
https://doi.org/10.10
Cognitive Models Are Distinguished
by Content, Not Format
Patrick Butlin*y

Cognitive scientists often describe themind as constructing and usingmodels of aspects of
the environment, but it is not obviouswhatmakes something amodel as opposed to amere
representation. The leading proposal among philosophers is that models are structural rep-
resentations and are therefore distinguished by their format. However, an alternative con-
ception is suggested by recent work in artificial intelligence, on which models are distin-
guished by their content. This article outlines the two conceptions and argues for the
content conception, against the standard philosophical view.
1. Introduction. In cognitive science, the mind is often described as work-
ing by constructing, manipulating, and exploiting models of the body and
the environment. This idea was introduced by Craik (1943) and has become
hugely influential.1 But what exactly is meant by ‘models’ in this context?
What distinguishes the claim that themind models entities with which it inter-
acts from the presumably weaker claim that the mind represents such enti-
ties? Recent philosophical work has linked the concept of a model to that of
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1. In addition to the examples I discuss below, the idea that the mind uses models has been
prominent in theories of reasoning (Johnson-Laird 1983, 2006) andmotor control (Wolpert,
Ghahramani, and Jordan 1995; Grush 2004). Webb and Graziano (2015) invoke models in
their theory of consciousness, and Danks (2014) argues that diverse cognitive processes are
united in their reliance on graphical models. But these are merely a few prominent exam-
ples; cognitive scientists refer to models very frequently.
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structural representation, often focusing on the hierarchical generative models
of predictive processing (Gładziejewski 2016; Gładziejewski and Miłkowski
2017; Kiefer and Hohwy 2018; Williams and Colling 2018). This connection
has also been made in older work, such as by Cummins (1989), Ryder (2004),
and Ramsey (2007). So one possible view is that modeling is the use of spe-
cifically structural representations, rather than representations with some other
format. In this article my aim is to put forward an alternative view: I will argue
that models should be distinguished from other representations by their con-
tent, not by their format.

More precisely, my aim is not to argue that philosophers and cognitive sci-
entists never use the term ‘model’ to mean ‘structural representation’ or that
they would always be wrong to do so. Instead, I want to draw attention to two
points. First, the phenomena that philosophers and cognitive scientists call
‘models’ are typically structural representations, but they also have content
of a certain kind, which distinguishes them from other representations. The
generative models of predictive processing, for example, have both of these
features. This raises questions about the relationship between the features—
for example, whether the use of a structural format is particularly apt for rep-
resentations with content of this kind—and also about the different ways in
which they facilitate cognition, whichmay be obscured by talk ofmodels that
is insensitive to the difference between the two features. Second, there are ex-
amples of representations used in algorithms of quite central importance in
cognitive science, which are naturally and universally referred to as models
but which do not have a structural format. So having a structural format does
not seem to be necessary for a representation to be a model.

I also certainly do not wish to deny that there is an important and interest-
ing distinction between structural representations and those with other for-
mats. Indeed, my argument relies on this distinction. My substantive claim
is that there is a further important and interesting way to classify represen-
tations used in cognitive systems, which does not correspond exactly to the
structural/nonstructural distinction but which captures part of what scientists
intend when they speak of ‘models’, in a range of significant cases.

One complication is that talk of models contributes to modern computa-
tional cognitive science in two ways (Eliasmith 2007). As well as claiming
that the mind models the body and the environment, cognitive scientists con-
struct models of the systems they study. They engage in ‘model-based sci-
ence’ (Godfrey-Smith 2006b) by, for instance, developing computer learning
algorithms and testing their performance on cognitive tasks. There is an ex-
tensive literature on the role and nature of the models used by scientists of all
disciplines (e.g., Giere 1988;Magnani andNersessian 2002;Weisberg 2013),
and this includes debate on the means by which scientists’ models represent
their targets, inwhich structural accounts have taken a prominent place (Suárez
2003). However, I must emphasise that my topic is not scientists’models. My
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topic is the mental models that humans and animals are said to use for a wide
variety of cognitive tasks.2

This article has three main parts. In the next section, I define structural
representation and give more detail on the claim that modeling is the use of
representations of this kind. In section 3 I present the alternative, content-
focused conception of the use of models in the accomplishment of cogni-
tive tasks. Then in section 4 I argue against the structural representation
view, using the example of a model-based reinforcement learning algorithm
that may be implemented in simple computer programs.3

2. The Format Conception. In this and the following section I describe
two possible conceptions of a cognitive model, which I call the ‘format’ and
‘content’ conceptions. This section presents the format conception, in three
stages:first, I clarify the notion of representational format; then, I explainwhat
is meant by ‘structural representation’; and finally, I state the format concep-
tion and summarize the reasons why philosophers have adopted it.

2.1. Representational Format. In claiming that models are distinguished
by their content rather than their format, I am claiming that one dimension of
variation among representations is implicated in this distinction rather than
another. However, there may be some uncertainty about what I mean by the
‘format’ dimension, and clearing this up will also help to make clear how I
understand the notion of structural representation.

