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Abstract
The Sweedler semantics of intuitionistic differential linear logic takes values in the category of vector
spaces, using the cofree cocommutative coalgebra to interpret the exponential and primitive elements to
interpret the differential structure. In this paper, we explicitly compute the denotations under this seman-
tics of an interesting class of proofs in linear logic, introduced by Girard: the encodings of step functions
of Turing machines. Along the way we prove some useful technical results about linear independence of
denotations of Church numerals and binary integers.
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1. Introduction
The Sweedler semantics is a denotational semantics of first-order intuitionistic linear logic in the
category of vector spaces over an algebraically closed field k of characteristic zero (Murfet 2014;
Clift andMurfet 2017). The⊗ and & connectives of linear logic are interpreted by the usual tensor
product and direct sum of vector spaces, while the exponential ! is interpreted by Sweedler’s cofree
cocommutative coalgebra (Sweedler 1969; Murfet 2015). The virtue of the Sweedler semantics is
that it is amenable to computing examples, as we demonstrate in this paper with an exploration
of the denotational semantics of Girard’s encoding (Girard 1995) of Turing machines into linear
logic, based on Turing’s encoding of his machines as λ-terms (Turing 1937, Appendix).

Here is a basic motivating question: given a Turing machineM what is the information content
of the denotation under the Sweedler semantics of the proof

π

...

!bool� bool

which computes the content of the tape square directly under the head after p steps of M? For
simplicity we provide only a single input symbol to the machine. The denotation is a linear map

�π� : !�bool� −→ �bool�

where �bool� is a vector space containing denotations �0�, �1� of 0, 1 : bool and !�bool� is a
cocommutative coalgebra. A vector g ∈ !�bool� is called group-like if �(g)= g ⊗ g where � is
the co-multiplication, and there is a group-like element |∅〉v canonically associated with any
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v ∈ �bool� (see Clift and Murfet 2017, Section 2.2). Using the methods developed in this paper,
it is easy to compute a polynomial f (x) ∈ k[x] such that

�π�|∅〉(1−x)�0�+x�1� = (1− f (x))�0� + f (x)�1� .

The values of the polynomial f (x) at x= 0 and x= 1 encode the input–output behaviour of
running the machine M for p steps, since if the output is τ on input σ then by construction
�π�|∅〉�σ� = �τ �. However, the more interesting observation is that the values of the derivative of
f (x) are also meaningful: they are computed by the denotation in the Sweedler semantics of the
Ehrhard–Regnier derivative (Ehrhard and Regnier 2003; Ehrhard 2016) of π . The details are in
the sequel (Clift andMurfet 2018) but as that work motivates the results here, we include a sketch.

The bridge between the ordinary derivative of f (x) and the Ehrhard–Regnier derivative of π
is the concept of a primitive element in the theory of coalgebras, which is an equivalent but dual
point of view on the concept of tangent vectors; see Clift and Murfet (2017), Section 2.3. A vec-
tor z ∈ !�bool� is called primitive with respect to a group-like element g if �(z)= g ⊗ z + z ⊗ g,
and given u, v ∈ �bool� there is a canonically associated primitive element |u〉v ∈ !�bool�. This
construction is linear in u but not in v. One should think of the primitive element∣∣α�0� + β�1�

〉
�0� = α

∣∣�0�〉�0� + β
∣∣�1�〉�0� ∈ !�bool�

as a tangent vector with coefficients (α, β) at the point �0� of the two-dimensional subspace of
�bool� spanned by �0�, �1�, or more conceptually, as an infinitesimal variation of the symbol 0 in
the direction α ∂

∂0 + β ∂
∂1 . These tangent vectors are the subject of the language of differential linear

logic, in the sense that the primitive elements |�σ �〉�τ� for σ , τ ∈ {0, 1} are the denotations under
the Sweedler semantics of the proofs in differential linear logic which cut the Ehrhard–Regnier
derivative of π against the pair τ , σ .

To give a concrete example,

�π�
∣∣�1� − �0�

〉
�0� = −f ′(0)�0� + f ′(0)�1� (1)

where |�1� − �0�〉�0� represents an infinitesimal variation of the symbol 0 in the direction that
points from 0 to 1, and the right-hand side of (1) gives the corresponding infinitesimal variation
in the output distribution over 0, 1. The information content of �π� therefore includes, in addition
to the input–output behaviour ofM after p steps, information about how the output varies when
the input is varied ‘infinitesimally’. Turing machines M,M′ which compute the same output on
the same input when executed for p steps may nonetheless have different behaviour with respect
to infinitesimal variations in their input, and differential linear logic provides a logic of these
differences in behaviour.

In this paper, we explain the encoding of the step function of a Turing machine into linear
logic in a form that is amenable to Ehrhard–Regnier’s derivative, we calculate the denotations
of these encodings under the Sweedler semantics and we provide the technical foundations for
interpreting these denotations as polynomials, in order to set the stage for the discussion in Clift
and Murfet (2018) of derivatives that we have previewed above.

Outline of the paper.The encoding of the step function of a TuringmachineM as a proof in linear
logic is not unique, and indeed the paper is broadly organised around four different variants, each
with different tradeoffs:

• The Girard encoding (Section 4) encodes the state of the tape as a pair of binary integers,
and is a modified form of the encoding in Girard (1995) with a more conservative use of
second-order quantifiers. The step function ofM is encoded as a proof of

!bintA3 ⊗ !bintA3 ⊗ !boolA3 � !bintA ⊗ !bintA ⊗ !boolA (2)
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for any type A, where bintA denotes the type of binary integers and boolA denotes the type
of booleans (see Section 2.2). The denotation of this encoding in the Sweedler semantics is
given in Lemma 4.19.

• The Boolean version of the Girard encoding (Section 4.2) encodes the state of the tape as a
sequence of booleans, and is defined by converting such a sequence into a pair of binary
integers, running the Girard encoding for some number of steps and then converting the
resulting pair of binary integers representing the tape back into a sequence of booleans. The
step function ofM is encoded by a family of proofs of

a !boolB ⊗ b !boolB ⊗ !nboolB � (!boolA)⊗c ⊗ (!boolA)⊗d ⊗ !nboolA (3)
with a, b, c, d ≥ 1 giving the bounds of the initial and final tape, and where B is Ag for some
function g of c, d and the number of time steps.

• The direct Boolean encoding (Section 5) also encodes the state of the tape using booleans and
it comes in two flavours, one in which the tape contents are encoded relative to the head
position, and one in they are encoded in absolute coordinates. In the relative case the step
function ofM is encoded by proofs of

!sbool⊗2h+1
A ⊗ !nboolA � !sbool⊗2h+3

A ⊗ !nboolA (4)
while in the absolute case it is encoded by proofs of

!sbool⊗h
A ⊗ !nboolA ⊗ !hboolA � !sbool⊗h

A ⊗ !nboolA ⊗ !hboolA (5)
where sboolA is the type of s-booleans, used to encode tape symbols, and hboolA is used to
track the head position. The denotations of these encodings are given in Remarks 5.6 and
5.13 respectively.

These encodings all belong to a special class of proofs in linear logic which we call the component-
wise plain proofs. We introduce and give the basic properties of this class in Section 3. Finally
in Appendix A we study the denotations of integers and binary integers under the Sweedler
semantics, and prove some basic linear independence results that are needed in the main text
to establish the legitimacy of our description of denotations using polynomials (and which may
be of independent interest).

Let us now briefly explain why we introduce four different encodings, and why Girard’s original
encoding in Girard (1995) is not suitable, in its original form, for our applications in differential
linear logic. In Girard’s original encoding he gives a proof which, when cut against an integer n and
an encoding of the initial configuration of the Turing machine, returns the configuration of the
Turing machine after n steps. This works by iterating an encoding of the one-step transition func-
tion, and this iteration requires second-order quantifiers. From the point of view of derivatives the
use of second-order is problematic, because it is not clear how derivatives in linear logic should
interact with second order. Our solution was to find a variation of Girard’s encoding which intro-
duces the second-order quantifiers only at the very bottom of the proof tree. This is the encoding
given in Section 4. In Clift and Murfet (2018), we study the Ehrhard–Regnier derivative of the
first-order proof which stops just before the use of second-order quantifiers.

Differentiating proofs involves making infinitesimal variations in inputs1 and in the case of a
proof encoding the step function of a Turing machine, it seems that the most natural infinitesimal
variations tomake are those describing the contents of an individual tape square. This is somewhat
orthogonal to the approach of the Girard encoding, which uses two monolithic binary integers to
encode the state of the tape. For this reason we were driven to develop the other encodings given
above using sequence of booleans.

Related work. The work of Roversi (1999) fixes an error in Girard’s original encoding, but from
our point of view this error is irrelevant, since it concerns whether or not Girard’s encoding is
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typable in light linear logic. A different encoding of Turing machines into linear logic is given by
Mairson and Terui (2003, Theorem 5) which uses booleans based on tensors rather than additives.

2. Background
Throughout k is an algebraically closed field of characteristic zero, and all vector spaces and coal-
gebras are defined over k. Coalgebras are all coassociative, counital and cocommutative (Sweedler
1969). We write Prim (C) for the set of primitive elements in a coalgebra C.

2.1 Linear logic and the Sweedler semantics
As introductory references for linear logic we recommend (Melliès 2009; Benton et al. 1992) and
the survey (Murfet 2014). In this paper linear logicwill always mean first-order intuitionistic linear
logic with connectives ⊗, &, �, ! and the corresponding introduction rules and cut-elimination
transformations from Melliès (2009) and Benton et al. (1992). A proof is always a proof of a
sequent in linear logic.

The semantics of intuitionistic linear logic in vector spaces using the cofree coalgebra to inter-
pret the exponential, which we call the Sweedler semantics since Sweedler was the first to give a
detailed study of the cofree coalgebra (Sweedler 1969), was introduced as an example by Hyland
and Schalk (2003) and revisited in Murfet (2014) and Clift and Murfet (2017) with a focus on
explicit formulas for the involved structures based on the results of Murfet (2015). Denotations of
formulas and proofs will throughout be denoted by �−�. Briefly, given formulas (we also use type
as a synonym for formula) A, B the denotations are determined by the rules

�A⊗ B� = �A� ⊗ �B�

�A& B� = �A� ⊕ �B�

�A� B� =Homk (�A�, �B�)
�!A� = !�A�

and a choice of vector spaces �x� for atomic formulas x, where !V denotes the universal cocommu-
tative coassociative counital coalgebra mapping to V . The universal morphism is usually denoted
dV : !V −→V or just d. We review here the description of !V and this universal map; for more
details see Clift and Murfet (2017, Section 2.4), Murfet (2015) and Murfet (2014, Section 5.2).

