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Abstract. High-energy or relativistic electron beam acceleration along and across
a magnetic field, and the generation of an electric field transverse to the magnetic
field, both induced by the Compton scattering of almost perpendicularly propagat-
ing extraordinary waves, are investigated theoretically based on kinetic wave equa-
tions and transport equations. Compton scattering occurs via nonlinear Landau
damping of two extraordinary waves interacting nonlinearly with the electron
beam, satisfying the resonance condition of ωk−ωk′ −(k⊥−k′

⊥)νd−(k‖−k′
‖)νb =mωce

(m = 0, ±1), where νb and νd are the parallel and perpendicular velocities of the
electron beam, respectively. The transport equations can be derived from the single-
particle theory and also from Vlasov–Maxwell equations. The transport equations
show that two extraordinary waves accelerate the electron beam in the k′′ direction
(k′′ =k−k′). Simultaneously, an intense cross-field electric field E0 =B0 × vd/c is
generated via the dynamo effect owing to the perpendicular drift of the electron
beam to satisfy the generalized Ohm’s law, whichmeans that this cross-field electron
drift is identical to the E×B drift. The single-particle theory is very useful for an
easy and straightforward understanding of the physical mechanism of the electron
beam acceleration and the generation of cross-field electric field, although the
rigorously exact transport equations are derived from Vlasov–Maxwell equations.

1. Introduction
Nonlinear wave–particle scattering induced by nonlinear Landau and cyclotron
damping of electromagnetic and electrostatic waves in an unmagnetized or mag-
netized plasma has attracted a great deal of attention in theoretical [1–11] and
experimental [12–16] research of plasma physics over recent years. This nonlin-
ear phenomenon is one of the fundamental mechanisms for anomalous resistiv-
ity, anomalous transport, plasma heating and acceleration, and plasma current
drive in fusion plasmas, as well as space plasmas. Recently, plasma heating due
to nonlinear Landau or cyclotron damping of electrostatic waves has been invest-
igated theoretically [3, 4] and experimentally [12–16]. In particular, it has been
shown by the present author and co-workers experimentally and theoretically that
a strong radial electric field and a radial transport of heated plasma electrons
are generated by electrostatic waves excited by nonlinear Landau damping in an
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electron-beam–plasma system, and they can maintain the large and abrupt radial
inhomogeneity of electron temperature and density [15–17]. The author has de-
veloped a general theory for the transport equations for the nonlinear Landau and
cyclotron damping of electromagnetic and electrostatic waves in magnetized plas-
mas [4,7]. They are derived from the θ-dependent velocity-space diffusion equation
obtained by means of the perturbation theory of Vlasov–Maxwell equations. Based
on these works, it has been predicted that high-energy or relativistic electrons can
be accelerated via the nonlinear Landau and cyclotron damping of electromagnetic
and electrostatic waves in unmagnetized [5,8,9] and magnetized [6,10,11] plasmas.
On the other hand, it was verified theoretically, based on the θ-dependent quasilin-
ear velocity-space diffusion equation, that the plasma acceleration and transport
along and across the magnetic field can be induced via the Landau and cyclotron
damping of almost perpendicularly propagating electrostatic and electromagnetic
waves, and the electric field transverse to the magnetic field can be generated
simultaneously by the dynamo effect of the perpendicular particle drift to satisfy
the generalized Ohm’s law [17–21]. Moreover, the present author has also clarified
(theoretically on the basis of the θ-dependent relativistic quasilinear momentum-
space diffusion equation) that the relativistic and non-relativistic particle accelera-
tion along and across a magnetic field can be generated by almost perpendicularly
propagating electrostatic waves in a relativistic magnetized plasma, and the cross-
field electric field is created simultaneously via the perpendicular particle acceler-
ation [19,20]. This quasilinear process explains the fluctuation-induced anomalous
plasma transport and the potential formation in fusion plasmas and an electron-
beam–plasma system [15–17] well, as well as explaining the perpendicular ion
acceleration and the electric field observed in tokamaks and space plasmas. In
particular, the generation of the cross-field electric field is exceptionally important
in connection with the stability of the magnetically confined fusion plasma, since
it can be considered that this process causes the rapid change of the plasma profile
or the collapse of the plasma.
It has been shown that the particle acceleration and transport induced by non-

linear wave–particle scattering or non-resonantly produced quasi-modes in a fusion
plasma are potentially important [22–25]. In addition, it has been clarified that the
generation of electromagnetic radiation in the space plasma can be explained based
on the plasma–maser interaction among the electrostatic lower-hybrid turbulence,
accelerated electrons and extraordinary mode radiation, and it has been pointed
out that the electrons are strongly accelerated by lower-hybrid turbulence [26–
28]. As previously predicted [6], the numerical analysis of the nonlinear wave–
particle coupling coefficients has demonstrated that the strong nonlinear scattering
and absorption of the extraordinary wave can be caused by nonlinear electron
cyclotron damping due to the interaction with high-energy electrons that satisfy
the resonance condition of ωk − ωk′ − (k‖ − k′

‖)ν‖ =mωce (m = 1) and result in the
efficient acceleration of high-energy or relativistic electrons. Here, ωce is the electron
cyclotron frequency. Consequently, the nonlinear scattering of the extraordinary
wave may provide an effective means for an acceleration of high-energy or relativ-
istic electrons [29–35].
Moreover, the present author has verified (by numerical analysis of the nonlin-

ear wave–particle coupling coefficients) that a high-energy or relativistic electron
beam can be accelerated efficiently along the magnetic field via Compton scatter-
ing induced by the nonlinear electron Landau damping of almost perpendicularly
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propagating extraordinary waves [10, 11]. In this nonlinear scattering, two ex-
traordinary waves slightly separated in frequency interact nonlinearly with an
electron beam, satisfying the resonance condition of ωk − ωk′ − (k‖ − k′

‖)νb = 0
(m = 0), and the electron beam with velocity νb can be accelerated or decelerated
efficiently to the phase velocity of the beat-wave ωk′′/k′′

‖ near the speed of light, when
ωk′′/k′′

‖ is slightly larger or smaller than νb, respectively. Here, ωk′′ = ωk − ωk′ and
k′′

‖ = k‖ −k′
‖. For ωk, ωk′ �ωh (where ωh is the upper-hybrid frequency), the efficient

acceleration or deceleration occurs via the parallel pondermotive force due to the
wave electric field. For ωk, ωk′ � ωR (where ωR is the right-hand cutoff frequency),
the efficient acceleration or deceleration occurs via the nonlinear v × B Lorentz
force. For a sufficiently higher frequency (ωk, ωk′ � ωR), the rate of acceleration
and deceleration decreases enormously and approaches that in a vacuum.
On the other hand, theoretical [36–39] and experimental [40–42] studies of the

stimulated Compton scattering of electromagnetic waves in an unmagnetized plasma
have been reported by many researchers in recent years, where it was demonstrated
that the rapid and strong acceleration and heating of electrons result from this
nonlinear scattering. Recently, theoretical and experimental investigations of the
multiphoton Compton scattering of an electromagnetic field in which a laser pulse is
scattered from ultrarelativistic electron beams (Stanford Linear Accelerator Center
(SLAC) beam) have been performed. Hartemann and Kerman [43] have presented
the classical theory of multiphoton Compton scattering in which an ultrashort laser
pulse in vacuum is scattered from a 50 GeV SLAC beam. Bula et al. [44] have
reported experimental observations of multiphoton Compton scattering in which
terawatt pulses from a Nd:glass laser are scattered from a 46.6 GeV SLAC beam.
However, to the best of our knowledge, the only theoretical study concerning the
Compton scattering of electromagnetic waves by a high-energy electron beam in
a magnetized plasma has been presented by the present author and co-workers
[10, 11]. Accordingly, a further detailed theoretical investigation of Compton scat-
tering in a magnetized plasma has been developed.
In the present work, the acceleration and heating of a high-energy or relativistic

electron beam due to the Compton scattering induced by the nonlinear electron
Landau and cyclotron damping of almost perpendicularly propagating extraordin-
ary waves are investigated theoretically by developing the previous work [10,11]. It
was clarified on the basis of single-particle theory [45] that the electron beam can
be accelerated not only along the magnetic field but also across the magnetic field,
and an electric field transverse to the magnetic field is generated simultaneously.
In this nonlinear scattering, two extraordinary waves interact nonlinearly with
the electron beam, satisfying the resonance condition of ωk − ωk′ − (k⊥ − k′

⊥)νd −
(k‖ − k′

‖)νb = mωce (m = 0, ±1), and efficiently accelerate or decelerate the electron
beam in the k′′ direction. Here, νb and νd are the parallel and perpendicular velo-
cities of the electron beam, respectively, k= (k⊥, 0, k‖), k′ = (k′

⊥, 0, k′
‖) and k

′′ =k−
k′ = (k′′

⊥, 0, k′′
‖). The transport equations can be derived from single-particle theory

and also from the velocity-space diffusion equation obtained on the basis of Vlasov–
Maxwell equations. They show that the two extraordinary waves can accelerate and
decelerate the electron beam in the k′′ direction. Simultaneously, an intense cross-
field electric field E0 =B0 × vd/c is created via the dynamo effect owing to the
cross-field electron drift to satisfy the generalized Ohm’s law [17–21,46,47]. This
means that the cross-field electron drift is identical to theE×B drift. Single-particle
theory is considerably useful for the easy and straightforward understanding of
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the physical mechanisms of particle acceleration and the generation of the cross-
field electric field [11,21,22,45–47]. The results obtained are compared with the
rigorously exact transport equations derived from Vlasov–Maxwell equations, and
they are found to be in approximate and satisfactory agreement. As was previously
shown, for the nonlinear scattering ofm = 0 the efficient acceleration or deceleration
in the k′′ direction can occur when the Doppler-shifted phase velocity of the beat-
wave (ωk′′ − k′′

