deduces that

» " ! » in C0([0; T ]; H¡1
loc (R)); (2.4)

by applying a classical compactness theorem (see, for instance, corollary 4 in [15]).
Hence the product » "u" passes to the limit

» "u" * » u (at least) in D0(R + £ R): (2.5)

Let us come back to the ®uid equation. We have

» "(V" ¡ u") = "(@tu" + @xu2
" ¡ ¸ @2

xu");

which becomes, as " ! 0,

» "(V" ¡ u") * 0 in D0(R+ £ R): (2.6)

Actually, by applying the Cauchy{Schwarz inequality and estimate (v) in proposi-
tion 2.1, » "(V" ¡ u") tends to 0 in L1((0; T )£R) with a rate

p
". Then, by combining

this last relation to (2.5), we can now identify the weak limit J , since

J" = » "V" = » "(V" ¡ u") + » "u" * J = 0 + » u = » u in D0(R + £ R): (2.7)

Next, an equation for J" is obtained by multiplying the kinetic equation and
integrating with respect to v. We have

@tJ" + @xp" ¡ 1

"

Z

R
(u" ¡ v)f" dv = 0

= @tJ" + @xp" ¡ 1

"
» "(u" ¡ V")

= @t(u" + J") + @x(u2
" + p") ¡ ¸ @2

xu"; (2.8)
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where

p" =

Z

R
v2f" dv

and we have made use of the ®uid equation. We can pass to the limit without di¯ -
culties in the ­ rst and the last terms of (2.8) by using (2.2) and (2.7). Furthermore,
equation (2.8) provides a bound on @t(u" + J") in

L 1 (R + ; W ¡1;1(R)) + L2(R + ; H¡1(R)) » L2((0; T ); W ¡1;1
loc (R));

while u" + J" is bounded in L 1 (R + ; L2(R)) + L 1 (R + ; L1(R)) » L 1 (R + ; L1
loc(R)).

By using the compactness theorem of [15], one deduces that u" + J" belongs to a
compact set of C0([0; T ]; H¡1(I)) for any bounded set I. Hence the product with
u" passes to the limit and we are led to

u" + J" ! u + » u in C0([0; T ]; H¡1
loc (R)) (by (2.2) and (2.7));

(u" + J")u" * (u + » u)u in D0(R + £ R):

)

(2.9)

Then we rewrite the pressure term as follows:

u2
" + p" = (u" + J")u" + (p" ¡ J"u"):

Let q" =
R
R(v ¡ u")vf" dv designate the last term. We get

Z 1

0

»Z

R
jq"j dx

¼ 2

dt

6
Z 1

0

»Z

R

Z

R
jv ¡ u"j

p
f"jvj

p
f" dvdx

¼ 2

dt

6
Z 1

0

»³Z

R

Z

R
jv ¡ u"j2f" dvdx

1́=2³Z

R

Z

R
v2f" dvdx

1́=2 ¼ 2

dt

6 kv2f"kL1 (R+;L1(R£R))kjv ¡ u"j2f"kL1(R+£R£R) 6 C":

Hence we obtain
u2

" + p" * (u + » u)u in D0(R + £ R)

by using (2.9), so that (2.8) becomes

@t((1 + » )u) + @x((1 + » )u2) ¡ ¸ @2
xu = 0

as " ! 0. Note that the initial data also pass to the limit thanks to the conver-
gences (2.4) and (2.9). This achieves the proof of theorem 1.1.