For any vector space V we define

!V =
⊕
P∈V

SymP (V) (6)

where SymP (V)= Sym (V) is the symmetric coalgebra. If e1, . . . , en is a basis for V , then as a
vector space Sym (V)∼= k[e1, . . . , en]. Given v1, . . . , vs ∈V , the corresponding tensor in SymP (V)
is written using a ket

|v1, . . . , vs〉P := v1 ⊗ · · · ⊗ vs ∈ SymP (V) .
And in particular, the identity element of SymP (V) is denoted by a vacuum vector

|∅〉P := 1 ∈ SymP (V) .
With this notation the universal map d : !V −→V is defined for P ∈V by

d|∅〉P = P, d|v〉P = v, d|v1, . . . , vs〉P = 0 s> 1 .
Since any vector in !V is, by definition of the coproduct in (6), a finite linear combination of kets,
these three formulas suffice to completely describe the linearmap d. Similarly the comultiplication
on !V is defined by
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�|v1, . . . , vs〉P =
∑

I⊆{1,...,s}
|vI〉P ⊗ |vIc〉P

where I ranges over all subsets including the empty set, and for a subset I = {i1, . . . , ip} we denote
by vI the sequence vi1 , . . . , vip , and Ic is the complement of I. In particular

�|∅〉P = |∅〉P ⊗ |∅〉P .
The counit !V −→ k is defined by |∅〉P �→ 1 and |v1, . . . , vs〉P �→ 0 for s> 0.

We write An =A& · · · &A where there are n copies of A. Given a type A, π :Ameans that π
is a proof of �A. Given a proof π of !
 � B, we write prom (π) for the proof obtained by applying
the promotion rule to π to obtain a proof of !
 � !B.

Whenever we talk about a set of proofs P of a formula A in linear logic, we always mean a
set of proofs modulo the equivalence relation of cut-elimination. Given a set of proofs N we write
�N � for {�ν�}ν∈N . If proofs π , π ′ are equivalent under cut-elimination, then �π� = �π ′�, so the
function �−� :P −→ �A� extends uniquely to a k-linear map

kP �−� �� �A� (7)

where kP is the free k-vector space generated by the set P . If ψ is a proof of !A1, . . . , !Ar � B and
αi is a proof of Ai for 1≤ i≤ r, then ψ(α1, . . . , αr) : B denotes the (cut-elimination equivalence
class of) proof obtained by cutting ψ against the promotion of each αi.

2.2 Encoding data as proofs
Given a base type A, we define

boolA = (A&A)�A ,
nboolA =An �A ,

intA = !(A�A)� (A�A) ,
bintA = !(A�A)�

(!(A�A)� (A�A)
)
.

The encodings of booleans, integers and binary integers as proofs in linear logic go back to Girard’s
original paper Girard (1987). For each integer n≥ 0 there is a corresponding proof nA of intA
(Clift and Murfet 2017, Section 4.1) and for S ∈ {0, 1}∗ there is a corresponding proof SA of bintA
(Clift and Murfet 2017, Section 4.2).

The two values of a boolean correspond to the following proofs 0A and 1A of boolA:

A�A &L0A&A�A � R� boolA

A�A &L1A&A�A � R� boolA

whose denotations are projection onto the zeroth and first coordinates respectively. Note that we
are using the convention that the left introduction rules for & are indexed by 0 and 1, rather than
by the more conventional choice of 1 and 2, in order to be consistent with the usual assignment of
0 as ‘false’ and 1 as ‘true’.

The n values of an n-boolean correspond to the projection maps proji : �An� → �A�, where
i ∈ {0, ..., n− 1}. We denote by iA the proof

A�A &Li
An �A � R� nboolA
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whose denotation is proji. Here, by &Li (0≤ i≤ n− 1) we mean the rule which introduces n− 1
new copies of A on the left, such that the original A is at position i, indexed from left to right.

2.3 Cartesian products of coalgebras
Let (C,�C, εC) and (D,�D, εD) be coalgebras. Then C ⊗D is naturally a coalgebra (Sweedler
1969, p. 49), and it is the Cartesian product in the category of coalgebras (Sweedler 1969, p. 65).
The following calculations are standard but will play such an important conceptual role in this
paper and its sequel that it is worth reproducing them here.

Let Coalgk denote the category of k-coalgebras. The following result is well known:

Lemma 2.1. Let πC : C ⊗D−→ C and πD : C ⊗D−→D to be the composites

C ⊗D 1⊗εD �� C ⊗ k∼= C , C ⊗D εC⊗1 �� k⊗D∼=D . (8)
These are coalgebra morphisms, and the tuple (C ⊗D, πC, πD) is the Cartesian product of C,D in
the category of coalgebras.

In particular, the group-like (Sweedler 1969, p. 57) elements decompose according to
G(C ⊗D)∼=Coalgk(k, C ⊗D)

∼=Coalgk(k, C)×Coalgk(k,D)∼=G(C)×G(D) .
This isomorphism sends a pair (c, d) of group-like elements to the group-like element c⊗ d in
C ⊗D. Similarly for the primitive elements

Prim (C ⊗D)∼=Coalgk((k[ε]/ε
2)∗, C ⊗D)

∼=Coalgk((k[ε]/ε
2)∗, C)×Coalgk((k[ε]/ε

2)∗,D)
∼= Prim (C)× Prim (D) .

A pair of primitive (Sweedler 1969, p. 199) elements x over c in C and y over d in D correspond to
a pair of morphisms of coalgebras

x̃ : (k[ε]/ε2)∗ −→ C , 1∗ �→ c, ε∗ �→ x
ỹ : (k[ε]/ε2)∗ −→ C , 1∗ �→ d, ε∗ �→ y .

And the corresponding primitive element in C ⊗D is the image of ε∗ under the map

(k[ε]/ε2)∗ � �� (k[ε]/ε2)∗ ⊗ (k[ε]/ε2)∗
x̃⊗̃y �� C ⊗D

ε∗ �−→ 1∗ ⊗ ε∗ + ε∗ ⊗ 1∗ �−→ c⊗ y+ x⊗ d .

Remark 2.2. A morphism of coalgebras sends primitive elements to primitive elements. In
particular, if γ : X −→ C ⊗D is a morphism of coalgebras, then the restriction gives a map
Prim (γ ) : Prim (C)−→ Prim (C ⊗D), and it is clear that the diagram

Prim (X)

(
Prim (γC)
Prim (γD)

)
��

Prim (γ )
�����

����
����

����
����

����
Prim (C)× Prim (D)

∼=
��

Prim (C ⊗D)
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commutes, where the vertical map is the canonical isomorphism described above. Thus the action
of γ on primitive elements can be understood component-by-component.

3. Plain Proofs
In this section, we introduce the class of plain proofs. Our encodings of Turingmachines in Section
4 will be component-wise plain.

Definition 3.1. A proof of a sequent !A1, . . . , !Ar � B for r ≥ 0 is plain if it is equivalent under
cut-elimination to

π...
n1 A1, . . . , nr Ar � B

der
n1 !A1, . . . , nr !Ar � B

ctr/wk!A1, . . . , !Ar � B

for some proof π and tuple of non-negative integers n= (n1, . . . , nr), where for ni > 1 in the final
step there is a corresponding contraction, and if ni = 0 the final step involves a weakening. We write
nA in a sequent to stand for n occurrences of A. We refer to the integer ni as the Ai-degree and n as
the degree vector.

Example 3.2. Binary integers (Clift andMurfet 2017, Section 4.2) give plain proofs of the sequent
2!(A�A)�A�A.

Remark 3.3. If ψ is a plain proof as above, then:

• Suppose Ai =Aj for some i �= j and let ρ be the proof obtained from ψ by contraction on
!Ai, !Aj. Then ρ is plain.

• Let ρ be the proof of !A, !A1, . . . , !Ar � B obtained from ψ by weakening in the !A. Then ρ is
plain.

Lemma 3.4. Suppose that θ1, . . . , θr are plain proofs with conclusions A1, . . . ,Ar and that ψ is a
plain proof of !A1, . . . , !Ar � B. Then the cut of ψ against the promotions of the θi is a plain proof
with conclusion B.

Proof. In the special case r = 1 the cut

π...
n A� B

n× der
n !A� B

n− 1× ctr!A� B prom!A� !B

ρ...
mB� C

m× der
m !B� C

m− 1× ctr!B� C
cut!A� C

is equivalent under cut-elimination (Melliès 2009, Section 3.9.3) to a proof of the form
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...
mnA� C

mn× der
mn !A� C

mn− 1× ctr!A� C

which is plain. The general case is similar.

Definition 3.5. A proof

ψ : !A1, . . . , !Ar � !B1 ⊗ · · · ⊗ !Bs
is component-wise plain if there are plain proofs

ψi : !A1, . . . , !Ar � Bi

for 1≤ i≤ s such that ψ is equivalent under cut-elimination to the proof

⊗s
i=1 prom (ψi)...

s!A1, . . . , s!Ar � !B1 ⊗ · · · ⊗ !Bs
ctr!A1, . . . , !Ar � !B1 ⊗ · · · ⊗ !Bs

We refer to the ψi as the components of ψ .

Observe that in the context of the definition the linear map �prom (ψi)� is a morphism of coal-
gebras, and the denotation of the proof ψ is precisely the morphism of coalgebras induced by the
�prom (ψi)� into the tensor product of the !�Bi� viewed as the Cartesian product in the category of
coalgebras (Section 2.3). At the syntactic level this means in particular that the components ψi of
a component-wise plain proof ψ may be recovered (of course, up to cut-elimination) by cutting
against a series of weakenings and a dereliction.

This class of component-wise plain proofs is closed under composition:

Proposition 3.6. Suppose given two component-wise plain proofs

ψ : !A1, . . . , !Ar � !B1 ⊗ · · · ⊗ !Bs ,
φ : !B1, . . . , !Bs � !C1 ⊗ · · · ⊗ !Ct .

Then the proof

ψ...
!A1, . . . , !Ar � !B1 ⊗ · · · ⊗ !Bs

φ...
!B1, . . . , !Bs � !C1 ⊗ · · · ⊗ !Ct ⊗L!B1 ⊗ · · · ⊗ !Bs � !C1 ⊗ · · · ⊗ !Ct cut!A1, . . . , !Ar � !C1 ⊗ · · · ⊗ !Ct

which we denote φ |ψ , is component-wise plain.