⊥νd)/k′′
‖ is slightly larger or smaller than νb, respectively. For the

nonlinear scattering of m = ±1, the efficient acceleration in the k′′ direction can al-
ways occur for ωk′′/k′′

‖ in the close neighborhood of the value satisfying the resonance
condition. For both the scattering processes of m = 0, ±1, the efficient acceleration
or deceleration can arise from the pondermotive force due to the wave electric field
for ωk, ωk′ � ωh and from the nonlinear v × B Lorenz force for ωk, ωk′ �ωR, as was
also previously shown.
In a magnetized plasma immersed in an electric field, the equation called the

generalized Ohm’s law, E0+vd×B0/c= ηJ, is satisfied. Here, J is the electric current
density and η is the electrical resistivity. This equation usually shows that the mean
ion velocity is determined by E0, B0 and ηJ. Conversely, we can explain that the
electric field E0 is enhanced or suppressed when a mechanism of acceleration or
deceleration of plasma particles exists. Namely, this equation also expresses the
electric field E0 resulting from the dynamo effect of the cross-field particle drift
vd. Accordingly, it is clarified that the cross-field electric field E0 can be generated
by the particle acceleration due to Compton scattering of extraordinary waves.
In the present work, this nonlinear phenomenon is investigated for a collisionless
plasma with η = 0. On the other hand, in single-particle theory the initial value
problem should be adopted rigorously, as Dawson has investigated linear Landau
damping of longitudinal plasma waves based on such a single-particle method [45].
However, it is extremely difficult to develop the single-particle theory employing the
initial value problem in this work, because the kinetic equation is the fourth-order
nonlinear equation including two electromagnetic waves in a magnetized plasma.
Consequently, in the present work the nonlinear kinetic equation is treated without
consideration of the initial value problem, since it is regarded as the most important
in clarifying the physical mechanism of the cross-field particle acceleration.
In the next section, single-particle theory for the Compton scattering of ex-

traordinary waves is described. In Sec. 3, the general and exact transport equa-
tions derived from Vlasov–Maxwell equations are presented. Finally, a summary of
results is given in Sec. 4.

2. Single-particle theory
2.1. Resonance condition

In this nonlinear wave–particle scattering, the following well-known resonance
condition is satisfied:

ωk − ωk′ − (k⊥ − k′
⊥)νd − (k‖ − k′

‖)ν‖ = mωce, (1)

which means that two extraordinary waves (ωk,k) and (ωk′ ,k′) scatter from the
beam electrons whose parallel and perpendicular velocities are ν‖ and νd, respect-
ively, where m is an integer. In the present work, the cases of m = 0, ±1 are
investigated.
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2.2. Dispersion relation and polarizations

The dispersion relation and polarizations of wave electric and magnetic fields for
the extraordinary waves are determined by

(εk − Nk) · Ek = 0, (2)

where εk is the dielectric tensor and N jl
k = (c2/ω2

k)(k
2δjl −kjkl) (j, l =x, y, z). Then

the polarizations for the extraordinary wave in a cold plasma are given as follows:

Ey
k

Ex
k

∼= i
ωk

(
ω2
k − ω2

h

)
ω2
peωce

,
Ez
k

Ex
k

∼=
k‖

k⊥
,

Bx
k = −

ck‖

ωk
Ey
k , By

k
∼= 0, Bz

k =
ck⊥
ωk

Ey
k .

(3)

Here, ωpe = (4πnee
2/me)1/2 is the electron plasma frequency, ωce = eB0/mec and

ωh = (ω2
pe + ω2

ce)
1/2 is the upper-hybrid frequency.

2.3. Kinetic equation for an electron beam

In order to derive the transport equations, the single-particle theory for the
Compton scattering of extraordinary waves, which is convenient for understanding
the detailed physical mechanisms of particle acceleration and the generation of the
cross-field electric field, was developed. The previous single-particle theory, in which
the perpendicular drift of the electron beam and the cross-field electric field are not
taken into account, was described in the Appendix of [11]. The kinetic equation
for an electron beam with velocity v, which includes the cross-field electron drift
velocity vd and the cross-field electric field E0, is given by

me
dv
dt

= −e(E0 + E1) − e

c
v× (B0 + B1). (4)

In addition, it is assumed that the following generalized Ohm’s law for a uniform
collisionless plasma is satisfied simultaneously:

E0 +
1
c
vd × B0 = 0. (5)

Here,

r = r0 + vdt + v‖t + 1
2

(
rk + r∗k + rk′ + r∗k′ + r(2)k′′ + r(2)∗

k′′

)
, (6)

v = vd + v‖ + 1
2

(
vk + v∗

k + vk′ + v∗
k′ + v(2)k′′ + v(2)∗

k′′

)
, (7)

E1 = 1
2 (Ek + E∗

k + Ek′ + E∗
k′), (8)

B1 = 1
2 (Bk + B∗

k + Bk′ + B∗
k′), (9)

k× Ek =
ωk
c
Bk, (10)

where vd = cE0 ×B0/B2
0 = (νd, 0, 0), v‖ = (0, 0, ν‖), and E0 = (νd/c)B0. The Larmor

radius of an electron beam is assumed to be zero; that is, a cold electron beam
is considered. The background uniform stationary electric and magnetic fields
E0 = (0, E0, 0) andB0 = (0, 0, B0) are in the y and z directions, respectively.Ek =E(1)

k

and Bk =B(1)
k are the first-order electric and magnetic fields of extraordinary waves,
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respectively, and rk = r(1)k + r(3)k and vk = v(1)k + v(3)k are the first- and third-order
oscillating terms of an electron beam. They obey rk, vk,Ek,Bk ∝ exp[i(k · r − ωkt)]
and the beat-wave is assumed to be absent; that is, E(2)

k′′ =B(2)
k′′ = 0. The oscillating

terms rk, vk are not assumed to satisfy the initial condition of rk = vk = 0 at t = 0,
so the problem can be solved directly, although we cannot obtain the rigorous
temporal evolution of the fourth-order velocity of the electron beam in which the
trapping effect is taken into account [45]. Here, * means the complex conjugate. It
should be noted that vd is identical to the E× B drift velocity. The other notation
are standard.
Equation (5) means that the drift velocity of the electron beam is determined by

E0 and B0. Simultaneously, it can be also stated that the cross-field electric field
E0 is enhanced or suppressed when the mechanism of acceleration and deceleration
of the electron beam exists. Namely, (5) shows E0 caused by the dynamo effect
of vd. Accordingly we find that the cross-field electric field E0 can be generated
by the cross-field electron beam acceleration due to the Compton scattering of
extraordinary waves [17–21,46,47]. As was interpreted in detail previously [19], the
dynamo effect results from the electrical charge separation caused by the Lorentz
force −evd ×B0/c so that the electric field created E0 =B0 × vd/c is balanced with
the Lorentz force.
The kinetic equation of the first order becomes

me
dv(1)k
dt

= −eEk − e

c
v(1)k × B0 − e

c
(vd + v‖) × Bk. (11)

Next, the second-order kinetic equation is given by

me
dv(2)k′′

dt
= −1

2
e
(
r(1)k · ∇

)
E∗
k′ − 1

2
e
(
r(1)∗
k · ∇

)
Ek − e

c
v(2)k′′ × B0 − e

2c
v(1)k × B∗

k′

− e

2c
v(1)∗
k′ × Bk − e

2c
(vd + v‖) ×

[(
r(1)k · ∇

)
B∗
k′ +

(
r(1)∗
k′ · ∇

)
Bk

]
. (12)

These equations are equivalent to (A6) and (A7) of [11], where v‖ is replaced by
vd + v‖. Similarly, the third-order kinetic equation is given by (A8) of [11], where v‖
should also be replaced by vd + v‖. In (A8), only the nonlinear singularity ωk′′ −
k′′

⊥νd − k′′
‖ν‖ =mωce (m = 0, ± 1) should contribute to the acceleration and deceler-

ation of the electron beam. Then we find that only the terms involving r(2)k′′ , v
(2)
k′′

and v(3)k in (A8) should be retained. Consequently, the third-order kinetic equation
for Compton scattering is expressed as follows:

me
dv(3)k
dt

= −1
2
e
(
r(2)k′′ · ∇

)
Ek′ −e

c
v(3)k × B0 − e

2c
v(2)k′′ ×Bk′ − e

2c
(vd + v‖) ×

(
r(2)k′′ · ∇

)
Bk′ .

