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Abstract In this paper we study a Haagerup inequality in the general case of discrete groupoids. We
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Introduction

Let Γ be a discrete group, 1 its unit, CΓ its algebra and λ : CΓ → B(l2(Γ )) the left
regular representation. Recall that a length-function L on Γ is a positive map satisfying

(i) L(1) = 0,

(ii) L(g−1) = L(g), and

(iii) L(gh) � L(g) + L(h) for all g, h ∈ Γ .

Γ is said to satisfy the Haagerup inequality with respect to L if there exist two positive
constants C and r such that

‖λ(φ)‖ � C‖(1 + L)rφ‖2, ∀φ ∈ CΓ,

where ‖ · ‖ is the operator norm and ‖ · ‖2 is the l2-norm.
The Haagerup inequality was first introduced by Haagerup, who established it for

finitely generated free non-Abelian groups with respect to the word length-function, his
objective being to show that the metric approximation property is not enough to charac-
terize nuclear C∗-algebras [Haa79]. Jolissaint then introduced the equivalent property
(RD) of rapid decay [Jol90], which demands that the space H∞

L (Γ ) of rapidly decreas-
ing functions on Γ with respect to the length-function L be contained in the reduced
C∗-algebra C∗

r (Γ ). He established property (RD) for classical hyperbolic groups and
de la Harpe extended it to word hyperbolic groups à la Gromov [dlH88]. Jolissaint’s
property (RD) implies that both H∞

L (Γ ), which is in this case an algebra, and C∗
r (Γ ),

have the same K-theory [Jol89]. This fact plays a crucial role in the proof of Novikov’s
conjecture for higher signatures for Gromov hyperbolic groups [CM90] and in Lafforgue’s
work to prove the Baum–Connes conjecture for cocompact lattices in some semisimple
Lie groups [Laf98].

In [Jol90], Jolissaint proved that property (RD) is stable under some constructions
of groups such as taking subgroups, quotients by finite subgroups, extensions by finite
groups, direct and free products, some semi-direct products and some amalgamations.
On the other hand, he proved that a finitely generated amenable group satisfies the
Haagerup inequality if and only if it is of polynomial growth. Such groups are virtually
nilpotent. Hence, this provides us with the first examples of groups which do not satisfy
the Haagerup inequality such as Grigorchuk groups of intermediate growth [Gri85],
solvable groups of exponential growth and consequently SLn(Z), for n � 3, since it
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contains such a solvable subgroup. For SL2(Z), it satisfies the Haagerup inequality since
it is a Gromov word hyperbolic group.

In fact, Jolissaint’s result can be generalized to all discrete amenable groups which are
not necessarily finitely generated. These groups satisfy the Haagerup inequality if and
only if they are inductive limits of finitely generated virtually nilpotent groups having
finite index in each other [Tal01,PT76]. This provides new examples of groups which
satisfy the Haagerup inequality such as countable locally finite groups [Har95] and in
particular the group of finite permutations of N and the group of rational rotations of the
circle Q/Z, discrete Abelian groups of finite rank [Rot95] and in particular the discrete
additive group Q, etc.

In their paper [RRS98], Ramagge, Robertson and Steger proved that the Haagerup
inequality holds for any group acting freely and by isometries on the set of vertices of an
affine building of type Ã1 × Ã1 or Ã2, in particular for lattices of SL3(Qp), and Lafforgue
extended their result to actions with bounded isotropy groups cardinality [Laf00]. This
provided the first examples of higher rank groups satisfying the Haagerup inequality.
Lafforgue proved this inequality for cocompact lattices in SL3(R) and SL3(C) in [Laf00].
Chatterji, in [Cha01,Cha03], generalized his result to SL3(H) and SL3(O) and their
products.

This paper is divided into two parts. In the first part, which is analytical, we formulate
the Haagerup inequality in the general case of discrete local groupoids and give some
properties making connection with the Haagerup inequality for groups. We then give
a definition of this inequality for sets of triangles of local groupoids and develop two
geometrical tools, pinching and tetrahedral change of faces, based on deformation of
triangles, to prove this inequality. We show how to use these tools to find all the already
known results on the Haagerup inequality just by manipulating triangles.

In the second part, which is geometrical, we use these tools for groups acting freely
and by isometries on the set of vertices of any affine building and give a first reduction
of this inequality to its verification on the set of what we call reduced triangles. We
then show that these reduced triangles, in the case of buildings of type Ã1, Ã2, B̃2 and
their products, are contained in an apartment and prove the Haagerup inequality when
the building is of type Ãk1 × · · · × Ãkn , where ki ∈ {1, 2}, i = 1, . . . , n. The Haagerup
inequality in the case of a building of type Ãk × · · · × Ãk for k = 1 or 2 has been proved
simultaneously and independently by Chatterji in [Cha01,Cha03].

Most of the results of this paper have been obtained in my thesis [Tal01], and have
already been announced in [Tal02]. To make the results more general, some definitions
given here are a little bit different from the ones given in [Tal01,Tal02].

1. The Haagerup inequality and groupoids

The Haagerup inequality for groupoids acting simply transitively and by isometries on the
set of vertices of a building of type either Ã1 × Ã1 or Ã2 was introduced and established
in [RRS98]. Here, we give a definition of the Haagerup inequality for general discrete
local groupoids, give some properties of this inequality and state some geometrical tools
to prove it.
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1.1. Definitions and first properties

1.1.1. Groupoids

Recall from [Con94, § II.5] the following definition.