Proof. By hypothesis ψ , φ are equivalent under cut-elimination to the tensor products of promo-
tions of components ψi, φj, and so φ |ψ is equivalent to a proof
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⊗i prom (ψi)...
s!A1, . . . , s!Ar � !B1 ⊗ · · · ⊗ !Bs

ctr!A1, . . . , !Ar � !B1 ⊗ · · · ⊗ !Bs

⊗j prom (φj)...
t!B1, . . . , t!Bs � !C1 ⊗ · · · ⊗ !Ct

ctr!B1, . . . , !Bs � !C1 ⊗ · · · ⊗ !Ct ⊗L!B1 ⊗ · · · ⊗ !Bs � !C1 ⊗ · · · ⊗ !Ct
cut!A1, . . . , !Ar � !C1 ⊗ · · · ⊗ !Ct

The cut-elimination rules of Melliès (2009, Section 3.10.2) apply to transform this to a proof

⊗i prom (ψi)...
s!A1, . . . , s!Ar � !B1 ⊗ · · · ⊗ !Bs

⊗j prom (φj)...
t!B1, . . . , t!Bs � !C1 ⊗ · · · ⊗ !Ct

ctr!B1, . . . , !Bs � !C1 ⊗ · · · ⊗ !Ct ⊗L!B1 ⊗ · · · ⊗ !Bs � !C1 ⊗ · · · ⊗ !Ct
cut

s!A1, . . . , s!Ar � !C1 ⊗ · · · ⊗ !Ct
ctr!A1, . . . , !Ar � !C1 ⊗ · · · ⊗ !Ct

which by Melliès (2009, Section 3.8.1) is equivalent under cut-elimination to cutting all the
prom (ψi) against φ and then performing the contractions. But byMelliès (2009, Section 3.9.3) the
resulting proof is equivalent under cut-elimination to cutting t copies of each prom (ψi) against
the proof

⊗j prom (φj)...
t!B1, . . . , t!Bs � !C1 ⊗ · · · ⊗ !Ct

and then performing the contractions
...

st!A1, . . . , st!Ar � !C1 ⊗ · · · ⊗ !Ct
ctr!A1, . . . , !Ar � !C1 ⊗ · · · ⊗ !Ct

Each of these cuts of prom (ψi) against ⊗j prom (φj) has as the final rule in the left branch a
promotion and as the final rule in the right branch a right tensor introduction. The rules (Melliès
2009, Sections 3.11.1 and 3.11.2) transform the proof into a tensor product of sub-proofs κj where
a fixed prom (φj) is cut against prom (ψ1), . . . , prom (ψs) to obtain a proof κj : s!A1, . . . , s!Ar �
!Cj. Then κ1 ⊗ · · · ⊗ κt is subject to the contractions as above.

Using the (Promotion, Promotion)-rule2 (Benton et al. 1992, Section 5.2) the proof κj is equiv-
alent under cut-elimination to the promotion of the proof κ ′

j which results from cutting of all
the prom (ψi) against φj. This κ ′

j is by Lemma 3.4 a plain proof. We have now shown that φ |ψ
is equivalent under cut-elimination to the tensor product over 1≤ j≤ t of promotions of plain
proofs κ ′

j : s!A1, . . . , s!Ar � Cj followed by the contractions above. Hence φ |ψ is component-wise
plain.

3.1 Denotations
For the rest of this section suppose given a plain proof

ψ : !A1, . . . , !Ar � B
constructed from π as in Definition 3.1. The denotation of ψ is a linear map

�ψ� : !�A1� ⊗ · · · ⊗ !�Ar� −→ �B� .

https://doi.org/10.1017/S0960129520000109 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000109


388 J. Clift and D. Murfet

Suppose given finite sets of proofs Pi of Ai andQ of B, such that{
π(X1, . . . , Xr) | Xi ∈Pni

i

}
⊆Q (9)

where the ni are as in Definition 3.1. Given a set of proofs N we write �N � for {�ν�}ν∈N . We
assume throughout that {�ν�}ν∈Q is linearly independent in �B�. In our examples B is one of the
standard datatypes and Appendix A gives us a supply of linearly independent proof denotations.
Let us first of all examine the polynomials that arise in evaluating �π�.

Given a function γ : {1, . . . , ni} −→Pi for some i, we write

ργ = γ (1)⊗ · · · ⊗ γ (ni) :A⊗ni
i (10)

�ργ � = �γ (1)� ⊗ · · · ⊗ �γ (ni)� ∈ �Ai�
⊗ni . (11)

Observe that for λijρ ∈ k, and with γi ranging over all functions {1, . . . , ni} −→Pi,

�π�
( r⊗

i=1

ni⊗
j=1

∑
ρ∈Pi

λ
ij
ρ�ρ�

)
= �π�

( r⊗
i=1

∑
γi

{ ni∏
j=1

λ
ij
γi(j)

}
�ργi�

)

=
∑
γ1,...,γr

{ r∏
i=1

ni∏
j=1

λ
ij
γi(j)

}
�π�
(
�ργ1� ⊗ · · · ⊗ �ργr�

)
=
∑
γ1,...,γr

{ r∏
i=1

ni∏
j=1

λ
ij
γi(j)

}
�π
(
ργ1 , . . . , ργr

)
�

=
∑
τ∈Q

{ ∑
γ1,...,γr

δτ=π(ργ1 ,...,ργr )
r∏

i=1

ni∏
j=1

λ
ij
γi(j)

}
�τ � .

Let us introduce variables {xijρ}1≤i≤r,1≤j≤ni,ρ∈Pi so that with

Sym (kPn1
1 ⊕ · · · ⊕ kPnr

r )∼= k
[
{xijρ}i,j,ρ

]
we may define an element of this algebra by:

Definition 3.7. Given τ ∈Q set

gτπ :=
∑
γ1,...,γr

δτ=π(ργ1 ,...,ργr )
r∏

i=1

ni∏
j=1

xij
γi(j) .

In summary, we may compute �π� by these polynomials using the formula

�π�
( r⊗

i=1

ni⊗
j=1

∑
ρ∈Pi

λ
ij
ρ�ρ�

)
=
∑
τ∈Q

gτπ
∣∣∣
xijρ=λijρ

�τ � . (12)

Now let us turn to calculating �ψ� using the morphism of k-algebras

C : Sym ( r⊕
i=1

kPni
i
)∼= k

[
{xijρ}i,j,ρ

]
−→ k

[
{xiρ}i,j,ρ

]∼= Sym
( r⊕

i=1
kPi
)

(13)

xijρ �→ xiρ .
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With ωi =∑ρ∈Pi λ
i
ρ�ρ�, we calculate

�ψ�
(
|∅〉ω1 ⊗ · · · ⊗ |∅〉ωr

)
= �π�

( r⊗
i=1

d⊗ni�ni−1|∅〉ωi
)

= �π�
( r⊗

i=1
d⊗ni |∅〉⊗ni

ωi

)
= �π�

( r⊗
i=1

ω
⊗ni
i

)
=
∑
τ∈Q

C(gτπ )
∣∣∣
xiρ=λiρ

�τ � . (14)

Let ι denote the function

ι :
r∏

i=1
kPi −→

r⊗
i=1

!�Ai� ,

ι
(
ω1, . . . ,ωr

)= r⊗
i=1

|∅〉�ωi�

where kP is the free vector space on P .

Proposition 3.8. There is a unique function Fψ making the diagram

!�A1� ⊗ · · · ⊗ !�Ar�
�ψ� �� �B�

kP1 × · · · × kPr

ι

��

Fψ
�� kQ

�−�

��

commute. Moreover this function is computed by a polynomial, in the sense that it is induced by a
morphism of k-algebras

fψ : Sym (kQ)−→ Sym (kP1 ⊕ · · · ⊕ kPr) .

More precisely, if we present the symmetric algebras as polynomial rings in variables

{yτ }τ∈Q , {xiρ}1≤i≤r,ρ∈Pi

respectively, then the polynomial f τψ := fψ (yτ ) is given by the formula

f τψ =
∑
γ1,...,γr

δτ=π(ργ1 ,...,ργr )
r∏

i=1

ni∏
j=1

xiγi(j) , (15)

where γi ranges over all functions {1, . . . , ni} −→Pi and we use the notation of (10).

Proof. Since by hypothesis {�ν�}ν∈Q is linearly independent, the right-hand vertical map (from
(7)) is injective and so the map Fψ is unique if it exists. Existence follows from (14), and moreover
this also shows that Fψ (a)τ = evalxiρ=aiρ (f

τ
π ) for all a in

∏
i kPi.
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4. The Girard Encoding
To fix the notation, we briefly recall the definition of a Turing machine from Arora and Barak
(2009) and Sipser (2006).

Definition 4.1. A Turing machine M = (�,Q, δ) is a tuple where Q is a finite set of states, � is a
finite set of symbols called the tape alphabet and

δ :� ×Q→� ×Q× {left, right}
is a function, called the transition function.

The set� is assumed to contain some designated blank symbol�which is the only symbol that
is allowed to occur infinitely often on the tape. If M is a Turing machine, a Turing configuration
ofM is a tuple 〈S, T, q〉, where S, T ∈�∗ and q ∈Q. This is interpreted as the instantaneous con-
figuration of the Turing machine in the following way. The string S corresponds to the non-blank
contents of the tape to the left of the tape head, including the symbol currently being scanned.
The string T corresponds to a reversed copy of the contents of the tape to the right of the tape
head, and q stores the current state of the machine. The reason for T being reversed is a matter of
convenience, as we will see in the next section. The step function

δstep :�∗ ×�∗ ×Q−→�∗ ×�∗ ×Q
sends the current configuration 〈S, T, q〉 to the configuration δstep(S, T, q) after one step.

The eventual goal of this section will be to present a method of encoding of Turing machines in
linear logic. This is heavily based on the work by Girard (1995), which encodes Turing configura-
tions via a variant of second-order linear logic called light linear logic. The encoding does not use
light linear logic in a crucial way, but requires second order in many intermediate steps, making
it incompatible with differentiation. We modify this encoding so that it is able to be differentiated
(see Remark 4.15), while also filling in some of the details omitted from Girard (1995).

Definition 4.2. Fix a finite set of states Q= {0, ..., n− 1}, and a tape alphabet3 � = {0, 1}, with 0
being the blank symbol. The type of Turing configurations on A is:

TurA = !bintA ⊗ !bintA ⊗ !nboolA.
The configuration 〈S, T, q〉 is represented by the element

�〈S, T, q〉� = |∅〉�SA� ⊗ |∅〉�TA� ⊗ |∅〉�qA� ∈ �TurA�.

Our aim is to simulate a single transition step of a given Turing machineM as a proof δstepA of
TurB � TurA for some formula B which depends on A, in the sense that if said proof is cut against
a Turing configuration of M at time t, the result will be equivalent under cut-elimination to the
Turing configuration of M at time step t + 1. This will be achieved in Theorem 4.13. Following
Girard (1995) the strategy will be as follows. Let 〈Sσ , Tτ , q〉 be the (initial) configuration of the
given Turing machine.

(1) Decompose the binary integers Sσ and Tτ to extract their final digits, giving S, T, σ and τ .
Note that σ is the symbol currently under the head, and τ is the symbol immediately to its
right.

(2) Using the symbol σ together with the current state q ∈Q, compute the new symbol σ ′, the
new state q′ and the direction to move d.

(3) If d = right, append σ ′τ to S. Otherwise, append τσ ′ toT; remember that the binary integer
T is the reversal of the contents of the tape to the right of the tape head. This is summarised
in Figure 1.
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Figure 1. A single transition step of a Turing machine.

For simplicity we present the encoding where the head of the Turing machine must either
move left or right at each time step, and leave to the reader the minor changes necessary to allow
the head to also remain stationary.

4.1 The encoding
In order to feed the current symbol into the transition function, it is necessary to extract this digit
from the binary integer which represents the tape. To do this we must decompose a binary integer
S′ = Sσ of length l≥ 1 into two parts S and σ , the former being a bint consisting of the first l− 1
digits (the tail) and the latter being a bool corresponding to the final digit (the head).

Proposition 4.3. There exists a proof headA of bintA3 � boolA which encodes the function
�SσA3� �→ �σA�.