(13)

Finally, the fourth-order kinetic equation showing the acceleration and deceleration
of the electron beam due to Compton scattering is also given by (A9) of [11], where
the replacements

v(4)‖ → v(4) and − e

c
v(4)b × B0 → −eE(4)

0 − e

c
v(4)d × B0

https://doi.org/10.1017/S002237780300271X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780300271X


Electron beam acceleration and potential formation 337

should be made. Similarly, the terms involving r(3)k , v(3)k and (r(2)k′′ · ∇) should be
retained in (A9), and the fourth-order kinetic equation then becomes

me
dv(4)

dt
= −1

4
e
(
r(3)k · ∇

)
E∗
k − 1

4
e
(
r(3)k′ · ∇

)
E∗
k′ − 1

8
e
(
r(1)k · ∇

)(
r(2)∗
k′′ · ∇

)
E∗
k′

− 1
8
e
(
r(1)k′ · ∇

)(
r(2)k′′ · ∇

)
E∗
k − eE(4)

0 − e

c
v(4)d

×B0 − e

4c
v(3)k × B∗

k − e

4c
v(3)k′ × B∗

k′

− e

8c
v(2)k′′ ×

[(
r(1)k′ · ∇

)
B∗
k +

(
r(1)∗
k · ∇

)
Bk′

]
− e

8c
v(1)k ×

(
r(2)∗
k′′ · ∇

)
B∗
k′

− e

8c
v(1)k′ ×

(
r(2)k′′ · ∇

)
B∗
k, (14)

where v(4) = v(4)d + v(4)‖ and ∇ is only operated to E and B.
From the above equation, we can obtain the following simple kinetic equations:

me
dv
dt

= eD, (15)

E(4)
0 +

1
c
v(4)d × B0 = 0, (16)

D = − 1
4ω̃k

(
k · v(3)k

)
E∗
k − 1

4ω̃k′

(
k′ · v(3)k′

)
E∗
k′ +

1
8ω̃kω̃∗

k′′

(
k′ · v(1)k

)(
k′ · v(2)∗

k′′

)
E∗
k′

− 1
8ω̃k′ ω̃k′′

(
k · v(1)k′

)(
k · v(2)k′′

)
E∗
k − 1

4c
v(3)k × B∗

k − 1
4c
v(3)k′ × B∗

k′

− 1
8c
v(2)k′′ ×

[
1

ω̃k′

(
k · v(1)k′

)
B∗
k +

1
ω̃k

(
k′ · v(1)∗

k

)
Bk′

]

+
1

8cω̃∗
k′′
v(1)k ×

(
k′ · v(2)∗

k′′

)
B∗
k′ − 1

8cω̃k′′
v(1)k′ ×

(
k · v(2)k′′

)
B∗
k, (17)

where ω̃k =ωk − k⊥νd − k‖ν‖, ω̃k′ = ωk′ − k′
⊥νd − k′

‖ν‖ and ω̃k′′ =ωk′′ − k′′
⊥νd − k′′

‖ν‖.
It can be easily proved that Dz/Dx = k′′

‖/k′′
⊥, Dy = 0 because of (3) and ky = k′

y =
k′′

y = 0, thereby the kinetic equation (15) demonstrates that the acceleration or
deceleration of the electron beam occurs only in the k′′ direction. Equation (16)
shows the fourth-order cross-field electric field caused by the change of the cross-
field drift velocity (E(4)

0 = (v(4)
d /c)B0); that is, E

(4)
0 is generated by the dynamo

effect of v(4)d , as has been clarified previously in the similar dynamo effect arising
from the quasilinear wave–particle interaction of electrostatic and electromagnetic
waves [17–21,46,47]. That is, (5) states that the cross-field electric field E0 can be
generated by the dynamo effect owing to the cross-field acceleration of the electron
beam due to the Compton scattering of extraordinary waves. The first four terms on
the right-hand side of (17) express the pondermotive force due to the wave electric
field (Ex

k , Ez
k , E

x
k′ , Ez

k′) and the remaining five terms result from the nonlinear v×B
Lorentz force due to the wave magnetic field (Bk,Bk′ ) or the wave electric field
(Ey

k , E
y
k′ ).
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In (6)–(9), (12)–(14) and (17), the numerical factors are corrected because the
errors in numerical factors in the higher-order kinetic equations exist in the ap-
pendix of [11]. It is noted that d/dt ≈ γNL in (15) (dν

(4)
d /dt ≈ γNLν

(4)
d ≈ eD/me) is

comparable to the nonlinear growth rate of Compton scattering given in (57)–(60)
in Sec. 3; that is, γNL ≈ A0Uk. Accordingly, when this nonlinear effect is strong,
|dγNL/dt| ≈ A2

0UkUk′ � ω2
ce (|me d(cD × B0/B2

0)/dt| � |ev(4)d × B0/c|) is not satisfied
necessarily. Then, it is considered reasonable that the particle drift perpendicular
to the wave momentum does not appear and the particle drift parallel to the wave
momentum appears. When |dγNL/dt| � ω2

ce is satisfied, the particle drift perpendic-
ular to the wave momentum may appear. However the particle drift in this case is
negligibly small, since the nonlinear effect is very weak. Accordingly, it is assumed
that the condition of (5) is satisfied so that the results consistent with the Vlasov–
Maxwell equations given in Sec. 3 are obtained.

2.4. Electron beam acceleration by Compton scattering of m = 0
First, we consider the Compton scattering of m = 0. In (15) and (17) only the
nonlinear singularity ωk′′ − k′′

⊥νd − k′′
‖ν‖ = 0 should contribute to the acceleration

and deceleration of the electron beam. Thus, we employed the relation

Im
1

(k′′
‖ν‖ − k′′

⊥νd − ωk′′)
=

π

k′′
‖
δ(k′′

‖ν‖ − k′′
⊥νd − ωk′′)

∂

∂ν‖
, (18)

which comes from Im(k′′
‖ν‖ + k′′

⊥νd − ωk′′)−1 = πδ(k′′
‖ν‖ + k′′

⊥νd − ωk′′) and the partial
integration in velocity-space. Immediately we find the solutions for v(2)k′′ :

v
(2)
xk′′ = v

(2)
yk′′ = 0,

v
(2)
zk′′ = i

πe2

2m2
e
δ(k′′

‖ν‖ + k′′
⊥νd − ωk′′)Ak,k′ ,

(19)

where

Ak,k′ =

[
k′

‖

ω̃2
k − ω2

ce
−

k‖

ω̃2
k′ − ω2

ce
+

k‖k
′2
‖

k⊥k′
⊥ω̃2

k
−

k2
‖ k′

‖

k⊥k′
⊥ω̃2

k′

]
Ex
kE∗x

k′

+ i

[
k′

‖

ω̃2
k − ω2

ce
−

k‖

ω̃2
k′ − ω2

ce

] [
ωce
ωk′

Ex
kE∗y

k′ − ωce
ωk

Ey
kE

∗x
k′

]

+
1

ωkωk′

[
k′

‖ω̃
2
k

ω̃2
k − ω2

ce
−

k‖ω̃
2
k′

ω̃2
k′ − ω2

ce

]
Ey
kE

∗y
k′ . (20)

Thus, it is now straightforward to find that (15) and (17) become the following
simple kinetic equation:

me
dv(4)

dt
= − πe4k′′

8m3
ek

′′
‖
δ(k′′

‖ν‖ + k′′
⊥νd − ωk′′)

∂

∂ν‖
|Ak,k′ |2. (21)

This equation shows the temporal evolution of the fourth-order drift velocity of the
electron beam and it states that the acceleration and deceleration of the electron
beam occurs in the k′′ direction via Compton scattering induced by the nonlinear
Landau damping of two extraordinary waves due to nonlinear wave–particle inter-
action with the electron beam. The first term of Ak,k′ originates in the first four
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terms in (17) and expresses the pondermotive force due to the wave electric field.
The third term of Ak,k′ originates in the last five terms in (17) and expresses the
nonlinear v × B Lorentz force. The second term of Ak,k′ originates partially in all
terms in (17) and expresses both forces.
Assuming that the velocity distribution function of the electron beam is given

by

gb =
1

π1/2νtb
δ(νx − νd)δ(νy) exp

[
− (νz − νb)2

ν2
tb

]
, (22)

the transport equation indicating the temporal evolution of the momentum density
of the electron beam can be derived by integrating (21) multiplied by nbgb in the
velocity-space, and is expressed as

dPb
dt

=
e2ω2

pbk
′′

16π1/2m2
ek

′′
‖ |k′′

‖ |ν2
tb

ς0k′′ exp
(
−ς2

0k′′
)
|Ak,k′ |2ν‖=(ωk′′ −k′′

⊥νd)/k′′
‖
. (23)

Here, Pb =
∫

d3vnbmevgb = (Pb⊥, 0, Pb‖) (Pb⊥ =nbmeνd, Pb‖ = nbmeνb) is the mo-
mentum density of the electron beam, ω2

pb = 4πnbe
2/me, ς0k′′ = (ωk′′ − k′′

‖νd − k′′
‖νb)/

k′′
‖νtb, and the term |gb(∂/∂ν‖)|Ak,k′ |2| is neglected in comparison with the term

|Ak,k′ |2|∂gb/∂ν‖|, because the former term is negligibly smaller than the latter
term when |k‖νtb/ωce|, |k′

‖νtb/ωce| � 1. It is seen from (23) that the acceleration and
deceleration of the electron beam occur in the k′′ direction and its rate is approx-
imately proportional to α0 = ς0k′′ exp(−ς2

0k′′). Figure 1 shows |α0| versus ξ0 = (ωk′′ −
k′′

‖νd − k′′
‖νb)/ωce under the parameter of k′′

‖νtb/ωce = 0.0005. The solid curve shows
|α0| with α0 > 0 and the dotted curve shows |α0| with α0 < 0. It is found that
the dip appears at the point where the phase velocity of the beat-wave for the
Doppler-shifted beat-wave frequency equals the parallel velocity of the electron
beam ((ωk′′ − k′′

⊥νd)/k′′
‖ = νb, ξ0 = 0), since α0 = 0 at ς0k′′ = 0. Moreover, we see that

when the Doppler-shifted phase velocity of the beat-wave slightly exceeds the
parallel velocity of the electron beam ((ωk′′ − k′′

⊥νd)/k′′
‖ > νb and ξ0, ζ0k′′ > 0), the

electron beam can be accelerated efficiently. In contrast, when the Doppler-shifted
phase velocity of the beat-wave is slightly smaller than the parallel velocity of the
electron beam ((ωk′′ − k′′

