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At sufficiently high Reynolds numbers, shear-flow turbulence close to a wall
acquires universal properties. When length and velocity are rescaled by appropriate
characteristic scales of the turbulent flow and thereby measured in inner units, the
statistical properties of the flow become independent of the Reynolds number. We
demonstrate the existence of a wall-attached non-chaotic exact invariant solution
of the fully nonlinear three-dimensional Navier–Stokes equations for a parallel
boundary layer that captures the characteristic self-similar scaling of near-wall
turbulent structures. The branch of travelling wave solutions can be followed up
to Re = 1 000 000. Combined theoretical and numerical evidence suggests that the
solution is asymptotically self-similar and exactly scales in inner units for Reynolds
numbers tending to infinity. Demonstrating the existence of invariant solutions that
capture the self-similar scaling properties of turbulence in the near-wall region is
a step towards extending the dynamical systems approach to turbulence from the
transitional regime to fully developed boundary layers.

Key words: turbulent boundary layers

1. Introduction

Invariant solutions of the fully nonlinear three-dimensional Navier–Stokes equations
are known to play an important role in the dynamics of turbulence at low Reynolds
numbers. For virtually all canonical shear flows, invariant solutions in the form of
equilibria, travelling waves and periodic orbits, have been computed. The solutions act
as transiently visited building blocks for the dynamics (Gibson, Halcrow & Cvitanović
2008; Kawahara, Uhlmann & van Veen 2012; Suri et al. 2017) and capture many
characteristic features of transitional flows including self-organised turbulent–laminar
patterns such as puffs in pipe flow and laminar–turbulent stripes in Couette flow (Avila
et al. 2013; Reetz, Kreilos & Schneider 2019).

To extend the approach to describe turbulence in terms of invariant solutions from
the transitional regime to developed turbulent wall-bounded flows at high Reynolds

† Email address for correspondence: tobias.schneider@epfl.ch
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numbers relevant for many engineering applications, invariant solutions capturing
the characteristics of those fully turbulent boundary layer flows are required. At
sufficiently high flow speeds, turbulent fluctuations in a layer close to the wall show
a typical spacing of streaky motions that is universal and independent of the specific
flow parameters, when distances are measured in inner or wall units (Kline et al.
1967; Kim, Moin & Moser 1987). The wall-shear stress τw controls the characteristic
scales of turbulence, namely the friction velocity uτ =

√
τw/ρ and the viscous length

unit δτ = ν/uτ . Here ρ is the density and ν the kinematic viscosity of the fluid. After
rescaling velocities and distances with these characteristic scales, the turbulent flow
in the inner region close to the wall becomes independent of the Reynolds number
(Jiménez 2018).

The self-similar inner region interacts with the outer region further away from the
wall. Here, turbulent fluctuations do not scale in inner units but change with Reynolds
number. The characteristic length scale of the outer region lout depends on the specific
flow system. For a semi-infinite open flow domain the outer scale is given by the
boundary layer thickness of the turbulent flow. In confined flows, such as channel
flow, the turbulent boundary layer cannot freely expand so that confinement effects
limit the outer scale to the distance between the walls. The higher the flow speed and
thus wall shear, the thinner is the inner region. The friction Reynolds number Reτ =
uτ lout/ν= lout/δτ measures the scale separation between the self-similar near-wall inner
scale and the characteristic outer scale of the turbulent flow; Reτ thereby characterises
fully developed turbulence along a wall and indicates the strength of turbulence.