One may wonder what happens at the kinetic level. In view of (1.5), we could
believe that the sequence f" tends to the Dirac mass » ¯ v = u(t;x). However, the con-
vergence of u" seems to be not strong enough to obtain such a result, while we can
show that

f" ¡ » " ¯ v = u" * 0 in D0(R + £ R £ R):

Indeed, for a regular test function ’(t; x; v) = ± (t; x)Á(v) with compact support,
we have

hf" ¡ » " ¯ v = u" ; ’iD 0 ;D =

Z 1

0

Z

R

Z

R
± (t; x)(Á(v) ¡ Á(u"))f"(t; x; v) dvdxdt:
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Let ¯ > 0 be ­ xed and let ² > 0 to be determined. We split this integral, considering
separately the domain jv ¡ u"j 6 ² and jv ¡ u"j > ² . By choosing ² small enough
and using Heine’s theorem, the di¬erence jÁ(v) ¡ Á(u")j can be arbitrarily small as
jv ¡ u"j 6 ² , so that

­­­­
Z

jv¡u"j6 ²

¢ ¢ ¢ dvdxdt

­­­­6 k ± kL1

Z 1

0

Z

R

Z

R
f" dvdxdt sup

jv¡u"j6 ²

jÁ(v) ¡ Á(u")j 6 ¯ :

On the other hand, the energy estimate gives
­­­­
Z

jv¡u"j> ²

¢ ¢ ¢ dvdxdt

­­­­6 2

² 2
k± kL1 kÁkL1

Z 1

0

Z

R

Z

R
jv ¡ u"j2f" dtdxdv 6 "C

² 2
;

where C depends on ± , Á and C0. It follows that

jhf" ¡ » " ¯ v = u" ; ’ij 6 2 ¯

for " small enough. However, it is not clear at all that » " ¯ v = u" is close to » ¯ v = u.
Let us end this section by remarking that convergence (2.4) also means that

» " converges to » in C0([0; T ]; M1(R)-weak¤). Indeed, a continuous function ’
vanishing at 1 can be approached uniformly on R by ’n 2 C 1

0 (R). Hence we can
write

h » "(t); ’iM 1;C0 = h » "(t); ’niH ¡ 1 ;H1
0

+ h » "(t); ’ ¡ ’niM 1;C0 ;

where the last term can be given arbitrarily small by choosing n large enough. The
same remark also applies to (2.9).

3. Strati¯ed limit

Let us now deal with the strati­ ed limit (1.6), which will appear slightly simpler
since we can obtain some strong compactness for the velocity ­ eld.

Here, the energy estimate becomes

d

dt

»
"

Z

R

Z

R

1
2
v2f" dvdx+

Z

R

1
2
u2

" dx

¼
+ ¸

Z

R
j@xu"j2 dx+

Z

R

Z

R
f"(u" ¡ v)2 dvdx = 0;

(3.1)
while we keep the mass conservation (2.1). One deduces the following claim.

Proposition 3.1. Let u0
" and f 0

" ful¯l (1.7). Then

(i) f" is bounded in L 1 (R + ; L1(R £ R)),

(ii) » " is bounded in L 1 (R + ; L1(R)),

(iii) u" is bounded in L 1 (R + ; L2(R)) \ L2(0; T ; H1(R)),

(iv) (v ¡ u")2f" is bounded in L1(R + £ R £ R),

(v) jV" ¡ u"j» " is bounded in L2(R + ; L1(R)),

(vi) vf" and u"f" are bounded in L2(0; T ; L1(R £ R)).
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Proof. Estimates (i){(iv) read directly on (2.1) and (3.1). Next, since » "jV" ¡ u"j =
j » "(V" ¡ u")j, we get

Z 1

0

»Z

R
» "jV" ¡ u"j dx

¼ 2

dt

=

Z 1

0

» Z

R

­­­­
Z

R
(v ¡ u")f" dv

­­­­dx

¼ 2

dt

6
Z 1

0

» Z

R

Z

R
jv ¡ u"j

p
f"

p
f" dvdx

¼ 2

dt

6
Z 1

0

» ³Z

R

Z

R
jv ¡ u"j2f" dvdx

1́=2³Z

R

Z

R
f" dvdx

1́=2 ¼ 2

dt

6 kf"kL1 (R+ ;L1(R£R))kjv ¡ u"j2f"kL1(R+ £R£R) 6 C; (3.2)

which proves (v). Now, by using the Sobolev embedding H1(R) » L 1 (R) (with
constant CS), we obtain