Definition 1.1. A groupoid consists of a set G of elements, a distinguished subset
G(0) ⊂ G of units called the base of G, two maps s, r : G → G(0) called the source and the
range, respectively, and a partial law of composition defined from the set of composable
pairs G(2) to G such that

(1) G(2) = {(α1, α2) ∈ G × G, s(α1) = r(α2)};

(2) s(α) = r(α) = α, for all elements in G(0);

(3) αs(α) = r(α)α = α, for all elements;

(4) for any element α, there is a unique element α−1 called the bilateral inverse, such
that αα−1 = r(α) and α−1α = s(α);

(5) s(α1α2) = s(α2), r(α1α2) = r(α1), for all composable pairs;

(6) the partial law of composition is associative.

Any group is a groupoid where the set of its units is reduced to a singleton and vice
versa.

If G is a groupoid and u ∈ G(0) a unit, consider the fibres Gu = s−1{u}, Gu = r−1{u}
and the set G(u) = Gu ∩Gu. G(u) is a group called the isotropy group at u. If two units u

and v are the source and range, respectively, of an element α ∈ G, the map g �→ αgα−1

is an isomorphism from G(u) to G(v).
A groupoid G is said to be trivial if it contains only units. It is said to be transitive if

the map (r, s) : G → G(0) × G(0) is onto. It is said to be principal if this map is one-to-one.
In a transitive groupoid all isotropy groups are isomorphic and any of the fibres Gu or
Gu, for u ∈ G(0) generates the groupoid G. In a principal groupoid all isotropy groups are
trivial.

If {Gi}i∈I is a family of groupoids then the disjoint union G =
∐

i∈I Gi is a groupoid
where G(0) =

∐
i∈I G(0)

i . Conversely, if G is an arbitrary groupoid, there is a canonical
partition into connected components Gi, i ∈ I, of G defined by the equivalence relation
α ∼ β if there exist u, v ∈ G such that β = uαv. The groupoids Gi are transitive.

The groupoid given in the following definition has been introduced in [RRS98] and
was used in [Laf00].

Definition 1.2. If Γ is a group acting freely on the right on a space X, it defines
a groupoid G(X, Γ ) = X ×Γ X where the elements of G(X, Γ ) are equivalence classes
[x, y] of elements of X × X under the relation (x, y) ∼ (xg, yg) for any g ∈ Γ . The
units are the classes of the form [x, x], the source and range maps are defined for all
x, y, z ∈ X by s[x, y] = [y, y] and r[x, y] = [x, x], respectively, and the product is defined
by [x, y][y, z] = [x, z].
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It is clear that G(X, Γ ) is transitive and consequently all isotropy groups are isomor-
phic. More precisely, we have the following remark.

Remark 1.3. For any x ∈ X, the map g �→ [xg, x] is an isomorphism between the group
Γ and the isotropy group at [x, x].

On the other hand, the map x �→ [x, x] induces a bijection between the set X/Γ of
orbits of Γ and the base of G(X, Γ ).

In § 2, we will deal with a generalization that we will give of the groupoid G(X, Γ ).
When the action of Γ on X is not necessarily free, we construct the following space

on which Γ acts freely. Let XΓ =
⋃

x∈X{x} × Γx, where Γx is the stabilizer of x. Choose
for any two elements x, y ∈ X in the same orbit an element αx,y ∈ Γ such that

(1) xαx,y = y for all x, y ∈ X in the same orbit;

(2) αx,x = 1 for all x ∈ X;

(3) αx,yαy,z = αx,z for all x, y, z ∈ X in the same orbit.

This defines a free action of Γ on XΓ by (x, g)h = (xh, αxh,xgh) for all ((x, g); h) ∈
XΓ × Γ . Let G(XΓ , Γ, α) be the corresponding groupoid given by Definition 1.2.

Recall from [ADR00, § 2.1.a] the following definition.

Definition 1.4. Let G be a groupoid and let X be a set together with a surjection
s′ : X → G(0). A right groupoid action of G on X is a map (x, α) �→ xα from the fibred
product X ∗G = {(x, α) ∈ X ×G, s′(x) = r(α)} to X satisfying the following conditions:

(1) s′(xα) = s(α),

(2) if (x, α) ∈ X ∗ G, (α, β) ∈ G(2), then (xα)β = x(αβ).

Obviously, any groupoid acts on the set of its units. The groupoid G(X, Γ ) acts on the
set X by x[x, y] = y where s′ : x �→ [x.x].

When a groupoid G acts on a set X then, for all u ∈ G(0), this action defines a group
action of the isotropy group G(u) on the corresponding set Xu = s′−1(u). The action
of the groupoid G is said to be free if the map (x, α) �→ (x, xα) is one-to-one. This is
equivalent to saying that the actions of the isotropy groups G(u) on the corresponding
sets Xu are free. The action is said to be transitive if the map (x, α) �→ (x, xα) is onto.
It is said to be simply transitive if this map is bijective.

1.1.2. Local groupoids

To give a generalization of Definition 1.2 to the case of a groupoid G, we first need to
recall the following definition which is equivalent to the one given in [vE84, p. 282] and
which generalizes the notion of groupoid.

Definition 1.5. A local groupoid consists of a set G of elements, a distinguished subset
G(0) ⊂ G of units called the base of G, two maps s, r : G → G(0) called the source and the
range, respectively, and a partial law of composition defined from the set of composable
pairs G(2) to G such that
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(1) G(2) ⊂ {(α1, α2) ∈ G × G, s(α1) = r(α2)};

(2) s(α) = r(α) = α, for all elements in G(0);

(3) for any element α, (α, s(α)) and (r(α), α) are in G(2) and αs(α) = r(α)α = α;

(4) for any element α, there is a unique element α−1 called the bilateral inverse, such
that (α, α−1), (α−1, α) ∈ G(2) and αα−1 = r(α) and α−1α = s(α);

(5) if (α1, α2) ∈ G(2), then (α−1
2 , α−1

1 ) ∈ G(2) and (α1α2)−1 = α−1
2 α−1

1 ;

(6) if (α1, α2), (α2, α3) ∈ G(2) and (α1α2, α3) ∈ G(2), then (α1, α2α3) ∈ G(2) and
α1(α2α3) = (α1α2)α3.