⊥νd)/k′′
‖ < νb and ξ0, ς0k′′ < 0), the electron beam can be

decelerated efficiently. This behaviour is much the same as the previous result
in [11]. It should be noticed that the condition of ξ0 = 0 means the resonance
condition of (1) for m = 0 and it is not the condition for the beat-wave, because
the beat-wave is assumed to be absent in the kinetic equation (4) for the electron
beam.
As is found from (3), that the relations of |Ex

k | � |Ey
k |, |Ez

k | and |Ex
k′ | � |Ey

k′ |,
|Ez
k′ | (k‖/k⊥, k′

‖/k′
⊥ � 1) are satisfied when ωk ∼= ωk′ � ωh. Then the first term of

Ak,k′ becomes dominant. On the other hand, the relations of |Ey
k | � |Ex

k |�|Ez
k | and

|Ey
k′ | � |Ex

k′ | � |Ez
k′ | are satisfied when ωk ∼= ωk′ � ωR, thereby the third term of Ak,k′

becomes dominant, where ωR = (ωce + (4ω2
pe + ω2

ce)
1/2)/2 is the right-hand cutoff

frequency. Accordingly, the efficient acceleration and deceleration of the electron
beam can occur via the pondermotive force due to the k component of the wave
electric field when ωk ∼= ωk′ � ωh and via the nonlinear v× B Lorentz force due to
the k component of the wave magnetic field or the k × B0 component of the wave
electric field when ωk ∼= ωk′ � ωR, as has been shown previously in detail in [11]. In
these two limiting cases, considering that k‖/k⊥, k′

‖/k′
⊥ � 1 and ωk ∼= ωk′ , it can be
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Figure 1. The Compton scattering of m = 0: the absolute value of α0 is shown versus ξ0

with k′′
‖νtb/ωce = 0.0005. For the solid curve α0 > 0 and for the dotted curve α0 < 0.

easily confirmed that the parallel component of (23) with vd = 0 is reduced to (30)
and (32) in [11].

2.5. Electron beam acceleration by the Compton scattering of m = ±1
Next, we consider the Compton scattering ofm = ±1. In (15) and (17) the nonlinear
singularity of ωk′′ − k′′

⊥νd − k′′
‖ν‖ ∓ ωce = 0 should provide another contribution to

the acceleration and deceleration of the electron beam. This nonlinear scattering
with vd = 0 has been investigated in detail by the numerical analysis in [6]. By the
use of the relation of

Im
1

k′′
‖ν‖ + k′′

⊥νd − ωk′′ ± ωce
= πδ(k′′

‖ν‖ + k′′
⊥νd − ωk′′ ± ωce), (24)

the solutions for v(2)k′′ are found as

ν
(2)
xk′′ = ±i

πe2

4m2
e
δ(k′′

‖ν‖ + k′′
⊥νd − ωk′′ ± ωce)Fk,k′ , (25a)

ν
(2)
yk′′ = − πe2

4m2
e
δ(k′′

‖ν‖ + k′′
⊥νd − ωk′′ ± ωce)Fk,k′ , (25b)

νzk′′ = 0, (25c)
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where

Fk,k′ =

[
k′

⊥
ω̃2
k − ω2

ce
− k⊥

ω̃2
k′ − ω2

ce
+

k‖k
′
‖

k⊥ω̃2
k

−
k‖k

′
‖

k′
⊥ω̃2

k′

]
Ex
kE∗x

k′

+ i
ωce
ωk′

[
k′

⊥
ω̃2
k − ω2

ce
+

k‖k
′
‖

k⊥ω̃2
k

]
Ex
kE∗y

k′ + i
ωce
ωk

[
k⊥

ω̃2
k′ − ω2

ce
+

k‖k
′
‖

k′
⊥ω̃2

k′

]
Ey
kE

∗x
k′

+ i

[
k′

⊥
ω̃2
k − ω2

ce
− k⊥

ω̃2
k′ − ω2

ce

] [
ωce
ωk′

Ex
kE∗y

k′ − ωce
ωk

Ey
kE

∗x
k′

]

+
1

ωkωk′

[
k′

⊥(ω̃2
k + ω2

ce)
ω̃2
k − ω2

ce
− k⊥(ω̃2

k′ + ω2
ce)

ω̃2
k′ − ω2

ce

]
Ey
kE

∗y
k′ . (26)

From (15) and (17) we can straightforwardly obtain the following simple kinetic
equation showing the temporal evolution of the fourth-order drift velocity of the
electron beam:

me
dv(4)

dt
=

πe4k′′

16m3
eωce

δ(k′′
‖ν‖ + k′′

‖νd − ωk′′ ± ωce)|Fk,k′ |2. (27)

This equation shows that the acceleration and deceleration of the electron beam
arise in the k′′ direction from Compton scattering induced by nonlinear cyclotron
damping of two extraordinary waves. The first term of Fk,k′ originating in the first
four terms in (17) expresses the pondermotive force due to the wave electric field.
The last term of Fk,k′ originating in the last five terms in (17) expresses the nonlinear
v × B force. The remaining terms of Fk,k′ originating partially in all terms in (17)
express both forces.
Assuming that the velocity distribution function of the electron beam is given by

(22), the transport equation for the momentum density of the electron beam can
be derived similarly from (27) and is represented as

dPb
dt

=
e2ω2

pbk
′′

64π1/2m2
eωce|k′′

‖ |νtb
exp

(
−ς2

mk′′
)
|Fk,k′ |2ν‖=(ωk′′ −k′′

⊥νd−mωce)/k′′
‖
, (28)

where ςmk′′ = (ωk′′ −k′′
⊥νd−k′′

‖νb−mωce)/k′′
‖νtb (m = ±1). The above equation states

that the acceleration of the electron beam always occurs in the k′′ direction and its
rate is approximately proportional to α1 = exp(−ς2

mk′′). Figure 2 exhibits α1 versus
ξm = (ωk′′ −k′′

‖νd−k′′
‖νb−mωce)/ωce under the parameter of k′′

‖νtb/ωce = 0.0005. We
see that the electron beam can be accelerated efficiently in the vicinity of ξm = 0.
For ωk, ωk′ � ωh, the first term of Fk,k′ owing to Ex

k , Ez
k , Ex

k′ and Ez
k′ becomes

dominant. For ωk, ωk′ � ωR, the last term owing to Ey
k and Ey

k′ becomes dominant.
Accordingly, it is found in the same way as in the case of m = 0 that the efficient
acceleration of the electron beam results from the pondermotive force due to the k
and k′ components of Ek and Ek′ when ωk, ωk′ � ωh, and from the nonlinear v × B
force due to Bk and Bk′ when ωk, ωk′ � ωR.
Combining (23) and (28), we get the following transport equations involving both

the Compton scatterings of m = 0 and ±1:

dPb
dt

=
e2ω2

pbk
′′

16π1/2m2
ek

′′
‖ |k′′

‖ |ν2
tb

∑
m=0,±1

exp
(
−ς2

mk′′
)
Sm, (29)
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Figure 2. The Compton scattering of m = ±1, α1 is shown versus ξm with
k′′

‖νtb/ωce = 0.0005.

where

Sm = ς0k′′ |Ak,k′ |2ν‖=(ωk′′ −k′′
⊥νd)/k′′

‖
, for m = 0, (30a)

Sm =
k′′

‖νtb

4ωce
|Fk,k′ |2ν‖=(ωk′′ −k′′

⊥νd−mωce)/k′′
‖
, for m = ±1. (30b)

It should be noted that the ratio of the acceleration rates for the Compton scattering
of m = ±1 and m = 0 is given roughly as follows:∣∣∣∣dPbdt

∣∣∣∣
m=±1

/ ∣∣∣∣dPbdt

∣∣∣∣
m=0

∼=
∣∣∣∣S±1

S0

∣∣∣∣ ∼
∣∣∣∣∣k

′′
⊥

k′′
‖

k′′
⊥νtb
ωce

∣∣∣∣∣ . (31)

Because Ak,k′ and Fk,k′ are derived taking into account the polarizations given
by (3), the transport equations obtained can only be applied for the Compton
scattering of extraordinary waves by a cold electron beam with zero Larmor radius.
Accordingly they are not general and rigorously exact. The transport equations
for the energy and momentum densities of the electron beam and the conservation
laws for the total energy and momentum densities of the waves and the electron
beam are derived from Vlasov–Maxwell equations and will be described in the next
section. They are general and rigorously exact, and are applicable for the Compton
scattering of electromagnetic waves by a warm electron beam with a finite Larmor
radius.
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3. Transport equations
In this section the general and exact transport equations for nonlinear Landau
damping of electromagnetic waves are derived from Vlasov–Maxwell equations.
Because they are mathematically complicated, it is rather difficult to understand
the detailed physical mechanism of Compton scattering. First, the kinetic wave
equation that is necessary for obtaining the conservation laws for the total energy
and momentum densities of waves and particles is given. Second, the θ-dependent
velocity-space diffusion equation which leads to the transport equations is presen-
ted. Third, the transport equations and the conservation laws are described. Finally,
they are applied for the Compton scattering of extraordinary waves.