To capture the universal small-scale motions of turbulence in the inner region
close to the wall, invariant solutions are required that are localised at the wall,
exist at very high Reynolds numbers and scale in inner units defined by the mean
wall-shear stress of turbulence. However, to date, attempts to find invariant solutions
of the Navier–Stokes equations capturing the universal features of the small-scale
motions in the near-wall region have mostly failed. Rawat et al. (2015) were unable
to find a near-wall solution connected to the Nagata equilibrium (Nagata 1990), the
solution of Jiménez & Simens (2001) requires non-physical artificial damping and
the wall-attached solution of Neelavara, Duguet & Lusseyran (2017) fails to scale
in inner units. Deguchi (2015) identifies a solution which scales in inner units at
high Reynolds numbers but is not localised at the wall. More recently Eckhardt &
Zammert (2018) present two solutions in plane Couette flow, one localised in the
centre of the channel and one attached to the wall. The solutions are followed up to
a Couette Reynolds number of Re = 100 000, and become approximately Reynolds
number independent when rescaled by the inner length scale. Likewise Yang, Willis
& Hwang (2019) follow a wall-attached solution in fixed-flux channel flow up to
Reτ = 268 and show that the solution approximately scales in inner units. Both
Eckhardt & Zammert (2018) and Yang et al. (2019) use inner units corresponding
to the wall drag of the solution itself, which differs from the mean wall drag of
turbulence at the same controlled relative plate velocity in Couette or controlled flux
in channel flow.

Here we present a wall-attached solution of a parallel boundary layer at Reynolds
numbers up to 1 000 000. For large Reynolds numbers, the solution scales in inner
units based on the mean turbulent wall drag. Combined numerical and theoretical
evidence suggest an exactly self-similar solution, that is asymptotically independent
of Reynolds number when rescaled in terms of inner units. The wall-attached
solution thus captures the characteristic scaling behaviour of the near-wall turbulence
universally observed in wall-bounded flows at high flow speeds.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1067


Near-wall invariant solution 888 A15-3

x

U∞

Vs

∂99
y

z

FIGURE 1. Schematic of the asymptotic suction boundary layer flow. The streamwise,
wall-normal and spanwise directions are denoted by x, y and z, the corresponding
velocities are denoted by u, v and w, respectively. The height where the mean streamwise
velocity is 99 % of the free-stream velocity is called the boundary layer thickness and
denoted by δ99.

2. The asymptotic suction boundary layer

Previous attempts to identify high Reynolds number invariant solutions in the
near-wall region have considered confined shear flows such as channel flow. Owing
to the universal nature of near-wall turbulence at sufficiently high Reynolds number
we instead consider a boundary layer in a semi-infinite domain. To avoid the
complications associated with non-parallelism of the flow, we study the fully turbulent
asymptotic suction boundary layer (ASBL), where moderate suction at the wall keeps
the base flow parallel in the downstream asymptotic regime (Schlichting 2004).

We consider the flow developing over a flat plate immersed in a uniform stream
of velocity U∞ with constant and uniform suction Vs into the plate (figure 1).
Sufficiently far downstream, where wall friction balances streamwise momentum
loss due to the suction, the boundary layer thickness reaches a constant value and
‘asymptotic suction boundary layer’ flow is reached. The laminar exact solution of the
Navier–Stokes equations is Ǔ/U∞ = 1− exp(−y̌Vs/ν), where Ǔ is the (dimensional)
streamwise velocity, y̌ the (dimensional) wall-normal coordinate and ν is the kinematic
viscosity of the fluid. This laminar solution is characterised by a constant displacement
thickness δ∗= ν/Vs and can be recast in dimensionless form U= 1− e−y by using δ∗
as reference length and U∞ as reference velocity. We prescribe the Reynolds number
based on the laminar boundary layer displacement thickness Re = U∞δ∗/ν = U∞/Vs.
This Reynolds number, referred to as ‘the Reynolds number’ is commonly used as
control parameter for ASBL and needs to be distinguished from the friction Reynolds
number Reτ . Despite its linear stability up to Re= 54 370 (Hocking 1975), the laminar
ASBL solution is in practice only observed for Re. 270 (Khapko et al. 2016); above
this value the flow is turbulent.

There is numerous experimental, numerical and theoretical support for the fact that,
close to a wall, high Reynolds number turbulence is universal and independent of the
specific system in which it is observed (Pope 2000; Jiménez 2018). At high Re the
universal near-wall turbulent dynamics in the small inner region decouples from large-
scale flow in the outer region. Since the universal features of near-wall turbulence can
be studied in any wall-bounded shear flow, one may choose to consider a specific flow
based on convenient properties of the non-universal outer scale dynamics.