In my way of thinking about things, representations vary along at least
three dimensions. The first is content, which is sufficiently familiar that I will
not say anything more to explicate it. The second is format, and the third is
what I will call ‘basis’. A representation’s format is the way in which its ve-
hicle properties are used to perform its representational function. Maps, pho-
tographs, sentences, and musical scores are said to employ different formats,
and in each of these cases vehicle properties are used for representation in
different ways. The basis of a representation is the set of properties of the sys-
tem within which it is embedded that make it the case that it has a represen-
tational function and that its vehicle properties are used to represent in a par-
ticular way. The basis of a representationmight be, for example, a convention
that governs its use or the biological function of a system that employs it.
2. Scientists’ models are important here in one way, which is that I will appeal to com-
puter programs used in reinforcement learning research—which might be thought of as
scientists’models—in arguing against the conception of mental models as structural rep-
resentations. I discuss this complication further in sec. 4.

3. Note that the practice of calling these two kinds of reinforcement learning ‘model-
based’ and ‘model-free’ is entirely standard in the discipline—my use of these labels is
not prejudicial.
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To consider an example in slightly more detail, one philosophical debate
that is explicitly about representational format concerns whether there is a
proprietary format for perceptual representation (Quilty-Dunn 2020). Some
contributors to this debate argue that perception has an iconic format, mean-
ing that perceptual representations do not admit of canonical decompositions
(Carey 2009; Burge 2010; Block 2014). That is, any part of a representation
in iconic format is equally representational, as in a typical photograph. This
contrasts with noniconic representations such as sentences, which have parts
that do represent (such as words) and others that do not (such as part-words).
Quilty-Dunn (2016) claims that at least some perceptual representations are
not iconic, by arguing that objects are sometimes represented by discrete rep-
resentational constituents, which behave more like words than like the parts
of a photograph.

This debate fits my definition of format because it concerns different ways
inwhich vehicle properties can be used to perform representational functions.
If the iconic theory is correct, then in perception representational vehicles, in-
stances of brain activity, are used in such a way that each of their parts plays
an equally representational role. Perhaps any part of an instance of brain ac-
tivity constituting a moment’s visual perception represents the distribution of
colors over a region of the visual field. Alternatively, if Quilty-Dunn is right,
then there are certain parts of the representational vehicles used in perception
that represent objects, and they are such that their proper parts do not repre-
sent anything at all.

Representational basis should be distinguished from format because rep-
resentations can be similar in format and different in basis or vice versa. Con-
sider a weather map that represents landmasses by scale line drawings and
forecast temperatures by colored regions. Such a map is an iconic represen-
tation, so if the iconic theory is right it is similar in format to perceptual rep-
resentations. These differ in basis, however, because what makes the weather
map a representation, and grounds its format, is the conventions governing
its use. Perceptual representations, meanwhile, have their basis in either bio-
logical functions established by natural selection or something like Shea’s
(2018) ‘task functions’. Conversely, if Quilty-Dunn (2020) is right that per-
ception uses a plurality of representational formats, then it is possible for rep-
resentations with the same basis to differ in format.

Two further points about format are important for my purposes. First, the
concept of exploitable relations (Godfrey-Smith 2006a; Shea 2018) is some-
times invoked in connection with structural representation, and this is helpful
in one way and unhelpful in another. Shea (2018) argues that subpersonal
mental representations can bear either of two exploitable relations to the phe-
nomena they represent: they can either carry information about those phenom-
ena or correspond to them structurally. Representations that differ in which of
these relations are actually exploited by cognitive systems consequently differ
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in format because their vehicle properties are used for representational pur-
poses in different ways. So this point is very helpful in distinguishing struc-
tural representations from others. But the idea can also be confusing because
there is room for argument about whether all representationswork by exploit-
ing relations between vehicles and the phenomena represented. In particular,
this is less clear in the case of representations with a conventional basis. The
upshot is that if a representation exploits an exploitable relation, such as struc-
tural correspondence to its target, this has consequences for its format, but it is
clearer that all representations have a format than that they all take advantage
of exploitable relations.4

Second, there aremanyways to classify representational formats. Classifica-
tions can be more or less fine-grained, and different schemes may give overlap-
ping classifications or perhaps even orthogonal ones. I take structural represen-
tation to be a broad class of formats, so some intuitively distinct formats (such as
maps and photographs) may be brought together under this classification.

2.2. Structural Representation. Structural representations (SRs)areaspe-
cies of representation defined by similarity in their formats. More specifi-
cally, SRs have the following two defining properties:

i) Relations over parts or states of the representational vehicle are used to
represent relations over parts or states of the represented phenomenon.

ii) The relations over the vehicle are used in this way because there is a
putative structural correspondence between them and the relations over
the represented phenomenon.

This definition draws on discussions of structural representation by Swoyer
(1991), O’Brien and Opie (2004), Ramsey (2007), Shagrir (2012), and Shea
(2014, 2018). Shea defines structural representation only in terms of the first
of the two properties but makes clear that he also takes it to require structural
correspondence. O’Brien and Opie do not use the expression ‘structural rep-
resentation’ but theorize about a form of representation that relies on structural
correspondence, defined in terms of structure-preserving mappings, which is
how I define this concept below. Swoyer and Shagrir both define structural rep-
resentation in terms of structural correspondence, and Ramsey describes SRs
as relying on structural similarity, correspondence, or isomorphism. The point
that the structural correspondence between the vehicle and the represented
4. O’Brien and Opie (2004), following Von Eckardt (1993), suggest that representation
can be ‘grounded’ by resemblance, causation, or convention. But this classification, which
combines format and basis, is problematic because mere resemblance or causation is not
sufficient for representation without a basis such as convention or biological function and
because some representations both exploit resemblance and have a conventional basis.
Hieroglyphs are one example among many.
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phenomenon is merely putative is rarely mentioned but necessary because of
the possibility of inaccurate SRs, where the correspondence fails.

