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We give an alternative proof of the theorem of Alikakos and Fusco concerning
existence of heteroclinic solutions U : R → R

N to the system

Uxx = DW (U),

U(±∞) = a±.

Here a± are local minima of a potential W ∈ C2(RN ) with W (a±) = 0. This system
arises in the theory of phase transitions. Our method is variational but differs from
the original artificial constraint method of Alikakos and Fusco and establishes
existence by analysing the loss of compactness in minimizing sequences of the action
in the appropriate functional space. Our assumptions are slightly different from those
considered previously and also imply a priori estimates for the solution.
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1. Introduction

In this paper we consider the problem of existence of heteroclinic solutions to the
Hamiltonian ordinary differential equation (ODE) system

Uxx = DW (U), U : R → R
N ,

U(−∞) = a−, U(+∞) = a+,

}
(1.1)

where W ∈ C2(RN ) is a potential and a± are its local minima with W (a±) = 0. A
typical W for N = 2 is shown in figures 1 and 2. Solutions to (1.1) are known as
heteroclinic connections, being standing waves of the gradient diffusion system

ut = uxx − DW (u), u : R × (0, +∞) → R
N . (1.2)

System (1.1) arises in the theory of phase transitions. For details we refer the reader
to [2, 8]. From the viewpoint of physics, (1.1) is the Newtonian law of motion with
force −D(−W ) induced by the potential −W and with U the trajectory of a test
particle that connects two maxima of −W . In the scalar case of N = 1, the existence
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W

w0|u – a–|γ
w0|u – a+|γa+a– w = 0

w = a0

Figure 1. A typical W , which satisfies assumption (A1) and
the coercivity assumption (A2′).

W

U

a–a+

Ω

{W = α}

N

Figure 2. A typical W , the heteroclinic solution U ,
the localization set Ω of (A2′′) and the level sets.

is textbook material by phase plane methods. For a variational approach we refer
the reader to [2]. Even in this simple case the unboundedness of R implies that
standard compactness and semi-continuity arguments fail when one tries to obtain
solutions to Uxx = W ′(U) variationally as minimizers of the action functional

E(U) =
∫

R

{ 1
2 |Ux|2 + W (U)} dx. (1.3)

However, for N = 1, rearrangement methods do apply [12]. When N > 1, solving
(1.1) is much more difficult. It was first considered by Sternberg [15] as a problem
arising in the study of the elliptic system ∆U = DW (U). Noting the compactness
problems, he uses the Jacobi principle to obtain solutions by studying geodesics in
the Riemannian manifold (RN \ {a±},

√
2W 〈·, ·〉).

Following a different approach, Alikakos and Fusco [5] subsequently treated (1.1)
using the least action principle. They derived their solutions as minimizers of (1.3).
They introduced an artificial constraint in order to restore compactness, and applied
the direct method in order to obtain solutions to (1.1) by eventually removing the
constraint. The same approach has subsequently been applied by Alikakos and
Katzourakis [7] to the respective travelling wave problem for (1.2), establishing the
existence of a solution to the system Uxx = DW (U) − cUx for c �= 0. System (1.1)
has attracted some attention in connection with the study of system ∆U = DW (U),
and related material appears in [1, 3, 4, 6, 10].

The problem (1.1) is non-trivial; except for the failure of the direct method for
(1.3) due to the loss of compactness, an additional difficulty is that the maximum
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principle does not apply when N > 1. substitutes of the maximum principle for
minimizers were introduced in [5, 7]. Inspired by these results, Katzourakis [11]
developed related ideas that apply to general non-convex functionals. A further
difficulty of (1.1) is that additional minima of W inhibit existence, and suitable
assumptions on W must be imposed (see [5]).