The ASBL flow has two key properties that are advantageous for studying near-wall
turbulence when compared to other commonly studied canonical flows such as the
fixed-flux channel flow considered by Yang et al. (2019):

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1067


888 A15-4 S. Azimi and T. M. Schneider

(i) Inner length and velocity scales capture properties of the turbulent state and are
thus in general not known a priori. In ASBL, however, momentum conservation
allows us to directly control the wall drag so that the characteristic scale of near-
wall turbulence can be expressed directly in terms of the control parameters of
the flow. Consequently, one can carry out numerical studies in a domain whose
size is fixed in inner units of the turbulent state. For some other canonical flows,
this is not possible: for channel flow with constant flux, as studied by Yang et al.
(2019), the imposed control parameter is the Reynolds number based on the mean
flow rate. A turbulent simulation or experiment is required to determine the wall
shear of the turbulence τw and quantities can be rescaled with the inner velocity
scale uτ =

√
τw/ρ and the inner length scale δτ = ν/uτ only a posteriori. If not

the flux but the applied pressure gradient were fixed, also in channel flow, inner
length and velocity scales could be determined a priori.

(ii) For a confined shear flow such as channel flow where the outer scale is given by
the separation of two bounding walls, numerically resolving a near-wall solution
at high Reτ in general implies numerically resolving the entire flow domain
including both walls with sufficient resolution to handle the large separation
between outer and inner scales. For ASBL, localisation of the flow at a single
wall allows us to not fully resolve outer scales, but focus on the near-wall region.

3. Determining the minimal flow unit in inner units
We consider a numerical domain of length Lx, width Lz and height H, where

periodic boundary conditions are applied in the x and z directions. On the upper and
lower boundaries, we impose Dirichlet conditions u(x, 0, z) = u(x, H, z) = 0, with
u the deviation from the laminar solution. The ASBL has continuous translational
symmetries in x and z so that the periodic boundary conditions are compatible
with the equivariance group of the flow problem. Consequently, any solution found
in the periodic domain also exists in the infinitely extended system. Based on
turbulent simulations, we choose Lx and Lz such that small-scale near-wall motions
are faithfully captured. This defines the minimal flow unit (MFU). The height H
is chosen to be large enough so that the flow detaches from the top boundary and
becomes independent of the domain height.

To determine the MFU in ASBL, we extract the most energetic length scales of the
near-wall region from energy spectra. A turbulent ASBL at Re= 333 is simulated in a
large domain of size Lx= 243,H= 225, Lz= 121.5 (similar to simulations of Schlatter
& Örlü (2011) and Bobke, Örlü & Schlatter (2016); more details about the simulation
are provided in appendix A). The premultiplied streamwise energy spectrum peaks
at y+ = 17, where the plus superscript indicates quantities measured in terms of
inner units. At this wall-normal location, the peaks in the streamwise and spanwise
premultiplied energy spectra are located at λ+x = 633 and λ+z = 170, respectively. We
consequently choose the length and the width of the MFU as L+x = 633 and L+z = 170
in inner units. This ensures that the most energetic modes of the near-wall region are
captured. A height of H+ = 632 is sufficient to guarantee the complete detachment
of all flow structures from the upper wall, as shown in appendix A. Note that the
required height of the flow domain remains considerably smaller than the turbulent
boundary layer thickness δ99 defining the outer scale. As discussed in Bobke et al.
(2016), this is related to the limited width of the MFU, disallowing the formation
of the large-scale structures that extend far into the outer region of the turbulent
boundary layer. The MFU capturing small-scale near-wall motions thus has a size
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of L+x = 633, H+ = 632, L+z = 170 in inner units. Since the inner-unit location of
the near-wall energy peak is independent of the Reynolds number, reflecting the
inner-unit scaling of turbulence, the inner-unit box size determined here for Re= 333
remains unchanged for higher Reynolds numbers.