Proof. The construction we will use is similar to that in Girard (1995, Section 2.5.3). Let π0, π1
be the (easily constructed) proofs of A3 �A3 whose denotations are �π0�(x, y, z)= (x, y, x) and
�π1�(x, y, z)= (x, y, y) respectively. Similarly let ρ be the proof of A2 �A3 with denotation
�ρ�(x, y)= (x, y, x). Define by headA the following proof:

π0...
A3 �A3

� R�A3 �A3
prom

� !(A3 �A3)

π1...
A3 �A3

� R�A3 �A3
prom

� !(A3 �A3)

ρ...
A2 �A3

A�A &L2
A3 �A � L

A3 �A3,A2 �A
� R

A3 �A3 � boolA � L
intA3 � boolA

� L
bintA3 � boolA

where the rule &L2 introduces two new copies of A on the left, such that the original copy is at
position 2 (that is, the third element of the triple).

We now show that �headA�(�SσA3�)= �σA� as claimed. Recall that the denotation �SσA3�
of a binary integer is a function which, given inputs α and β of type A3 �A3 corresponding
to the digits zero and one, returns some composite of α and β . The effect of the two leftmost
branches of headA is to substitute �π0� for α and �π1� for β in this composite, giving a linear
map ϕ : �A3� → �A3�. The rightmost branch then computes proj2 ◦ ϕ ◦ �ρ� : �A2� → �A�, giving a
boolean.

In other words, �headA�(�SσA3�) is the element of �boolA� given by:

(a0, a1) �→ proj2 ◦ ϕ ◦ �ρ�(a0, a1)= proj2 ◦ ϕ(a0, a1, a0),
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where ϕ is the composite of �π0� and �π1� as above. Note, however, that repeated applications of
the functions �πi� only serve to update the final digit of the triple, and thus only the final copy of
�πi� determines the output value. Hence the above simplifies to

proj2 ◦ ϕ(a0, a1, a0)= proj2 ◦�πσ �(a0, a1, a0)= proj2 (a0, a1, aσ )= aσ .
Thus �headA�(�SσA3�)= projσ , which is indeed the boolean corresponding to σ .

Lastly, we consider the special case when Sσ is the empty list. In this case
proj2�ρ�(a0, a1)= proj2 (a0, a1, a0)= a0

which captures the fact that any symbols outside the working section of the tape are assumed to
be the blank symbol, 0.

Proposition 4.4. There exists a proof tailA of bintA3 � bintA which encodes the function �SσA3� �→
�SA�.

Remark 4.5. This could also be encoded as a proof of bintA2 � bintA. However, it will be much
more convenient later if the sequents proven by headA and tailA have the same premise, since we
will need to apply them both to two copies of the same binary integer.

Proof. This is largely based on the predecessor for intA. Define π to be the proof

A�A A�A A�A
&R

A�A3
A�A &L0
A3 �A � L

A,A3 �A3 �A
� R

A3 �A3 �A�A
which has denotation:

�π�(ϕ)(a)= proj0 (ϕ(a, a, a)).
Define ρ to be the following proof:

A�A &L2
A3 �A

weak
A3, !(A�A)�A

A�A &L2
A3 �A

weak
A3, !(A�A)�A

A�A A�A � L
A,A�A�A

&L2
A3,A�A�A

der
A3, !(A�A)�A

&R
A3, !(A�A)�A3

� R!(A�A)�A3 �A3

The denotation �ρ� is

�ρ�(|α1, ..., αs〉γ )(a0, a1, a2)=

⎧⎪⎨⎪⎩
(a2, a2, γ a2) s= 0
(a2, a2, α1a2) s= 1
(a2, a2, 0) s> 1.

Finally, define tailA to be the following proof:

ρ...
!(A�A)�A3 �A3

prom

!(A�A)� !(A3 �A3)

ρ...
!(A�A)�A3 �A3

prom

!(A�A)� !(A3 �A3)

π...
A3 �A3 �A�A

� L!(A�A), intA3 �A�A
� L!(A�A), !(A�A), bintA3 �A�A

2×� R
bintA3 � bintA
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Evaluated on the binary integer S, this gives a binary integer T which if fed two vacuum vectors
|∅〉γ and |∅〉δ (corresponding to the digits 0, 1) will return the composite �A� → �A� obtained by
substituting �ρ�|∅〉γ and �ρ�|∅〉δ for each copy of the digits 0 and 1 respectively in S, and then
finally keeping the 0th projection by the left introduction of π .

As an example, suppose that the binary integer S is 0010. Then the corresponding linear map
�A� → �A� is

a �→ proj0 (γ̃ ◦ δ̃ ◦ γ̃ ◦ γ̃ (a, a, a))
where γ̃ = �ρ�|∅〉γ , which is the morphism (a0, a1, a2) �→ (a2, a2, γ a2), and similarly for δ̃. Thus,
we have:

proj0 (γ̃ ◦ δ̃ ◦ γ̃ ◦ γ̃ (a, a, a))= proj0 (γ̃ ◦ δ̃ ◦ γ̃ (a, a, γ (a)))
= proj0 (γ̃ ◦ δ̃(γ (a), γ (a), γ γ (a)))
= proj0 (γ̃ (γ γ (a), γ γ (a), δγ γ (a)))

= proj0 (δγ γ (a), δγ γ (a), γ δγ γ (a))

= δγ γ (a).

When fed through the decomposition steps, the base type of the binary integers changes from
A3 to A. We therefore also need to modify the base type of the n-boolean representing the state,
in order to keep the base types compatible.

Lemma 4.6. There exists a proof nbooltypeA of nboolA3 � nboolA which converts an n-boolean on
A3 to the equivalent n-boolean on A; that is, it encodes �iA3� �→ �iA�.

Proof. For i ∈ {0, ..., n− 1}, let πi be the proof of An �A3 whose denotation is (a0, ..., an−1) �→
(ai, ai, ai). Define nbooltypeA as the proof:

π0...
An �A3 · · ·

πn−1...
An �A3

&R
An � (A3)n

A�A &L0
A3 �A

� L
An, nboolA3 �A

� R
nboolA3 � nboolA

The denotation of nbooltypeA is the function

�nbooltypeA�(ϕ)(a0, ..., an−1)= proj0 ◦ ϕ((a0, a0, a0), ..., (an−1, an−1, an−1)),

and hence �nbooltypeA�(�iA3�)= �iA�.

We next encode the transition function δ :� ×Q→� ×Q× {left, right} of a given Turing
machine.

Lemma 4.7. Given any function f : {0, ..., n− 1} → {0, ...,m− 1}, there exists a proof F of nboolA �
mboolA which encodes f .

Proof. Let F be the following proof:
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A�A &Lf (1)
Am �A ...

A�A &Lf (n)
Am �A

&R
Am �An A�A � L

Am, nboolA �A
� R

nboolA � mboolA
The denotation of F is, for ϕ ∈ �nboolA� and (a0, ..., am−1) ∈ �Am�:

�F�(ϕ)(a0, ..., am−1)= ϕ(af (0), ..., af (n−1)).
In particular, this means that �F�(�iA�)(a0, ..., am−1)= proji (af (0), ..., af (n−1))= af (i), and hence
�F�(�iA�)= projf (i) = �f (i)

A
� as desired.

Proposition 4.8. Given a transition function δ :� ×Q→� ×Q× {left, right}, write δi for the
component proji ◦ δ (i ∈ {0, 1, 2}). Then there exists proofs

0
δtransA : boolA, nboolA � boolA
1
δtransA : boolA, nboolA � nboolA
2
δtransA : boolA, nboolA � boolA

which encode δi, for i= 0, 1, 2. We are using the convention that left= 0 and right= 1.

Proof. Given i ∈ {0, 1, 2} and j ∈� = {0, 1}, let �i,j be the proof obtained from Lemma 4.7 cor-
responding to the function δi(j,−), omitting the final � R rule. Define i

δtransA as the following
proof, wherem= n if i= 1 andm= 2 otherwise:

�i,0...
Am, nboolA �A

�i,1...
Am, nboolA �A

&R
Am, nboolA �A2 A�A

� L
Am, boolA, nboolA �A

� L
boolA, nboolA � mboolA

Then �iδtransA� is the function

�iδtransA�(ψ ⊗ ϕ)(a0, ..., am−1)=ψ(ϕ(aδi(0,0), ..., aδi(0,n−1)), ϕ(aδi(1,0), ..., aδi(1,n−1))),

and thus we have �iδtransA�(�σ � ⊗ �q�)= projδi(σ ,q) = �δi(σ , q)�.

Once the new state, symbol and direction have been computed, our remaining task is to
recombine the symbols with the binary integers representing the tape.

Example 4.9. Let E=A�A. The proof concatA is

!E � !E
!E� !E

!E� !E
!E� !E

comp2A...
A, E, E �A

� R
E, E � E

� L!E, E, intA � E
� L!E, !E, E, bintA � E

� L!E, !E, !E, intA, bintA � E
� L!E, !E, !E, !E, bintA, bintA � E

2× ctr!E, !E, bintA, bintA � E
2×� R

bintA, bintA � bintA
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where comp2A encodes composition (Clift and Murfet 2017, Definition 4.2). The colours indicate
which copies of !E are contracted together. When cut against the proofs of binary integers SA and
TA, the resulting proof will be equivalent under cut-elimination to STA. We write concat(S,−) for
the proof of bintA � bintA obtained by cutting a binary integer SA against concatA such that the
first bintA is consumed, meaning that concat(S,−) prepends by S. Similarly define concat(−, T)
as the proof which appends by T.

Lemma 4.10. Let W00,W01,W10,W11 be fixed binary integers, possibly empty. There exists a proof
π(W00,W01,W10,W11) of bintA, boolA, boolA � bintA which encodes

(S, σ , τ ) �→ SWστ .

Proof. Let E=A�A. We give a proof corresponding to the simpler function (S, σ ) �→ SWσ ,
whereW0,W1 are fixed binary sequences:

concatA(−,W0)...
bintA, !E, !E,A�A

concatA(−,W1)...
bintA, !E, !E,A�A

&R
bintA, !E, !E,A�A&A A�A

� L
bintA, boolA, !E, !E,A�A

3×� R
bintA, boolA � bintA

The required proof π(W00,W01,W10,W11) is an easy extension of this, involving two instances
of the &R and� L rules rather than one.

Proposition 4.11. There exist proofs 0recombA and 1recombA of

bintA, 3 boolA � bintA
which encode the functions

(S, τ , σ , d) �→
{
S if d = 0 (left)
Sστ if d = 1 (right)

and (T, τ , σ , d) �→
{
Tτσ if d = 0 (left)
T if d = 1 (right)

respectively.

