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Abstract
A long-standing conjecture of Erdős and Simonovits asserts that for every rational number r ∈ (1, 2) there
exists a bipartite graph H such that ex(n,H)= �(nr). So far this conjecture is known to be true only for
rationals of form 1+ 1/k and 2− 1/k, for integers k≥ 2. In this paper, we add a new form of rationals
for which the conjecture is true: 2− 2/(2k+ 1), for k≥ 2. This in turn also gives an affirmative answer
to a question of Pinchasi and Sharir on cube-like graphs. Recently, a version of Erdős and Simonovits′s
conjecture, where one replaces a single graph by a finite family, was confirmed by Bukh and Conlon. They
proposed a construction of bipartite graphs which should satisfy Erdős and Simonovits′s conjecture. Our
result can also be viewed as a first step towards verifying Bukh and Conlon′s conjecture. We also prove
an upper bound on the Turán number of theta graphs in an asymmetric setting and employ this result to
obtain another new rational exponent for Turán exponents: r = 7/5.
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1. Introduction
Given a familyH of graphs, a graphG is calledH-free if it contains nomember ofH as a subgraph.
The Turán number ex(n,H) ofH is the maximum number of edges in an n-vertexH-free graph.
WhenH consists of a single graphH, we write ex(n,H) for ex(n, {H}). The study of Turán numbers
plays a central role in extremal graph theory. The celebrated Erdős–Simonovits–Stone theorem
[12,14] states that if χ(H) denotes the minimum chromatic number of a graph inH, then

ex(n,H)=
(
1− 1

χ(H)− 1

)(
n
2

)
+ o(n2).

Thus, the function is asymptotically determined if χ(H)≥ 3. If χ(H)= 2, that is, if H contains
a bipartite graph, then this only gives ex(n,H)= o(n2). The numbers ex(n,H) when χ(H)= 2
are commonly referred in literature as degenerate Turán numbers and are known even asymp-
totically only for few families. More generally, Erdős and Simonovits conjectured that if H is
a finite family with χ(H)= 2 then there is a rational r ∈ [1, 2) and a constant c> 0 such that
limn→∞ ex(n,H)/nr = c (see Conjecture 1.6 of [20]). This conjecture is still wide open. Another
conjecture which may be viewed as the inverse extremal problem of the previous one is that
for every rational r ∈ [1, 2) there exists a finite family H of graphs such that ex(n,H)= �(nr).
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(See Conjecture 2.37 of [20].) In recent breakthrough work by Bukh and Conlon [4], this second
conjecture has been verified, using a random algebraic method that is built on the earlier work
coming from [2,3,7].

However, the following analogous problem on the Turán number of a single bipartite graph,
raised by Erdős and Simonovits [10], is still wide open.

Question 1.1 (([10])). Is it true that for every rational number r in [1,2) there exists a single bipartite
graph Hr such that ex(n,Hr)= �(nr)?

We will refer to a rational r for which Question 1.1 has an affirmative answer as a Turán expo-
nent for a single graph. The only known Turán exponents for single graphs from the literature
are rational numbers of the forms 1, 1+ 1

s and 2− 1
s for all integers s≥ 2. For any tree T of at

least two edges, it is clear that ex(n, T)= �(n). It is known that ex(n,Ks,t)= �(n2−1/s) when
t > (s− 1)! (by [1, 29, 30]). Let θk,p denote the graph obtained by taking the union of p inter-
nally disjoint paths of length k between a pair of vertices. Faudree and Simonovits [15] showed
that ex(n, θk,p)=O(n1+1/k) for all p≥ 2 (also see [5] for recent improvement on the bound)
while Conlon [7] showed that for every k≥ 2 there exists p0 such that for all p≥ p0 we have
ex(n, θk,p)= �(n1+1/k). Hence, for each k and sufficiently large p, we have ex(n, θk,p)= �(n1+1/k).
For a more thorough discussion about degenerate Turán numbers, the reader is referred to the
recent survey by Füredi and Simonovits [20]. Our main theorem is as follows, which in particular
establishes a new family of Turán exponents.

Theorem 1.2. For any rational number r = 2− 2
2s+1 , where s≥ 2 is an integer, or r = 7

5 , there exists
a graph H such that ex(n,H)= �(nr).

In establishing the first part of our main theorem, we establish a stronger result concern-
ing the Turán numbers of cube-like graphs, which also answers a question of Pinchasi and
Sharir [32]. This result may be of independent interest. To establish the second part of our main
result, we develop an asymmetric Turán bound on θk,p which may be viewed as a common gen-
eralisation of results of Faudree and Simonovits [15] as well as of Naor and Verstraëte[31]. To
describe our results, we need some more detailed background, which we discuss over several
subsections.

1.1. The theorem of Bukh and Conlon and a conjecture
Bukh and Conlon [4] proved the existence of a finite family with a given Turán exponent by
considering bipartite graphs constructed in the following way. Given a tree T together with an
independent set R⊆V(T), we call (T,R) a rooted tree and R the root set. Given any S⊆V(T) \ R,
let e(S) denote the number of edges of T with at least one endpoint in S. Let ρS = e(S)/|S|. Let
ρT = ρ(V(T) \ R). We say that the rooted tree (T,R) is balanced if ρS ≥ ρT for all S⊆V(T) \ R.
Given a rooted tree (T,R) and a positive integer p, let T p

R denote the family of graphs consisting of
all possible union of p distinct labelled copies of T, each of which agree on the root set R. We call
T p
R the pth power family of (T,R). The key result of Bukh and Conlon [4] is the following:

Theorem 1.3 ([4]). For any balanced rooted tree (T, R), there exists a p0 such that for all p≥ p0,

ex(n, T p
R )= �(n2−1/ρT ).