Following Shea and others, I define structural correspondence in terms
of homomorphism, understood in the following way.
0 Publ
Let RA be a relation over parts or states of A, the representational vehicle,
and let RB be a relation over parts or states of B, the thing represented. Then
f, a function from parts or states of A to parts or states of B, is a homomor-
phism with respect to these relations if and only if for any pair a1 and a2,
a1RAa2↔f (a1)RB f (a2).
For a vehicle to bear a structural correspondence to a represented phenome-
non is just for a homomorphism to exist from the former to the latter. Homo-
morphisms are abundant, so to say that structural representation requires the
existence of a homomorphism from the vehicle to the represented phenom-
enon is a very weak constraint. When combined with the first condition on
structural representation, however, the constraint becomes significantly stronger.

Maps are often given as examples of SRs (Shea 2014; Gładziejewski
2016), and indeed they satisfy the definition. For example, consider the fa-
mous map of the London Underground network. This map has certain priv-
ileged parts, themarks symbolizing each station, which correspond in the ob-
vious way to the stations themselves. A function taking each of these marks
to the named station is a homomorphism with respect to some relations of
particular salience on the map and some corresponding ones of practical im-
portance in the world. It maps the relation being connected by a line of a sin-
gle color over the marks for the stations to the relation being connected by a
single LondonUnderground line over the stations themselves, and it also pre-
serves the orders in which stations are thus connected.

A crucial point for understanding the notion of structural representation
is that for an entity to be an SR, a set of relations over its parts or states that
structurally correspond to some relations over the parts or states of a further
entitymust be used to represent those relations. Many cases of structural cor-
respondence are therefore not cases of representation at all. For example,
there may be a very natural homomorphism between a set of 100 bricks ar-
ranged in offset rows in a wall and 100 football fans sitting in similarly offset
rows in a stadium, with spatial relations between the bricks corresponding to
similar spatial relations between the fans, but the theory of SR does not entail
that the bricks represent the fans.

What is more, not all representations (or collections of representations)
that are homomorphic to the things they represent are SRs because in many
cases homomorphisms exist even though the relevant relations over the rep-
resented domain are not represented. Shea (2014, sec. 3) illustrates this point
with the case of the honeybee’s waggle dance, in which the angle of the dance
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corresponds to the direction of the source of nectar, and the number of wag-
gles corresponds to its distance. There is a homomorphism between dances
and locations, and this homomorphism determines the representational con-
tent of any given dance. But this may not be a case of structural representa-
tion, because for that to be the case, relations between dances would have to
condition the behavior of observer bees in ways that would indicate that they
represent relations between the locations of nectar sources. For instance, bees
might watch two dances and use the relation between them to fly first to one
nectar source, then directly to another, without going back to the hive. But if
bees do not do such things, merely using individual dances as guides to the
location of single nectar sources, the relations between dances are not used in
the way required for structural representation.

For a representation to be an SR, then, the details of the way in which it is
used are crucial. The system that uses it must be capable of behaving in ways
that are sensitive to relations over the represented domain, in virtue of the cor-
respondence between these and certain relations over the representational ve-
hicle. This sensitivitymay, however, be subtle or indirect. If an organism uses
some internal process as a dynamic model of the environment that predicts
incoming sensory stimulation, this model may contribute directly only to per-
ception. But by facilitating faster or more reliable responses to environmental
contingencies, the model could affect the organism’s behavior, and these ef-
fects on behavior would constitute sensitivity to relations between features
of the environment, such as the tendency for one kind of event to be followed
by another.

The final aspect of structural representation that I want to discuss concerns
lookup tables. Representations of this form play an important role in the ar-
gument to come, and there are some subtleties in how the definition just given
applies to them. It will be helpful to have an example in mind, so consider
table 1, intowhichmany of the facts represented by the LondonUnderground
map could be transcribed. The table is in alphabetical order, and it lists each
pair of stations connected by a single line, which line connects them, and how
many stops are required and in which direction. Intuitively this is an example
of a way to rerepresent much of the information in an SR in a nonstructural
format. But in factmatters are slightlymore complicated; Iwill note three points
about how the definition of an SR applies to this case and to other lookup tables.
TABLE 1. LONDON UNDERGROUND

Departure Station Destination Station Line Stops Direction

Acton Town Aldgate East District 22 East
Acton Town Alperton Piccadilly 4 West
. . . . . . . . . . . . . . .
Temple Westminster District 2 West
. . . . . . . . . . . . . . .
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First, the table certainly employs what might be called nonstructural ele-
ments. It identifies stations and lines by their names, and this way of repre-
senting does not make use of structural correspondence. Furthermore, it even
represents some worldly relations other than by relations over the vehicle:
both the number of stops between stations and the direction of travel between
them are represented by symbols rather than relations. The use of nonstruc-
tural elements is common in artifactual SRs such as maps, especially to iden-
tify objects, and this should not prevent us from recognizing the crucial role
that structural correspondencemay still play. Unless we find a good reason to
do otherwise, we should count all representations that satisfy the two condi-
tions above as SRs, even if they also employ nonstructural elements.