Momentum conservation in the ASBL requires that the ratio of the friction velocity
to the free-stream velocity is uτ/U∞ = 1/

√
Re, where uτ =

√
τw/ρ, with τw the

mean wall friction. The viscous unit is δτ = δ
∗/
√

Re where δτ = ν/uτ and δ∗ is
the displacement thickness of the laminar flow. Consequently, in ASBL both the
inner velocity scale uτ and the inner length scale δτ are directly given in terms of
the externally controlled Reynolds number and do not need to be computed from
turbulent statistics. Thus we can exactly prescribe the size of a computational box in
inner units, and continue invariant solutions towards high Reynolds numbers. As we
increase Re, we change the size of the minimal flow unit in outer units in such a
way that the size remains exactly constant in inner units.

4. Invariant solutions in the minimal flow unit
We aim at finding a wall-attached invariant solution that can be followed to very

high Re. Instead of computing a ‘starting’ solution at low Reynolds numbers close
to the transition, where interaction with large-scale features of the flow, and in
particular interaction between the two walls in Couette and Poiseuille flows, might
have prevented the finding of a genuine ‘one-wall’ solution in the near-wall inner
region to start the continuation from, we immediately consider a value of Re= 1000,
well above transition to avoid any potential low Reynolds number effect in the
selection of the solution branch. Moreover, in ASBL the kinetic energy associated
with the non-universal and system-dependent large-scale features of the flow is
relatively weak when compared to other flows (Schlatter & Örlü 2011; Bobke et al.
2016). Consequently, even at moderate Re, the flow dynamics is dominated by the
near-wall dynamics, which may aid in identifying a solution branch representing a
universal wall-attached high Re solution. At Re= 1000, edge tracking (Skufca, Yorke
& Eckhardt 2006; Schneider, Eckhardt & Yorke 2007) within the mirror symmetry
subspace [u, v, w](x, y, −z) = [u, v, −w](x, y, z) yields a travelling wave solution in
the MFU determined above.

The invariant solution computed at Re = 1000 is used as starting point for a
continuation in Reynolds number where the size of the domain is kept constant in
inner units, and therefore shrinks in outer units, when Re is increased. As shown in
figure 2, we can continue the solution up to Re= 1 000 000 with both size of the box
and magnitude of the solution decreasing in outer units. Figure 3 shows contours of
the streamwise-averaged wall-normal velocity of the invariant solution in inner units
at different Reynolds numbers. The solution structures remain almost unchanged over
a wide range of Reynolds number when expressed in inner units.

To provide context for the achieved value of Re, we characterise the scale separation
of fully developed turbulent flow at the same imposed value of Re and in a large
domain. While ASBL has the advantage that the self-similar near-wall inner scale δτ
is directly controlled by Re, determining the outer scale, commonly associated with the
turbulent boundary layer thickness δ99, requires extensive turbulent simulations. To be
domain independent, these simulations need to be carried out in domains considerably
larger than the MFU to allow for structures in the outer region, including those large
compared to the wavelength imposed by the periodic MFU box, to develop. Those
simulations can only be carried out for moderate Re. Using large eddy simulations,
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FIGURE 2. Continuation of the invariant solution to high Reynolds numbers in outer units.
Cross-flow kinetic energy per area of the wall ecf = 1/(LxLz)

∫
MFU(v

2
+w2) dx dy dz in the

MFU as a function of Re. Note that, in outer units, velocities are non-dimensionalised
by U∞ and lengths by ν/Vs, so ecf is in units of U2

∞
ν/Vs. The red dot indicates where

the solution has been identified by edge tracking (see also inset for a magnification of
the relevant parameter range). Visualisations of the invariant solution show contours of
the streamwise-averaged wall-normal velocity at Re = 10 000, 40 000, 100 000, 200 000,
500 000 and 1 000 000.

Re = 10 000 Re = 40 000 Re = 100 000 Re = 200 000 Re = 500 000 Re = 1 000 000

FIGURE 3. Invariant solution visualised in inner units. Contours of streamwise-averaged
wall-normal velocity, normalised by friction velocity uτ at the same values of Re as in
figure 2. The contour levels are v+ = v/uτ = {±0.015,±0.045,±0.075,±0.105,±0.135}.
The solution is localised at the wall so that only the lower half of the numerical domain
is shown.