A straightforward counting argument shows that ex(n, T p
R )=O(n2−1/ρT ) and thus implies that

ex(n, T p
R )= �(n2−1/ρT ) for sufficiently large p. Bukh and Conlon [4] also showed that for each

rational r in (1,2), there exists a balanced rooted tree (T,R) with ρT = 1
2−r , thereby establishing

the existence of a familyHr with ex(n,Hr)= �(nr) for each rational r ∈ (1, 2).
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Let (T, R) be a balanced rooted tree. Let Tp
R denote the unique member of T p

R in which the p
labelled copies of T are pairwise vertex disjoint outside R. We call Tp

R the pth power of (T, R). By
Theorem 1.3,

ex(n, Tp
R)≥ ex(n, T p

R )= �(n2−1/ρT ).

Bukh and Conlon [4] made the following conjecture.

Conjecture 1.4 ([4]). If (T, R) is a balanced rooted tree, then

ex(n, Tp
R)=O(n2−1/ρT ).

Note that if Conjecture 1.4 is true then together with Theorem 1.3 it would answer Question
1.1 in a very strong sense.

Let Ds be the tree obtained by taking two disjoint stars with s leaves and joining the two central
vertices by an edge, and R the set of all the leaves in Ds. It is easy to check that (Ds, R) is balanced
with ρDs = 2s+1

2 . For brevity, from now on we will drop the subscript R, and denote the tth power
of (Ds, R) by Dt

s.
We will show that (in Corollary 1.7) ex(n,Dt

s)=O(n2−
2

2s+1 ) for all t ≥ s≥ 2 and thereby mak-
ing a first step towards Conjecture 1.4. To obtain our upper bound on ex(n,Dt

s), we consider a
supergraph Hs,t of Dt

s defined to be the graph obtained from two vertex disjoint copies of Ks,t by
adding a matching that joins the two images of every vertex in Ks,t . In particular, we note that
H2,2 =Q8, the 3-dimensional cube.

1.2. The cube and its generalisation
The well-known cube theorem of Erdős and Simonovits [13] states that ex(n,Q8)=O(n8/5).
Pinchasi and Sharir [32] gave a new proof of this and extended it to bipartite setting.More recently,
Füredi [19] showed that ex(n,Q8)≤ n8/5 + (2n)3/2, giving yet another proof of the cube theorem.

Pinchasi and Sharir found it to be more convenient to view Q8 as H2,2 and, more generally,
view Hs,t as being obtained as follows. Let t ≥ s≥ 2 be positive integers. Let M be an s-matching
a1b1, a2b2, . . . , asbs, and N a t-matching c1d1, c2d2, . . . , ctdt , where M and N are vertex dis-
joint. Then Hs,t is obtained from M ∪N by adding edges aidj and bicj over all i ∈ [s] and j ∈ [t].
Motivated by the method of their proof of the cube theorem, Pinchasi and Sharir [32] posed the
following question:

Question 1.5 [32]. Is it true that for all t ≥ s≥ 2,

ex(n,Hs,t)=O(n2−2/(2s+1))?

They were able to show that ex(n, {Hs,t ,Ks+1,s+1})=O(n2−2/(2s+1)). Also in [24] it was
shown that ex(n,Hs,s)=O(n2−2/(2s+1)). In this paper, we answer Pinchasi and Sharir′s question
affirmatively as follows.

Theorem 1.6. For any t ≥ s≥ 2, ex(n,Hs,t)=O
(
n2−2/(2s+1)).

Note that Dt
s ⊆Hs,t . Hence, Theorems 1.3 and 1.6 together yield the following.

Corollary 1.7. There exists a function � such that for all s≥ 2 and t ≥ �(s),

ex(n,Hs,t)= �(n2−2/(2s+1)) and ex(n,Dt
s)= �(n2−2/(2s+1)).
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1.3. Theta graphs and power of a 3-comb
We call a 3-comb, denoted by T3, the tree obtained from a 3-vertex path P = abc by adding three
new vertices a′,b′,c′ and three new edges aa′, bb′, cc′. Let R be the set of all the leaves of T3. For each
p≥ 2, recall that (T3)

p
R is the p-th power of (T3, R). For convenience, we will drop the subscript R

and abbreviate (T3)
p
R as Tp

3 .
It is easy to see that (T3, R) is balanced with density 5/3. Hence, by Theorem 1.3, there exists

p0 such that for all p≥ p0, ex(n, T
p
3 )= �(n7/5).

We prove a matching upper bound as follows.

Theorem 1.8. For all p≥ 2, it holds that ex(n, Tp
3 )=O(n7/5).

Corollary 1.9. There exists a positive integer p0 such that for all p≥ p0, ex(n, T
p
3 )= �(n7/5).