A local group is by definition a local groupoid where the set of its units is reduced to
a singleton.

Notice that by (5) of Definition 1.5, condition (6) is equivalent to:

(6′) if (α1, α2), (α2, α3) ∈ G(2) and (α1, α2α3) ∈ G(2), then (α1α2, α3) ∈ G(2) and
(α1α2)α3 = α1(α2α3).

In a more general case a net α1, . . . , αn in a local groupoid is said to be local if the
product α1 · · ·αn is defined for a suitable placement of brackets. If the value of the
product does not depend on the placement of brackets we say that this product is stable.
We say that the product in a local groupoid is generally associative if any local net has
a stable product.

Now, let (α1, α2) ∈ G(2). By (4) of Definition 1.5 we have (α−1
1 , α1) ∈ G(2) and α−1

1 α1 =
s(α1), which is equal to r(α2) by (1). Then, we deduce by (6) that (α−1

1 , α1α2) ∈ G(2)

and α−1
1 (α1α2) = α2. But (α1α2, s(α1α2)) ∈ G(2) by (3). By using (6) for α−1

1 , α1α2,
s(α1α2) we deduce that (α2, s(α1α2)) ∈ G(2) and therefore s(α2) = s(α1α2). We prove
in the same way that r(α1) = r(α1α2). This proves that any local groupoid satisfies
condition (5) of Definition 1.1.

Hence, any groupoid is a local groupoid. On the other hand, a local groupoid is a
groupoid if and only if the inclusion in (1) of Definition 1.5 is an equality. This is equiva-
lent to saying in (6) of Definition 1.5 that (α1α2, α3) ∈ G(2) whenever (α1, α2), (α2, α3) ∈
G(2) (take for this α2 = s(α1) = r(α3)).

Now let G be a groupoid and let G(0) ⊂ G′ ⊂ G with G′−1 = {α−1; α ∈ G′} = G′. Then
G′ together with the restriction of the algebraic structure of the groupoid G is a local
groupoid. Conversely, a local groupoid G′ is said to be weakly enlargeable if there exists
a groupoid G and a one-to-one morphism of local groupoids φ : G′ → G. To recognize
such local groupoids, we have the following useful criterion [vE84].

Proposition 1.6 (Malcev criterion). A local groupoid is weakly enlargeable if and
only if the partial product law is generally associative.

If G is a local groupoid and u ∈ G(0) is a unit, we define in the same way the isotropy
local group G(u) at u. Contrary to groupoids, it is clear from the above given example
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that there is in general no isomorphism between two isotropy local groups G(u) and G(v)
though the units are the source and range, respectively, of an element α ∈ G.

A local groupoid G is said to be coherent if the image of the map (r, s) generates the
principal groupoid G(0) × G(0) and it is said to be transitive if this image is equal to the
principal groupoid.

Now let us define the notion of action of local groupoids on sets. This will generalize
in a natural way the case of groupoids. We do not know whether such a notion already
exists in the literature.

Definition 1.7. Let G be a local groupoid and let X be a set together with a surjection
s′ : X → G(0). We will call a right groupoid action of G on X a map (x, α) �→ xα from
a domain D subset of the fibred product X ∗ G = {(x, α) ∈ X × G, s′(x) = r(α)} to X

satisfying the following conditions.

(1) If α ∈ G such that (β, α) ∈ G(2) for all β ∈ G with s(β) = r(α), then (x, α) ∈ D for
all x ∈ X with s′(x) = r(α).

(2) If (x, α) ∈ D, (α, β) ∈ G(2) and (x, αβ) ∈ D, then (xα, β) ∈ D and (xα)β = x(αβ).

(3) For all (α, β) ∈ G(2), there exists x ∈ X such that (x, α−1), (x, β) ∈ D.

If we take β = s(α) in (2) of Definition 1.7 we deduce that if (x, α) ∈ D then s′(xα) =
s(α). If G is a groupoid, all elements α ∈ G satisfy (1) of Definition 1.7. This means that
in the case of a groupoid, D = X ∗ G and we again obtain Definition 1.4.

Notice that any local groupoid G acts on the right on its base G(0). It also acts in a
natural way on the right on itself, where s′ = r, D = G(2) and the action is given by the
partial law of composition.

As for actions of groupoids, an action of a local groupoid G is said to be free if the map
(x, α) �→ (x, xα) defined from D to X × X is one-to-one. It is said to be coherent if the
image of this map generates the principal groupoid X × X and it is said to be transitive
if this image is equal to the principal groupoid. It is said to be simply transitive if it is
free and transitive.

Now let us give two generalizations of Definition 1.2. The first generalization is when
the action of the group Γ on X is not necessarily free. In this case, we construct the
following space on which Γ acts freely.

Let XΓ =
⋃

x∈X{x} × Γx, where Γx is the stabilizer of x. Choose for any two elements
x, y ∈ X in the same orbit an element αx,y ∈ Γ such that

(1) xαx,y = y for all x, y ∈ X in the same orbit;

(2) αx,x = 1 for all x ∈ X;

(3) αx,yαy,z = αx,z for all x, y, z ∈ X in the same orbit.

One can define a free action of Γ on XΓ by (x, g)h = (xh, αxh,xgh) for all ((x, g); h) ∈
XΓ × Γ . Denote by G(XΓ , Γ, α) the corresponding groupoid defined in Definition 1.2.
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Definition 1.8. Let Γ be a group acting on the right on a space X with a not necessarily
free action. We define the local groupoid G(X, Γ, α) to be equal to {[(x, 1), (y, 1)] ∈
G(XΓ , Γ, α); x, y ∈ X}.