In the present work, following Alikakos and Fusco [5], we obtain solutions to
(1.1) as minimizers of (1.3). We bypass their unilateral constraint method, which
is of independent interest but requires a rather delicate analysis. We establish the
existence for (1.1) by analysing and then restoring by hand the loss of compactness
in minimizing sequences. Our motivation comes from the theory of concentration
compactness (see [9, 13, 14] for a related application of this principle). We note,
however, that Lions’s theory merely motivated the ideas used herein and we do not
know if the well-known condition of ‘strict inequality’ applies in the present context.
Our approach is conceptually different: we introduce a functional space tailored to
the study of (1.1) and show that, given any minimizing sequence of (1.3), there exist
uniformly decaying translates up to which compactness is restored and passage to
a minimizer is available (theorem 2.1). Our main ingredients are certain energy
estimates and measure bounds that relate to those of [5, 7]. Herein, however, we
use a different method: we control the behaviour of the minimizing sequence by
using the supremum-level sets {W � α} and compactify the sequence by suitable
translations.

Our basic assumption (A1) is slightly stronger than the respective assumption
of [5], but we still allow for a certain degree of degeneracy. Under this assumption we
obtain the a priori quantitative decay estimates (∗) by means of energy arguments,
without linearizing the equation. The assumptions (A2′), (A2′′) allow W s with
several minima and possibly unbounded from below, similar to those in [5]. We
believe that our proof of the Alikakos–Fusco theorem [5] provides further insights
into the problem.

2. Hypotheses, set-up and the existence-compactness result

2.1. Hypotheses

We assume W ∈ C2(RN ) with a± local minima at zero: W (a±) = 0. Moreover,
we have the following.

(A1) There exist α0, w0 > 0 and γ � 2 such that for all α ∈ (0, α0] the sublevel
sets {W � α} contain two C2 strictly convex components {W � α}±, each
enclosing a± such that {W = α} = ∂{W � α} and

W (u) � w0|u − a±|γ , u ∈ {W � α0}±.

In addition, at least one of the following two properties is satisfied:

(A2′) we have
{W � α0} = {W � α0}+ ∪ {W � α0}−;

(A2′′) there exist a convex bounded (localization) set Ω ⊆ R
N and a wmax > α0

such that a± are global minima of W |Ω , while

Ω ⊆ {W � wmax}, ∂Ω ⊆ {W = wmax}.
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Hypothesis (A1) allows Cγ−ε flatness at the minima for all ε > 0 (but not C∞

flatness as in [5, 7]). The assumption (A2′) requires that {W � α}± are the only
components of the sublevel sets {W � α}. We note that there is a crucial local
monotonicity assumption hidden inside (A1). this monotonicity is included in the
statement that the level sets coincide with the boundaries of the sublevel sets and
hence ‘flatness’ is excluded.

Under (A2′), we immediately obtain lim inf |u|→∞ W (u) � α0. Assumption (A2′′)
permits W s that may be unbounded from below, assuming non-negativity of W
only within Ω.

Under (A2′′) the existence of a local minimizer U of (1.3) with E(U) > −∞ is
a certain issue, but (A1) is more crucial. We shall refer to (A2′) as the coercive
assumption and to (A2′′) as the non-coercive assumption.

2.2. Functional set-up

We derive solutions to (1.1) as minimizers of (1.3) in an affine Sobolev space
that incorporates the boundary condition U(±∞) = a± and excludes the trivial
solutions U = a±. Let [W 1,p

loc (R)]N denote the local Sobolev space of vector functions
U : R → R

N . For ε > 0 consider the affine function

Uε
aff(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a−, x � −ε,(
ε − x

2ε

)
a− +

(
ε + x

2ε

)
a−, −ε < x < ε,

a+, x � ε,

(2.1)

and set U1
aff := Uaff . For p ∈ (1,∞), the affine Lp-space, [Lp

aff(R)]N := [Lp(R)]N +
Uaff is a complete metric space for the Lp distance. The function (2.1) will also serve
as an a priori upper bound on the action (1.3) of the minimizer. For p, q ∈ (1,∞),
we introduce the affine anisotropic Sobolev space

[W 1;p,q
aff (R)]N := {U ∈ [Lp

aff(R)]N : Ux ∈ [Lq(R)]N}. (2.2)

This is a complete metric space, isometric to a reflexive Banach space. The purpose
of this work is to establish the following version of the Alikakos–Fusco theorem
from [5].