A key step in the proof of Theorem 1.8 is to study Turán numbers of theta graphs in the bipar-
tite setting. Given a familyH of graphs and positive integersm, n, the asymmetric bipartite Turán
number ex(m, n,H) ofH denotes the maximum number of edges in anm by n bipartite graph that
does not contain anymember ofH as a subgraph. IfH has just onememberH, we write ex(m,n,H)
for ex(m, n, {H}). The function ex(m, n, C2k) had been studied in the context of number theoretic
and geometric problems. Naor and Verstraëte [31] proved that form≤ n and k≥ 2,

ex(m, n, C2k)≤
⎧⎨
⎩ (2k− 3) · [(mn)

k+1
2k +m+ n] if k is odd,

(2k− 3) · [mk+2
2k n

1
2 +m+ n] if k is even.

Recall that Faudree and Simonovits [15] showed that ex(n, θk,p)=O(n1+1/k). Since θk,2 = C2k,
the following theorem can be viewed as a common generalisation of the results in [15, 31].

Theorem 1.10. Let m, n, k, p≥ 2 be integers, where m≤ n. There exists a positive constant
c= c(k, p) such that

ex(m, n, θk,p)≤
⎧⎨
⎩ c · [(mn)

k+1
2k +m+ n] if k is odd,

c · [mk+2
2k n

1
2 +m+ n] if k is even.

Furthermore, it suffices to take c= 16kpk.

The rest of the paper is organised as follows. In Section 2, we state some preliminary results.
In Section 3, we prove Theorem 1.6. In Section 4, we prove Theorem 1.10. In Section 5, we prove
Theorem 1.8.

2. Preliminaries
In this section, we present some of the auxiliary lemmas which are used in the proofs of main
results. The first three are folklore, and the proofs of the other two can be found in [24].

Lemma 2.1. Every graph G has a bipartite subgraph G′ with e(G′)≥ 1
2e(G). Also, every graph H

with average degree d has a subgraph H′ with δ(H′)≥ 1
2d.

Lemma 2.2. Let G be a bipartite graph with a bipartition (A,B). Let dA = e(G)/|A| and dB =
e(G)/|B|. There exists a subgraph G′ of G with e(G′)≥ 1

2e(G) such that each vertex in V(G′)∩A
has degree at least 1

4dA in G′ and each vertex in V(G′)∩ B has degree at least 1
4dB in G′.

Lemma 2.3. Let k be a positive integer and T be a rooted tree with k edges. If G is a graph with
minimum degree at least k and v is any vertex in G, then G contains a copy of T rooted at v.
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Lemma 2.4 ([24], Lemma 5.3). Let t be a positive integer and G be an n-vertex bipartite graph with
at least 4t n edges. Then the number of t-matchings in G is at least e(G)t

2t t! .
Lemma 2.5 ([24], Lemma 5.5). Let t be a positive integer and G be an n-vertex bipartite graph with
a bipartition (A,B). Suppose G has at least 4

√
2tn3/2 edges. Then the number of H1,t ′s in G is at least

1
25t+2t! · e(G)3t+1

|A|2t|B|2t .
We also need the following regularisation theorem of Erdős and Simonovits which is an impor-

tant tool for Turán-type problems of sparse graphs. Recently, the first and third authors have
developed a version of this result for linear hypergraphs [27]. For a positive real λ, G is called
λ-almost-regular if 
(G)≤ λ · δ(G).
Theorem 2.6 ([13]). Let α be any real in (0,1), λ = 20 · 2(1/α)2 , and n be a sufficiently large integer
depending only on α. Suppose G is an n-vertex graph with e(G)≥ n1+α . Then G has a λ-almost-
regular subgraph on m vertices, where m> nα 1−α

1+α such that e(G′)> 2
5m

1+α .

3. Turán numbers of generalized cubes
In this section, we prove Theorem 1.6. Our proof is partly based on the ideas of Pinchasi and
Sharir [32]. The key new idea is Lemma 3.1. To state the lemma, we need some notation.

In a graph G, for any S⊆V(G), the common neighbourhood of S in G is defined by NG(S)=⋂
v∈S NG(v), and the common degree of S in G is dG(S)= |NG(S)|. When G is clear from the con-

text, we will drop the subscripts. For a matching M in the bipartite graph G with bipartition
(A,B), we define AM =V(M)∩A, BM =V(M)∩ B. We call the subgraph induced by the vertex
sets N(BM) \V(M) and N(AM) \V(M) the neighbourhood graph of M and with some abuse of
notation, for brevity, we denote it by N(M).

Let M and L be two matchings in G. We write M ∼ L if L is a subgraph in N(M). For a non-
negative integer t, we say that an ordered pair (M,L) of matchings is t-correlated if M ∼ L and
there exists a vertex v in V(M) such that dN(L)(v)≥ t.

Lemma 3.1. Let G be an Hs,t-free bipartite graph and M be an (s− 1)-matching in G. Then
the number of s-matchings L in N(M) such that (M,L) is 2t-correlated is at most (s− 1)(t − 1) ·
e(N(M))s−1v(N(M)).

Proof. Let M be given. Suppose M = {a1b1, . . . , as−1bs−1}, where ∀i ∈ [s− 1], ai ∈A and bi ∈ B.
The lemma immediately follows from the following claim.

Claim 3.2. Let x ∈AM. Let L′ be an (s− 1)-matching in N(M). Let y ∈ (V(N(M))∩ B) \V(L′).
Then the number of s-matchings L in N(M) that contain L′ and y and satisfy dN(L)(x)≥ 2t is at most
t − 1.