Schlatter & Örlü (2011) and Bobke et al. (2016) determined the turbulent boundary
layer thickness of ASBL as δ99=101 for Re=333 and δ99=290 for Re=400. Khapko
et al. (2016) observed δ99 to grow linearly in Re for values between 260 and 333. For
higher Re, the evolution of the turbulent boundary layer thickness is unknown. Since
δτ = 0.001 at the highest achieved Reynolds number, the fully developed turbulent
flow at Re= 106 has a scale separation of at least 290 000, even if the growth of the
turbulent boundary layer thickness does not extend much beyond Re∼ 400.

At high Re the converged invariant solution remains localised near the wall. The
structure of the travelling wave solution is dominated by spanwise-periodic alternating
low- and high-speed streaks flanked by counter-rotating vortical structures, as shown
in figure 4 where we present the solution at Re= 40 000. The solution is dominated
by streamwise oriented streaks. In figure 5 we quantify the streamwise variation of the
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x
y

z

FIGURE 4. Three-dimensional structure of the invariant near-wall solution at Re= 40 000.
The travelling wave is dominated by a strong low-speed streak (situated in the centre of
the figure) sandwiched between weaker high-speed streaks located closer to the wall and
flanked by alternating mirror-symmetric pairs of counter-rotating vortices. The low-speed
streak is visualised by the green streamwise velocity isosurface (u= 0.2 U∞). Vortices are
indicated by streamwise vorticity isosurfaces of ωx at half of the maximum value with
red/blue for positive/negative values. Due to the localisation of the structures near the wall,
only the lower half of the computational domain is shown.

103

||u
+ m
|| 2

10-1

0 50

m = 0
m = 1
m = 2

100
(÷ 104)Re

FIGURE 5. Amplitude of the first three streamwise Fourier modes of the invariant solution
expressed in inner units (‖u+0 ( y, z)‖2, ‖u+1 ( y, z)‖2 and ‖u+2 ( y, z)‖2) as a function of Re.
The amplitudes approach constant values indicating a solution that scales in inner units.
The zero Fourier mode (m=0) dominates indicating a predominantly downstream invariant
solution.

flow field by the amplitudes of the first three streamwise Fourier modes (‖u+0 ( y, z)‖2,
‖u+1 ( y, z)‖2 and ‖u+2 ( y, z)‖2). For increasing Re the inner-unit amplitudes approach
constant values indicating a solution scaling in inner units. Moreover, the amplitude of
the downstream independent zero mode is more than two orders of magnitude larger
than the amplitude of the first mode and three orders of magnitude larger than the
amplitude of the second mode. This confirms that the invariant solution is dominated
by streamwise invariant structures.
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FIGURE 6. Contours of the streamwise Fourier modes of the invariant solutions’ wall-
normal velocity (coloured contour lines). The zeroth mode v+0 ( y+, z+) panels (a,b) and
the first mode v+1 ( y+, z+) panels (c,d) shown in inner units at Re = 40 000 panels (a,c)
and Re= 100 000 panels (b,d). The critical layer where the zeroth streamwise mode of the
streamwise velocity equals the travelling wave’s phase speed (u0( y, z)= c) is also shown
(bold solid black line) as well as the levels u0( y, z)/c= 0.6, 1.4, 1.8 (dashed black lines).
Only the lower half of the numerical box is shown.

The relatively small bending of the low-speed streak (see figures 4 and 5) of the
identified near-wall invariant solutions is consistent with features of lower-branch
solutions found at large scales in large domains with size typical of transitional
(e.g. Wang, Gibson & Waleffe 2007) and turbulent large-scale motions (e.g. Rawat,
Cossu & Rincon 2016). In boxes remaining constant in outer units, this type of
Navier–Stokes solution assumes a critical-layer structure for high Reynolds numbers
(Wang et al. 2007; Deguchi & Hall 2014a,b; Park & Graham 2015) where the streaks’
unstable mode concentrates near the critical layer. In the present case, however, the
entire solution is downscaled in height, lateral wavelength and global amplitude when
the Reynolds number increases (figure 2). There is no modification of the internal
structure or a concentration near the critical layer. The zeroth streamwise Fourier
mode of the wall-normal velocity v+0 ( y, z) (associated with the streamwise vortices
inducing the streaks), as well as the first streamwise Fourier mode v+1 ( y, z) (associated
with the streaks’ instability mode) are asymptotically constant when expressed in inner
units as Re increases, as shown in figure 6.