Z T

0

»Z

R
» "ju"j dx

¼ 2

dt =

Z T

0

»Z

R

Z

R
ju"jf" dvdx

¼ 2

dt

6
Z T

0

ku"(t; ¢)k2
L1 (R)

³Z

R

Z

R
f" dvdx

2́

dt

6 kf"k2
L1 (R+;L1(R£R))

Z T

0

ku"(t; ¢)k2
L1 (R) dt

6 CSkf"k2
L1 (R+;L1(R£R))ku"k2

L2(0;T ;H1(R)) 6 C: (3.3)

This shows that » "u" is bounded in L2(0; T ; L1(R)). We then combine (3.2) and (3.3)
to deduce that

Z T

0

»Z

R
» "jV"j dx

¼ 2

dt

=

Z T

0

»Z

R

­­­­
Z

R
vf" dv

­­­­dx

¼ 2

dt

6
Z T

0

»Z

R

Z

R
(jv ¡ u"j + ju"j)f" dvdx

¼ 2

dt

6 2(kjv ¡ u"jf"k2
L2(R+ ;L1(R£R)) + kju"jf"k2

L2(0;T ;L1(R£R))) 6 C

holds.

In view of the energy estimate, one may wonder that the kinetic energy cannot
be bounded; however, this is actually the case.

Corollary 3.2. v2f" is bounded in L1((0; T ) £ R £ R).
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Proof. Following what we did in (3.3), we get
Z T

0

Z

R
» "ju"j2 dxdt 6

Z T

0

ku"(t; ¢)k2
L1 (R)

³Z

R

Z

R
f" dvdx

´
dt

6 kf"kL1 (R+;L1(R£R))

Z T

0

ku"(t; ¢)k2
L1 (R) dt

6 C0CSku"k2
L2(0;T ;H1(R)) 6 C:

It follows that
Z T

0

Z

R

Z

R
v2f" dvdxdt 6 2

Z T

0

Z

R

Z

R
((v ¡ u")2 + u2

")f" dvdxdt 6 C;

using (iv).

Furthermore, proposition 3.1, combined with the ®uid equation, also leads to the
following compactness property.

Corollary 3.3. u" lies in a compact set of L2(0; T ; C0(I)) \ C0([0; T ]; H¡1(I))
for any bounded interval I .

Proof. We rewrite the ®uid equation as

@tu" = » "(V" ¡ u") ¡ @xu2
" + ¸ @2

xu"; (3.4)

where one sees that the right-hand side is bounded in

L2(0; T ; L1(R)) + L2(0; T ; H¡1(R)) + L2(0; T ; H¡1(R)):

The second estimate comes from the injection H1 » L 1 , thus u2
" belongs (at least)

to L2. Applying corollary 4 of [15], with the compact embeddings H1(I) » C0(I)
and L2(I) » H¡1(I), respectively, leads to the expected compactness.

Lemma 3.4. Up to a subsequence, u" converges to u strongly in L2((0; T ); C0
loc(R))

and f" tends to » (t; x) ¯ v = u(t;x) weakly¤ in L 1 (R + ; M1(R £ R)), where » "(t; x) con-
verges to » (t; x) strongly in C0([0; T ]; H¡1

loc (R)).

Proof. The convergence of u" is a consequence of the previous corollary. In view of
the bound (i) in proposition 3.1, we can also assume that

f" * f in L 1 (R + ; M1(R £ R)) weak¤:

Then the following convergence holds,

u"f" * uf in D0(R + £ R £ R) (at least); (3.5)

since, for any test function ’ (with support in the ball B 1 (0; T )), one has

jhu"f" ¡ uf; ’iD 0 ;D j

=

­­­­
Z 1

0

hf"(t; ¢); (u" ¡ u)’iM 1;C0 dt +

Z 1

0

h(f" ¡ f )(t; ¢); u’iM 1;C0 dt

­­­­

6 kf"kL1 (R+ ;L1(R£R))k’kL1 (R+£R£R)

p
T ku" ¡ ukL2(0;T ;L1 ((¡T ;T )))