Proof of Claim 3.2. Suppose otherwise that for some (s− 1)-matching L′ = {c1d1, . . . , cs−1ds−1}
in N(M), where ci ∈A and di ∈ B for ∀i ∈ [s− 1], there exist t distinct s-matchings L1, . . . , Lt in
N(M) containing L′ and y that satisfy dN(Li)(x)≥ 2t. Let u1, u2, . . . , ut be distinct vertices such that
Li = L′ ∪ {uiy}. For each i ∈ [t], since dN(Li)(x)≥ 2t, we have |NN(Li)(x) \ BM| ≥ t. We can therefore
find t distinct vertices v1, . . . , vt such that for each i ∈ [t] vi ∈NN(Li)(x) \ BM.

Let B∗ = {b1, . . . , bs−1, y},U∗ = {u1, . . . , ut}, C∗ = {x, c1, . . . , cs−1}, and V∗ = {v1, . . . , vt}. It
is easy to see that G1 := G[B∗ ∪U∗], G2 := G[C∗ ∪V∗] are both copies of Ks,t . Let M1 :=
{u1v1, . . . , utvt}, M2 = {b1c1, . . . , bs−1cs−1, xy}. One can easily check that G1 ∪G2 ∪M1 ∪M2 is
a copy of Hs,t in G, contradicting G being Hs,t-free.

This completes the proof of Lemma 3.1.
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Proof of Theorem 1.6. Our choice of constant C here will be explicit. Let α = 2s−1
2s+1 . As s≥ 2,

we have 3
5 ≤ α < 1. Let λ be the constant derived from Theorem 2.6 applied for α. By Theorem

2.6, it suffices to show that there is a constant C = C(s, t)> 0 such that the following holds for
sufficiently large n: if G is a λ-almost-regular graph with n vertices and m≥ Cn1+α edges, then
G contains a copy of Hs,t . By Proposition 2.1, we may further assume that G is bipartite with a
bipartition (A,B). LetM be the collection of all (s− 1)-matchings in G. Denote

M1 = {M:M ∈M, e(N(M))≤ 2s+1s!(s− 1)(t − 1)v(N(M))},
M2 =M \M1,

M2t,s
2 = {(M, L):M ∈M2, L ∈L, L is an s-matching,M ∼ L, (M, L) is not 2t-correlated}.

We suppose that G is Hs,t-free and derive a contradiction on the number of edges of the graph
G. For doing so, we will use upper and lower bounds on the size of the setM2t,s

2 .

Claim 3.3.
∑

M∈M2 e(N(M))= �(m
3s−2

n4s−4 ).

Proof of Claim 3.3. Let us call a tree obtained from K1,p by subdividing each edge once a p-spider
of height 2. Note that

∑
M∈M v(N(M)) counts the number of (s− 1)-spiders of height 2 in G.

Since G is λ-almost-regular, 
 := 
(G)≤ λ · δ(G)≤ λ · 2m/n. Thus,

∑
M∈M

v(N(M))≤ n
2s−2 =O
(
m2s−2

n2s−3

)
.

By the definition ofM1, we have
∑

M∈M1 e(N(M))=O
(∑

M∈M1 v(N(M))
)=O

(
m2s−2

n2s−3

)
.

On the other hand,
∑

M∈M e(N(M)) counts the number of H1,s−1
′s in G. So by Lemma 2.5,

we have
∑

M∈M e(N(M))= �
(
m3s−2

n4s−4

)
. Since m≥ Cn4s/(2s+1) and n is sufficiently large, we have

m3s−2

n4s−4 � m2s−2

n2s−3 ; thus, the claim follows.

Now consider a matchingM ∈M2. By Lemma 2.4, the number of s-matchings L in N(M) is at
least (1/2ss!)e(N(M))s. By Lemma 3.1 and the definition of M2, the number of s-matchings L in
N(M) such that (M,L) is 2t-correlated is at most

(s− 1)(t − 1)e(N(M))s−1v(N(M))≤ e(N(M))s

2s+1s! .

Hence, the number of s-matchings L in N(M) such that (M,L) is not 2t-correlated is at least
(1/2)(1/2ss!)e(N(M))s.

By Claim 3.3, the convexity of the function f (x)= xs and the fact that |M2| ≤ms−1,

|M2t,s
2 | ≥ (1/2s+1s!)

∑
M∈M2

e(N(M))s = �

( (∑M∈M2 e(N(M)))s

|M2|s−1

)
= �

(
m2s2−1

n4s2−4s

)
.

Claim 3.4. |M2t,s
2 | ≤ (t−1

s−1
)
(2t − 1)s−1ms.

Proof of Claim 3.4. Let L be an s-matching inG. SinceG isHs,t-free,N(L) has matching number at
most t − 1. Since N(L) is bipartite, by the König–Egerváry theorem it has a vertex cover Q of size
at most t − 1. Let Q+ denote the set of vertices in Q that have degree at least 2t in N(L) and Q− =
Q \Q+. If M is an (s− 1)-matching in G that satisfies M ∼ L and that (M,L) is not 2t-correlated,
then M is contained in N(L) and could not contain any vertex in Q+. Since Q=Q+ ∪Q− is a
vertex cover in N(L), each edge ofM must contain a vertex in Q−. Thus,
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|M2t,s
2 | ≤

(|Q−|
s− 1

)
(2t − 1)s−1ms ≤

(
t − 1
s− 1

)
(2t − 1)s−1ms.