The local groupoid G(X, Γ, α) is a groupoid if and only if for all x, y, z ∈ X with
y, z in the same orbit, there exists t ∈ X such that αy,z = αx,t. Indeed, if y, z are in
the same orbit, s([(x, 1); (y, 1)]) = r([(z, 1); (u, 1)]) and [(x, 1); (y, 1)] = [(x, 1)αy,z; (z, 1)].
However, they cannot be composable in G(X, Γ, α) unless there exists t ∈ X such that
(x, 1)αy,z = (t, 1). Notice that the local groupoid G(X, Γ, α) is transitive.

The local groupoid G(X, Γ, α) acts simply transitively on the set X by

x[(x, 1), (y, 1)] = y, for all x, y ∈ X.

The second generalization of Definition 1.2 is when the group Γ is replaced by a
groupoid G.

Definition 1.9. When the action of a groupoid G on a set X is free, we define the local
groupoid G(X, G) = X×G X such that the elements of G(X, G) are the equivalence classes
[x, y] of elements of X × X under the equivalence relation generated by

(x, y) ∼ (xα, yα), for all x, y ∈ X, α ∈ G such that (x, α), (y, α) ∈ D.

The units are the classes of the form [x, x], the source and range maps are defined for all
x, y, z ∈ X by s[x, y] = [y, y] and r[x, y] = [x, x], respectively, and the product is defined
by [x, y][y, z] = [x, z].

If x, y ∈ X with s′(x) 
= s′(y), the class [x, y] contains only one element (x, y). If
moreover y′, z ∈ X with s′(y′) 
= s′(z) and y, y′ are in the same orbit but different, then
([x, y], [y′, z]) /∈ G(X, G)(2) though s[x, y] = r[y′, z]. Hence, G(X, G) is not a groupoid
whenever G is neither a group nor trivial. On the other hand, G(X, G) is a local group if
and only if the free action of the groupoid G on X is transitive.

As for G(X, Γ ), it is clear that the local groupoid G(X, G) is transitive.
Notice that, for any u ∈ G(0), the inclusion of Xu × Xu in X × X induces a one-

to-one morphism from the groupoid G(Xu,G(u)) to the local groupoid G(X, G). Now,
for two units u, v ∈ G(0), both the images in G(X, G) of the groupoids G(Xu,G(u)) and
G(Xv,G(v)) are either the same if u and v are in the same connected component of G or
disjoint if not.

Let {Gi}i∈I be the canonical partition of the groupoid G into connected components.
If {ui}i∈I is a family of units of G such that ui is in Gi for all i ∈ I, there is a bijection
between the disjoint union

∐
i∈I Xui/G(ui) and the base of G(X, G).

To get a generalization of Remark 1.3, the natural way to do it is to consider, for any
family {xu}u∈G(0) of elements of X such that s′(xu) = u for all u ∈ G(0), the morphism
from the groupoid G to the local groupoid G(X, G) defined by α �→ [xr(α)α, xs(α)]. But
this morphism is one-to-one if and only if the family {xu}u∈G(0) is such that for all non-
units α ∈ G, xr(α)α 
= xs(α). This condition is too strong. To avoid it, we introduce the
following definition.
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Definition 1.10. When the action of a groupoid G on a set X is free, we define
the local groupoid G′(X, G) = G(X, G) × G(0) × G(0), where the units are the elements
of the form ([x, x], u, u), the source and range maps are defined by s([x, y], u, v) =
([y, y], v, v) and r([x, y], u, v) = ([x, x], u, u), respectively, and the product is defined by
([x, y], u, v)([y, z], v, w) = ([x, z], u, w), for all x, y, z ∈ X, u, v ∈ G(0).

The local groupoid G′(X, G) is nothing but the direct product of the local groupoid
G(X, G) by the principal groupoid G(0) × G(0). Notice that when G is a group, the base
G(0) is reduced to a singleton and then both G(X, G) and G′(X, G) are isomorphic. In
general, we have the following remark which generalizes Remark 1.3.

Remark 1.11. Any family {xu}u∈G(0) of elements of X such that s′(xu) = u, for
all u ∈ G(0), defines a one-to-one morphism from the groupoid G to the local groupoid
G′(X, G) by α �→ ([xr(α)α, xs(α)], r(α), s(α)).

Local groupoids G(X, G) and G′(X, G) act transitively on the set X by x[x, y] = y and
x([x, y], u, v) = y, respectively, for all x, y ∈ X. However, only the action of G(X, G) is
simply transitive.

The only local groupoids which are not groupoids and will appear in this paper are
those defined in Definitions 1.8–1.10.

1.1.3. The Haagerup inequality

Our aim in this paper is to study the Haagerup inequality for groups and groupoids.
The generalization to local groupoids has been given only because of the examples that
appear naturally as tools in Definitions 1.8–1.10. Thus most of remarks that we will make
in this paragraph will be restricted to groupoids, although some of them can be extended
to local groupoids.

Let G be a discrete local groupoid. For K = R+, R or C, denote by KG the set of
functions of finite support in G having values in K. The convolution product and the
involution on KG are defined by

φ1 ∗ φ2(γ) =
∑

αβ=γ

φ1(α)φ2(β) and φ∗(γ) = φ(γ−1), for γ ∈ G and φ1, φ2, φ ∈ KG,

where the sum is taken on composable pairs (α, β). This convolution extends to l2(G)
and defines a representation λ of CG on B(l2(G)) by

λ(φ) : ψ �→ φ ∗ ψ, ∀φ ∈ CG,

called the left regular representation.
Notice that if the Gi, i ∈ I, are the connected components of a groupoid G, the operator

λ(φ) is diagonal on the decomposition

l2(G) =
⊕
i∈I

l2(Gi).
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A length-function on a local groupoid G is a map L : G → R+ such that

(1) L(α) = 0, for all α ∈ G(0);

(2) L(α−1) = L(α), for all α ∈ G;

(3) L(α1α2) � L(α1) + L(α2), for all composable pair (α1, α2).