+

­­­­
Z 1

0

h(f" ¡ f)(t; ¢); u’iM 1;C0 dt

­­­­:
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The ­ rst term goes to 0 by using the strong convergence of u", while the second
term vanishes by the weak¤ convergence of f". This permits us to identify the limit
f , since

"(@tf" + v@xf") + @v((u" ¡ v)f") = 0

gives, as " ! 0,

@v((u ¡ v)f ) = 0 in D0(R + £ R £ R):

It follows that (v ¡ u)f = C(t; x) does not depend on v. Since this distribution is
actually a ­ nite measure with respect to the variable v 2 R (see proposition 2 (iv)),
one deduces that (v ¡ u)f = 0 2 L 1 (R + ; M1(R £ R)) and f = » (t; x) ¯ v = u(t;x). Fur-
thermore, by corollary 3.2, moments of f" also pass to the limit

» "(t; x) =

Z

R
f"(t; x; v) dv

*

Z

R
df (t; x; v)

= » (t; x) in L 1 (R + ; M1(R)) weak¤;

» "V"(t; x) =

Z

R
vf"(t; x; v) dv

*

Z

R
v df (t; x; v)

= » (t; x)u(t; x) in L2(R + ; M1(R)) weak¤:

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

(3.6)

It remains to show that the ­ rst convergence in (3.6) holds strongly. Indeed, one
has

@t » " = ¡ @xj"; (3.7)

which implies that @t » " is bounded in L2(R + ; W ¡1;1(R)). As in the previous section,
by [15], one gets the strong compactness of » " in C0([0; T ]; H¡1(I)) for any bounded
interval I .

Now, letting " ! 0 in (3.7) yields

@t » + @x( » u) = 0

by (3.6). On the other hand, we remark that

» "(V" ¡ u") * » u ¡ » u = 0 in D0(R + £ R);

still by (3.6) combined with (3.5). Thus, as " goes to 0 in (3.4), we are led to

@tu + @xu2 ¡ ¸ @2
xu = 0;

using the convergence given by corollary 3.3. This ends the proof of theorem 1.2.

4. Existence of solutions for the coupled kinetic/°uid problem

This section is devoted to the existence of solutions as " > 0 is ­ xed. For the sake of
simplicity, we set from now on " = 1 and we are interested in solving the following

https://doi.org/10.1017/S030821050000144X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000144X


Asymptotic problems for a kinetic model of two-phase ° ow 1381

coupled equations:

@tf + v@xf + @v((u ¡ v)f ) = 0;

@tu + @xu2 ¡ ¸ @2
xu = » (V ¡ u);

ujt= 0 = u0; fjt= 0 = f0:

9
>=

>;
(4.1)

When the initial data (u0; f0) are regular, we can prove global existence and unique-
ness of a regular solution (u; f), by combining a tedious analysis of the character-
istic curves associated to the ­ eld b(t; x; v) = (v; u(t; x) ¡ v) and an application of
the classical Banach ­ xed point. Precisely, according to [7], for u0 2 C2(R) and
f0 2 C1

0(R £ R), f0 > 0, one proves the existence{uniqueness of a solution

u 2 C0([0; T ]; C2(R)) and f 2 C0([0; T ]; C1
0 (R £ R); f > 0:

Of course, this solution satis­ es the following energy equality:

Z

R

1
2
u(T; x)2 dx +

Z

R

Z

R

1
2
v2f(T; x; v) dvdx

+ ¸

Z T

0

Z

R
j@xuj2 dxds +

Z T

0

Z

R

Z

R
(v ¡ u)2f dvdxds

=

Z

R

1
2 u2

0 dx +

Z

R

Z

R

1
2v2f0 dvdx: (4.2)

This result is clearly su¯ cient to perform the asymptotic analysis of the previous
sections, dealing with the sequences (u"; f") associated to these regular data and
taking into account the introduction of the relevant scaling. However, it is also
interesting to derive some existence results for less regular data. This is the aim of
this section.