3.1. Kinetic wave equation

The kinetic wave equation for nonlinear wave–particle scattering due to nonlin-
ear Landau and cyclotron damping of electromagnetic waves in a homogeneous
magnetized plasma immersed in the uniform electric field can be derived from the
third-order perturbation theory of Vlasov–Maxwell equations in the same manner
as in [4,6,7] and is given by

∂Uk
∂t

= 2γkUk +
∑
k′�0

∑
j,l,l′,l′′

ωk
4π

Ajl′′l′l
k,k′′,k′E

∗j
k El

kE
∗l′

k′ El′′

k′ , (32)

where Ej
k refers to the j component of a wave electric field Ek in the Cartesian

coordinates (j, l, l′, l′′ = x, y, z), E−k = E∗
k, ω−k = −ω∗

k, and the wave energy density
Uk, the linear damping rate γk = Imωk and the nonlinear wave–particle coupling
coefficient Ajl′′l′l

k,k′′,k′ are represented as follows:

Uk =
1
8π
E∗
k ·

(
∂

∂ωk
[(ε′

k − Nk)ωk]
)

·Ek, (33)

γk = − ωk
8πUk

(E∗
k · ε′′

k ·Ek), (34)

Ajl′′l′l
k,k′′,k′ =

∑
s

A
(s)jl′′l′l
k,k′′,k′ , (35)

A
(s)jl′′l′l
k,k′′,k′ = −PAH

(
C

(s)jl′′l′l
k,k′′,k′ + D

(s)jl′′l′l
k,k′′,k′

)
. (36)

Here, εk = ε′
k + iε′′

k is the dielectric tensor for electromagnetic waves, ε′
k and ε′′

k
are the Hermitian and anti-Hermitian parts of εk, respectively, PAH indicates the
anti-Hermitian part of the tensor; that is,

PAH
[
C

(s)jl′′l′l
k,k′′,k′

]
=

1
2i

(
C

(s)jl′′l′l
k,k′′,k′ − C

∗(s)ll′l′′j
k,k′′,k′

)
, (37)

and the subscript s designates the species of plasma particles. The matrix element
C

(s)jl′′l′l
k,k′′,k′ expresses Compton scattering (four-wave scattering or two-wave–particle

scattering) and D
(s)jl′′l′l
k,k′′,k′ represents plasma shielding effect (non-resonant wave–

wave scattering) associated with beat-waves. These matrix elements are expressed
by means of the fairly complex equations and are described in Appendices A and B.
They are different from the previously obtained matrix elements in [4, 6, 7] only
in the effects due to the cross-field electric field E0 and the cross-field particle
drift velocity vd. The matrix elements are evaluated by their anti-Hermitian parts
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coming from the nonlinear singularity associated with the resonance condition (1),
i.e. ωk′′ − k′′

⊥νd − k′′
‖ν‖ − mωcs = 0, where m is an integer, ωcs = esB0/msc is the

cyclotron frequency for the particles of species s and ωcs includes the sign of the
charge of particles.
The dielectric tensor εk is given by

εk = I+
∑
s

ε
(s)
k , (38)

ε
(s)jl
k = −

ω2
ps

ω2
k

{
ηjηl +

∞∑
r=−∞

∫
d3v

×
[[

a∗j
k,rJr(µk)

][
al
k,rJr(µk)

]
(k‖ν‖+k⊥νd−ωk+rωcs)2

+

[
b∗j
k Jr(µk)

][
bl
kJr(µk)

]
(k‖ν‖ + k⊥νd−ωk+rωcs)2 − ω2

cs

]
gs0

}
, (39)

where ωps = (4πnse
2/ms)1/2 is the plasma frequency for the particles of species s,

µk = k⊥ν⊥/ωcs, Jr is the Bessel function of the rth order. The function gs0(ν⊥, ν‖, t)
is the background velocity distribution function with vd = E0 = 0 and the distribu-
tion function gs(v, t) with vd, E0�0 is provided by the solution of the unperturbed
Vlasov equation, (

E0 +
1
c
v× B0

)
· ∂gs

∂v
= 0. (40)

The solution of the above equation can be obtained as [17–21,46,47]

gs = as

∞∑
l=0

νl
x

l!

(
− νd

ν⊥

∂

∂ν⊥

)l

gs0(ν⊥, ν‖, t)

= gs0
((

(νx − νd)2 + ν2
y

)1/2
, ν‖, t

)
, (41)

with the normalization constant as, which is determined such that
∫

d3vgs =∫
d3vgs0 = 1. The background velocity distribution function gs(v, t) includes the

cross-field particle drift νd=
∫

d3vνxgs which is induced by quasilinear wave–particle
interaction and the nonlinear Landau and cyclotron damping of electromagnetic
waves, and is expressed in the displaced cylindrical coordinates in velocity-
space (νx = ν⊥ cos θ + νd, νy = ν⊥ sin θ, νz = ν‖). The generalized Ohm’s law (5) can
be derived by means of the velocity-space integration of (40) multiplied by v. That
is, (5) holds for all species of plasma particles and shows that the cross-field electric
field E0 is also produced by the dynamo effect of the cross-field particle drift of the
species s. When vd = 0, gs is reduced to gs0, being symmetric with respect to the
magnetic field. The functions al

k,r and bl
k are defined by

ax
k,r =

k‖

k⊥
(rωcs + k⊥νd), ay

k,r = ik‖ν⊥
∂

∂µk
, az

k,r = ωk − k⊥νd − rωcs,

bx
k = ωk − k‖ν‖, by

k = iωcs
∂

∂µk
, bz

k = k⊥ν‖,

(42)

and Ijl = δjl, ηx = ηz = 0, ηy = 1. The velocity-space integration in (39) is performed
in the cylindrical coordinates v= (ν⊥, θ, ν‖), which are displaced by νd in the x
direction. Consequently, gs0 appears in the integrand. The term k⊥νd represents
the Doppler shift due to the cross-field particle drift. The dielectric tensor (39)
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with νd = 0 is exactly equivalent to (8) in [11]. Further, the two scattering waves
satisfy the dispersion relation of (2), and the beat-wave (ωk′′ ,k′′) cannot satisfy the
dispersion relation, i.e. |εk′′ − Nk′′ | � 0.

3.2. θ-dependent velocity-space diffusion equation

The θ-dependent velocity-space diffusion equation for the present nonlinear scat-
tering can be derived similarly from Vlasov–Maxwell equations as was described
previously in [7]. It is required for obtaining the transport equations and is ex-
pressed as

∂gs
∂t

=
∑
k�0

∑
l,l′

E∗l
k El′

kQll′

k gs0 +
∑
k�0

∑
k′

∑
j,l,l′,l′′

E∗j
k El

kE
∗l′

k′ El′′

k′ B
jl′′l′l
k,k′′,k′gs0, (43)

where

Bjl′′l′l
k,k′′,k′ = −PAH

(
Ljl′′l′l
k,k′′,k′ + M jl′′l′l

k,k′′,k′

)
. (44)

The θ-dependent velocity-space diffusion coefficients Qll′

k , L
jl′′l′l
k,k′′,k′ and M jl′′l′l

k,k′′,k′ have
fairly complex expressions and are described in Appendix C. Since Qll′

k and Bjl′′l′l
k,k′′,k′

are expressed in the displaced cylindrical coordinates in velocity-space, gs0 ap-
pears on the right-hand side of (43). The former coefficient Qll′

k is the quasilinear
velocity-space diffusion coefficient and has been derived previously by the present
author [18–21]. The latter coefficient Bjl′′l′l

k,k′′,k′ represents the θ-dependent velocity-
space diffusion due to the nonlinear Landau and cyclotron damping of electromag-
netic waves. The term Qll′

k results from the quasilinear wave–particle interaction
(quasilinear Landau and cyclotron damping), the term Ljl′′l′l

k,k′′,k′ from the velocity-
space diffusion due to Compton scattering, and the term M jl′′l′l

k,k′′,k′ from the
plasma shielding effect [4,6,7]. These velocity-space diffusion coefficients have the
azimuthal dependence; that is, ∂Qll′

k /∂θ � 0 and ∂Bjl′′l′l
k,k′′,k′/∂θ � 0 hold, as described

in detail in Appendix C. The azimuthal dependence of Qll′

k and Bjl′′l′l
k,k′′,k′ expresses

the anisotropy of the velocity-space diffusion around the magnetic field and the
resulting cross-field particle acceleration or transport in the x direction.
It can be proved easily that there are the simple relations between the θ-dependent

velocity-space diffusion coefficients, the dielectric tensor and the nonlinear wave–
particle coupling coefficients [4,6,7,19,21]. Then they are shown as follows:∫

d3vwsQ
ll′

k gs0 =
ωk
4π

PAHε
(s)ll′

k , (45)

∫
d3vps Q

ll′

k gs0 =
k
4π

PAHε
(s)ll′

k , (46)

∫
d3vws L

jl′′l′l
k,k′′,k′gs0 = −ωk

4π
C

(s)jl′′l′l
k,k′′,k′ , (47)

∫
d3vps L

jl′′l′l
k,k′′,k′gs0 = − k

4π
C

(s)jl′′l′l
k,k′′,k′ , (48)

∫
d3vwsM

jl′′l′l
k,k′′,k′gs0 = −ωk

4π
D

(s)jl′′l′l
k,k′′,k′ , (49)

∫
d3vps M

jl′′l′l
k,k′′,k′gs0 = − k

4π
D

(s)jl′′l′l
k,k′′,k′ , (50)
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where ws = 1
2nsmsν

2 and ps = nsmsv. These relations provide the transport equa-
tions that will be demonstrated in the next section.