Second, this lookup table does have one of the two defining features of
SRs, because the vehicle relation being on the same row of the table is used
to represent the worldly relation being connected by a single London Under-
ground line. Something similar will also be true of many other lookup tables.
However, there is no structural correspondence between these two relations,
because the function from station names on the table to stations themselves is
not one to one, but only one token of each name on the table stands in the
relevant vehicle relation to each other name. Going more slowly, let us apply
the definition of a homomorphism given above to the current case in the fol-
lowing way:

Let: a1, ... , an be token names on the table
b1, ... , bm be stations on the London Underground network
RA be the relation being on the same row of the table
RB be the relation being on the same London Underground line.
0 Publis
Then the function mapping station names on the table to the stations that
they name is not a homomorphism with respect to these two relations be-
cause it is not true that for any pair a1 and a2, a1RAa2↔f (a1)RB f (a2). Consider
the first token of the name ‘Acton Town’ and the token of the name ‘West-
minster’ on table 1. If these area1 and a2 respectively, then f (a1)RB f (a2) is true
because Acton Town and Westminster are both on the District Line. But
a1RAa2 is not true because these two tokens do not appear on the same line
of the table. So the lookup table as a whole is not an SR. Its structure does
not correspond to the structure of the system it represents, because relations
over that system are represented piecemeal. While in the system represented
each object stands in many relations to other objects, in the representational
vehicle there are no parts that stand in the corresponding set of relations.

This pattern is likely to be common when information is stored in lookup
tables. Part of what defines a lookup table is that the rows and columns have
representational significance, but there are few structures of relations that can
be represented in a lookup table other than in the piecemeal way just described.
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Third, despite this, each row of the table we are considering is an SR, ac-
cording to the definition. The function that maps each station name on the
first row of the table to the corresponding stations is a homomorphism with
respect to the two relations being on the same row and being on the same line.
This shows that a composite representationmade up of parts that are SRswill
not always be an SR itself. It also shows that not all SRs make any very inter-
esting use of structural correspondence. If each row on the table we are con-
sidering were replaced by a sentence of English, the same information would
be represented with very little change in efficiency or accessibility. Yet En-
glish sentences are not SRs; for example, in the sentence ‘Acton Town is on
the same line as Aldgate East’ the relation of being on the same line is repre-
sented by a part of the vehicle, not a relation over parts.5 There is a stark con-
trast between the rows of our table and SRs that do make significant use of
structural correspondence, such as the London Underground map itself. It
is thanks to its use of structural correspondence that this map stores and pres-
ents information in a highly efficient and accessible way.

2.3. Arguments for the Format Conception. Now that we have the no-
tion of SR in hand, we are ready for a statement of the format conception. The
format conception is the claim that cognitive models are SRs.
5. Re
‘John
posit
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1893
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86/7100
Format Conception: A cognitive model is a structural representation used
in performing a cognitive task.
Since we know what SRs are, it remains only to briefly consider arguments
for the format conception.

The format conception of cognitive models is motivated by at least three
lines of thought. First, many artifacts that we refer to as ‘models’ are used as
SRs. For instance, Ryder (2004)mentions dynamicmodels of the solar system,
which can be used to answer questions about possible spatial relations between
the planets. Swoyer (1991) mentions a model airplane used for wind-tunnel
lations over the parts of English sentences do contribute to determining content;
loves Mary’ means something different from ‘Mary loves John’. So there are com-

e representations that are not SRs but that are such that relations between their parts
ibute to determining content. Kiefer and Hohwy (2018) also make this point, in com-
g theories of structural representation to functional role theories of mental content. In
se of sentences, it is noteworthy that relations of concatenation do not generally rep-
t worldly relations. For example, in the sentence ‘Alice runs’ the concatenation be-
‘Alice’ and ‘runs’ does not represent a relation between Alice and the property of

ng. To say that it did would launch us on a version of Bradley’s regress (Bradley
): if it is necessary to represent relations between objects and properties, it must also
cessary to represent the relations between objects and those relations, and so on.
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testing. This point certainly makes it natural to use the term ‘model’ to de-
scribe at least some SRs in cognitive systems. Second, it is sometimes argued
that causal and informational theories of mental representation (also called
‘indicator’ or ‘detector’ theories) suffer from insuperable difficulties, which
can be avoided if we explain representation in terms of exploitable structural
correspondence (Ramsey 2007; Williams and Colling 2018). So the thought
is that by showing that cognitive models are SRs it is possible to defend their
status as representations. And third, it has been argued that cognitive models
of some specific kinds, especially the generativemodels implicated in the pre-
dictive processing theory of cognition, are in fact SRs (Gładziejewski 2016;
Kiefer andHohwy 2018; for the predictive processing theory, seeClark [2013,
2016] and Hohwy [2013]). Gładziejewski’s argument for this claim works by
comparing thesemodels to cartographicmaps, which are taken to be prototyp-
ical nonmental SRs.