Theorem 2.1 (existence–compactness). Assume that W satisfies (A1) and either
(A2′) or (A2′′), with α0, γ, w0 as in (A1), (A2′), (A2′′). There exists a minimizing
sequence (Ui)∞

1 of the problem

E(U) = inf{E(V ) : V ∈ [W 1;γ,2
aff (R)]N}

for (1.3) with E(Ui) � 0. For any such (Ui)∞
1 , there exist (xi)∞

1 ⊆ R and translates
Ũi := Ui(· − xi) that have a subsequence converging weakly in [W 1;γ,2

aff (R)]N to a
minimizer U which solves (1.1).

In addition, any such minimizing solution U satisfies the decay estimates

|U(x) − a±| � (Mw0
−1)1/γ |x|−1/γ ,

|Ux(x)| � (2M)1/2|x|−1/2,

}
|x| � Mα−1

0 , (∗)
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as well as the bound E(U) � M , where

M = |a+ − a−| max
[a−,a+]

√
2W.

Corollary 2.2. Estimates (∗) imply that the solution is non-trivial. In particular,
U �≡ a±.

Theorem 2.1 asserts that translation invariance of (1.1) and (1.3) causes the
only possible loss of compactness to minimizing sequences. The space [W 1;γ,2

aff (R)]N

plays a special role to this description. The estimates (∗) are an essential property,
satisfied uniformly by the compactified sequence of the translates and may not be
satisfied by the initial (Ui)∞

1 . In addition, they are quantitative, in the sense that
the constant depends explicitly on the potential. Moreover, they guarantee that
both U(±∞) = a± and Ux(±∞) = 0, fully, not merely up to subsequences.

3. Proof of the main result

3.1. Control of the minimizing sequence

Let (Ui)∞
1 be any minimizing sequence of (1.3). We will tacitly identify each Ui

with its precise representatives. Since

|U(x′′) − U(x′)| � (x′′ − x′)1/2
( ∫ x′′

x′
|Ux|2 dx

)1/2

,

we have the inclusion [W 1;γ,2
aff (R)]N ⊆ [C1/2(R)]N . By (2.1), we obtain

E(Uε
aff) =

∫ ε

−ε

{
|a+ − a−|2

8ε2 + W

((
ε − x

2ε

)
a− +

(
ε + x

2ε

)
a−

)}
dx,

and hence the explicit bounds

|a+ − a−|2
4ε

� E(Uε
aff) � |a+ − a−|2

4ε
+ 2ε max

[a−,a+]
W. (3.1)

We immediately get

inf
[W 1;γ,2

aff (R)]N
E � inf

ε>0
E(Uε

aff) � |a+ − a−| max
[a−,a+]

√
2W = M < ∞.

M is necessarily a strict upper bound, since all Uε
aff are merely Lipschitz, while

minimizing solutions to (1.1) must be smooth (the latter is a consequence of stan-
dard regularity considerations of the solutions to the Euler–Lagrange equations).
Furthermore, for i large we have∫

R

1
2 |(Ui)x|2 dx +

∫
R

W (Ui) dx � M. (3.2)

We now derive bounds for [L∞(R)]N . These are obtained in two different ways,
depending on whether (A2′) or (A2′′) is assumed. In the case of (A2′), the bound
is a consequence of the next energy estimate. For α ∈ (0, α0] and i = 1, 2, . . . we
define the control set

Λα
i := {x ∈ R : W (Ui(x)) > α}. (3.3)
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Let | · | denote the Lebesgue measure on R and let M denote the constant in
estimates (∗).

Lemma 3.1 (energy estimate I). Assume W satisfies (A2′). Then we have

M � α|Λα
i | + 1

2

∫
R

|(Ui)x|2 dx, (3.4)

‖Ui‖[L∞(R)]N � |Λα
i |1/2

( ∫
R

|(Ui)x|2 dx

)1/2

+ max
u∈{W�α}±

|u| (3.5)

for all i ∈ N.