Combining the lower and upper bounds on |M2t,s
2 |, we get that m2s2−1

n4s2−4s =O(ms), which implies
thatm=O(n4s/(2s+1)), where the constant factor inO( · ) only depends on s and t. This contradicts
thatm≥ Cn4s/(2s+1), assuming C is chosen to be sufficiently large.

4. Asymmetric bipartite Turán numbers of Theta graphs
In this section, we establish an upper bound (i.e., Theorem 1.10) of the asymmetric bipartite Turán
numbers of theta graphs θk,p. This in its turn will be crucial in the proof of Theorem 1.8. Our
proof, in a conspectus, employs the standard breadth-first search (BFS) tree approach. The major
challenge is to show that the distance levels of the BFS tree should grow in magnitude rapidly.
This will be essentially unravelled by the following lemma, where we adopt a modification of the
so-called ‘blowup method′ by Faudree and Simonovits [15].

Lemma 4.1. Let k,p,t be integers, where k, p≥ 2 and 0≤ t ≤ k− 1. Let T be a tree of height t rooted
at a vertex x. Let A be the set of vertices at distance t from x in T. Let B be set of vertices disjoint
from V(T). Let G be a bipartite graph with a bipartition (A,B). If T ∪G is θk,p-free, then e(G)≤
2ptk|A∪ B|.
Proof. We use induction on t. For the basis case t = 0 (i.e., A= {x}), the claim holds trivially. For
the induction step, let t ≥ 1. Let x1, . . . , xq denote the children of x in T. For each i ∈ [q], let Ti
denote the subtree of T − x that contains xi and let Si =V(Ti)∩A. Then S1, . . . , Sq partition A.
For each u ∈A, let Pu denote the unique path from u to x in T. We define subsets B+ and B− of B
as follows. Let

B+ := {y ∈ B|∀I ⊆ [q], |I| = p− 1, |NG(y) \
⋃
i∈I

Si| > pk} and B− := B \ B+.

Claim 4.2. e(G[A∪ B+])≤ pk · |A∪ B+|.
Proof. Suppose for contradiction that e(G[A∪ B+])> pk · |A∪ B+|. Then by Lemma 2.1,
G[A∪ B+] contains a subgraphH withminimum degree more than pk. If k− t − 1 is odd, then let
v be a vertex inV(H)∩A; and if k− t − 1 is even, then let v be a vertex inV(H)∩ B+. If t < k− 1,
then let S denote a spider with p legs of length k− t − 1 rooted at v. If t = k− 1, then let S= {v}.
By Lemma 2.3, H contains S as a subgraph. First suppose k< t − 1. Let v1, . . . , vp denote the
leaves of S. By our choice of v, we have v1, . . . , vp ∈V(H)∩ B+. By definition of B+, we can find
w1, . . . ,wp outside V(S) such that they all lie in different Si′s and v1w1, v2w2, . . . , vpwp ∈ E(G).
Since w1, . . . ,wp all lie in different Si′s, the paths Pw1 , . . . , Pwp pairwise intersect only at vertex x;
therefore, S∪ {v1w1, . . . , vpwp} ∪⋃p

i=1 Pwi forms a copy of θk,p in G, a contradiction. Next, sup-
pose t = k− 1. Then S= {v}. Since v ∈ B+, we can find w1, . . . ,wp outside V(S) such that they all
lie in different Si′s and vw1, vw2, . . . , vwp ∈ E(G). Sincew1, . . . ,wp all lie in different Si′s, the paths
Pw1 , . . . , Pwp pairwise intersect only at vertex x. Now, {w1, . . . , vwp} ∪⋃p

i=1 Pwi forms a copy of
θk,p in G, a contradiction. Hence, we must have e(G[A∪ B+])≤ pk · |A∪ B+|.
Claim 4.3. e(G[A∪ B−])≤ (2ptk− pk)|A| + 2ptk|B−|.
Proof. First, suppose t = 1. So Si = {xi} for each i. By the definition of B−, for each
y ∈ B−, |NG(y)| ≤ (pk− 1)+ p− 1≤ pk+ p. So e(G[A∪ B−])≤ (pk+ p)|B−| ≤ 2ptk|B−|. Hence,
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the claim holds. Next, suppose t ≥ 2. For each y ∈ B− by definition there exists some I ⊆ [q] with
|I| = p− 1 such that

|NG(y)∩ ∪i∈ISi| ≥ dG(y)− pk,

thus, there exists some i(y) ∈ [q] such that |NG(y)∩ Si(y)| ≥ 1
p−1 (dG(y)− pk). (Note that the state-

ment still holds even if dG(y)− pk< 0.) We define a subgraph H of G obtained from G[A∪ B−]
by only taking the edges from every y ∈ B− to NG(y)∩ Si(y). By the definition of H, we see
that e(H)≥ 1

p−1 (e(G[A∪ B−])− pk|B−|). Now, for each j ∈ [q] let Bj = {y ∈ B−:i(y)= j}. Then in
fact H is the vertex-disjoint union of H[S1 ∪ B1],H[S2 ∪ B2], . . . ,H[Sq ∪ Bq]. By the induction
hypothesis, for each j ∈ [q], e(H[Sj, Bj])≤ 2pt−1k|Sj ∪ Bj|. Hence,

e(H)=
q∑

j=1
e(H[Sj, Bj])

≤ 2pt−1k
q∑

j=1
|Sj ∪ Bj| ≤ 2pt−1k(|A| + |B−|),

implying that (using t ≥ 2)
e(G[A∪ B−])≤ (p− 1) · e(H)+ pk|B−|

≤ 2pt−1(p− 1)k(|A| + |B−|)+ pk|B−|
≤ (2ptk− pk)|A| + 2ptk|B−|,

as desired.
Combining the two claims proved above, we get that

e(G)= e(G[A, B+])+ e(G[A, B−])
≤ pk · (|A| + |B+|)+ (2ptk− pk)|A| + 2ptk|B−|
≤ 2ptk(|A| + |B|),

as desired.