Proof. Define π(−,−,−,−) as described in Lemma 4.10, omitting the final � R rules. The
desired proof 0recombA is:

π(∅, ∅, ∅, ∅)...
bintA, 2 boolA, !E, !E,A�A

π(00, 10, 01, 11)...
bintA, 2 boolA, !E, !E,A�A

&R
bintA, 2 boolA, !E, !E,A�A&A A�A

� L
bintA, 3 boolA, !E, !E,A�A

3×� R
bintA, 3 boolA � bintA

and 1recombA is the same, with the leftmost branch replaced by π(00, 01, 10, 11) and the second
branch replaced by π(∅, ∅, ∅, ∅).
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Proposition 4.12. There exist proofs

δ leftA : 3 bintA3 , bintA3 , 2nboolA3 � bintA
δrightA : 2 bintA3 , 2 bintA3 , 2nboolA3 � bintA
δstateA : bintA3 , nboolA3 � nboolA

which, if fed the indicated number of copies of S, T and q corresponding to a Turing configuration,
update the left part of the tape, the right part of the tape and the state.

Proof. We simply compose (using cuts) the proofs from Propositions 4.3 through 4.11; the exact
sequence of cuts is given in Figures 2, 3 and 4. The verification that the proofs perform the desired
tasks is made clear through the following informal computations. Here 〈Sσ , Tτ , q〉 is the config-
uration of the Turing machine at time t, and 〈S′, T′, q′〉 is its configuration at time t + 1. In other
words, we have δ(σ , q)= (σ ′, q′, d), and

(S′, T′)=
{
(S, Tτσ ′) d = 0 (left)
(Sσ ′τ , T) d = 1 (right).

δ leftA is : (Sσ )⊗3 ⊗ (Tτ )⊗ q⊗2

�−−→ S⊗ σ⊗2 ⊗ τ ⊗ q⊗2 (tailA ⊗ head⊗3
A ⊗ nbooltype⊗2

A )

�−−→ S⊗ τ ⊗ (σ ⊗ q)⊗2 (exchange)
�−−→ S⊗ τ ⊗ σ ′ ⊗ d (id⊗2 ⊗ 0

δtransA ⊗ 2
δtransA)

�−−→ S′ (0recombA)

δrightA is : (Sσ )⊗2 ⊗ (Tτ )⊗2 ⊗ q⊗2

�−−→ σ⊗2 ⊗ τ ⊗ T ⊗ q⊗2 (head⊗3
A ⊗ tailA ⊗ nbooltype⊗2

A )

�−−→ T ⊗ τ ⊗ (σ ⊗ q)⊗2 (exchange)
�−−→ T ⊗ τ ⊗ σ ′ ⊗ d (id⊗2 ⊗ 0

δtransA ⊗ 2
δtransA)

�−−→ T′ (1recombA)

δstateA is : (Sσ )⊗ q
�−−→ σ ⊗ q (headA ⊗ nbooltypeA)

�−−→ q′. (1δtransA)

Theorem 4.13. There exists a proof δstepA of TurA3 � TurA which encodes a single transition step
of a given Turing machine.

Proof. The desired proof δstepA is given in Figure 5.

By cutting the above construction against itself, we obtain the following:

Corollary 4.14. For each p≥ 1, there exists a proof p
δ stepA of TurA3p � TurA which encodes p

transition steps of a given Turing machine.
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Figure 2. The proof δ leftA.

Figure 3. The proof δrightA.

Figure 4. The proof δstateA.
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Figure 5. The proof δstepA.

Note that this iteration must be performed ‘by hand’ for each p; we cannot iterate for a variable
number of steps. By this we mean that it is not possible to devise a proof of intB, TurC � TurA
(for suitable types B, C) which simulates a given Turing machine for n steps when cut against the
Church numeral nB. The fundamental problem is that iteration using intB only allows iteration
of endomorphisms B� B, and so the fact that our base type changes in each iteration of δstepA
makes this impossible.

Remark 4.15. If one is willing to use second order, then iteration in the above sense becomes
possible via the following proof, where Tur= ∀A.TurA:

δstepA
...

TurA3 � TurA ∀L
Tur� TurA ∀R
Tur� Tur � R� Tur� Tur prom� !(Tur� Tur)

Tur� Tur Tur� Tur � L
Tur� Tur, Tur� Tur

� L
intTur, Tur� Tur

∀L
int, Tur� Tur

In the original encoding given by Girard (1995), the use of second-order quantifiers is present
throughout the encoding. In contrast, the above encoding only involves the ∀R, ∀L rules at the
very bottom of the proof tree, which makes it more suitable for the study of Turing machines in
the context of differential linear logic in Clift and Murfet (2018).

Next we observe that δstepA is component-wise plain in the sense of Definition 3.5.
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Definition 4.16. We write δ left†A for the proof

δ leftA
...

3 bintA3 , bintA3 , 2 nboolA3 � bintA
der

3 !bintA3 , !bintA3 , 2 !nboolA3 � bintA
ctr!bintA3 , !bintA3 , !nboolA3 � bintA

and similarly for δright†A and δstate†A.

It is clear that:

Lemma 4.17. The proofs δ left†A, δright
†
A, δstate

†
A are plain.

Proposition 4.18. The proofs δstepA and p
δstepA are component-wise plain.

Proof. The second claim follows from Proposition 3.6.

The denotation of the proof δstepA is a linear map

�δstepA� : !�bintA3�⊗2 ⊗ !�boolA3� −→ !�bintA�⊗2 ⊗ !�boolA�

and we compute the value of this map on vectors of the form

� = |∅〉α ⊗ |∅〉β ⊗ |∅〉γ ,
where

α =
s∑

i=1
ai�Siσi�, β =

t∑
i=1

bi�Tiτi�, γ =
r∑

i=1
ci�qi�.

Note that

�δstepA�(�)= |∅〉�δ leftA�(α⊗3⊗β⊗γ⊗2) ⊗ |∅〉�δrightA�(α⊗2⊗β⊗2⊗γ⊗2) ⊗ |∅〉�δstateA�(α⊗γ ),

and so the problem reduces to computing the values of each of �δ left�, �δright� and �δstate� on the
appropriate number of copies of α, β , γ . Write (σ̂ j

i , q̂
j
i, d̂

j
i)= δ(σi, qj). We have:

• �δ leftA�(�Siσi� ⊗ �Sjσj� ⊗ �Skσk� ⊗ �Tlτl� ⊗ �qm� ⊗ �qn�)= δd̂nk=0�Si� + δd̂nk=1�Siσ̂
m
j τl�,

• �δrightA�(�Sjσj� ⊗ �Skσk� ⊗ �Tlτl� ⊗ �Tiτi� ⊗ �qm� ⊗ �qn�)= δd̂nk=0�Tiτlσ̂
m
j � + δd̂nk=1�Ti�,

• �δstateA�(�Siσi� ⊗ �qj�)= �q̂ji�,

where δ on the right is the Kronecker delta. Using this, we compute

Lemma 4.19. The vector �δ leftA�(α⊗3 ⊗ β ⊗ γ⊗2) is equal as an element of �bintA� to⎛⎝ s∑
i=1

r∑
j=1

aicjδd̂ji=0

⎞⎠( s∑
i=1

ai

)( t∑
i=1

bi

)( r∑
i=1

ci

)( s∑
i=1

ai�Si�

)
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+
⎛⎝ s∑

i=1

r∑
j=1

aicjδd̂ji=1

⎞⎠⎛⎝ s∑
i=1

s∑
j=1

t∑
k=1

r∑
l=1

aiajbkcl�Siσ̂ l
j τk�

⎞⎠ . (16)

The vector �δrightA�(α⊗2 ⊗ β⊗2 ⊗ γ⊗2) is equal as an element of �bintA� to⎛⎝ s∑
i=1

r∑
j=1

aicjδd̂ji=1

⎞⎠( s∑
i=1

ai

)( t∑
i=1

bi

)( r∑
i=1

ci

)( t∑
i=1

bi�Ti�

)

+
⎛⎝ s∑

i=1

r∑
j=1

aicjδd̂ji=0

⎞⎠⎛⎝ t∑
i=1

s∑
j=1

t∑
k=1

r∑
l=1

biajbkcl�Tiσ̂
l
j τk�

⎞⎠ . (17)

The vector �δstateA�(α⊗ γ ) is equal as an element of �boolA� to
s∑

i=1

r∑
j=1

aicj�q̂
j
i�. (18)

Remark 4.20. These formulas only describe the values of �δstepA� on certain group-like elements,
but the values on more general kets can be derived from these formulas by taking derivatives; see
Clift and Murfet (2018, Corollary 4.5).

Remark 4.21. From the calculations in the lemma we can extract polynomial functions, as
explained in Section 3.1. To do this we restrict the domain to sequences of bounded length, and
identify such sequences with proofs. By Remark A.11 as long as we choose our type A such that
dim�A�> c/2 the set of denotations {

�SA�
}
S∈�≤c

is a linearly independent set in �bintA�, and in particular these denotations are all distinct, and
we may identify�≤c with the set of proofs Pc = {SA}S∈�≤c . Then by Proposition 3.8 if we fix inte-
gers a, b and then choose A such that dim (�A�)> 1

2 max{a+ 1, b+ 1}, there is a unique function
F
δ leftA making the diagram

!�bintA3� ⊗ !�bintA3� ⊗ !�boolA3�
�δ leftA� �� �bintA�

k�≤a × k�≤b × kQ

ι

��

F
δ leftA

�� k�≤a+1

�−�

��
(19)

commute. The formula for the function F
δ leftA is given by reading the formula (16) with �Si�

replaced by Si and �Siσ̂ l
j τk� replaced by Siσ̂ l

j τk, and similarly for F
δrightA and FδstateA .

4.2 The Boolean version
Our ultimate purpose in giving the encodings in this paper is to understand the derivatives of
Turing machines in Clift and Murfet (2018), and we are therefore interested in encodings which
allow us to differentiate the encoding with respect to the contents of individual tape squares. One
natural way to obtain such an encoding is to derive it from step and that is our goal in this section.
In Section 5 we give encodings obtained directly, without going via step.
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The aim in this section is to construct a proof pboolstep of

a !boolB, b !boolB, !nboolB � (!boolA)⊗c ⊗ (!boolA)⊗d ⊗ !nboolA (20)

for some power B=Ag(c,d,p) such that if initially the state is q and the tape reads

. . . , �, x1, . . . , xa, y1, . . . , yb, �, . . .

with the underline indicating the position of the head, then running the Turing machine for p
steps on this input yields

. . . ,�, x′
1, . . . , x

′
c, y

′
1, . . . , y

′
d, �, . . .

The algorithm pboolstep returns this state, as a sequence of booleans, in the given order. In this
section, to avoid an explosion of notation we drop the subscript δ and write boolstep when we
should more correctly write δboolstep.

Lemma 4.22. There is a proof castA of boolA � bintA which converts a boolean to the equivalent
binary sequence; that is, it encodes �iA� �→ �iA� for i ∈ {0, 1}.

Proof. Let E=A�A. The proof is:

0A...
!E, !E,A�A

1A...
!E, !E,A�A

&R!E, !E,A�A&A A�A
� L

boolA, !E, !E,A�A
3×� R

boolA � bintA
where the incoming proofs at the top are the binary integers 0, 1.

Lemma 4.23. There is a proof readjA of bintA3j+2 � boolA for j≥ 0 which ‘reads’ the symbol at the
position j from the right in a binary integer; that is, it encodes

�srsr−1 · · · s1s0A3j+2 � �−→ �sjA� .