Proof of lemma 3.1. By (3.2) and (3.3), we have

M � E(Ui)

=
∫

R

W (Ui) dx + 1
2

∫
R

|(Ui)x|2 dx

�
∫

Λα
i

W (Ui) dx + 1
2

∫
R

|(Ui)x|2 dx

� α|Λα
i | + 1

2

∫
R

|(Ui)x|2 dx.

This proves (3.4). Now let (t′, t′′) be a subinterval of Λα
i such that the end points

Ui(t′), Ui(t′′) of Ui((t′, t′′)) lie on different components of {W = α}. Hence, we have

|Ui(t′) − Ui(t′′)| � |t′′ − t′|1/2
( ∫ t′′

t′
|(Ui)x|2 dx

)1/2

� |Λα
i |1/2

( ∫
R

|(Ui)x|2 dx

)1/2

.

By using the fact that Ui(t′) ∈ {W = α}±, we deduce

|Ui(t′′) − Ui(t′)| � |Ui(t′′)| − |Ui(t′)| � |Ui(t′′)| − max
u∈{W�α}±

|u|.

This establishes estimate (3.5), proving lemma 3.1.

Corollary 3.2 (L∞ bound under (A2′)). If W satisfies (A1), (A2′), then

sup
i�1

‖Ui‖[L∞(R)]N �
√

2
α0

M + max
u∈{W�α0}±

|u|. (3.6)

Now we turn to the case of (A2′′). We obtain the existence of a minimizing
sequence (Ui)∞

1 of (1.3) localized inside Ω̄ ⊆ R
N whereon W |Ω � 0.

Lemma 3.3 (L∞ bound under (A2′′)). If W satisfies (A1), (A2′′), there is a min-
imizing sequence (Ui)∞

1 for which
⋃∞

i=1 Ui(R) ⊆ Ω̄ and W (Ui) � 0. Moreover,

sup
i�1

‖Ui‖[L∞(R)]N � max
u∈∂Ω

|u|. (3.7)

Proof of lemma 3.3. We show the existence of a deformation of W to a new W̄
such that W̄ = W on Ω and all the minimizing sequences of (1.3) relative to W̄ in
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 w
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ax

a+a–

Ω

Figure 3. The deformed coercive potential W̄ , for which w = wmax is
a lower bound outside of Ω.

[W 1;γ,2
aff (R)]N can be chosen to be localized inside Ω. By (A2′′), W � wmax inside

Ω and W = wmax on ∂Ω. We define W̄ by reflecting with respect to the hyperplane
{w = wmax} the portions of the graph of W that lie in the half-space {w < wmax}
to {w > wmax}. See figure 3.

By construction, W̄ (u) � wmax for u ∈ R
N \ Ω. Suppose by contradiction that

W̄ has a minimizing sequence (Ui)∞
1 such that for some Ui and a < b Ui((a, b)) ⊆

R
N \ Ω. This is the only case that has to be excluded, since, by the definition of

[W 1;γ,2
aff (R)]N , the ‘tails’ of each Ui approach a± ∈ Ω asymptotically, at least along

a sequence (in general, of course, there may exist countably many such intervals
and we apply this argument to each of them). By replacing Ui([a, b]) by the straight
line segment with the same end points, i.e. by defining

Ūi(x) :=

⎧⎪⎨
⎪⎩

Ui(x), x ∈ R \ (a, b),(
x − a

b − a

)
Ui(b) +

(
b − x

b − a

)
Ui(a), x ∈ (a, b),

(3.8)

we obtain by the convexity of Ω that Ūi(R) ⊆ Ω̄. By pointwise comparison,∫ b

a

W̄ (Ūi(x)) dx �
∫ b

a

W̄ (Ui(x)) dx. (3.9)

In addition, Ūi|(a,b) minimizes the Dirichlet integral, since it is a straight line. Thus,

|Ūi(b) − Ūi(a)|2
b − a

=
∫ b

a

|(Ūi)x|2 dx <

∫ b

a

|(Ui)x|2 dx. (3.10)

Formulae (3.9) and (3.10) imply that there exists a minimizing sequence of the
action (1.3) with a potential W̄ (in place of W ) which lies inside Ω̄. Finally, W |Ω =
W̄ |Ω , by construction.