The root-mean-squared (r.m.s.) velocity profiles of the travelling wave solution
expressed in inner units asymptotically collapse onto a single curve when Re is
increased (figure 7). This provides further confirmation that the travelling wave
solution scales in inner units.

The small change of the solution with Re (figures 3 and 6), the asymptotically
constant values of inner-unit amplitudes (figure 5), and the asymptotically converging
r.m.s. profiles (figure 7) provide strong evidence that the fully resolved travelling
wave solution asymptotes towards a self-similar solution at high Re. To investigate
if the solution indeed becomes independent of Reynolds number for Re→∞ when
expressed in similarity variables defined by rescaled length and velocity scales,
we use the friction velocity, uτ = U∞/

√
Re, and the viscous unit, δτ = δ∗/

√
Re,

to non-dimensionalise the evolution equations. The Navier–Stokes equation for the
inner-unit velocity deviation from the laminar solution reads

∂u+

∂t+
+U+ · ∇u+ + u+ · ∇U+ + u+ · ∇u+ =−∇p+ +∇2u+, (4.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1067


Near-wall invariant solution 888 A15-9

0 200 400
y+

0 200 400
y+

0 200 400
y+

12

6

0.16

0.08

0.08

0.04u+ rm
s

√+ rm
s

w+ rm
s

(a) (b) (c)

FIGURE 7. Root-mean-squared (r.m.s.) profiles of the travelling wave solutions expressed
in inner units u+i,rms( y+) = [1/(L+x L+z )

∫ L+x
0

∫ L+z
0 (u+i (x+, y+, z+) − u+i,mean( y+))2 dx+dz+]1/2

at Reynolds numbers equal to 10 000, 40 000, 100 000, 200 000, 500 000 and 1 000 000.
(a) The r.m.s. profiles of the streamwise velocity u+rms, (b) r.m.s. profiles of the wall-normal
velocity v+rms, (c) r.m.s. profiles of the spanwise velocity w+rms. For increasing Re, the
r.m.s. profiles asymptotically collapse, indicating scaling in inner units. Note that the
variation of Re over two orders of magnitude corresponds to a full order of magnitude
change in the height and lateral wavelengths of the solution in outer units (cf. figure 2).

where u+ is the non-dimensionalised velocity deviation vector, and U+ is the non-
dimensionalised laminar solution. The non-dimensionalised laminar solution in ASBL

U+ = Re1/2(1− exp(−y+Re−1/2))êx − Re−1/2êy (4.2)

is a function of the Reynolds number, Re= U∞/Vs, and the wall-normal coordinate,
y+. The boundary conditions for the velocity deviation from the laminar base flow
are periodic in the streamwise and in the spanwise directions, and zero-velocity at
both the lower and upper walls. In the rescaled system with the given governing
equation and the boundary conditions expressed in inner units, only the laminar
base flow depends on Re. For Re tending to infinity, the laminar base flow within
the numerical box asymptotes to U+ = y+êx and thus no longer depends on the
Reynolds number. Therefore, when Re is large, the rescaled system in inner units
loses any dependence on the Reynolds number, and any solution of the system
approaches a self-similar solution. Thus, any invariant solution that can be continued
to asymptotically high Reynolds numbers in a box which has a fixed size in inner
units becomes asymptotically self-similar. This suggests that the invariant solution
that we present in this paper represents a self-similar solution of the Navier–Stokes
equations in the near-wall inner region of the asymptotic suction boundary layer flow
at high Reynolds numbers.