3.3. Transport equations

The velocity-space integration of the θ-dependent velocity-space diffusion equation
multiplied by ws or ps leads to the transport equations because of the simple rela-
tions (45)–(50). Thus the transport equations showing the temporal development of
the energy and momentum densities of magnetized particles of species s are derived
as

∂Us
∂t

= −
∑
k�0

2γ
(s)
k Uk −

∑
k�0

∑
k′

∑
j,l,l′,l′′

ωk
4π

A
(s)jl′′l′l
k,k′′,k′ E∗j

k El
kE

∗l′

k′ El′′

k′ , (51)

∂Ps
∂t

= −
∑
k�0

2γ
(s)
k k
ωk

Uk −
∑
k�0

∑
k′

∑
j,l,l′,l′′

k
4π

A
(s)jl′′l′l
k,k′′,k′ E∗j

k El
kE

∗l′

k′ El′′

k′ , (52)

where kUk/ωk is the wave momentum density, Us =
∫

d3vwsgs and Ps =∫
d3vpsgs=(Ps⊥, 0, Ps‖) (Ps⊥ =nsmsνd, Ps‖ =nsmsνs‖) are the energy andmomentum

densities for particles of species s, respectively, γ
(s)
k = −(ωk/8πUk)(E∗

k· ε′′(s)
k ·Ek)

is the linear Landau and cyclotron damping rate of the electromagnetic waves
ascribed to the particles of species s, ε(s)

k = ε
′(s)
k + iε

′′(s)
k , γk =

∑
s γ

(s)
k , and ε

′(s)
k and

ε
′′(s)
k are the Hermitian and anti-Hermitian parts of ε(s)

k , respectively. The transport
equations (51) and (52) clearly predict that the electromagnetic waves can generate
a strong particle acceleration or transport along and across the magnetic field. The
first terms show that the particle acceleration in the k direction and heating result
from Landau or cyclotron damping due to the quasilinear wave–particle interaction
of the electromagnetic waves. The second terms express the particle acceleration
and heating due to nonlinear Landau and cyclotron damping of the electromagnetic
waves. It is seen that the particle acceleration owing to one scattering wave of the
associated electromagnetic waves occurs in the k direction, whereas, as described
in the next section, the particle acceleration due to the two scattering waves occurs
in the k′′ direction. When the two scattering waves or one of them are electro-
static, the electrostatic or partially electrostatic matrix elements described in Ap-
pendix B should be used for the nonlinear wave–particle coupling coefficients in (51)
and (52).
From (32), (51) and (52), as has been previously obtained in [4,6,7], the conser-

vation laws for the total energy and momentum densities of waves and particles
are given by

∂

∂t

(∑
s

Us +
∑
k�0

Uk

)
= 0, (53)

∂

∂t

(∑
s

Ps +
∑
k�0

k
ωk

Uk

)
= 0. (54)

Equations (51)–(54) imply that the acceleration and heating of particles can be
caused by the quasilinear wave–particle interaction and nonlinear wave–particle
scattering of the electromagnetic waves and they are determined by means of the
linear damping or growth rate and nonlinear wave–particle coupling coefficients.
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3.4. Two-wave scattering

We now consider the nonlinear scattering induced by only two electromagnetic
waves interacting with a high-energy electron beam. The matrix element for nearly
perpendicular propagation, which is described in Appendix A, should only be eval-
uated by taking the contribution from the pole of nonlinear singularity given by
(A22), which is associated with the resonance condition (1). As previously proved in
[4,6,7], the following symmetry relation of matrix elements can be verified to hold:

A
(s)jl′′l′l
k,k′′,k′ = −A

∗(s)l′′jll′

k′,−k′′,k . (55)

In addition, we assume that

Ajl′′l′l
k,k′′,k′ = A

(b)jl′′l′l
k,k′′,k′ , (56a)

γk = γ
(b)
k , (56b)

A
(s)jl′′l′l
k,k′′,k′ = γ

(s)
k = 0, for s�b, (56c)

where b designates the beam electrons. This assumption means that the linear
damping and nonlinear wave–particle scattering of two electromagnetic waves only
originate in the high-energy beam electrons. Considering the condition given by
(55) and (56), we get the simple expressions for the kinetic wave equations of two
electromagnetic waves and the transport equations of the beam electrons, and they
are represented as

∂Uk
∂t

= 2γkUk − A0UkUk′ , (57)

∂Uk′

∂t
= 2γk′Uk′ +

ωk′

ωk
A0UkUk′ , (58)

∂Ub
∂t

= −2γkUk − 2γk′Uk′ +
ωk′′

ωk
A0UkUk′ , (59)

∂Pb
∂t

= −2γkk
ωk

Uk − 2γk′k′

ωk′
Uk′ +

k′′

ωk
A0UkUk′ , (60)

where

Uk = Γk|Ek|2,

A0 = − ωk
4πΓkΓk′

∑
j,l,l′,l′′

Ajl′′l′l
k,k′′,k′ρ

∗j
k ρl

kρ
∗l′

k′ ρl′′

k′ ,

Γk =
1
8π

∑
j,l

(
∂

∂ωk

[(
ε′jl
k − N jl

k

)
ωk

])
ρ∗j
k ρl

k, (61a)

Ej
k = ρj

kEk,
∑

j

ρ∗j
k ρj

k = 1. (61b, c)

Here, ρj
k indicates the polarizations of two waves. Immediately it is found that

(57)–(60) lead to the conservation laws for total energy and momentum densities
of two electromagnetic waves and a high-energy electron beam,

∂

∂t
(Ub + Uk + Uk′) = 0, (62)

∂

∂t

(
Pb +

k
ωk

Uk +
k′

ωk′
Uk′

)
= 0. (63)
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When the linear damping is absent (γk = γk′ = 0), i.e. only nonlinear scattering
contributes to acceleration and heating of the electron beam, the following features
can be stated under the condition of ωk′′ , k′′

‖ > 0. For the positive value of A0, the
usual nonlinear scattering occurs (∂Uk/∂t < 0, ∂Uk′/∂t> 0) and the electron beam
is accelerated in the k′′ direction (∂Pb‖/∂t> 0). In contrast, for the negative value
of A0, the nonlinear scattering of energy up-conversion in frequency takes place
(∂Uk/∂t> 0, ∂Uk′/∂t < 0) [26–28] and the electron beam is decelerated in the k′′

direction (∂Pb‖/∂t < 0).
Because Ub and Pb are given by

Ub = 1
2nbme

(
ν2
b + ν2

d + 3
2ν2
tb

)
,

Pb = (nbmeνd, 0, nbmeνb),

the transport equations (59) and (60) yield the following equations:

∂

∂t

[
1
2
nbme

(
ν2
b + ν2

d

)]
= −2γk

k⊥νd + k‖νb

ωk
Uk − 2γk′

k′
⊥νd + k′

‖νb

ωk′
Uk′

+
k′′

⊥νd + k′′
‖νb

ωk
A0UkUk′ , (64)

∂

∂t

(
3
4
nbmeν

2
tb

)
= −2γk

ωk − k⊥νd − k‖νb

ωk
Uk − 2γk′

ωk′ − k′
⊥νd − k′

‖νb

ωk′
Uk′

+
ωk′′ − k′′

⊥νd − k′′
‖νb

ωk
A0UkUk′ , (65)

where νtb = (2kBTb/me)1/2. Accordingly, it is seen that (64) shows the acceleration
and deceleration of the electron beam and (65) its heating and cooling.

3.5. Compton scattering

Finally, we investigate the nonlinear wave–particle coupling coefficient A0 for the
Compton scattering of the almost perpendicularly propagating electromagnetic
waves interacting nonlinearly with a high-energy cold electron beam whose Larmor
radius is zero. It is assumed that only Compton scattering coming from the first
term of (36) contributes to A0 and the plasma shielding effect resulting from the
second term of (36) which is associated with the beat-waves is negligibly small
compared with Compton scattering; that is,∣∣∣∣ ∑

j,l,l′,l′′

C
(s)jl′′l′l
k,k′′,k′ ρ∗j

k ρl
kρ

∗l′

k′ ρl′′

k′

∣∣∣∣ �

∣∣∣∣ ∑
j,l,l′,l

D
(s)jl′′l′l
k,k′′,k′ ρ∗j

k ρl
kρ

∗l′

k′ ρl′′

k′

∣∣∣∣.
This means that the beat-waves are absent as is assumed in the previous section.
In a previous work [11], it was confirmed that the above condition is satisfied in
the numerical analysis. We only treat the cases of m = 0, ±1, since we need the
comparison with the results in Sec. 2 and the electron-beam acceleration due to the
Compton scattering of |m| � 2 may be considered to be extremely weak compared
with that of |m| � 1 when k⊥νtb/ωce � 1.
First, we consider the Compton scattering of m = 0. It can be easily verified

that only the terms q = m = 0 and q′ = r = 0 contribute to C
(b)jl′′l′l
k,k′′,k′ , and the

matrix elements are given by the modified expression (24) of [6]. Although they
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contain many complicated terms, their roughly approximated expression is simple
and shown by

A0
∼= − 1

4ΓkΓk′

ω2
pbe

2k′′
‖

ωkω2
k′m2

e

∫
d3v δ(k′′

‖ν‖ + k′′
‖νd − ωk′′)

∂gb
∂ν‖

. (66)

When gb is given by (22), A0 becomes

A0
∼=

ω2
pbe

2k′′
‖

2π1/2ΓkΓk′ωkω2
k′m2

e |k′′
‖ |ν2

tb
ζ0k′′exp

(
−ς2

0k′′
)
. (67)

Thus, the transport equation (60) with γk = γk′ = 0 can be shown by

∂Pb
∂t

=
ω2
pbe

2k′′
‖k

′′

2π1/2ω2
kω

2
k′m2

e |k′′
‖ |ν2

tb
ς0k′′exp

(
−ς2

0k′′
)
|Ek||2|Ek′ |2. (68)

Considering that Ak,k′ in (23) can be roughly approximated such that |Ak,k′ |2 ∼
(k′′2

‖ /ω2
kω

2
k′)|Ek|2|Ek′ |2, it can be seen that (68) coincides approximately with (23).