First of all, we can consider initial regular data (un
0 ; f n

0 ) converging to some
(u0; f0) in L2(R) and L1(R £ R), respectively, where v2f0 is also integrable. Then,
by using the bounds (uniform with respect to n) given by (4.2), we can easily
pass to the limit in the equation. This strategy provides the existence of a solution
(u; f) 2 L2(0; T ; H1(R)) £ L 1 (0; T ; M1(R £ R)), which satis­ es (4.2), the equals
sign being replaced with `6’. Furthermore, if one assumes that fn

0 is bounded in
L 1 (R £ R), the maximum principle gives an additional L 1 bound on the approx-
imated sequence f n (namely, kf n(t)kL1 6 eT kf n

0 kL1 ). In turn, the solution f
obtained by regularization of the initial data belongs to L 1 ((0; T ) £ R £ R). Then,
applying general results of [6] on transport equations, one proves that this solution
f lies in C0[0; T ]; Lp

loc(R £ R)) for 1 6 p < 1. Let us give below a similar result,
obtained by a ­ xed-point approach. Note ­ nally that such a result is close to those
of [8] or [11] for multi-dimensional Vlasov{Stokes equations and we are able to
prove the existence of non-regular solutions, but uniqueness is far from clear in this
context.

Proposition 4.1. Let u0 and f0 > 0, f0 2 L1 \ L2(R £ R), satisfy

Z

R
u2

0 dx +

Z

R

Z

R
(1 + v2)f0 dvdx 6 C0 < 1:
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Then there exists a solution of (4.1) with u 2 C0([0; T ]; L2(R)) \ L2(0; T ; H1(R))
and f 2 C0([0; T ]; L1(R £ R)). Moreover, the following energy inequality holds:

Z

R

1
2 u(T; x)2 dx +

Z

R

Z

R

1
2v2f(T; x; v) dvdx

+ ¸

Z T

0

Z

R
j@xuj2 dxds +

Z T

0

Z

R

Z

R
(v ¡ u)2f dvdxds

6
Z

R

1
2 u2

0 dx +

Z

R

Z

R

1
2v2f0 dvdx:

Proof. We can follow closely the arguments used in Hamdache’s paper [8] by intro-
ducing a suitable regularized problem and then letting the regularization parameter
go to 0. Instead, we use here a direct approach, which takes advantage of the par-
ticularities of the mono-dimensional framework. Let 0 < T < 1 and set

F = C0([0; T ]; L2(R)) \ L2(0; T ; H1(R));

endowed with the norm

kuk2
F =

Z T

0

Z

R
(u2 + j@xuj2) dx:

We consider the map

T : F ! F
u ¤ 7! u = T (u ¤ )

de­ ned by the following scheme.

(a) Solve the kinetic equation

@tf + v@xf + @v((u¤ ¡ v)f ) = 0;

with initial data f0.

(b) Solve the ®uid equation

@tu + @xu2 ¡ ¸ @2
xu + » u = » V;

with initial data u0.

Note that the kinetic equation in (a) can be rewritten

@tf + b ¢ rx;vf ¡ f = 0;

where b(t; x; v) = (v; u ¤ (t; x) ¡ v) lies (at least) in

L1(0; T ; H1(( ¡ K; +K) £ ( ¡ K; +K))); 0 < K < 1;

with divx;v b = ¡ 1 2 L 1 ((0; T ) £ R £ R), and jbj=(1 + jxj + jvj) is bounded, which
appeals to the general results in [6]. In particular, for u ¤ 2 F, there exists a
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unique non-negative solution f 2 C0([0; T ]; L2 \ L1(R £ R)), as the initial data sat-
isfy f0 2 L2 \ L1(R £ R), f0 > 0 (see corollaries II-1 and II-2 of [6]). Let M > 0 to
be speci­ ed later. Assume that