Proof. We use the proofs headA : bintA3 � bintA of Lemma 4.3 and tailA : bintA3 � bintA of
Lemma 4.4, cut together as follows (where ψ | φ denotes the cut of ψ , φ)

headA3j+1 | tailA3j | · · · | tailA3 | tailA : bintA3j+2 � boolA

where there are j copies of tail at various base types. Note that if we apply readj to the empty binary
sequence, or to any sequence of length ≤ j, we obtain the boolean 0.

Lemma 4.24. There is a proof multreadaA of !bintA3a+1 � (!boolA)⊗a which reads off a symbols from
the right end of a binary integer; that is, it encodes

�srsr−1 · · · s1s0A3j+2 � �−→ (
�sa−1A�, . . . , �s0A�

)
.

Proof. We use the proofs

reada−1
A : bintA3a+1 � boolA

reada−2
A3 : bintA3a+1 � boolA3
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reada−3
A32 : bintA3a+1 � boolA3

...

read0
A3a−1 : bintA3a+1 � boolA3a−1

to read off the relevant symbols, and then fix the base types by cutting against an appropriate
number of copies of the proof nbooltypeB of Lemma 4.6 with various base types B. This leaves us
with a proofs of bintA3a+1 � boolA which we then derelict on the left and promote on the right,
and then tensor together to obtain a proof of

a !bintA3a+1 � (!boolA)⊗a .
A series of contractions then gives the desired proof multreadaA.

Definition 4.25. For c, d ≥ 1 the proof unpackc,dA of

TurA3max{c,d}+1 � (!boolA)⊗c ⊗ (!boolA)⊗d ⊗ !nboolA
is defined as follows: let e=max{c, d} and consider the proofs

multreadc
A3e−c : !bintA3e+1 � (!boolA3e−c

)⊗c

multreadd
A3e−d : !bintA3e+1 � (!boolA3e−d

)⊗d .

We cut these proofs against an appropriate number of promoted copies of nbooltypeB for various base
types B, to obtain proofs of sequents with conclusion

(!boolA)⊗c,
(!boolA)⊗d. These are tensored with

the identity on !nboolA and with the proof that reverses the output of the multread corresponding to
the right-hand part of the tape.

Definition 4.26. The proof packa,bA of a !boolA, b !boolA, !nboolA � TurA is given by the tensor
product of the identity on !nboolA and the proofs

cast⊗a
A...

a boolA � bint⊗a
A

concat...
bint⊗a

A � bintA
cut

a boolA � bintA
der,prom

a !boolA � !bintA
and

cast⊗b
A...

b boolA � bint⊗b
A

ex

b boolA � bint⊗b
A

concat...
bint⊗b

A � bintA
cut

b boolA � bintA
der,prom

b !boolA � !bintA
where the exchange rule reverses the order of the inputs.
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To simplify the formulas in the next definition, let us write



a,b
A = a !boolA, b !boolA, !nboolA ,

Xc,d
A = (!boolA)⊗c ⊗ (!boolA)⊗d ⊗ !nboolA .

Definition 4.27. For a, b, c, d, p≥ 1 the proof pboolstepa,b,c,dA is

packa,b
A3e+1
...



a,b
A3p+e+1 � TurA3p+e+1

p
δstepA3e+1

...
TurA3p+e+1 � TurA3e+1

cut



a,b
A3p+e+1 � TurA3e+1

unpackc,dA...
TurA3e+1 � Xc,d

A
cut



a,b
A3p+e+1 � Xc,d

A

where e=max{c, d}.

Lemma 4.28. The proof pboolstepa,b,c,dA is component-wise plain.

Proof. By Propositions 3.6 and 4.18, it suffices to argue that pack and unpack are component-wise
plain, but this is obvious.

5. Direct Boolean Encodings
In the previous section, we developed an encoding of the step function as an operation on a
sequence of booleans, rather than a pair of binary integers. It is natural to ask if such an encoding
can be designed directly, without going via step.

Ideally, one could define a family of proofs of

a !boolA, b !boolA, !nboolA � !bool⊗c
A ⊗ !bool⊗d

A ⊗ !nboolA
indexed by a, b, c, d, as in Section 4.2. However, there is an issue with this approach, in that it
cannot be easily iterated. More specifically, we cannot simply cut multiple one-step proofs against
one another, since the computation of all steps beyond the first must know where the tape head
has moved to, which is invisible when encoding the tape contents as simply a string of booleans.

In this section, we present two possible remedies for this issue. The first is to increase the num-
ber of booleans representing the tape after each step, in such a way to ensure that the head is always
in the centre of the working section of the tape. We call this the relative encoding and denote the
proof relstep (see Section 5.1). The second solution is to simply keep track of the head position
through the use of an additional h-boolean. We call this the absolute encoding and denote the
proof absstep (see Section 5.2). While this has the advantage that the positions of each tape square
do not change after each step, it is limited by the fact that one must remain in a section of the tape
of length h.

Fix a finite set of states Q= {0, ..., n− 1} and a finite tape alphabet� = {0, ..., s− 1}, and let δ :
� ×Q→� ×Q× {left, right} be the transition function. For i ∈ {0, 1, 2}, we write δi = proji ◦ δ
for the ith component of δ. Throughout A is a fixed type, and we write bool for boolA. We give
the versions of relstep and absstep in which the head of the Turing machine must either move left
or right in each time step; the modification to allow the head to remain stationary is routine.
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Definition 5.1. Given n ∈N, we write neval for the following proof, whose denotation is the
evaluation map.

An �An A�A � L
nbool,An �A

Definition 5.2. Given two proofs π , ρ of 
 �A, we write π & ρ for the following proof.

π...

 �A

ρ...

 �A

&R

 �A2

As for formulas, we write πn for the proof π & . . . & π , where there are n copies of π .

We will frequently need to discard unwanted booleans without the use of exponentials. This
can be achieved with the following family of proofs.

Definition 5.3. Let π be a proof of 
 �A. We recursively define a family of proofs

nboolweak(π , k) : 
, k nbool�A

for k≥ 0 by defining nboolweak(π , 0)= π , and defining nboolweak(π , k+ 1) as the proof

nboolweak(π , k)n...

, k nbool�An A�A

� L

, (k+ 1) nbool�A

5.1 Relative step
The goal of this section is to construct a component-wise plain proof

hrelstep : !sbool⊗2h+1 ⊗ !nbool� !sbool⊗2h+3 ⊗ !nbool
which encodes a single step transition of a Turing machine, such that the position of the head
remains in the middle of the sequence of s-booleans representing the tape. For this to be possible,
we introduce two new copies of the blank symbol, to be appended to the left end of the tape if the
head moves left, and likewise for right. As an example, if the tape contents were initially

σ−h . . . σ−1σ0σ1 . . . σh

then relstep would produce the sequence

�� σ−h . . . σ−1σ
′
0σ1 . . . σh

if the Turing machine moved left, where σ ′
0 is the newly written symbol. Note that the new symbol

in the centre of the tape is σ−1. If instead the Turing machine moved right, then relstep would
produce the sequence

σ−h . . . σ−1σ
′
0σ1 . . . σh ��,

thus causing σ1 to become the new symbol in the centre of the tape.
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Lemma 5.4. For−h− 1≤m≤ h+ 1, there exists a proof msymbol which computes the new symbol
in position m, relative to the new tape head position.

Proof. In order to compute the symbol in relative position m, the proof msymbol will require a
copy of the symbol in positionm− 1 to be used if we move left, and the symbol in positionm+ 1
if we move right. We will also need to provide each proof msymbol with a copy of the state and
the currently scanned symbol, in order to compute the direction to direction to move. Define π
as the following proof.

2
δtrans...

sbool, nbool� bool

boolweak(seval, 1)...
sbool, sbool,As �A

boolweak(seval, 1)...
sbool, sbool,As �A

exch
sbool, sbool,As �A

&R

sbool, sbool,As �A2 A�A
� L

sbool, sbool, bool,As �A
� R

sbool, sbool, bool� sbool
cut

sbool, sbool, sbool, nbool� sbool

If α, β , σ ∈� and q ∈Q, then we have

�π�(α, β , σ , q)=
{
α δ2(σ , q)= 0 (left)
β δ2(σ , q)= 1 (right).

For the symbols not near the tape head (m �= ±1) or the ends of the tape (m �= ±h,±(h+ 1)), we
can simply define msymbol= π , with the understanding that the inputs to msymbol will be the
s-booleans corresponding to relative position m− 1,m+ 1 and 0 respectively. For m= ±h,
±(h+ 1), we define msymbol as the cut of the blank symbol 0 against π , in order to introduce
new blank symbols at the ends of the tape. This produces a proof of sbool, sbool, nbool� sbool.
Finally for m= ±1, we must also compute a copy of the new symbol, which can be achieved by
cutting 0

δtrans against π , producing a proof of sbool, nbool, sbool, sbool, nbool� sbool.

Proposition 5.5. For h≥ 0, there is a component-wise plain proof

hrelstep : !sbool⊗2h+1 ⊗ !nbool� !sbool⊗2h+3 ⊗ !nbool
which encodes a single transition step of a given Turing machine, using relative tape coordinates.

Proof. For −h− 1≤m≤ h+ 1 we derelict the hypotheses of msymbol and then promote the
result, do the same with 1

δtrans, and then we tensor all these promoted proofs together, and per-
form contractions. In total, it is necessary to create two copies of each sbool other than the current
symbol, along with 2k+ 6 copies of the current symbol and state. These copies are used to pro-
duce two copies of the new symbol, one copy of the new state and 2k+ 3 copies of the direction
to move; one for each of the proofs msymbol.

Remark 5.6. We now compute the polynomials associated with hrelstep:

αm =
∑
i∈�

ami �i�, β =
∑
q∈Q

bq�q�.
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We compute the value of �hrelstep� on |∅〉α−h ⊗ ...⊗ |∅〉αh ⊗ |∅〉β . The image of this element is a
tensor of the form

|∅〉θ−h−1 ⊗ ...⊗ |∅〉θh+1 ⊗ |∅〉μ
where the individual vectors θm,μ are described as follows. Let (σ̂ q

i , q̂
q
i , d̂

q
i )= δ(i, q). For m �=

±1,±h,±(h+ 1) the vector θm is given by

�msymbol�(αm−1 ⊗ αm+1 ⊗ α0 ⊗ β)

=
∑
i∈�

∑
j∈�

∑
k∈�

∑
q∈Q

am−1
i am+1

j a0kbq(δd̂qk=0�i� + δd̂qk=1�j�)

=
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=0

⎞⎠(∑
i∈�

am−1
i �i�

)⎛⎝∑
j∈�

am+1
j

⎞⎠
+
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=1

⎞⎠(∑
i∈�

am−1
i

)⎛⎝∑
j∈�

am+1
j �j�

⎞⎠ .

Form= h, h+ 1 the vector θm is given by

�msymbol�(αm−1 ⊗ α0 ⊗ β)

=
∑
i∈�

∑
k∈�

∑
q∈Q

am−1
i a0kbq(δd̂qk=0�i� + δd̂qk=1�0�)

=
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=0

⎞⎠(∑
i∈�

am−1
i �i�

)

+
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=1

⎞⎠(∑
i∈�

am−1
i

)
�0�.