In the case when (A2′′) is assumed, we fix a sequence valued inside Ω. Moreover,

M � lim inf
i→∞

E(Ui) =: inf{E(V ) : V ∈ [W 1;γ,2
aff (R)]N} � 0.

As the notation suggests, the right-hand side will stand for lim infi→∞ E(Ui) here
and later. Now we employ (A1) to show that Λα

i is connected. For α ∈ (0, α0],
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i = 1, 2, . . . , we set
λα−

i := inf Λα
i , λα+

i := supΛα
i . (3.11)

We also set
dα := dist({W = α}−, {W = α}+). (3.12)

We note that dα is the distance between the two components of the level set
{W = α}.

Lemma 3.4 (control on the λα± times). Assume W satisfies (A1) and either (A2′)
or (A2′′). Then, for α ∈ (0, α0], if (Ui)∞

1 is the minimizing sequence constructed
previously, then the respective sets Λα

i are intervals, and hence

Λα
i = (λα−

i , λα+
i ).

Proof of lemma 3.4. The claim follows by a direct application of [7, replacement
lemma 12, p. 1381] by choosing as µ the Lebesgue measure on R. In order to make
the presentation self-contained, we also provide an alternative proof that bypasses
this maximum principle type of result of [7]. We note that the result follows by the
replacement lemma of [5] as well, but this is not entirely direct since here we use
convex level sets and not balls.

We fix a term Ui of the minimizing sequence and its respective Λα
i and we drop

the subscript i. Since Λα = {W (U) > α} is open, there exist countably many open
intervals such that

Λα =
∞⋃

p=0

(xα
2p, x

α
2p+1). (3.13)

Since U ∈ [C0(R)]N , each image U((xα
2p, x

α
2p+1)) is connected, with end points on

{W (U) = α} and

U(Λα) =
∞⋃

p=0

U((xα
2p, x

α
2p+1)). (3.14)

Claim 3.5. For all p ∈ N, the image U((xα
2p, x

α
2p+1)) has end points on different

components {W (U) = α}± of {W (U) = α}.

Indeed, suppose by contradiction that for some p both U(xα
2p) and U(xα

2p+1) are
on {W (U) = α}+. The deformation of lemma 3.3, together with the strictness of
assumption (A1), contradicts the minimality of U . The same holds if the end points
are on {W (U) = α}−. The claim follows.

Claim 3.6. The set Λα consists of finitely many intervals of odd number.

By claim 3.5, for each p, U((xα
2p, x

α
2p+1)) has end points on different components

{W (U) = α}. Hence, in view (3.12) we have

dα � |U(xα
2p+1) − U(xα

2p)| �
∫ xα

2p+1

xα
2p

|Ux|

and hence, for each q ∈ N, by (3.13),

qdα �
q∑

p=0

∫ xα
2p+1

xα
2p

|Ux| �
∫

Λα

|Ux| � |Λα|1/2
( ∫

R

|Ux|2
)1/2

.
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{W = α}–

{W < α}–

{W = α}+

{W < α}+

U(Γα)

a–
a+

x8
α

x9
α

x6
α

x5
α

x2
α

x1
α

x7
α

x4
α

x0
α

x0
αx2

α

x3
α

*

x1
α

*

*

Figure 4. Illustration with pα = 4. By minimality, the dashed line with end points
U(xα∗

0 ), U(xα∗
2 ) cannot exist. For brevity we denote the points U(xα

p ) by xα
p .

Hence, by lemma 3.1, we have

q � 1
dα

(
M

α

)1/2

M1/2,

which implies that there exists a pα ∈ N no greater than the integer part of M/
√

αdα

such that

Λα =
pα⋃

p=0

(xα
2p, x

α
2p+1).