Proof of Theorem 1.10. LetG be a θk,p-free bipartite graph with a bipartition (A,B) where |A| =m
and |B| = n. Let c= 16kpk. If k is odd, then we assume e(G)> c · (mn)

1
2+ 1

2k + c · (m+ n), other-
wise assume e(G)> c ·m 1

2+ 1
k n

1
2 + c · (m+ n). Denote dA = e(G)/|A| and dB = e(G)/|B|. Note that

both dA, dB ≥ 16kpk.
By Lemma 2.2, G contains a subgraphG′ with e(G′)≥ 1

2e(G) such that each vertex inV(G
′)∩A

has degree at least 1
4dA in G′ and that each vertex in V(G′)∩ B has degree at least 1

4dB in G′. Fix a
vertex x ∈V(G′)∩A. For each integer i≥ 0, let Li denote the set of vertices at distance i from x in
G′, and let di = dA if i is odd and di = dB if i is even. So we see that every vertex in Li−1 has degree
at least 1

4di in G′. Using Lemma 4.1, we show that the growth ratio of two consecutive levels must
be large in the following sense.

Claim 4.4. For each i ∈ [k], we have |Li|/|Li−1| ≥ di
16kpi . In particular, |Li| ≥ |Li−1| holds.

Proof. It suffices to prove the first statement, which we do by induction on i. If i= 1, then we
have |L1|

|L0| ≥ 1
4dA ≥ d1

16kp .
For the inductive step, consider i≥ 2. Let Ti−1 be a BFS tree in G′ rooted at x of height i− 1, so

the vertex set of this tree is ∪j<iLj. Applying Lemma 4.1 to Ti−1 and G′[Li−1 ∪ Li], we get

e(G′[Li−1, Li])≤ 2kpi−1(|Li−1| + |Li|).
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Similarly, one can get that

e(G′[Li−2 ∪ Li−1|)≤ 2kpi−2(|Li−2| + |Li−1|)≤ 4kpi−2|Li−1|,
where the last step holds because |Li−2| ≤ |Li−1| by the induction hypothesis. Combining these
two, we get that

e(G′[Li−2 ∪ Li−1 ∪ Li])= e(G′[Li−2 ∪ Li−1|)+ e(G′[Li−1, Li])≤ 2kpi · (|Li−1| + |Li|).
On the other hand, each vertex in Li−1 has degree at least 1

4di in G′, and all edges of G′ incident to
Li−1 lie in Li−2 or Li. Hence, we have

1
4
di · |Li−1| ≤ e(G′[Li−2 ∪ Li−1 ∪ Li])≤ 2kpi · (|Li−1| + |Li|).

Thus, we get |Li| ≥
(

di
8kpi − 1

)
· |Li−1| ≥ di

16kpi · |Li−1|, proving the claim.

Thus, we have |Lk| ≥ α ·∏k
i=1 di, where α =∏k

i=1
1

16kpi . Recall that c= 16kpk and so αck > 1.
Suppose first that k is odd, say k= 2s+ 1. Then it follows that Lk ⊆ B and

|Lk| ≥ α · ds+1
A dsB = α · e(G)k

ms+1ns
.

By the assumption, we have e(G)> c · (mn)
1
2+ 1

2k , which shows that |Lk| ≥ αckn> n. This is a
contradiction, since Lk ⊆ B and |B| = n. Now consider that k is even, say k= 2s. Then we have

|Lk| ≥ α · dsAdsB = α · e(G)
k

msns
.

In this case, e(G)> c ·m 1
2+ 1

k n
1
2 . This gives that |Lk| ≥ αck ·

(
m

1
2+ 1

k n
1
2
)k

/msns = αck ·m>m,
again a contradiction, since Lk ⊆A and |A| =m. This completes the proof of Theorem 1.10.

As a special case of Theorem 1.10, we derive the following corollary on the asymmetric bipartite
Turán number of θ3,p which will play an important role in the proof of Theorem 1.8.

Corollary 4.5. Let m, n, p≥ 2 be integers. Then

ex(m, n, θ3,p)≤ 48p3 · ((mn)2/3 +m+ n
)
.

5. The Turán exponent of 7/5
Here we prove the existence of the Turán exponent of 7/5. This is achieved by the combination of
Theorem 1.8, which states that ex(n, Tp

3 )=O(n7/5) for all p≥ 2, and a matching lower bound on
this function for sufficiently large p from [4].

By considering a graph that contains Tp
3 as its subgraph, in fact we will prove a slightly stronger

result than Theorem 1.8. We start with a definition introduced by Faudree and Simonovits [15].
LetH be a bipartite graph with an ordered pair (A,B) of partite sets and t ≥ 2 be an integer. Define
Lt(H) to be the graph obtained from H by adding a new vertex u and joining u to all vertices of
A by internally disjoint paths of length t − 1 such that the vertices of these paths are disjoint from
V(H).