Form= −h,−h− 1 the vector θm is given by

�msymbol�(αm+1 ⊗ α0 ⊗ β)

=
∑
i∈�

∑
k∈�

∑
q∈Q

am+1
i a0kbq(δd̂qk=0�0� + δd̂qk=1�i�)

=
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=0

⎞⎠(∑
i∈�

am+1
i

)
�0�

+
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=1

⎞⎠(∑
i∈�

am+1
i �i�

)
.
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Finally θ1 is

�1symbol�(α0 ⊗ β ⊗ α2 ⊗ α0 ⊗ β)

=
∑
i∈�

∑
p∈Q

∑
j∈�

∑
k∈�

∑
q∈Q

a0i bpa
2
j a

0
kbq(δd̂qk=0�σ̂

p
i � + δd̂qk=1�j�)

=
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=0

⎞⎠⎛⎝∑
i∈�

∑
p∈Q

a0i bp�σ̂
p
i �

⎞⎠⎛⎝∑
j∈�

a2j

⎞⎠
+
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=1

⎞⎠(∑
i∈�

a0i

)⎛⎝∑
p∈Q

bp

⎞⎠⎛⎝∑
j∈�

a2j �j�

⎞⎠ .

and θ−1 is
�−1symbol�(α−2 ⊗ α0 ⊗ β ⊗ α0 ⊗ β)

=
∑
i∈�

∑
j∈�

∑
p∈Q

∑
k∈�

∑
q∈Q

a−2
i a0j bpa

0
kbq(δd̂qk=0�i� + δd̂qk=1�σ̂

p
j �)

=
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=0

⎞⎠(∑
i∈�

a−2
i �i�

)⎛⎝∑
j∈�

a0j

⎞⎠⎛⎝∑
p∈Q

bp

⎞⎠
+
⎛⎝∑

k∈�

∑
q∈Q

a0kbqδd̂qk=1

⎞⎠(∑
i∈�

a−2
i

)⎛⎝∑
j∈�

∑
p∈Q

a0j bp�σ̂
p
j �

⎞⎠ .

The vector μ is computed by

�1δtrans�(α
0 ⊗ β)=

∑
k∈�

∑
q∈Q

a0kbq�q̂
q
k�.

Remark 5.7. We have now given two encodings of the step function of a Turing machine which
use booleans to encode the contents of the tape squares, and which index these tape squares rel-
ative to the head, namely boolstep (in Section 4.2) and relstep. These are not proofs of the same
sequents but there is a natural way to compare them when s= 2, and the result of this comparison
is negative: the encodings are genuinely different.

Recall that pboolstepa,b,c,dA is a proof of

a !boolB, b !boolB, !nboolB � !bool⊗c
A ⊗ !bool⊗d

A ⊗ !nboolA (21)

where B=A3p+e+1 with e=max{c, d}. In general, the diagram

!�boolB�⊗2h+1 ⊗ !�nboolB�

!�booltype�⊗2h+1⊗!�nbooltype�

��

�1boolsteph+1,h,h+2,h+1�
�� !�boolA�⊗2h+3 ⊗ !�nboolA�

!�boolA�⊗2h+1 ⊗ !�nboolA�
�hrelstep�

�� !�boolA�⊗2h+3 ⊗ !�nboolA�

=

��

does not commute. However, the two encodings do give rise to the same naive probabilistic
extension of the step function; see Clift and Murfet (2018, Appendix D).
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5.2 Absolute step
Suppose we are confined to a region of the tape which is h symbols long, encoded by a sequence
of sbool’s which appear in the same order as they occur on the tape. The goal of this section is to
construct a component-wise plain proof

habsstep : !sbool⊗h ⊗ !nbool⊗ !hbool� !sbool⊗h ⊗ !nbool⊗ !hbool
which encodes a single step transition of a Turing machine, where the purpose of the h-boolean
is to keep track of the head position, and thus it decrements if we move left, and increments if we
move right. The valid positions are {0, . . . , h− 1} which we identify with Z/hZ. All positions are
read modulo h, and so if the head is currently in position h− 1 and it moves right, it moves to
position 0, and similarly if the head is at position 0 and moves left, it moves to position h− 1.

Lemma 5.8. For 0≤m≤ h− 1, there exists a proof
msymbol : sbool, nbool, hbool� sbool

which encodes the function

(σ , q, i) �→
{
σ i �=m
δ0(σ , q) i=m.

Proof. Let π : sbool, nbool,As �A be the proof nboolweak(seval, 1). Then msymbol is the follow-
ing proof.

πm & 0
δtrans & π

h−m−1
...

sbool, nbool,As �Ah A�A
� L

sbool, nbool, hbool,As �A
� R

sbool, nbool, hbool� sbool

Lemma 5.9. There exists a proof

state : h sbool, nbool, hbool� nbool

which encodes the function

(σ0, ..., σh−1, q, i) �→ δ1(σi, q).

Proof. For 0≤ i≤ h− 1, define πi be the proof as the proof

sboolweak(1δtrans, h− 1) : h sbool, nbool,An �A,

where the original sbool from the proof 1δtrans is in the ith position on the left of the turnstile in
πi. Then state is the following proof.

π0 & . . . & πh−1...
h sbool, nbool,An �Ah A�A

� L
h sbool, nbool, hbool,An �A

� R
h sbool, nbool, hbool� nbool
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Lemma 5.10. There exists a proof

tapehead : h sbool, nbool, hbool, hbool� hbool

which encodes the function

(σ0, ..., σh−1, q, i, j) �→
{
i− 1 δ2(σj, q)= left
i+ 1 δ2(σj, q)= right.

Proof. Let τL : hbool,Ah �A be the proof which converts the h-boolean i into the h-boolean i− 1
modulo h, defined as follows:

A�A &Lh−1

Ah �A
A�A &L0
Ah �A . . .

A�A &Lh−2

Ah �A
&R

Ah �Ah A�A � L

hbool,Ah �A

Similarly define a proof τR which encodes i �→ i+ 1 modulo h.
Given 0≤ i≤ h− 1, let ρi be the following proof, where as in Lemma 5.9 the i indicates which

sbool in the leftmost branch is the original copy from the proof 2trans.

sboolweak(2δtrans, h− 1)
...

h sbool, nbool,A2 �A
� R

h sbool, nbool� bool

τL & τR...
hbool,Ah �A2 A�A

� L

hbool, bool,Ah �A
cut

h sbool, nbool, hbool,Ah �A

Then tapehead is:

ρ0 & . . . & ρh−1...
h sbool, nbool, hbool,Ah �Ah A�A

� L
h sbool, nbool, hbool, hbool,Ah �A

� R
h sbool, nbool, hbool, hbool� hbool

Proposition 5.11. There is a component-wise plain proof

habsstep : !sbool⊗h ⊗ !nbool⊗ !hbool� !sbool⊗h ⊗ !nbool⊗ !hbool
which encodes a single transition step of a given Turing machine, using absolute tape coordinates.

Proof. Clear from the above. In total, the contraction steps at the bottom of the tree produce three
copies of each tape sbool, h+ 2 copies of the state nbool and h+ 3 copies of the hboolwhich keeps
track of the head position.

Remark 5.12. One interesting feature of the absolute encoding is that it can be iterated for a
variable number of steps through the use of an int, since the denotation of habsstep is an endo-
morphism. Note that this is impossible for the relative encoding, since the type changes after each
step due to the growth of the tape.
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Remark 5.13. We now compute the denotation of habsstep. Let H = {0, ..., h− 1}, and define

αm =
∑
im∈�

amim�im�, β =
∑
q∈Q

bq�q�, γ =
∑
k∈H

ck�k�.

We compute the value of �habsstep� on |∅〉α0 ⊗ ...⊗ |∅〉αh−1 ⊗ |∅〉β ⊗ |∅〉γ . Let (σ̂ q
i , q̂

q
i , d̂

q
i )=

δ(i, q). Note that:

�msymbol�(αm ⊗ β ⊗ γ )

=
∑
im∈�

∑
q∈Q

amimbq

⎛⎜⎜⎝cm�σ̂
q
im� +

∑
k∈H
k�=m

ck�im�

⎞⎟⎟⎠ ,

�state�(α0 ⊗ ...⊗ αh−1 ⊗ β ⊗ γ )
=
∑
i0∈�

· · ·
∑

ih−1∈�

∑
q∈Q

∑
k∈H

ai0 . . . aih−1bqck�q̂
q
ik�

=
∑
k∈H

ck

⎡⎢⎢⎣
⎛⎝∑

ik∈�

∑
q∈Q

akikbq�q̂
q
ik�

⎞⎠ ∏
m∈H
m �=k

⎛⎝∑
im∈�

amim

⎞⎠
⎤⎥⎥⎦ , and

�tapehead�(α0 ⊗ ...⊗ αh−1 ⊗ β ⊗ γ⊗2)

=
∑
i0∈�

· · ·
∑

ih−1∈�

∑
q∈Q

∑
k∈H

∑
l∈H

ai0 . . . aih−1bqckcl
(
δd̂qil=0�k− 1� + δd̂qil=1�k+ 1�

)

=
∑
l∈H

cl

⎡⎢⎢⎣
⎛⎝∑

il∈�

∑
q∈Q

∑
k∈H

alilbqck
(
δd̂qil=0�k− 1� + δd̂qil=1�k+ 1�

)⎞⎠ ∏
m∈H
m �=l

⎛⎝∑
im∈�

amim

⎞⎠
⎤⎥⎥⎦ ,

where k± 1 is computed modulo h.

Notes
1 More precisely, the denotational semantics of Ehrhard–Regnier’s derivative in the Sweedler semantics, and other similar
semantics, involves such variations.
2 This rule appears to be missing from the cut-elimination transformations in Melliès (2009).
3 It is straightforward tomodify what follows to allow larger tape alphabets. At any rate, any Turingmachine can be simulated
by one whose tape alphabet is {0, 1}, so this is really not as restrictive as it might seem (Rogozhin 1996).
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Appendix A. Ints, Bints and Bools
In this appendix, we develop the basic properties of denotations of integers, binary integers and
booleans in the Sweedler semantics. The denotations of integers and booleans are easily seen to be
linearly independent, but binary integers are more interesting.

Proposition A.1. Let A be a formula with dim�A�> 0. Then

(i) The set {�nA�}n≥0 is linearly independent in �intA�.
(ii) The set {�iA�}n−1

i=0 is linearly independent in �nboolA�.

Proof. For (i) suppose that
∑n

i=0 ci�i� = 0 for some scalars c0, ..., cn ∈ k. Let p ∈ k[x] be the
polynomial p=∑n

i=0 cixi. For α ∈ �A�A� we have

p(α)=
n∑

i=0
ciαi =

n∑
i=0

ci�i�|∅〉α = 0.

Theminimal polynomial of α therefore divides p. Since this holds for any linearmap α ∈ �A�A�,
it follows that p is identically zero, as k is characteristic zero. The claim in (ii) is clear since the
denotations �i�A are projections from �A�⊕n.