For any positive integer n, let BL(n) = {α ∈ G, L(α) � n}.
Of course, this definition is a generalization of definition of a length-function on a

group. When G is a groupoid we have the following lemma.

Lemma 1.12. Let G be a transitive groupoid, u a unit of G and Γ the isotropy group
at u. Any length-function on Γ has an extension to a length-function on G such that for
any two isotropy groups, there is an isomorphism preserving lengths.

Proof. Let L be a length-function on Γ . Since the groupoid G is transitive, one can
choose for any unit v ∈ G(0) \ {u}, an element in G, denoted by [uv], such that r([uv]) = u

and s([uv]) = v. Denote by [vu] the inverse of [uv] and by [uu] the unit u.

For any α ∈ G, the element α̃ = [ur(α)]α[s(α)u] ∈ Γ. Set L̃(α) = L(α̃).

The map L̃ extends L and is a length-function on G, and for any v ∈ G(0), the isomorphism
α �→ [vu]α[uv] between the group Γ and the isotropy group at v preserves the length-
function L̃. �

Recall that a pseudo-metric space is a space X together with a mapping d : X × X →
R+ satisfying (i) d(x, x) = 0 for all x ∈ X, (ii) d(y, x) = d(x, y) for all x, y ∈ X,
(iii) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

Proposition 1.13.

(i) When a group Γ acts by isometries on a pseudo-metric space (X, d), any x ∈ X

defines a length-function Lx : g �→ d(x, gx) on Γ .

(ii) Moreover, if the action is free, we can define a length-function on G(X, Γ ) by
L : [x, y] �→ d(x, y).

(iii) However, if the action is not free we define a length-function L on G(XΓ , Γ, α) and
its restriction to G(X, Γ, α) by L : [(x, g), (y, h)] �→ d(x, y).

Notice that if the action of Γ on (X, d) is by isometries but not free, we define a
pseudo-distance d on XΓ by d((x, g), (y, h)) = d(x, y) and Γ acts freely and by isometries
on XΓ . Thus, the length-function defined by Proposition 1.13 (iii) for the triple (Γ, X, d)
coincides with the one defined by Proposition 1.13 (ii) for the triple (Γ, XΓ , d).

Remark 1.14. Notice that the map g �→ [xg, x] given in Remark 1.3 is an isometry
between (Γ, Lx) and (G(X, Γ )([x, x]), L).
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In general, we will say that the action of a local groupoid G on a pseudo-metric
space (X, d) is by isometries if d(xα, yα) = d(x, y) for all x, y ∈ X, α ∈ G such that
(x, α), (y, α) ∈ D. Notice that the actions of local groupoids G(X, Γ, α), G(X, G) and
G′(X, G) defined in Definitions 1.8, 1.9 and 1.10, respectively, are all by isometries on X

whenever the actions of Γ and G are by isometries on X.
We have the following proposition which generalizes Proposition 1.13 and Remark 1.14

to the case of groupoids.

Proposition 1.15.

(1) When a groupoid G acts by isometries on a pseudo-metric space (X, d), any family
{xu}u∈G(0) of elements of X such that s′(xu) = u for all u ∈ G(0) defines a length-
function on G by L{xu}(α) = d(xr(α)α, xs(α)) for all α ∈ G.

(2) If, moreover, the action is free, we can define a length-function on both local
groupoids G(X, G) and G′(X, G) by L : [x, y] �→ d(x, y) and L′ : ([x, y], u, v) �→
d(x, y), respectively.

(3) The morphism defined in Remark 1.11 is an isometric embedding of (G, L{xu}) into
(G′(X, G), L′).

The proofs of both Proposition 1.13 and Proposition 1.15 are straightforward and are
omitted. Let us now give the definition of the Haagerup inequality for general discrete
local groupoids.

Definition 1.16. The discrete local groupoid G is said to satisfy the Haagerup inequality
if there exists a length-function L on G and two positive constants C, r such that ∀φ ∈ CG,
‖λ(φ)‖ � C‖φ(1 + L)r‖2, where ‖ · ‖ is the operator norm on B(l2(G)) and ‖ · ‖2 is the
l2-norm on CG.

It is obvious that if a local groupoid satisfies the Haagerup inequality with respect
to a length-function, any local subgroupoid satisfies this inequality with respect to the
restriction of this length-function. Notice on the other hand that if the groupoids Gi,
i ∈ I, are the connected components of a groupoid G, Definition 1.16 is equivalent to
saying that all the Gi satisfy the Haagerup inequality for the same constants C, r. In fact
we can say more.

Proposition 1.17. A discrete groupoid G satisfies the Haagerup inequality with respect
to a length-function L if and only if all its isotropy groups satisfy the Haagerup inequality
with respect to the restrictions of the length-function L and for the same constants C, r.

As a direct consequence of Proposition 1.17, we have the following corollary.

Corollary 1.18. Any principal groupoid satisfies the Haagerup inequality with respect
to any length-function on it.

The proof of Proposition 1.17 will be given in § 1.2. By mixing results of Proposi-
tion 1.17 and Lemma 1.12 we deduce the following proposition.
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Proposition 1.19. Let G be a transitive groupoid, u a unit of G and Γ the isotropy
group at u. The groupoid G satisfies the Haagerup inequality if and only if the group Γ

satisfies the Haagerup inequality.

This result is in general not true for any length-function on G. Indeed, let {u, v} be a set
with two elements and let G be the set of elements of the form (mx, ny) where m, n ∈ Z
and x, y ∈ {u, v}. Let G(0) be the set of elements of the form (0u, 0u), (0v, 0v), which we
shall denote by u, v, respectively. Define the range and source maps by r(mx, ny) = x,
s(mx, ny) = y, respectively, and the partial law of composition by

(mx, ny)(py, qz) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(mx, qz) if x = z 
= y,

((m + n + p)x, qz) if x = y 
= z,

(mx, (n + p + q)z) if x 
= y = z,

((m + n)x, (p + q)z) if x = y = z.