The analysis shows that as Re tends to infinity, the equations for ASBL solutions
expressed in inner units lose the dependence on Reynolds number so that any
solution of those equations is self-similar and scales in inner units. Remarkably,
we also observe that the partial differential equations including boundary conditions
that any wall-attached solution of ASBL satisfies at asymptotically high Re, are
identical to those describing plane Couette flow (PCF) at a value of the typically
used Couette Reynolds number RePCF = H+2

/4, based on half the gap height and
half the velocity difference. Boundary conditions of ASBL enforce zero wall-parallel
velocity and a non-zero wall-normal suction. Expressed in inner units the suction
velocity is V+s = 1/

√
Re. For large Re, suction effects thus vanish and, asymptotically,

the standard no-slip boundary conditions of PCF are reached. Consequently, at
asymptotically high Re, any wall-attached solution of ASBL corresponds to a
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wall-attached solution of PCF. The value of the Couette control parameter RePCF

formally depends on the arbitrarily chosen H+ reflecting the fact that a solution
localised at the wall only depends on the shear rate at the wall while the distance
of the second upper wall and thereby the value of RePCF is irrelevant. Thus, at
asymptotically high Re, all state-space structures representing wall-attached flow
fields in the MFU of ASBL have counterparts in high Reynolds number PCF,
such as those identified by Eckhardt & Zammert (2018). This suggests that the
relevant state-space structures for near-wall turbulence that we identified in ASBL
are universal in that they are not only independent of Re when expressed in inner
units but also do not depend on the specific shear-flow system considered. In fact, at
sufficiently high Re, close to the wall, any wall-bounded shear flow is characterised
by a universal shear profile, indistinguishable from PCF or ASBL and thus supports
the same wall-attached solutions. This suggests that the entire state space of the
near-wall region including the invariant solutions and their dynamical connections
become independent of Re and independent of the flow system. If invariant solutions,
their heteroclinic connections and the entire state-space structures are universal, the
deterministic dynamics supported by those structures is also universal. This provides
an explanation of the well-known fact that at sufficiently high flow speeds the
statistics of near-wall turbulence becomes independent of the flow system.

5. Conclusion and discussion

The aim of this work is to demonstrate the existence of an exact invariant solutions
of the Navier–Stokes equations that capture spatial scales typical of turbulent motions
in the near-wall region of a boundary layer at high Reynolds numbers. In a minimal
flow unit of ASBL, chosen to capture the energetic scales of near-wall turbulent
motions, a wall-attached travelling wave solution has been computed by edge tracking
at Re= 1000. We exploit the fact that ASBL allows us to express the viscous length
scale δτ of the developed turbulent state in terms of the Reynolds number. We thus
continued the solution to high Re in the minimal flow unit, whose size remains
constant in inner units but shrinks in outer units for increasing Re. The fully resolved
solution can be followed up to Re= 1 000 000. We provide numerical and theoretical
evidence that the invariant solutions become exactly self-similar as Re tends to infinity.
Remarkably, the solution scales in inner units so that the individual fully resolved
invariant solution of the Navier–Stokes equations captures the self-similar behaviour
characteristic of near-wall-turbulent statistics. Moreover, in the high-Re asymptotic
limit, solutions of ASBL simultaneously constitute solutions of plane Couette flow
thus reflecting the universality of near-wall turbulence.

Assuming that all relevant invariant solutions capturing near-wall motions can be
continued to asymptotically high Re, our analysis suggests that entire state-space
structures, including invariant solutions and their dynamical connections, become
independent of Reynolds number when expressed in inner units. To provide further
support for this picture, future research should aim at computing increasingly more
complex state-space structures underlying near-wall turbulence in the high-Re limit
captured by the evolution equations expressed in inner units. This includes periodic
orbits as well as orbits connecting invariant solutions.

Since the governing equations rescaled in inner units become asymptotically
independent of Reynolds number, the complexity of the state space of near-wall
turbulence and the number of relevant invariant solutions may not increase with Re
but remain constant, leading to a saturation of complexity in the near-wall region of
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turbulent flows. Such a saturation of complexity cannot be expected in the outer region
of turbulent flows. It may thus be possible to eventually provide a predictive and
quantitative description of turbulence in terms of a manageable number of invariant
solutions (Chandler & Kerswell 2013; Cvitanović et al. 2016) not only for transitional
flows but also for the universal near-wall region of wall-bounded turbulence at very
high Reynolds numbers. The self-similar exact invariant solution in the near-wall
region of a boundary layer reported here is a significant step towards extending the
invariant solution approach to turbulence from transitional flows to near-wall region
of fully developed boundary layers.
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Appendix A. Methods
We use the ChannelFlow 2.0 code (Gibson et al. 2020) to solve the nonlinear