Z T

0

ku¤ k2
L1 (R) dt 6 CSku ¤ k2

F 6 CSM;

using the embedding H1(R) » L 1 (R) (we denote by CS the constant corresponding
to this injection). Then one checks that

Z

R

Z

R

1
2
v2f dvdx =

Z

R

Z

R

1
2
v2f0 dvdx +

Z T

0

Z

R

Z

R
(u ¤ ¡ v)vf dvdxdt

6 1
2C0 +

1

2

Z T

0

Z

R

Z

R
(u ¤ )2f dvdxdt ¡ 1

2

Z T

0

Z

R

Z

R
v2f dvdxdt

6 1
2
C0 +

1

2

Z T

0

³
ku ¤ k2

L1 (R)

Z

R

Z

R
f dvdx

´
dt

6 1
2
C0 +

1

2

Z T

0

³
ku ¤ k2

L1 (R)

Z

R

Z

R
f0 dvdx

´
dt

6 1
2C0(1 + MCS);

using the positivity of f and the mass conservation. This estimate yields
Z

R
» jV j dx 6

Z

R

Z

R
jvjf dvdx 6

Z

R

Z

R

1
2(1 + v2)f dvdx 6 C0(1 + 1

2CSM ) = K:

Now we turn to the ®uid equation (b). Let C1 = 1
2
ku0k2

L2(R) < C0 and M > 2C0=¸ .
We shall show that the set

C = fu 2 F; kuk2
F 6 Mg

is left invariant by T , provided T is small enough. Indeed, we get (since » > 0)
Z

R

1
2u2 dx + ¸

Z T

0

Z

R
j@xuj2 dxdt 6

Z

R

1
2 u2

0 dx +

Z T

0

Z

R
» V u dxdt

6 C1 + K

Z T

0

kukL1 (R) dt

6 C1 + KCS

Z T

0

kukH1 dt:

Then classical tricks lead to
Z

R

1
2
u2 dx + 1

2
¸

Z T

0

Z

R
j@xuj2 dxdt 6 C1 + C2T + ¸

Z T

0

Z

R

1
2
u2 dxdt;

where C2 depends on C0, CS , M and ¸ . It follows that
Z

R

1
2u2 dx 6 (C1 + C2T )e ¸ T ;

1
2
¸

Z T

0

Z

R
j@xuj2 dxdt 6 C1 + C2T + ¸ T (C1 + C2T )e ¸ T ;
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hence we get
kuk2

F 6 2C1=¸ + ¿ (T );

which remains less than or equal to M for T small enough, since ¿ (T ) ! 0 as T
goes to 0.

Having de­ ned the invariant set C , we go on to prove the continuity of T in
L2

loc((0; T ) £ R). Let u ¤
k be a sequence in C with u ¤

k ! u ¤ in L2
loc((0; T ) £ R). Then

fk, associated to u ¤
k, converges to f , associated to u ¤ , in C0([0; T ]; L1(R £ R))

(see theorems II-4 and II-3 of [6]). One deduces that » k and » kVk converge
in C0([0; T ]; L1(R)). In turn, this ­ nally gives the convergence of uk to u in
L2

loc((0; T ) £ R). Now we show that T is also compact, since for u ¤
k in C ,

uk = T (u ¤
k) 2 C , with @tuk bounded in L1(0; T ; H¡1

loc (R)). It follows that uk belongs
to a compact set in L2

loc((0; T ) £ R), by applying results in [15].
Schauder’s theorem provides the existence of a ­ xed point u = T (u) that actually

de­ nes a solution (u; f ) of (4.1) in the time-interval [0; T ]. Furthermore, the energy
inequality holds. Hence we can now reproduce our arguments on [T; 2T ] and so on,
obtaining in this way existence on any time-interval.
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