Since

R \ Λα = (−∞, xα
0 ] ∪ [xα

1 , xα
2 ] ∪ · · · ∪ [xα

2pα−1, x
α
2pα ] ∪ [xα

2pα+1, +∞)

and R \ Λα = {W (U) � α}, U exits {W (U) � α}− for the first time at x = xα
0 and

stays inside {W (U) � α}+ after x = xα
2pα+1 (figure 4). Since

U(xα
0 ) ∈ {W = α}−,

U(xα
1 ), U(xα

2 ) ∈ {W = α}+,

U(xα
3 ), U(xα

4 ) ∈ {W = α}−,

...

in view of (3.14), the number of intervals has to be odd, otherwise U stays inside
{W � α}− for an infinite time and this contradicts the conjecture that (at least
along a sequence) U(x) converges to a+ as x → ∞.

Claim 3.7. All subsets U((xα
1 , xα

2 )), U((xα
3 , xα

4 )), . . . , U((xα
2pα−1, x

α
2pα

)) of the image
U(R\Λα) lie inside the interior {W < α} and cannot touch the boundary {W = α}
(figure 4).

Fix a q ∈ {1, . . . , pα} and assume by contradiction that there exists [a, b] ⊆
(xα

2q−1, x
α
2q) such that U([a, b]) lies on the boundary {W = α}. Then, by replacing

U([a, b]) by the straight line segment with the same end points (as in lemma 3.1),
we obtain a contradiction.
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W = α

W = α – δ0

x* – δ–

x* – δ+

x*

Figure 5. The idea of the proof of claim 3.7.

Hence, if U((xα
2q−1, x

α
2q)) touches the boundary {W = α}, this happens at isolated

points (otherwise it is inside {W < α}). See figure 5.
Fix such a point and call it x∗. By continuity and by assumption (A1), there

exist δ0, δ± > 0 such that U((x∗ − δ−, x∗ + δ+)) lies outside {W < α − δ0}.
By replacing U((x∗ − δ−, x∗ + δ+)) by the straight line segment with the same

end points (as in lemma 3.1), we obtain a contradiction. By arguing for all such
points x∗, we see that U((xα

2q−1, x
α
2q)) lies inside {W < α}, as desired.

Claim 3.8. pα = 0, i.e. Λα has only one connected component; hence, xα
1 = xα

2pα+1.

We argue by contradiction. Suppose that p ∈ {1, . . . , pα} and consider the set

A :=
{

β ∈ (0, α)
∣∣∣∣ U((xα

2p−1, x
α
2p))

pα⋂
p=1

{W < β} �= ∅
}

. (3.15)

Since U((xα
2p−1, x

α
2p)) lies strictly inside the sublevel set, we have that A �= ∅. We

set
α∗ := inf A.

Since there are finitely many components of U((xα
2p−1, x

α
2p)), their distance from the

minimum of W is bounded away frow zero, and hence 0 < α∗ < α. By definition
of α∗, there exists at least one of the components U((xα

2p−1, x
α
2p)), say for p = 1,

that touches only the boundary of {W = α∗} = ∂{W < α∗} and does not intersect
{W < α∗}. Moreover, it cannot touch the boundary at more than one point. Hence,

Λα∗ = (xα∗
0 , xα∗

1 ) ∪ (xα∗
0 , xα∗

1 ) ∪ · · · ,

and consequently U((xα∗
0 , xα∗

2 )) is contained in {W � α∗} and only U(xα∗
1 ) is on

{W = α∗}+, having both its end points U(xα∗
0 ), U(xα∗

2 ) on {W = α∗}−. By arguing
as in lemma 3.1 for U |(xα∗

0 ,xα∗
2 ), we obtain a contradiction to the minimality of the

action of U . Hence, pα = 0.
By proving claims 3.5–3.8, we see that lemma 3.4 is established.

The following sharpens (3.4), under the additional information that Λα
i is con-

nected.