Navier–Stokes equations expressed in perturbation form

∂u
∂t
+U · ∇u+ u · ∇U+ u · ∇u=−∇p+

1
Re
∇

2u, (A 1)

where u is the perturbation relative to the laminar base flow U given by U = [U =
1 − e−y, V = −1/Re, W = 0]. These momentum equations are complemented by
the continuity equation ∇ · u = 0, periodic boundary conditions in the streamwise
and in spanwise directions and the no-slip boundary conditions u = 0 at y = 0 and
y=H. To close the system, a zero average pressure gradient in both the streamwise
and spanwise directions is imposed. The system of equations is discretised using
a spectral collocation method based on Fourier–Chebyshev–Fourier expansions in
the streamwise, wall-normal and spanwise directions, respectively. The third-order
accurate semi-implicit backward differentiation method is used for time marching.
Time steps are chosen such that the Courant–Friedrichs–Lewy (CFL) number remains
in the range of 0.4–0.6.

For the large direct numerical simulations at Re = 333, the large domain of size
Lx = 243,H = 225, Lz = 121.5 has been discretised with Nx = 256,Ny = 301,Nz = 256
collocation nodes in the streamwise, wall-normal and spanwise directions, respectively.
The simulation is initialised with a random field and after statistical steady state has
been reached, the statistics are calculated from a time series of 300 000 advective time
units.

The exact invariant travelling wave solutions have been computed using the Newton–
Krylov–Hookstep method. We use a numerical resolution of Nx = 48, Ny = 181 and
Nz = 48 collocation points for the MFU with L+x = 633, L+z = 170 and H+ = 632.
Convergence is obtained when ‖(ux−cT,y,z|t=T − ux,y,z)‖2/T is less than 10−13, where
T = 20 and ‖.‖2 is not the energy norm of the velocity field but the L2-norm of the
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FIGURE 8. Fluctuation energy profile of the solution expressed in inner units e+u = u+2
rms+

v+2
rms+w+2

rms at Re= 100 000 as a function of y+ for three different box heights. The vertical
dashed line shows the height up to which r.m.s. plots are shown in figure 7. At y+= 500,
e+u has dropped by nine orders of magnitude relative to its maximum.

vector of independent Fourier–Chebyshev coefficients of the operand. For Re>100 000
we carry out computations for the system expressed in inner units (4.1). The solution
vector itself has a typical magnitude ‖ux,y,z‖2 of the order of 10 so that the residual
is approximately 14 orders of magnitude smaller.

The height of the MFU is chosen such that the solution is independent of H+.
This is confirmed in figure 8 where fluctuation energy profiles for three different box
heights are depicted. As shown, increasing the box height from H+ = 632 by 60 %
and 100 % does not change the solution near the wall. As shown in figure 7, the
solution is well localised below y+ = 500, the range over which r.m.s. profiles are
plotted. At y+ = 500, the energy has already dropped by nine orders of magnitude
below its maximum. This confirms that our choice of H+ = 632 is sufficiently large
to ensure the solution is independent of H+.
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CVITANOVIĆ, P., ARTUSO, R., MAINIERI, G., TANNER, G. & VATTAY, G. 2016 Chaos: Classical
and Quantum. Niels Bohr Institute. Available at: chaosbook.org.

DEGUCHI, K. 2015 Self-sustained states at Kolmogorov microscale. J. Fluid Mech. 781, R6.
DEGUCHI, K. & HALL, P. 2014a Free-stream coherent structures in parallel boundary-layer flows.

J. Fluid Mech. 752, 602–625.
DEGUCHI, K. & HALL, P. 2014b The high-Reynolds-number asymptotic development of nonlinear

equilibrium states in plane Couette flow. J. Fluid Mech. 750, 99–112.
ECKHARDT, B. & ZAMMERT, S. 2018 Small scale exact coherent structures at large Reynolds numbers

in plane Couette flow. Nonlinearity 31 (2), R66–R77.
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