Observe that the theta graph θ3,p is symmetric between its two partite sets. So L3(θ3,p) is
uniquely defined. It is easy to see that Tp

3 ⊆ L3(θ3,p). We prove the following strengthening of
Theorem 1.8.

Theorem 5.1. For each p≥ 2, there exists a positive constant cp such that

ex(n, L3(θ3,p))≤ cpn7/5.
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Proof. We will show that it suffices to choose cp = 2(192)3/2p6. Suppose for a contradiction that
there exists an n-vertex L3(θ3,p)-free graph G with e(G)> cpn7/5. By Proposition 2.1, G contains a
bipartite subgraph G1 with

d := δ(G1)≥ d(G)/4≥ (cp/2) · n2/5 > (192)3/2p6 · n2/5. (1)
Let x be a vertex of minimum degree in G1. For each i≥ 0, let Li denote the set of vertices at

distance i from x in G1. Then |L1| = |δ(G1)| = d. Let L+
2 denote the set of vertices v in L2 such that

|NG1 (v)∩ L1| ≥ 2p+ 2, and L−
2 = L2 \ L+

2 .

Claim 5.2. G1[L1 ∪ L+
2 ] is θ3,p-free.

Proof. Suppose for contradiction that G1[L1 ∪ L+
2 ] contains a copy F of θ3,p. Let A,B denote

the two partite sets of F where A⊆ L1 and B⊆ L+
2 . Then |A| = |B| = p+ 1. Suppose B=

{b1, . . . , bp+1}. Since each vertex in L+
2 has at least 2p+ 2 neighbours in L1, we can find dis-

tinct vertices c1, . . . , cp+1 in L1 \A such that b1c1, . . . , bp+1cp+1 ∈ E(G1). Now F together with
the paths b1c1x, . . . , bp+1cp+1x forms a copy of L3(θ3,p) in G, a contradiction.

Claim 5.3. |L2| ≥ d2/[(192)3/2p9/2].

Proof. By Claim 5.2 and Corollary 4.5, we have

e(G1[L1 ∪ L+
2 ])≤ 48p3 · (|L1|2/3|L+

2 |2/3 + |L1| + |L+
2 |) ;

and by the definition of L−
2 , e(G1[L1 ∪ L−

2 ])≤ (2p+ 2) · |L−
2 |. Adding these inequalities up, we

have
e(G1[L1, L2])= e(G1[L1 ∪ L+

2 ])+ e(G1[L1 ∪ L−
2 ])≤ 48p3 · (|L1|2/3|L2|2/3 + |L1| + |L2|

)
. (2)

Since every vertex in L1 has at least d − 1≥ 3d/4 neighbours in L2, it follows that

(3d/4)|L1| ≤ e(G1[L1, L2])≤ 48p3 · (|L1|2/3|L2|2/3 + |L1| + |L2|
)
.

Since d ≥ (192)3/2p6, we see 48p3|L1| ≤ (d/4)|L1|. Thus, it follows that either 48p3|L1|2/3|L2|2/3 ≥
(d/4)|L1| or 48p3|L2| ≥ (d/4)|L1|. Using |L1| = d, we get that

|L2| ≥min
{

d2

(192)3/2p9/2
,

d2

192p3

}
= d2

(192)3/2p9/2
,

as desired.
Next we consider the subgraph H of G1 induced on L2 ∪ L3, i.e., H =G1[L2 ∪ L3]. Our goal in

the rest of the proof is to reach a contradiction by showing that H cannot contain θ3,s for large
s, which in turn shows that |L3| must be of order �(d5/2) and thus exceed the total number of
vertices in G.

Let T be a BFS tree rooted at x with vertex set {x} ∪ L1 ∪ L2. Let x1, . . . , xm be the children of x
in T. For each i ∈ [m], let Si be the set of children of xi in T. Then S1, . . . , Sm partition L2. Since
each vertex in L2 has degree at least d in G1, we have e(G1[L1 ∪ L2])+ e(G1[L2 ∪ L3])≥ d|L2|.

Since d ≥ (192)3/2p6, |L1| = d, and |L2| ≥ d2
(192)3/2p9/2 by Claim 5.3, it is easy to check that

48p3|L1|2/3|L+
2 |2/3 ≤ d|L2|/4. By (2), we have e(G1[L1 ∪ L2])≤ d|L2|/4+ 48p3(|L1| + |L2|)≤

d|L2|/2. Hence,
e(H)= e(G1[L2 ∪ L3])≥ d|L2|/2. (3)

Given a vertex u ∈ L3 and some Si, we say the pair (u, Si) is rich, if u has at least 2p+ 1 neigh-
bours of H in Si. Let EH(u, Si) denote the set of all edges in H between u and Si. We now partition
H into two (spanning) subgraphs H1,H2 such that

E(H1)=
⋃

EH(u, Si) and E(H2)= E(H) \ E(H1),
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where the union in E(H1) is over all rich pairs (u, Si). Note that by this definition, any u ∈ L3 has
at most 2p neighbours of H2 in any Si, i.e., |EH2 (u, Si)| ≤ 2p. Let H3 be a subgraph of H2 obtained
by including exactly one edge in EH2 (u, Si) over all pairs (u, Si) with |EH2 (u, Si)| ≥ 1. By the above
discussion, it follows that

e(H3)≥ e(H2)/(2p), (4)

and for any u ∈ L3, all its neighbours in H3 belong to distinct Si′s.
Claim 5.4. H1 is θ3,p2-free.