Now define the length-function L on the groupoid G by

L(mx, ny) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|m + n| if x = y = u,

log(1 + |m + n|) if x = y = v,

|m| + log(1 + |n|) if x = u, y = v,

log(1 + |m|) + |n| if x = v, y = u.

The isotropy group at u then satisfies the Haagerup inequality with respect to the restric-
tion of the length-function L, but (G, L) does not satisfy the Haagerup inequality since the
isotropy group at v is amenable and of exponential growth with respect to the restriction
of the length-function L.

Let us give the following useful proposition, which will be proved in § 1.2.

Proposition 1.20. A direct product of two local groupoids G = G1 × G2 satisfies the
Haagerup inequality with respect to the length-function L = L1 + L2 if and only if the
local groupoids G1 and G2 satisfy the Haagerup inequality with respect to the length-
functions L1 and L2, respectively.

The following two propositions motivate Definition 1.16 for local groupoids.

Proposition 1.21. Let G be a groupoid acting freely and by isometries on a pseudo-
metric space X and let L and L{xu} be the length-functions defined in Proposition 1.15.
If the local groupoid G(X, G) satisfies the Haagerup inequality with respect to L, the pair
(G, L{xu}) satisfies the Haagerup inequality for any family {xu}u∈G(0) of elements of X

such that s′(xu) = u for all u ∈ G(0).

Proof. When G = Γ is a group, this is nothing but Proposition 2.1 of [Laf00] extracted
from [RRS98]. By Remarks 1.3 and 1.14, the proof becomes obvious in this situation.

For the general case, we need the following lemma, which we deduce from Proposi-
tions 1.18 and 1.20.
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Lemma 1.22. If (G(X, G), L) satisfies the Haagerup inequality, then (G′(X, G), L′) sat-
isfies the Haagerup inequality.

Using Lemma 1.22, Remark 1.11 and Proposition 1.15, Proposition 1.21 follows. �

Proposition 1.23. Let Γ be a group acting by isometries on a pseudo-metric space
X with a bounded order of stabilizers. Let L and Lx be the length-functions defined in
Proposition 1.13. If the local groupoid G(X, Γ, α) satisfies the Haagerup inequality with
respect to L, the pair (Γ, Lx) satisfies the Haagerup inequality for any x ∈ X.

Proof. The proof follows from the following lemma, which will be proved in § 1.3.1.

Lemma 1.24. If the local groupoid G(X, Γ, α) satisfies the Haagerup inequality with
respect to L, then the groupoid G(XΓ , Γ, α) satisfies the Haagerup inequality with respect
to L.

Using Lemma 1.24, Remark 1.3, Proposition 1.13 and Remark 1.14, Proposition 1.23
follows. �

Propositions 1.21 and 1.23 give us an improvement of Theorem 1.9 and Corollary 1.10
of [RRS98]. Notice that the proof of Theorem 1.9 of [RRS98] still goes through if we
replace groupoids by local groupoids. Since our local groupoids act simply transitively,
we obtain the following improvement.

Theorem 1.25. Let (X, d) be the set of vertices of an affine building of type Ã1 × Ã1

or Ã2 together with the metric given by the 1-skeleton of the building.

(1) Any groupoid acting freely and by isometries on (X, d) satisfies the Haagerup
inequality.

(2) Any group acting by isometries on (X, d) with a bounded order of stabilizers satisfies
the Haagerup inequality.

Part (2) has already been obtained in [Laf00]. A generalization of the above theorem
will be given in § 2.

1.2. The Haagerup inequality and triangles

Let G be a local groupoid and let G(3)
0 be the set of its triangles (α1, α2, α3). These

are the composable triplets of G such that their products α1α2α3 are units. We will call
such a triangle degenerate if its three sides αi, i = 1, 2, 3, are units.

Given two functions φ1, φ2 ∈ CG and a set T ⊂ G(3)
0 of triangles of G, we define a

non-associative partial convolution product on T by

φ1 ∗T φ2 : γ �→
∑

(α,β,γ−1)∈T
φ1(α)φ2(β),

with the convention that the empty sum is zero. It is clear that φ1 ∗G(3)
0

φ2 = φ1 ∗ φ2.
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Proposition 1.26. Let L be a length-function on G and let T be a set of triangles of
G. The following two inequalities are equivalent.

(1) There exists a polynomial P for which, ∀n ∈ N, ∀φ1, φ2 ∈ CG with the support of
φ1 in BL(n), we have ‖φ1 ∗T φ2‖2 � P (n)‖φ1‖2‖φ2‖2.

(2) There exists a polynomial P for which, ∀n ∈ N, ∀φ1, φ2, φ3 ∈ R+G with the support
of φ1 in BL(n), we have∑

(α1,α2,α3)∈T
φ1(α1)φ2(α2)φ3(α3) � P (n)‖φ1‖2‖φ2‖2‖φ3‖2.

Proof. For all φ1, φ2, φ3 ∈ CG, we have∑
(α1,α2,α3)∈T

φ1(α1)φ2(α2)φ3(α3) =
∑

α3∈G
φ1 ∗T φ2(α−1

3 )φ3(α3) = 〈φ1 ∗T φ2, φ̌3〉,

where 〈· , ·〉 is the inner product on l2(G) and φ̌3 : α �→ φ3(α−1).
It follows from this and the Cauchy–Schwartz inequality that (1) ⇒ (2). (2) ⇒ (1)

follows from setting φ̌3 = φ1 ∗T φ2 and using the fact that the absolute value of the sum
is less than or equal to the sum of the absolute values. �

Definition 1.27. If one of the two inequalities of Proposition 1.26 holds, we say that
(T , L) satisfies the Haagerup inequality.