Lemma 3.9 (energy estimate II). For all α ∈ (0, α0] and i � 1, we have

M � E(Ui) � d2
α

2(λα+
i − λα−

i )
+ α(λα+

i − λα−
i ). (3.16)
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–M/α +M/α

iΛ α
0

~

iΛα~

x = 0

, α < α0

Figure 6. The control sets of Ũi are symmetric for α = α0.
α < α0 may not exist, but 0 ∈ Λ̃α

i .

Proof of lemma 3.9. Proceeding as in lemma 3.1, we recall (3.2), to obtain

M � E(Ui) � α(λα+
i − λα−

i ) + 1
2

∫ λα+
i

λα−
i

|(Ui)x|2 dx,

where we have also used lemma 3.4. In addition,

dα � |Ui(λα−
i ) − Ui(λα+

i )| � (λα+
i − λα−

i )1/2
( ∫ λα+

i

λα
i

|(Ui)x|2 dx

)1/2

.

The lemma follows.

Corollary 3.10 (uniform bounds on |Λα
i |). For i = 1, 2, . . . , α ∈ [0, α0], we have

d2
α

2M
� |Λα

i | = λα+
i − λα−

i � M

α
. (3.17)

3.2. Restoration of compactness

The bounds (3.17) provide information that allows us to control the behaviour
of each Ui by ‘tracking’ the Λα

i s. In the terminology of [1], translation invariance
of (1.3) and (1.1) allows us to ‘fix a centre’ for the Uis and align the minimizing
sequence, preventing the terms from escaping to ±∞. For i = 1, 2, . . . , we set

xi := 1
2 (λα0+

i + λα0−
i ), (3.18)

which is the centre of the control set Λα0
i = (λα0−

i , λα0+
i ). We define the translates

of the minimizing sequence (Ui)∞
1 by

Ũi := Ui(· − xi), i = 1, 2, . . . . (3.19)

The control sets Λ̃α0
i = (λ̃α0−

i , λ̃α0+
i ) for these translates are centred at x = 0, being

symmetric (figure 6). The control sets Λ̃α
i of Ũi and Λα

i of Ui are related by

(λ̃α−
i , λ̃α+

i ) = Λ̃α
i = (λα−

i − xi, λ
α+
i − xi). (3.20)

The translates (Ũi)∞
1 defined by (3.18), (3.19) will be referred to as the compactified

sequence relative to the initial (Ui)∞
1 . The sequence (Ũi)∞

1 will turn out to be weakly
precompact in [W 1;γ,2

aff (R)]N , converging to a solution of (1.1).

Corollary 3.11 (uniform bounds for the compactified sequence).
For i = 1, 2, . . . and α ∈ (0, α0], (3.17) can be rewritten in view of (3.18)–(3.20) as

d2
α

2M
� |Λ̃α

i | = λ̃α+
i − λ̃α−

i � M

α
. (3.21)
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In particular, since 0 ∈ Λ̃α
i for α ∈ (0, α0] and i = 1, 2, . . . , we have

max{|λ̃α+
i |, |λ̃α−

i |} � M

α
. (3.22)

3.3. Bounds and decay estimates for the compactified sequence

The [L2(R)]N bound on the derivatives (Ũi)x is immediate by the kinetic energy
term of (1.3). The more interesting uniform [Lγ

aff(R)]N bound is a consequence of
our assumption (A1) on the non-convex potential term.

Lemma 3.12 (estimates for the compactified sequence). Let (Ũi)∞
1 be given by def-

initions (3.18) and (3.19). If W satisfies (A1) and either (A2′) or (A2′′), then
(Ũi)∞

1 lies in a ball of [W 1;γ,2
aff (R)]N ∩ [L∞(R)]N centred at Uaff . Moreover,

sup
i�1

‖Ũi − Uaff‖[Lγ(R)]N � M1/γ

{
1
w0

+
2
α0

{
sup
i�1

‖Ũi‖[L∞(R)]N

}γ
}1/γ

, (3.23)

sup
i�1

‖Ũi‖[L∞(R)]N �

⎧⎪⎨
⎪⎩

√
2
α0

M + max
u∈{W�α0}±

|u| under (A2′),

maxu∈∂Ω |u| under (A2′′),
(3.24)

and

sup
i�1

‖(Ũi)x‖[L2(R)]N �
√

2M. (3.25)