These arguments are persuasive, but they are not conclusive. The first and
third arguments strongly suggest that models and SRs are connected, but they
do not show that an alternative conception of cognitive models could not be
more illuminating, and the second argument relies on a highly contentious
claim about the prospects of indicator theories. So I now turn to the content
conception of cognitive models.

3. The Content Conception. The content conception builds on thework of
Lake and colleagues (2017), who seem to rely on differences in representa-
tional content, rather than format, in drawing a distinction between what they
call ‘pattern recognition’ and ‘model-building’ algorithms for cognitive tasks.
Lake et al. argue that in order to construct human-like artificial intelligence we
must develop algorithms of the latter kind (see also Tenenbaum et al. 2011;
Garnelo, Arulkumaran, and Shanahan 2016). They suggest that only model-
building cognizers can perform tasks with understanding and apply their ex-
isting knowledge of the world effectively in learning to perform new tasks or
adapting to changing environments. If they are correct, then the content con-
ception of a model may contribute to distinguishing between truly intelligent
artificial systems and programs that perform impressively on cognitive tasks
only through brute force or clever tricks. In essence, Lake et al.’s distinction
is between one group of algorithms that learn to proceed in a single step from
input to output (the pattern recognition type) and another that constructs and
employs structures that represent underlying features of the domainwithwhich
the system interacts (the model builders). This is intended to capture common
features of two distinctions: between model-free and model-based reinforce-
ment learning, and between discriminative and generative classifiers.

I will discuss these two examples in turn and argue that, in both cases, the
model-building algorithms employ representations with content that is apt
for use in explaining the inputs they receive and for justifying outputs. In
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the two examples, the representations in question have more in common than
just this: they also represent relations thatmake it possible to calculate the prob-
abilities of states of the environment and of forms of input given these states.
But for reasons I explain further below, I think that specifying the content
conception in terms of aptness for explanation and justification is more likely
to give a fully general characterization than any more direct account of the
content involved. For the avoidance of doubt, my claim is not that the use
of a cognitivemodel requires the capacity to give explanations or justifications
but only that it requires the use of representations with content that could con-
tribute to explanations or justifications. So on this account what makes a rep-
resentation a model will indeed be its content, not the cognitive functions for
which the system in question can use it.

In the rest of this section, I first discuss the two examples and then present
the content conception and draw out an important implication.

3.1. Two Examples. In model-based reinforcement learning (RL), agents
learn to select rewarding actions by coming to represent two kinds of infor-
mation about their environment. They learn about the values of possible out-
comes and about relations between actions and outcomes. To choose themost
rewarding action in a given situation, agents using this systemmay use these
representations to generate a decision tree—showing the outcomes accessi-
ble from their current situation by a single action, the outcomes accessible
from each of those, and so on—and then to evaluate each possible course
of action on the basis of the value of the sequence of outcomes it will bring
about. In contrast, in model-free RL agents learn only about the levels of re-
ward brought about by actions in given situations, without learning which
outcomes result from these actions. In effect, they learn the values of actions,
rather than of outcomes, and they do not learn about relations between actions
and outcomes. Model-free algorithms learn directly what output should be
produced (the action) in response to each input to the system (the situation);
model-based algorithms learn facts about the environment that allow them to
reason about which action to perform.

Model-free RL algorithms such as temporal difference learning can learn
the long-run values of actions (Sutton and Barto 2018), thus avoiding the
computational costs associated with generating and evaluating decision trees.
But they are inflexible compared to model-based algorithms in the following
sense:model-based algorithms can quickly adapt to small changes in outcome
values or action-outcome contingencies, by updating the corresponding rep-
resentations, but model-free algorithms must relearn policies from scratch to
accommodate such changes. As Lake and colleagues (2017) explain, a hu-
man video game player could immediately perform competently in a new
version of a game with a different objective or pattern of rewards and punish-
ments, butMnih et al.’s (2015) deep neural network that achieved human-like
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performance on a range of Atari games requires a great deal of retraining to
cope with such changes (Rusu et al. 2016) because their system relies solely
on model-free RL.

This difference in flexibility and the ability to apply knowledge in new
conditions is illustrated by the standard experimental methods for distin-
guishing model-based from model-free action selection. In one method, out-
come devaluation (Balleine and Dickinson 1998), animals learn to perform
an action, such as pressing a lever, for a reward, which is typically an unfa-
miliar food. The reward is then devalued, away from the setting in which the
action has been learned. For example, the food may be paired with an injec-
tion of a substance that causes gastric illness. The animals are then tested to
seewhether they resume performing the action in the original setting, without
the reward being delivered. Continuing to perform the action is considered to
be evidence of model-free RL because this indicates that the action itself is
represented as rewarding. Reduced performance is evidence of model-based
RL because it indicates knowledge that the action leads to the now-devalued
reward.