Notice that the local groupoid G satisfies the Haagerup inequality if and only if the set
G(3)

0 of all its triangles satisfies it. On the other hand, we have the following straightfor-
ward result.

Proposition 1.28. The set of degenerate triangles of G satisfies the Haagerup inequality
for any length-function on G.

In a more general case, we have the following lemma, which will be used later.

Lemma 1.29. Let Xi, i ∈ Z/3Z, be three discrete sets and let fi ∈ l2(Xi × Xi+1) for
i ∈ Z/3Z. Then∣∣∣∣ ∑

xi∈Xi, i∈Z/3Z

f1(x1, x2)f2(x2, x3)f(x3, x1)
∣∣∣∣ � ‖f1‖2‖f2‖2‖f3‖2.

To prove this lemma we only have to apply the Cauchy–Schwartz inequality three
times.

Our strategy to prove the Haagerup inequality for a given local groupoid G with respect
to a length-function L consists of applying successive deformations to the set G(3)

0 of
triangles of G, which are ‘compatible’ with this inequality, to reduce the proof of the
inequality to the set of degenerate triangles. But before presenting these deformations
let us give the proofs of Propositions 1.17 and 1.20.
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Proof of Proposition 1.17. The direct sense is obvious. For the opposite, denote by
Γu the isotropy group at u, for any u ∈ G(0). Denote by P the polynomial of a Haagerup
inequality satisfied by all Γu. Since G is transitive, choose for any u, v ∈ G(0), an element
in G, denoted by [uv], such that r([uv]) = u, s([uv]) = v, its length is minimal and such
that [vu] is the inverse of [uv]. Let n be a non-negative integer and let φ1, φ2, φ3 ∈ R+G
such that the support of φ1 is in BL(n).

For all u ∈ G(0), α ∈ Γu, set

φ1,u(α) =
√ ∑

v∈G(0)

φ2
1(α[uv]),

φ2,u(α) =
√ ∑

v,w∈G(0)

φ2
2([vu]α[uw]),

φ3,u(α) =
√ ∑

w∈G(0)

φ2
3([wu]α).

Notice that ‖φ2‖2 = ‖φ2,u‖2 and that

‖φi‖2 =
√∑

u

‖φi,u‖2
2 for i = 1, 3.

Notice, on the other hand, that the support of φ1,u is in BL(2n). We have by using
Lemma 1.29 and the Haagerup inequality for the Γu,∑
(α,β,γ)∈G(3)

0

φ1(α)φ2(β)φ3(γ) =
∑

u∈G(0)

∑
αβγ=u

α,β,γ∈Γu

∑
v,w∈G(0)

φ1(α[uv])φ2([vu]β[uw])φ3([wu]γ)

�
∑

u∈G(0)

∑
αβγ=u

α,β,γ∈Γu

φ1,u(α)φ2,u(β)φ3,u(γ)

�
∑

u∈G(0)

P (2n)‖φ1,u‖2‖φ2,u‖2‖φ3,u‖2

� P (2n)‖φ1‖2‖φ2‖2‖φ3‖2.

�

Proof of Proposition 1.20. Let n be a non-negative integer and let φ′
1, φ

′
2, φ

′
3 ∈ R+G1×

G2 such that the support of φ′
1 is in BL(n). Consider the functions φ1, φ2, φ3 ∈ R+G1

defined by

φi(α1) =
√ ∑

α2∈G2

φ′2
i (α1, α2), for i = 1, 2, 3.

Notice that the support of φ1 is in BL1(n) and that ‖φi‖2 = ‖φ′
i‖2 for i = 1, 2, 3. Let Pi

be the polynomial given by the Haagerup inequality satisfied by (Gi, Li), for i = 1, 2. We
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then have ∑
((α1,α2);(β1,β2);(γ1,γ2))∈G(3)

0

φ′
1(α1, α2)φ′

2(β1, β2)φ′
3(γ1, γ2)

=
∑

(α1,β1,γ1)∈G(3)
10

∑
(α2,β2,γ2)∈G(3)

20

φ′
1(α1, α2)φ′

2(β1, β2)φ′
3(γ1, γ2)

�
∑

(α1,β1,γ1)∈G(3)
10

P2(n)φ1(α1)φ2(β1)φ3(γ1)

� P1(n)P2(n)‖φ1‖2‖φ2‖2‖φ3‖2

= P (n)‖φ′
1‖2‖φ′

2‖2‖φ′
3‖2.

�

1.3. Deformations of triangles

The deformations that are ‘compatible’ with the Haagerup inequality and that we will
consider here are called B-pinching and tetrahedral change of faces. For the following two
paragraphs, we fix a length-function L.

1.3.1. The B-pinching

To define the B-pinching, we need first to define a family of domains of L-decomposi-
tions with respect to which the pinching will be applied.

Definition 1.30.

(i) For any element α ∈ G, we call a domain of decompositions of α a non-empty
set B(α) of triplets (u, α̃, v) of elements of G such that the triplet (u, α̃, v−1) is
composable and α = uα̃v−1.

(ii) We call a family of domains of L-decompositions of G, a family B = {B(α)}α∈G of
domains of decompositions of elements of G for which there exists a polynomial P1

such that, for all α ∈ G and all (u, α̃, v) ∈ B(α), we have

(1) L(u) � P1(L(α)),

(2) (v, α̃−1, u) ∈ B(α−1).

We say that a triangle (α̃1, α̃2, α̃3) is a B-pinching of a triangle (α1, α2, α3) if there exist
u1, u2, u3 ∈ G such that for all i ∈ Z/3Z, we have (ui, α̃i, ui+1) ∈ B(αi) (see Figure 1).

Definition 1.31. We say that a set T ′ of triangles of G is a B-pinching of an other set
T of triangles of G if every triangle of T has a B-pinching in T ′.