Second, we consider the Compton scattering of m = ±1. It can be similarly
found that only the terms q = m = ±1 and q′, r = 0, ±1 contribute to C

(b)jl′′l′l
k,k′′,k′ . Then

the matrix element derived from (24) of [6] can be approximated roughly and is
represented as

A0
∼= − 1

4ΓkΓk′

ω2
pbe

2

ωkω2
k′m2

e

∫
d3v δ(k′′

‖ν‖ + k′′
⊥νd − ωk′′ ± ωce)

k′′2
⊥ ν⊥
4ωce

∂gb
∂ν⊥

. (69)

For gb given by (22), A0 becomes

A0
∼=

ω2
pbe

2k′′2
⊥

8π1/2ΓkΓk′ωkω2
k′m2

eωce|k′′
‖ |νtb

exp
(
−ς2

mk′′
)
. (70)

Thus, the transport equation (60) with γk = γk′ = 0 becomes

∂Pb
∂t

=
ω2
pbe

2k′′2
⊥ k

′′

8π1/2ω2
kω

2
k′m2

eωce|k′′
‖ |νtb

exp
(
−ς2

mk′′
)
|Ek|2|Ek′ |2. (71)

Because Fk,k′ in (28) can be approximated as |Fk,k′ |2 ∼ (k′′2
⊥ /ω2

kω
2
k′)|Ek|2|Ek′ |2, we can

similarly find that (71) approximately coincides with (28). The ratio of acceleration
rates for the Compton scattering of m = ±1 and m = 0 is also found to be given
by (31), and it is very small since |k′′2

⊥ νtb/k′′
‖ωce| � 1. Consequently, the acceleration

and deceleration due to the Compton scattering of m = 0 are much stronger than
those of m = ±1. Here, the absolute value of ωcs (es = −e) is used for ωce.
By using the nonlinear wave–particle coupling coefficient A0 in which the polar-

izations and dispersion relations of the extraordinary waves given by (3) are taken
into account, the transport equations (68) and (71) can be applied for the Compton
scattering of extraordinary waves. The approximate transport equations can be
obtained by considering the polarizations of the extraordinary waves in the terms
of |Ek|2|Ek′ |2 in (68) and (71). In conclusion, it can be demonstrated that the same
results as those from the single-particle theory are obtained from Vlasov–Maxwell
equations.
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4. Summary
High-energy or relativistic electron-beam acceleration along and across a mag-
netic field, and the generation of an electric field transverse to the magnetic field,
both induced by the Compton scattering of almost perpendicularly propagating
extraordinary waves, have been investigated theoretically based on single-particle
theory and Vlasov–Maxwell equations. The transport equations derived independ-
ently from both theories show that the electron beam can be accelerated and
decelerated in the k′′ direction via Compton scattering induced by the nonlinear
Landau damping of extraordinary waves. Simultaneously, an intense cross-field
electric field E0 = B0 × vd/c is created via the dynamo effect owing to the per-
pendicular drift of the electron beam to satisfy the generalized Ohm’s law. This
implies that the cross-field drift of the electron beam is equivalent to E×B drift. It
is easy and straightforward to understand the physical mechanism of the electron
beam acceleration and the generation of the cross-field electric field on the basis of
single-particle theory, although the transport equations obtained are not general
and rigorously exact. In contrast, the general and rigorously exact expressions for
the transport equations can be derived from Vlasov–Maxwell equations, although it
is rather difficult to understand the physical mechanism. The transport equations
derived from both theories agree satisfactorily in the approximated expressions for
the Compton scattering of m = 0, ±1.
It has been clarified that the efficient acceleration or deceleration of the electron

beam can occur via the Compton scattering ofm = 0, corresponding to whether the
Doppler-shifted phase velocity of the beat-wave is slightly larger or smaller than
the parallel velocity of the electron beam, respectively, as was shown in previous
work. On the other hand, the electron beam is always accelerated in the k′′ direction
via the Compton scattering of m = ±1 and its acceleration rate is much less than
that of m = 0. As was previously shown, the consideration of the polarizations
of extraordinary waves predicts that the electron-beam acceleration is efficient for
wave frequencies lower than the upper-hybrid frequency or exceeding the right-
hand cutoff frequency. It can be found easily from the single-particle theory that
for frequencies lower than the upper-hybrid frequency, the electron beam can be
accelerated by the pondermotive force driven by the k component of the wave
electric field and for frequencies exceeding the right-hand cutoff frequency, the
electron beam can be accelerated by the nonlinear v × B Lorentz force driven by
the k component of the wave magnetic field or the k × B0 component of the wave
electric field.
In conclusion, the Compton scattering of extraordinary waves can be useful for

the efficient acceleration of the high-energy or relativistic electron beam to the
speed of light in a magnetically confined plasma. In addition, it is suggested that
special consideration should be taken for the generated cross-field electric field,
because this electric field seriously affects the profile and stability of the magnetized
plasma. Amore rigorous theoretical analysis, including the relativistic effect, should
be performed in a future study.
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Appendix A. Nonlinear wave–particle coupling coefficients
The nonlinear wave–particle coupling coefficients in (36) are expressed as follows:

C
(s)jl′′l′l
k,k′′,k′ =

ω2
ps

ω2
kωk′ω−k′

(
es
ms

)2 ∑
q′,q,r=−∞

∫
d3v

[
u∗j
k (v)Jq′(µk)

]
W l′′

k′,k′′(v)
k‖ν‖ + k⊥νd − ωk + q′ωcs

× 1
k′′

‖ν‖ + k′′
⊥νd − ωk′′ + qωcs

×
[
Sl
k,−k′(v)Zl′

−k′,r(v)gs0 + Sl′

−k′,k(v)Z
l
k,r(v)gs0

]
, (A 1)

D
(s)jl′′l′l
k,k′′,k′ =

∑
j′

(
α

(s)jj′l′′

k′′,k′ + α
(s)jl′′j′

k′,k′′

)(
βj′ll′

k,−k′ + βj′l′l
−k′,k

)
, (A 2)

βll′

k′′,k′ = (εk − Nk)−1 · αll′

k′′,k′ , (A 3)

αjll′

k′′,k′ =
∑
s

α
(s)jll′

k′′,k′ , (A 4)

α
(s)jll′

k′′,k′ =
ω2
ps

ωkωk′ωk′′

es
ms

∞∑
q,r=−∞

∫
d3v

[
u∗j
k (v)Jq(µk)

]
Sl
k′′,k′(v)

k‖ν‖ + k⊥νd − ωk + qωcs
Zl′

k′,r(v)gs0, (A 5)

and

αll′

k′′,k′ =
(
αxll′

k′′,k′ , α
yll′

k′′,k′ , α
zll′

k′′,k′
)
,

βll′

k′′,k′ =
(
βxll′

k′′,k′ , β
yll′

k′′,k′ , β
zll′

k′′,k′
)
.

The differential operators S, W and Z are defined by

Sl
k′′,k′(v) = Jq−r(µk′′)P l

k′′,k′(v) + J ′
q−r(µk′′)Ql

k′′,k′(v) + J ′′
q−r(µk′′)Rl

k′′,k′(v), (A 6)

P x
k′′,k′(v) = (q − r)ωcs

[
k′′

‖

k′′
⊥

∂

∂v‖
+

ωk′′ − k′′
⊥νd − k′′

‖ν‖

k′′
⊥ν⊥

∂

∂ν⊥

]
+ νdUq−r(k′′), (A 7)

P y
k′′,k′(v) = −i

[
(q − r)ωcs

ωk′′ − k′′
⊥νd − k′′

‖ν‖

(k′′
⊥ν⊥)2

− 1

]
(k⊥r − k′

⊥q), (A 8)

P z
k′′,k′(v) = [ωk′′ − k′′

⊥νd − (q − r)ωcs]
∂

∂ν‖
+ (q − r)ωcs

ν‖

ν⊥

∂

∂ν⊥
, (A 9)

Qx
k′′,k′(v) = − r

ν⊥
(ωk′′ − k′′

‖ν‖), (A 10)

Qy
k′′,k′(v) = i

[
k′′

‖ν⊥
∂

∂ν‖
+ (ωk′′ − k′′

⊥νd − k′′
‖ν‖)

(
∂

∂ν⊥
− k′

⊥
k′′

⊥ν⊥

)]
, (A 11)

Qz
k′′,k′(v) = −k′′

⊥r
ν‖

ν⊥
, (A 12)

Rx
k′′,k′(v) = Rz

k′′,k′(v) = 0, (A 13)

Ry
k′′,k′(v) = −i

k′
⊥

ωcs
(ωk′′ − k′′

⊥νd − k′′
‖ν‖), (A 14)
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Ur(k) = k‖
∂

∂ν‖
+

rωcs
ν⊥

∂

∂ν⊥
, (A 15)

W l′′

k′,k′′(v) =
[
Sl′′

k′,k′′(v)
]

q →q ′
r →q

, (A 16)

Zl
k,r(v) =

[
wl
k(v)Jr(µk)

]
Y l
k,r(v) + slνdJr(µk)Ur(k)

k‖ν‖ + k⊥νd − ωk + rωcs
, (A 17)

Y x
k,r(v) = Y y

k,r(v) = k‖ν⊥
∂

∂ν‖
+ (ωk − k⊥νd − k‖ν‖)

∂

∂ν⊥
, (A 18)

Y z
k,r(v) = (ωk − k⊥νd − rωcs)

∂

∂ν‖
+ rωcs

ν‖

ν⊥

∂

∂ν⊥
, (A 19)

ux
k(v)Jr(µk) =

(
rν⊥
µk

+ νd

)
Jr(µk), uy

k(v) = iν⊥
∂

∂µk
, uz

k(v) = ν‖, (A 20)

wx
k (v)Jr(µk) =

r

µk
Jr(µk), wy

k(v) = i
∂

∂µk
, wz

k(v) = 1, (A 21)

where sx = 1, sy = sz = 0, and J ′
r and J ′′

r are the first and second derivatives with
respect to the argument, respectively. It is easily found that when νd = 0, (A 1) and
(A 2) are reduced to the previous results [4,6,7].
The matrix elements for nearly perpendicular propagation can be derived from

evaluation of the anti-Hermitian parts of (A 1) and (A 2) by using the following
relation,

Im
1

k′′
‖ν‖ + k′′

⊥νd − ωk′′ + mωcs
= πδ(k′′

‖ν‖ + k′′
⊥νd − ωk′′ + mωcs). (A 22)

They are given by (24) and (25) in [6] where ωk and ωk′′ in Rjl′′

k,k′ , Sll′

k,k′ and δ(k′′
‖ν‖ −

ωk′′ + mωcs) should be replaced by ωk − k⊥νd and ωk′′ − k′′
⊥νd, respectively, gs is

replaced by gs0, al
k,r, b

l
k, and uk′′(v) are provided by (42) and (A 20), and ψl

k,r should
be defined as follows:

ψx
k,r =

k‖

k⊥
(rωcs + k⊥νd)

∂

∂ν‖
+

rωcs
k⊥ν⊥

(ωk − k‖ν‖)
∂

∂ν⊥
, (A 23)

ψy
k,r = ωcs

(
k‖

k⊥

∂

∂ν‖
+

ωk − k⊥νd − k‖ν‖

k⊥ν⊥

∂

∂ν⊥

)
, (A 24)

ψz
k,r = (ωk − k⊥νd − rωcs)

∂

∂ν‖
+ rωcs

ν‖

ν⊥

∂

∂ν⊥
, (A 25)

where uk′′(v) = (ux
k′′(v), uy

k′′(v), uz
k′′(v)).