Proof of lemma 3.12. Formula (3.25) follows from translation invariance, while for-
mula (3.24) follows by (3.6), (3.7) and translation invariance. Thus, we only need
to prove (3.23). As

M �
∫

R

W (Ui) dx =
∫

R

W (Ũi) dx �
∫ −M/α

−∞
W (Ũi) dx +

∫ +∞

+M/α

W (Ũi) dx,

using (3.22), we obtain W (Ũi(x)) � α for i = 1, 2, . . . when |x| � Mα−1. Thus, for
such x we are in the domain of validity of (A1). For α = α0, we get

w0

( ∫ −M/α0

−∞
|Ũi − a−|γ dx +

∫ +∞

+M/α0

|Ũi − a+|γ dx

)
� M.

By restricting to smaller α � α1(< α0), we may assume that (−Mα−1
0 , +Mα−1

0 ) ⊇
(−1, 1). Hence, Uaff = a± for |x| � Mα−1

0 . To conclude, we employ (3.24) to get

∫ +M/α0

−M/α0

|Ũi − Uaff |γ dx � 2M

α0
{‖Ũi‖[L∞(R)]N }γ .

Putting these estimates together, we see that (3.23) is established.

Lemma 3.13 (uniform decay estimate). If W satisfies (A1), then the compactified
sequence (Ũi)∞

1 satisfies |Ũi(x) − a±| � (Mw−1
0 )1/γ |x|−1/γ for |x| � Mα−1

0 .
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Proof of lemma 3.13. We saw in lemma 3.12 that (3.22) implies W (Ũi(x)) � α for
i = 1, 2, . . . when |x| � Mα−1. By (A1), we have

w0|Ũi(x) − a±|γ � W (Ũi(x))

for all such x ∈ R. Therefore,

|Ũi(x) − a±|γ � α

w0

for all |x| � Mα−1 and all α � α0. We fix an x ∈ R for which |x| � Mα−1
0 and

choose

α(x) :=
|x|
M

.

This is a legitimate choice since |x| = Mα(x)−1 � Mα−1
0 . We thus obtain that

|Ũi(x) − a±|γ � α(x)
w0

� M

w0|x|

and, by letting x vary, the estimate follows.

Corollary 3.14 (a priori decay estimates). Assume W satisfies (A1). Then, if a
solution U to (1.1) exists, it must satisfy estimates (∗) of theorem 2.1.

Proof of corollary 3.14.We recall from [5] the equipartition property |Ux|2 = 2W (U)
satisfied by solutions of (1.1). Equipartition implies |Ux|2 = 2W (U) � 2α for |x| �
Mα−1 and α � α0. The rest of the proof closely follows that of lemma 3.13.

3.4. Passage to a minimizing solution

We conclude by proving existence of minimizers. By (3.23)–(3.25), the sequence of
translates (Ũi)∞

1 converges along a subsequence to some U weakly in [W 1;γ,2
aff (R)]N .

By again denoting the subsequence by (Ũi)∞
1 , we have that Ũi − U− ⇀ 0 in

[Lγ(R)]N and (Ũi − U)x− ⇀ 0 in [L2(R)]N as i → ∞. Up to a further subsequence,
we have Ũi → U in [L2

loc(R)]N and almost everywhere on R as i → ∞. By the weak
lower semi-continuity of the L2 norm and the Fatou lemma, we obtain

E(U) � lim inf
i→∞

E(Ũi).

By (3.1), we also get 0 � E(U) � M . Thus, U is a local minimizer of the func-
tional (1.3) in [W 1;γ,2

aff (R)]N . Hence, U solves (1.1) classically and satisfies the esti-
mates (∗). The proof of theorem 2.1 is complete.
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