A second method, the two-step task (Gläscher et al. 2010; Lee, Shimojo,
andO’Doherty 2014), involves participantsmaking two choices in sequence.
Each choice leads to a subsequent state with a certain probability, and reward
depends only on which state is reached after the second step. There are dif-
ferent ways to use tasks of this form to test formodel-based control, but a sim-
ple one is to allow participants to explore the state space in the absence of
reward first, then inform them aboutwhich states are rewarding and introduce
the rewards. Participants who perform above chance when rewards are first
available must be using model-based RL because no actions have previously
been rewarded, so a model-free system would have learned nothing (Gläs-
cher et al. 2010).

There are two abstract features of model-based RL in virtue of which it
may be said to usemodels, while model-free RL does not. First, model-based
RL represents relations that model-free RL does not and that crucially go be-
yond the relations between inputs and suitable outputs that are most directly
relevant to the task of action selection. Model-based RL represents how the
environment will change over time, contingent on possible actions, andmakes
use of these representations to select actions.Model-free systems do represent
current states of affairs and the range of actions that are currently available,
but they do not represent possible transitions between states of the environ-
ment, which are relations between such states. Model-free systems represent
only the expected levels of reward of actions in each possible state, which is
to say that they represent only the suitability of available outputs for each pos-
sible input.

Second, these relations allow the formation of expectations about environ-
mental contingencies and are apt to facilitate hypothetical reasoning and to
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ground explanations of inputs and justifications of outputs. Both model-
based and model-free RL algorithms are good for returning representations
of actions that are likely to be rewarding as outputs when fed representations
of states of affairs as inputs. But model-based RL also has the resources to
perform further related tasks. It employs representations that have the poten-
tial to be used to predict what will follow from either the current state of affairs
or some hypothetical alternative, given each of a range of possible actions.
This information can be used to give nontrivial justifications of selected ac-
tions—model-free RL says only that the chosen action is the best available,
whereas model-based RL says what is good about it.

Turning now to the distinction between discriminative and generative
classifiers (Jebara 2004; Lake et al. 2017), a typical task in machine learning
is to classify inputs, such as handwritten characters. In this context inputs are
sometimes called ‘data’, and outputs are ‘labels’. Discriminative classifiers
are those that work by learning and applying a representation of the probabil-
ity distribution of labels given data. These representations allow them to per-
form classification tasks directly; given a particular handwritten numerical
character, the system will read off from the distribution the probabilities that
the correct label for this shape is 0, 1, 2, ... , or 9 and can simply pick the label
with the highest probability. Generative classifiers learn the distribution of
data given labels and the prior probabilities of labels, which enables them
to perform the task thanks to Bayes’s rule. Compared to discriminative algo-
rithms, they work the ‘other way around’; they attempt to match the data to
representations of likely shapes corresponding to each character. In a sense, a
generative algorithm for classifying handwritten characters relies on knowl-
edge about what each character is like, rather than knowledge about which
shapes constitute which characters.

As I mentioned above, generative models are central to the predictive pro-
cessing theory of cognition (Clark 2013, 2016; Hohwy 2013). As it applies
to perception, this theory claims that we perceive the world through an ongo-
ing process of hypothesis formation and testing. The way that I represent the
world as being at time t causes my perceptual system to represent a probabil-
ity distribution over ways the world might be at time t 1 1, from which a hy-
pothesis is formed. This hypothesis predicts that I will undergo certain sen-
sory stimulation at t 1 1, and this prediction can be used to test and revise
the hypothesis, until one is found that minimizes prediction error. In order
to perform these steps, the perceptual systemmust employ a generativemodel.
It requires representations of the probabilities of forms of sensory stimu-
lation (the input to the system) given hypotheses about how things are (the
output) and also of the causal or informational relations between states of
the world at successive times or in neighboring locations.

Generative classification algorithms are therefore distinguished from dis-
criminative algorithms by the same two abstract features that distinguish
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model-based from model-free RL, although it is the second that defines the
generative-discriminative distinction. First, in some important cases genera-
tive algorithms represent relations that are not represented by discriminative
algorithms. As just described, a prediction error minimization algorithm for
perception will use a representation of relations between successive states to
generate hypotheses concerning incoming stimuli; without this knowledge
far too many hypotheses would have to be tested for the system to perform
the task effectively. In terms of data and labels, this representation of relations
provides the prior probabilities of labels.

Second, unlike discriminative algorithms, which proceed directly from in-
put to output, generative models represent features of the task domain that ex-
plain the data. These features include both relations between hidden variables
and the typical sensible qualities of the kinds that the system aims to identify.
If human perceptual systems use generative models, these represent relations
that have the potential to explain why we receive the sensory stimulation we
do; for example, Imay represent that a goal has just been scored, that goal scor-
ing tends to cause cheering, and that cheering sounds a certain way, and these
facts will together explain the sounds I am currently hearing. The same aspects
of the representational content of generative models allow the formation of ex-
pectations about stimuli and are apt to make hypothetical reasoning possible.

3.2. Formulating the Content Conception. Model-based RL algorithms
and generative classifiers have in common that, unlike their respective alter-
natives, they represent features of task domains that are capable of explain-
ing their inputs or justifying their outputs. Model-based RL algorithms rep-
resent causal relationships between states, actions, and subsequent states, and
these have the potential to contribute to both explainingwhy agents find them-
selves in the states they do and justifying their chosen actions.Generative clas-
sifiers represent the probabilities of data given labels, and these representa-
tions can contribute to explaining why the data they receive take the forms
they do.Generativemodels in predictive processing,moreover, represent causal
or informational relations between successive states, which can contribute fur-
ther to explaining sensory stimulation.