Appendix B. Electrostatic and partially electrostatic nonlinear
wave–particle coupling coefficients

When two scattering waves are electrostatic (Ek = (k/k)Ek, Ek′ = (k′/k′)Ek′ ), the
matrix elements become as follows:

Ak,k′′,k′ =
∑
s

A
(s)
k,k′′,k′ , (B 1)
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A
(s)
k,k′′,k′ =

∑
j,l,l′,l′′

kjk
′
l′′k′

l′kl

k2k′2 A
(s)jl′′l′l
k,k′′,k′

= Im
(
C

(s)
k,k′′,k′ + D

(s)
k,k′′,k′

)
, (B 2)

C
(s)
k,k′′,k′ =

ω2
ps

k2k′2

(
es
ms

)2 ∑
q′,q,r=−∞

∫
d3v

Jq′(µk)Wk′(v)
k‖ν‖ + k⊥νd − ωk + q′ωcs

× 1
k′′

‖ν‖ + k′′
⊥νd − ωk′′ + qωcs

× [S−k′(v)Zk,r(v)gs0 + Sk(v)Z−k′,r(v)gs0], (B 3)

D
(s)
k,k′′,k′ =

1
εk′′

(
α

(s)
k′′,k′ + α

(s)
k′,k′′

)
(αk,−k′ + α−k′,k), (B 4)

αk′′,k′ =
∑
s

α
(s)
k′′,k′ , (B 5)

α
(s)
k′′,k′ =

ω2
ps

kk′k′′
es
ms

∞∑
q,r=−∞

∫
d3v

Jq(µk)Sk′′(v)
k‖ν‖ + k⊥νd − ωk + qωcs

Zk′,r(v)gs0, (B 6)

εk = 1 +
∑
s

ε
(s)
k , (B 7)

ε
(s)
k = −

ω2
ps

k2

∞∑
r=−∞

∫
d3v

J2
r (µk)Ur(k)gs0

k‖ν‖ + k⊥νd − ωk + rωcs
. (B 8)

The differential operators S, W and Z are defined by

Sk(v) =
1
ωk

∑
l

klS
l
k,−k′(v)

= Jq−r(µk)Uq−r(k) − J ′
q−r(µk)

k⊥r

ν⊥
, (B 9)

Wk′(v) = [Sk′(v)] q →q ′
r →q

, (B 10)

Zk,r(v) =
1
ωk

∑
l

klZ
l
k,r(v)

=
Jr(µk)Ur(k)

k‖ν‖ + k⊥νd − ωk + rωcs
. (B 11)

In the partially electrostatic cases where one of two scattering waves is electro-
static and the other is electromagnetic, the matrix elements can be obtained by per-
forming the appropriate replacements of [u∗j

k (v)Jq(µk)]/ωk → Jq(µk)/k, Sl
k,−k′(v)/

ωk → Sk(v)/k, W l′

k′,k′′(v)/ωk′ → Wk′(v)/k′ and Zl
k,r(v)/ωk → Zk,r(v)/k, as described

previously [4,6,7].
The electrostatic or partially electrostatic matrix elements for nearly perpen-

dicular propagation can be obtained from the matrix elements described in the
last paragraph in Appendix A by carrying out the appropriate replacements of
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al
k,r/ωk → k‖/k, bl

k/ωk → k⊥/k and µkξ
l
kψ

l
k,r/ωk → Ur(k)/k. Here, ξx

k = ξz
k = 1/µk

and ξy
k = i∂/∂µk, as defined in [6]. In particular, the partially electrostatic elements

can be also given by (27)–(30) in [6], where the same replacements as those described
in Appendix A should be carried out in order to get the matrix elements from (24)
and (25) in [6].

Appendix C. θ-dependent velocity-space diffusion coefficients
The θ-dependent velocity-space diffusion coefficients in (43) and (44) are represen-
ted as follows:

Qll′

k = PAH

[
1
ω2
k

(
es
ms

)2 ∞∑
n,r=−∞

ei(n−r)θ
(
H l
k,n(v)

[
w∗l
k (v)Jn(µk)

]
+Kl

n,r(v)
)
Zl′

k,r(v)

]
,

(C 1)

Ljl′′l′l
k,k′′,k′ =

1
ω2
kωk′ω−k′

(
es
ms

)4 ∞∑
n,q′,q,r=−∞

ei(n−q′)θ
(
Hj
k,n(v)

[
w∗j
k (v)Jn(µk)

]
+ Kj

n,q′(v)
)

×
W l′′

k′,k′′(v)
k‖ν‖ + k⊥νd − ωk + q′ωcs

1
k′′

‖ν‖ + k′′
⊥νd − ωk′′ + qωcs

×
[
Sl′

−k′,k(v)Z
l
k,r(v) + Sl

k,−k′(v)Zl′

−k′,r(v)
]
, (C 2)

M jl′′l′l
k,k′′,k′ =

1
ωkωk′ωk′′

(
es
ms

)3 ∑
j′

(
βj′ll′

k,−k′ + βj′l′l
−k′,k

)

×
∞∑

n,q,r=−∞
ei(n−q)θ

(
Hj
k,n(v)

[
w∗j
k (v)Jn(µk)

]
+ Kj

n,q(v)
)

× 1
k‖ν‖ + k⊥νd − ωk + qωcs

[
Sj′

k′′,k′(v)Zl′′

k′,r(v) + Sl′′

k′,k′′(v)Zj′

k′′,r(v)
]
. (C 3)

The differential operators H and K are defined by

Hx
k,n(v) = Hy

k,n(v) = k‖ν⊥
∂

∂ν‖
+

1
ν⊥

(ωk − k⊥νd − k‖ν‖)
∂

∂ν⊥
ν⊥, (C 4)

Hz
k,n(v) = Y z

k,n(v), (C 5)

Kx
n,r(v) = νdUn(k)Jn(µk) − 1

ν⊥
(n − r)(ωk − k‖ν‖)J ′

n(µk), (C 6)

Ky
n,r(v) =

i

ν⊥
(n − r)

[
n

µk
(ωk − k⊥νd − k‖ν‖) − k⊥ν⊥

]
Jn(µk), (C 7)

Kz
n,r(v) = −

k⊥ν‖

ν⊥
(n − r)J ′

n(µk). (C 8)

It can be confirmed that when νd = 0, (C 1)–(C 3) are reduced to the previous
results [7].
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When two scattering waves are electrostatic, the matrix elements become

Qk = Im

[
1
k2

(
es
ms

)2 ∞∑
n,r=−∞

Yn,r(k)ei(n−r)θZk,r(v)

]
, (C 9)

Bk,k′′,k′ =
∑

j,l,l′,l′′

kjk
′
l′′k′

l′kl

k2k′2 Bjl′′l′l
k,k′′,k′

= Im(Lk,k′′,k′ + Mk,k′′,k′), (C 10)

Lk,k′′,k′ =
1

k2k′2

(
es
ms

)4 ∞∑
n,q′,q,r=−∞

Yn,q′(k)
ei(n−q′)θWk′(v)

k‖ν‖ + k⊥νd − ωk + q′ωcs

× 1
k′′

‖ν‖ + k′′
⊥νd − ωk′′ + qωcs

[S−k′(v)Zk,r(v) + Sk(v)Z−k′,r(v)], (C 11)

Mk,k′′,k′ =
1

kk′k′′εk′′

(
es
ms

)3 ∞∑
n,q,r=−∞

Yn,q(v)
ei(n−q)θ

k‖ν‖ + k⊥νd − ωk + qωcs

× [Sk′′(v)Zk′,r(v) + Sk′(v)Zk′′,r(v)], (C 12)

where the differential operator Y is defined by

Yn,q(k) = Un(k)Jn(µk) +
k⊥
ν⊥

(q − n)J ′
n(µk). (C 13)

In the partially electrostatic cases where one of two scattering waves is elec-
trostatic, the matrix elements can be obtained by the appropriate replace-
ments of (H l

k,n(v)[w∗l
k (v)Jn(µk)]+Kl

n,r(v))/ωk → Yn,r(k)/k, Sl
k,−k′(v)/ωk → Sk(v)/k,

W l′

k′,k′′(v)/ωk′ → Wk′(v)/k′ andZl
k,r(v)/ωk → Zk,r(v)/k, as mentioned in Appendix B.
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