Proof. Suppose for contradiction that H1 contains a copy F of θ3,p2 . Suppose F consists of p2
internally disjoint paths of length three between u and v where u ∈ L3 and v ∈ L2. Let these paths
be ua1b1v, ua2b2v, . . . , uap2bp2v, where a1, . . . , ap2 ∈ L2 and b1, . . . , bp2 ∈ L3.

We consider two cases. First, suppose that there exists some Si which contains p different aj′s.
Without loss of generality, suppose that S1 contains a1, . . . ap. For each j ∈ [p], since bjaj ∈ E(H1),
by definition (bj, S1) is a rich pair, that is, there are at least 2p+ 1 edges of H from bj to S1.
Similarly as ua1 ∈ E(H1), there are at least 2p+ 1 edges of H from u to S1. Hence, we can find
distinct vertices u′, a1′, . . . , ap′ ∈ S1 \ {a1, . . . , ap} such that uu′, a1′b1, . . . , a′pbp ∈ E(H). Now
F ∪ {uu′, a′

1b1, . . . , a′pbp} ∪ {x1u′, x1a1′, . . . , x1ap′} forms a copy of L3(θ3,p) inG, a contradiction.
Next, suppose that each Si contains at most p− 1 different aj′s. Then among a1, . . . , ap2 we

can find p+ 1 of them, say a1, . . . , ap+1 that all lie in different Si′s. Furthermore, we may assume
that a1, . . . , ap are outside the Si′s that contains v. Now F together with the paths in T from x to
a1, . . . , ap, v forms a copy of L3(θ3,p) in G, a contradiction. Hence, H1 must be θ3,p2 -free.

Claim 5.5. H3 is θ3,p-free.

Proof. Suppose for contradiction that H3 contains a copy F of θ3,p. Suppose F consists of p
internally disjoint paths of length three between u and v, where u ∈ L3 and v ∈ L2. Suppose these
paths are ua1b1v, . . . , uapbpv, where a1, . . . , ap ∈ L2 and b1, . . . , bp ∈ L3. By the definition of H3,
since ua1, . . . , uap ∈ E(H3), a1, . . . , ap must all lie in different Si′s. Also, for each j ∈ [p] since
bjaj, bjv ∈ E(H3), aj and vmust lie in different Si. So a1, . . . , ap and v all lie in different Si′s. Now,
F together with the paths in T from x to a1, . . . , ap, v respectively forms a copy of L3(θ3,p) in G, a
contradiction.

Now, we consider two cases.

Case 1. e(H1)≥ e(H)/2. In this case, by (3), we have e(H1)≥ d|L2|/4. On the other hand, by Claim
5.4, we see that H1 is θ3,p2 -free, so by Corollary 4.5, we have

d|L2|/4≤ e(H1)≤ 48p6 · (|L2|2/3|L3|2/3 + |L2| + |L3|
)
. (5)

Since d ≥ (192)3/2p6, one can check that 48p6|L2| ≤ d|L2|/12. Hence, we have either

48p6|L2|2/3|L3|2/3 ≥ d|L2|/12 or 48p6|L3| ≥ d|L2|/12.
Using this and Claim 5.3, we get that

|L3| ≥min
{
d3/2|L2|1/2

243p9
,
d|L2|
242p6

}
= d3/2|L2|1/2

243p9
≥ d5/2

243(192)3/4p45/4

Since d ≥ (192)3/2p6 · n2/5, this yields |L3| > n, a contradiction.

Case 2. e(H2)≥ e(H)/2. Then by (3) and (4), we have e(H3)≥ e(H)/4p≥ d|L2|/8p. By Claim 5.5,
H3 is θ3,p-free. Thus, by Corollary 4.5 we get

d|L2|/8p≤ e(H3)≤ 48p3 · (|L2|2/3|L3|2/3 + |L2| + |L3|
)
.
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Since p≥ 2, the above inequality would also imply (5). So we can apply the same analysis as in
Case 1 to get a contradiction.

This completes the proof of Theorem 5.1 (and thus of Theorem 1.8).

6. Additional comments
Since the original submission of our manuscript, many new developments on Question 1.1 have
been obtained. See [8,21,23,26,28], for instance.
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[2] Blagojević, P. V. M., Bukh, B. and Karasev, R. (2013) Turán numbers for Ks,t-free graphs: Topological obstructions

and algebraic constructions. Israel J. Math. 197 199–214.
[3] Bukh, B. (2015) Random algebraic construction of extremal graphs. Bull. Lond. Math. Soc. 47 939–945.
[4] Bukh, B. and Conlon, D. (2018) Rational exponents in extremal graph theory. J. Eur. Math. Soc. 20 1747–1757.
[5] Bukh, B. and Tait, M. (2020) Turán number of theta graphs. Combin. Probab. Comput. 29 495–507.
[6] Brown, W. G. (1966) On graphs that do not contain a Thomsen graph. Canad. Math. Bull. 9 281–285.
[7] Conlon, D. (2019) Graphs with few paths of prescribed length between any two vertices. Bull. Lond. Math. Soc. 51

1015–1021.
[8] Conlon, D., Janzer, O. and Lee, J. More on the extremal number of subdivisions. Combinatorica, to appear. See also

arXiv.org:1903.10631
[9] Conlon, D. and Lee, J. On the extremal number of subdivisions. Int. Math. Res. Not., to appear.
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