Corollary A.2. The function N→ �intA� given by n �→ �nA� is injective.

We now investigate the question of whether binary integers have linearly independent denota-
tions. Surprisingly this does not hold in general. In fact, for an atomic formula A it is impossible
to choose �A� finite-dimensional such that all binary integers are linearly independent in �bintA�.

For a binary integer T, one can write the value of �TA� on arbitrary kets as a sum of its values
on vacuum vectors. This will simplify the task of checking whether binary integers have linearly
dependent denotations; at least in the case where we have a fixed number of zeroes and ones, we
only need to check linear dependence after evaluating on vacuum vectors. From this point onward
let A be a fixed type and write �T� for �TA�.
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PropositionA.3. For T ∈ {0, 1}n, let ti be the ith digit of T and let T0 = {i | ti = 0} and T1 = {i | ti =
1}. Then

�TA�(|α1, ..., αk〉γ ⊗ |β1, ..., βl〉δ)=
∑

f∈Inj ([k],T0)

∑
g∈Inj ([l],T1)



f ,g
n ◦ · · · ◦ 
f ,g

1 ,

where



f ,g
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αf−1(i) i ∈ Im (f )
βg−1(i) i ∈ Im (g)
γ i ∈ T0 \ Im (f )
δ i ∈ T1 \ Im (g).

In particular, �TA� vanishes on |α1, ..., αk〉γ ⊗ |β1, ..., βl〉δ if k> |T0| or l> |T1|.

Proof. This follows in the same way as Clift and Murfet (2017, Lemma 4.11).

Proposition A.4. Let m, n≥ 0, and let T ∈ {0, 1}∗ contain exactly m zeroes and n ones. Then for
αi, βi, γ , δ ∈ �A�A� we have:

�T�(|α1, ..., αm〉γ , |β1, ..., βn〉δ)=
∑
I⊆[m]

∑
J⊆[n]

(− 1)m−|I|(− 1)n−|J|�T�

(
|∅〉∑

i∈I
αi , |∅〉∑

j∈J
βj

)
. (∗)

Note that the right-hand side does not depend on γ and δ.

Proof. A single term of the double sum on the right-hand side of ( ∗ ) corresponds to replacing (in
the reversal of T) each 0 with

∑
i αi and each 1 with

∑
j βj. After expanding these sums, consider

the coefficient of a particular noncommutative monomial p which contains only the variables
αi1 , ..., αik , βj1 , ..., βjl , where {i1, ..., ik} ⊆ [m] and {j1, ..., jl} ⊆ [n]. The terms in the right-hand side
of ( ∗ ) which contribute to this coefficient are precisely those for which the set I contains each of
i1, ..., ik, and J contains each of j1, ..., jl. Hence the coefficient of p is∑

{i1,...,ik}⊆I⊆[m]
{j1,...,jl}⊆J⊆[n]

(− 1)m−|I|(− 1)n−|J| =
m∑
i=k

n∑
j=l

(− 1)m−i(− 1)n−j
(
m− k
i− k

)(
n− l
j− l

)

=
m∑
i=k

(− 1)m−i
(
m− k
i− k

) n∑
j=l

(− 1)n−j
(
n− l
j− l

)

=
{
1 m= k and n= l
0 otherwise.

So the only monomials p with non-zero coefficient are those which contain each αi and each βj
exactly once, which agrees with the left-hand side of ( ∗ ) by Proposition A.3.

In order to make the content of the above proposition clear, we give a concrete example
involving a specific binary sequence.

Example A.5. Let T = 0010. The left-hand side of ( ∗ ) is therefore∑
σ∈S3

ασ (1)β1ασ (2)ασ (3)
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while the right-hand side is
(α1 + α2 + α3)β1(α1 + α2 + α3)(α1 + α2 + α3)− (α1 + α2)β1(α1 + α2)(α1 + α2)−
(α1 + α3)β1(α1 + α3)(α1 + α3)− (α2 + α3)β1(α2 + α3)(α2 + α3)+
α1β1α1α1 + α2β1α2α2 + α3β1α3α3.

After expanding the above, consider for example the monomial α1β1α1α1:
(α1 + α2 + α3)β1(α1 + α2 + α3)(α1 + α2 + α3)− (α1 + α2)β1(α1 + α2)(α1 + α2)−
(α1 + α3)β1(α1 + α3)(α1 + α3)− (α2 + α3)β1(α2 + α3)(α2 + α3)+
α1β1α1α1 + α2β1α2α2 + α3β1α3α3.

As expected, the coefficient is
(2
2
)− (21)+ (20)= 1− 2+ 1= 0.

Corollary A.6. Let m, n≥ 0, let T ∈ {0, 1}∗ contain exactly m zeroes and n ones, and let 0≤ k≤m
and 0≤ l≤ n. Then

�T�(|α1, ..., αk〉γ , |β1, ..., βl〉δ)=
∑
I⊆[m]

∑
J⊆[n]

(− 1)m−|I|(− 1)n−|J|

(m− k)!(n− l)! �T�

(
|∅〉∑

i∈I
αi , |∅〉∑

j∈J
βj

)
,

where on the right-hand side we define αi = γ for i> k and βj = δ for j> l.

Proof. Note that by Proposition A.3

�T�(|α1, ..., αk〉γ , |β1, ..., βl〉δ)=
�T�(|α1, ..., αk, γ , ..., γ 〉γ , |β1, ..., βl, δ, ..., δ〉δ)

(m− k)!(n− l)! ,

where the kets on the right have length m and n respectively. Then apply the previous
proposition.

Lemma A.7. Let T1, ..., Tr ∈ {0, 1}∗ each contain exactly m zeroes and n ones, and let c1, ..., cr ∈
k \ {0}. Then∑s cs�Ts� = 0 in �bintA� if and only if

∑
s cs�Ts�(|∅〉α , |∅〉β)= 0 in �A�A� for all

α, β ∈ �A�A�.

Proof. (⇒ ) is immediate. For (⇐ ), suppose that
∑r

s=1 cs�Ts�(|∅〉α , |∅〉β)= 0 for all α, β . It
follows from Corollary A.6 that

r∑
s=1

cs�Ts�(|α1, ..., αk〉γ , |β1, ..., βl〉δ)

=
∑
I⊆[m]

∑
J⊆[n]

(− 1)m−|I|(− 1)n−|J|

(m− k)!(n− l)!
r∑

s=1
cs�Ts�

(
|∅〉∑

i∈I
αi , |∅〉∑

j∈J
βj

)

=
∑
I⊆[m]

∑
J⊆[n]

(− 1)m−|I|(− 1)n−|J|

(m− k)!(n− l)! · 0

= 0,
where we again define αi = γ for i> k and βj = δ for j> l.

Suppose that A is a formula with dim�A� = n<∞. By the above lemma, the existence of dis-
tinct binary integers with linearly dependent denotations reduces to the task of finding a non-zero
noncommutative polynomial tn(x, y) such that tn(α, β)= 0 for all n× nmatrices α, β ∈ �A�A�.
To describe such a polynomial, we will require the following theorem.
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Theorem A.8. (Amitsur–Levitzki Theorem). For n ∈N, let k〈x1, ..., xn〉 denote the ring of non-
commutative polynomials in n variables, and let sn ∈ k〈x1, ..., xn〉 be the polynomial

sn =
∑
σ∈Sn

sgn(σ )xσ (1) · · · xσ (n).

Then for all α1, ..., α2n ∈Mn(k), we have s2n(α1, ..., α2n)= 0. Furthermore, Mn(k) does not satisfy
any polynomial identity of degree less than 2n.

Proof. See Drensky and Formanek (2004, Theorem 3.1.4).

Corollary A.9. For n ∈N, there exists a non-zero polynomial tn ∈ k〈x, y〉 such that for all α, β ∈
Mn(k) we have tn(α, β)= 0.

Proof. The polynomial tn(x, y)= s2n(x, xy, ..., xy2n−1) is non-zero and satisfies the desired
property.

Proposition A.10. For any formula A such that dim�A�<∞, there exist distinct binary integers
T1, ..., Tr ∈ {0, 1}∗ such that �T1�, ..., �Tr� are linearly dependent in �bintA�.

Proof. Let n= dim�A�, so that �A�A� ∼=Mn(k). For 1≤ i≤ 2n, letRi be the binary integer 1i−10.
Note that for all α, β ∈Mn(k) we have∑

σ∈S2n
sgn(σ )�Rσ (2n) · · · Rσ (1)�(|∅〉α , |∅〉β)= tn(α, β)= 0.

Hence
∑
σ∈S2n sgn(σ )�Rσ (2n) · · · Rσ (1)� = 0 by Lemma A.7.

Remark A.11. Note that despite the above proposition, if we have a particular finite collection
of binary integers T1, ..., Tr in mind it is always possible for A atomic to choose �A� such that
�T1�, ..., �Tr� are linearly independent in �bintA�. To see this, let d denote the maximum length
of the Ts, and note that a linear dependence relation between the �Ts� gives rise to a polynomial
identity for Mn(k) of degree d, where n= dim�A�. By Amitsur–Levitzki we must therefore have
d ≥ 2n, so if we choose dim�A�> d/2 then �T1�, ..., �Tr� must be linearly independent.

In addition, while linear independence does not always hold for an arbitrary collection of
binary integers, it turns out that we do have linear independence for any pair of distinct binary
integers, so long as dim�A� is at least 2.

Proposition A.12. Let A be a formula with dim�A� ≥ 2. The function {0, 1}∗ → �bintA� which
maps S to �S� is injective.

Proof. Let n= dim�A�. For simplicity of notation we suppose that n is finite, as the case where n
is infinite is similar. Consider the subgroup G of GLn(k) generated by

α =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
2 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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It is well known thatG is freely generated by α and β ; see de la Harpe (2000, Section II.B). Suppose
that �S� = �T�, so that in particular we have �S�(|∅〉α , |∅〉β)= �T�(|∅〉α , |∅〉β). In other words, the
composite obtained by substituting α for zero and β for one into the digits of S is equal to the
corresponding composite for T. Since α and β generate a free group, it follows that S= T.

Proposition A.13. Let A be a formula with dim�A� ≥ 2, and let S, T ∈ {0, 1}∗ with S �= T. The
denotations �S�, �T� are linearly independent in �bintA�.

Proof. Suppose we are given S, T ∈ {0, 1}∗ such that a�S� + b�T� = 0 for some a, b �= 0. With α, β
as above, it follows that

�S�(|∅〉α , |∅〉β) ◦ �T�(|∅〉α , |∅〉β)−1 = −b
a
I

So �S�(|∅〉α , |∅〉β) ◦ �T�(|∅〉α , |∅〉β)−1 is in the center of G, which is trivial since G is free of rank 2,
and hence a= −b. It follows that �S� = �T� and therefore S= T by the previous proposition.

Cite this article: Clift J and Murfet D (2020). Encodings of Turing machines in linear logic. Mathematical Structures in
Computer Science 30, 379–415. https://doi.org/10.1017/S0960129520000109
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