These features distinguishmodel building from pattern recognition. So the
content conception of a cognitive model is as follows:
0 Publ
Content Conception: A cognitive model is a representation used in per-
forming a cognitive task, which represents features of a task domain that are
apt to explain inputs to the cognitive system or justify its outputs.
As Lake et al. put it, “cognition is about using . . . models to understand the
world, to explain what we see, to imagine what could have happened that
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didn’t, or what could be true but isn’t, and then planning actions to make it
so” (2017, 2).

A potential objection to this account is that it offers quite an indirect char-
acterization of the kind of content that distinguishes cognitive models. In-
stead of saying which features of the task domain models represent, it says
only that they represent features that are apt for further tasks. Before I give
my response to this objection, it will be helpful to note an important implica-
tion of the account.

The implication is that cognitive models do not have their status as such
outright but only in relation to particular tasks for which they are used; many
representations are models relative to some task but not to others. One exam-
ple of this comes from the theory of forward models used in motor control
(Wolpert et al. 1995; Grush 2004). Grush describes subsystems of the motor
control system, which he calls ‘emulators’, which take efference copies of
motor commands as input and produce representations of likely sensory feed-
back as outputs (I will use Grush’s term to refer to these subsystems and the
term ‘forward model’ for the representations they employ). He explains that
one function of emulators is to allow motor commands to be corrected more
rapidly than if real sensory feedback were required. He further explains that
emulators might use either associatively learned lookup tables representing
motor command-sensory feedback pairs or more sophisticated ‘articulated
models’, with parts that correspond to at least some of the parts of the muscu-
loskeletal system itself, and generate representations of likely feedback by sim-
ulating the interaction of these parts. We can focus on the unarticulated case
and consider whether a forward model that consists of command-feedback
pairs is a model at all, by the standards of the content conception.

If we take the task to be motor control, the answer is yes. The inputs to the
motor control system specify goal behaviors, and the task of the system is to
produce sequences of motor commands that will generate behaviors match-
ing these specifications. Relative to this task, the unarticulated forwardmodel
is a model because the production of a particular motor commandmay be jus-
tified by the fact that the previous command is likely to cause a certain form of
sensory feedback, in combination with facts about the current goal behavior.
If an agent is trying to post a card through a slot, and the forward model en-
tails that the card will move toward a position a little to the left of the slot,
this justifies a new motor command to move the card to the right. However,
relative to the emulator’s task, the unarticulated forward model is, despite its
name, not a model at all. The emulator’s task is to take motor commands as
input and produce representations of likely sensory feedback as output, and
the representation in question links these inputs and outputs in a single step.
Relative to this task, the forward model is just like the action value represen-
tations in model-free RL, or the representations of the distribution of labels
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given data in discriminative classifiers. In contrast, the articulated forward
model that Grush suggests would count as a model relative to both tasks.

I now return to the objection that the content conception characterizes
models indirectly. The points just raised about task relativity illustrate the dif-
ficulty of giving an alternative, more direct account of the kind of content that
characterizes models. To start with, consider the proposal that what charac-
terizes models is that they represent probabilistic relations between world
states; this is an obvious common feature of the models in both model-based
RL and predictive processing. This characterization is problematic because,
as in the case of motor control, the systems for which representations of this
form are models may have subsystems relative to which they are not models.
For example, model-based RL systems include subsystems with the function
of taking representations of state-action pairs as inputs and providing repre-
sentations of likely outcomes as outputs. Relative to this function, some rep-
resentations of relations between world states may not be models. Note that
this is an implication not just of the content conception as stated but also of
thefirst-pass account of pattern recognition/model-free algorithms, which de-
scribed them as those that link inputs and outputs in a single step.

A different possible alternative would be to characterize models as repre-
sentations that link features other than the inputs and outputs of the systems
concerned. This account has difficultywithmodel-free RL, however, because
algorithms of this type do typically represent the levels of reward associated
with each state-action pair, as opposed to merely maintaining representations
of which action should be performed in each state. The content conception as
stated does a better job of accommodating this example because actions can-
not be justified by saying that they are rewarding to a particular degree or
more rewarding than alternatives. In this context, to say that a chosen action
was rewarding gives no new information to justify the choice. So I suggest
that the content conception as stated offers themost promisingway to capture
Lake et al.’s insight.

4. An Argument against the Format Conception. In this section I argue
against the format conception of cognitive models by reference to Dyna, a
simple model-based RL algorithm for ordinary computers (Sutton 1991). I
claim that Dyna uses a model but does not use structural representation. So
Dyna constitutes a counterexample to the format conception: it shows that
there are models that are not SRs.

Before I get into the argument, a comment on methodology. Earlier I dis-
tinguished cognitive models, which are my topic in this essay, from scien-
tists’ models of the phenomena they study. A possible concern about my ar-
gument is that Dyna and similar programs are scientists’models of cognitive
systems, as opposed to cognitive systems themselves. Perhaps a mere scien-
tists’model of model-based RL need not use a model itself. This objection is
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ill founded, however, because there is no reason to deny that Dyna actually
undergoes RL.Mymethod is therefore not unlike some scientists’ use ofmod-
els; I use a particularly simple example of the phenomenon I am interested in,
in order to see what is essential to it.

Dyna is an algorithm for learning to exploit sources of reward in relatively
simple virtual environments. These environments generate finite Markov de-
cision processes (MDPs), which the algorithms must solve (Sutton and Barto
2018). In an MDP time proceeds in discrete steps, and at each time step the
agent finds itself in an identifiable state and must select an action. At the next
time step, perhaps partly as a consequence of its action, the agent will find
itself in a further state and will receive a numerical reward. Then it must
choose a further action. Transitions between states may be probabilistic, but
the probabilities depend only on the previous state and the action selected.
In finiteMDPs, there are only finitelymany possible states, actions, and levels
of reward.

In small finite environments, RL researchers have used lookup tables to
represent what is learned in both model-free and model-based algorithms.
This point is made clear in works such as Boyan and Moore (1995) and
Kuvayev and Sutton (1996), which discuss the problem of extending algo-
rithms for finite MDPs to ones in which there is continuous variability in
states and actions. This is a crucial point because, as I have argued, lookup
tables are not usually SRs.

In particular, the Dyna architecture maintains three lookup tables. One
represents the long-run values associated with states, which depend on the
values of likely subsequent states. A second represents the next states and re-
wards that follow from each state-action pair; this is referred to as the ‘world
model’ (Sutton 1991). And the third represents a policy—a set of rules con-
cerning what to do in each state, which is used to select actions. The algo-
rithm causes the world model to be updated from the agent’s experience of
the environment, and the policy and record of long-run state values are up-
dated both by ‘real’ experience and ‘simulated’ experiences generated by the
world model. The model is therefore used for planning, understood as updat-
ing the policy in advance of action.

To see that the world model in Dyna is not an SR, we can apply the argu-
ment used in section 2.2 to show that lookup tables do not usually bear a
structural correspondence to the phenomena they represent. The key point is
that because each possible state will be represented by multiple entries in the
world model, there is no homomorphism between this representation and
the causal structure of the virtual environment.

For example, consider the fragment of a possible world model shown in
table 2. The presence of a given state symbol in the right-hand column rep-
resents that the corresponding state is caused by the performance of action A1

in the state represented by the symbols on the same row in the left-hand
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column. It may be suggested, then, that the relation over parts of the table be-
ing to the right on the same row is used to represent the relation causation via
A1 in the virtual environment.

If we define a function that takes symbols in the table to the corresponding
states of the virtual environment, however, we can see that this will not be
a homomorphism with respect to these two relations. For the function to
be a homomorphism, it would have to be the case that a given state symbol
is to the right on the same row as another if and only if their corresponding
states are linked by causation via A1 in the virtual environment. This is not
the case because the S1 on the first row and the S2 on the last row are such
that their corresponding states are linked by causation via A1, but they them-
selves are not linked by the relation being to the right on the same row. Sim-
ilar points will hold for world models for almost every possible environment.

Aswe also saw in section 2.2, if each rowof a lookup table is considered to
be a separate representation, these do satisfy the definition of an SR. But this
is hardly grounds onwhich to defend the format conception because the point
remains that the lookup table—themeans bywhich the causal structure of the
environment is represented—does not exploit any correspondence with this
structure. Its parts correspond in structure to parts of the environment, but
only when such small parts are considered that this is near trivial.

The upshot of these considerations is that Dyna does not use structural rep-
resentation. With this point in hand, all we need to show that the format con-
ception of cognitive models is mistaken is that Dyna uses such a model. I take
the account of the content conception in section 3 to support this claim because
it shows how the distinction between model-based and model-free RL can be
assimilated to that between generative and discriminative classifiers; this indi-
cates that the term ‘model’ is not used idiosyncratically by RL researchers. So I
conclude that having a structural format is not necessary for a representation to
be a cognitive model.

5. Conclusion. Philosophers have often connected the concept of a cogni-
tive model to that of structural representation, suggesting that what it is for a
representation used in a cognitive process to be a model is for it to be an SR. I
have presented an alternative conception, according to which models are dis-
tinguished by their representational content, not their format. Following Lake
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Initial State Resulting State under A1

S1 S2

S2 S3

S3 S4

S4 S2
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et al. (2017), this conception emphasizes connections between model build-
ing, expectation, explanation, and justification. I have also argued that having
a structural format is not necessary for a representation to be a model.

However, this does not mean that there are no important connections be-
tween the phenomena of structural representation and the use of models of
task domains by cognitive systems. It could be that the use of structural rep-
resentation is sufficient for modeling—although one reason to doubt this is
that discriminative classifiers may use iconic (and hence structural) formats
in representing their inputs. This point deserves further investigation. Even
if structural representation is neither necessary nor sufficient for modeling,
it could still be the case that there is a great deal of overlap between these cat-
egories, for deep reasons, perhaps to do with surrogative reasoning (Swoyer
1991). Nonetheless, theorists should pay more attention to content, and per-
haps less to format, in seeking to understand cognitive models.
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