Note that Definition 1.31 is a little different from Definition 2.3 given in [Tal02]. This
is to make results more general.
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(a) (b)

Figure 1. Deformation of triangles: (a) B-pinching; (b) tetrahedral change of faces.

Definition 1.32.

(a) We say that G is of polynomial B-growth if there exists a polynomial P2 such that,
for all α ∈ G and for all n ∈ N, #{(u, α̃, v) ∈ B(α), L(u), L(α̃) � n} � P2(n).

(b) We say that G is of polynomial rigid B-growth if there exists a polynomial P2 such
that, for all α ∈ G and for all n ∈ N, #{(u, α̃, v) ∈ B(α), L(u) � n} � P2(n).

Having given these definitions we have the following result.

Proposition 1.33. Let T and T ′ be two sets of triangles of G such that T ′ is a B-
pinching of T and T ′ satisfies the Haagerup inequality. The set T satisfies the Haagerup
inequality if one of the following two additional assumptions is satisfied.

(1) (G, L) is of polynomial B-growth and there exists a polynomial P3 such that any
triangle (α1, α2, α3) in T has a B-pinching (α̃1, α̃2, α̃3) in T ′ satisfying

max
i

L(α̃i) � min
i

P3(L(αi)), for i = 1, 2, 3.

(2) (G, L) is of polynomial rigid B-growth.

Proof. Suppose that one of the two conditions is satisfied. Let P1, P2 and P3 be the
three polynomials appearing above and let P4 be the polynomial which appears in the
Haagerup inequality satisfied by (T ′, L). Let n ∈ N and let φ1, φ2, φ3 be in R+G such
that the support of φ1 is in BL(n). We have∑

(α1,α2,α3)∈T
L(α1)�n

φ1(α1)φ2(α2)φ3(α3)

�
∑

(α̃1,α̃2,α̃3)∈T ′

satisfying Cn

∑
u1,u2,u3∈G

(ui,α̃i,ui+1)∈B(uiα̃iu
−1
i+1)

for i=1,2,3

φ1(u1α̃1u
−1
2 )φ2(u2α̃2u

−1
3 )φ3(u3α̃3u

−1
1 ),

(1.1)
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where Cn is either the condition L(α̃1) � P3(n) in the case of assumption (1) or the
condition maxi L(α̃i) � P3(n) in the case of assumption (2).

Since φ1(u1α̃1u
−1
2 ) is zero whenever L(u1α̃1u

−1
2 ) = L(u2α̃

−1
1 u−1

1 ) > n and since we
have (u1, α̃1, u2) ∈ B(u1α̃1u

−1
2 ) and (u2, α̃

−1
1 , u1) ∈ B(u2α̃

−1
1 u−1

1 ), we can restrict to the
case L(u1), L(u2) � P1(n). Set

φ̃2
1(α̃1) =

⎧⎪⎪⎨
⎪⎪⎩

∑
u1,u2∈G, L(u1)�P1(n)

(u1,α̃1,u2)∈B(u1α̃1u−1
2 )

φ2
1(u1α̃1u

−1
2 ) if α̃1 ∈ BL(P3(n)),

0 otherwise,

φ̃2
2
(α̃2) =

⎧⎪⎪⎨
⎪⎪⎩

∑
u2,u3∈G, L(u2)�P1(n)

(u2,α̃2,u3)∈B(u2α̃2u−1
3 )

φ2
2(u2α̃2u

−1
3 ) if α̃2 ∈ B′

L(n),

0 otherwise,

φ̃3
2
(α̃3) =

⎧⎪⎪⎨
⎪⎪⎩

∑
u1,u3∈G,L(u1)�P1(n)

(u3,α̃−1
3 ,u1)∈B(u3α̃3u−1

1 )

φ2
3(u3α̃3u

−1
1 ) if α̃3 ∈ B′

L(n),

0 otherwise,

where B′
L(n) = BL(P3(n)) in the case of assumption (1) and B′

L(n) = G in the case
of (2). By Lemma 1.29, the expression (1.1) is bounded by∑

(α̃1,α̃2,α̃3)∈T ′

L(α̃1)�P3(n)

φ̃1(α̃1)φ̃2(α̃2)φ̃3(α̃3) � P4 ◦ P3(n)‖φ̃1‖2‖φ̃2‖2‖φ̃3‖2.

On the other hand, we have, for i = 1, 2 or 3,

‖φ̃i‖2
2 �

∑
α̃i,ui,ui+1∈G

L(uj)�P1(n), α̃i∈B′
L(n)

(ui,α̃i,ui+1)∈B(uiα̃iu
−1
i+1)

φ2
i (uiα̃iu

−1
i+1)

�
∑
α∈G

#{(u, α̃, v) ∈ B(α), L(u) � P1(n), α̃ ∈ B′
L(n)}φ2

i (α)

� P5(n)‖φi‖2
2,

where j = 1 if i = 1 or 3 and j = 2 if i = 2 and where P5(n) = P2 ◦ P1(n) in the case
of assumption (1) and P5(n) = P2(max{P1(n), P3(n)}) in the case of (2). This gives the
result. �

As a direct application of Proposition 1.33, let us give the following proof.

Proof of Lemma 1.24. We have to show that the set of triangles of the groupoid
G(XΓ , Γ, α) satisfies the Haagerup inequality with respect to the length-function L
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defined in Proposition 1.13 whenever the set of triangles of the local groupoid G(X, Γ, α)
satisfies it.

Let C � 0 such that for all x ∈ X, #Γx � C, where Γx is the stabilizer of x. Consider
for any [(x1, g1), (x2, g2)] ∈ G(XΓ , Γ, α) the following domain of decompositions:

B([(x1, g1), (x2, g2)])

= {([(x1, g1)h, (x1h, 1)], [(x1h, 1), (x2h, 1)], [(x2, g2)h, (x2h, 1)]) | h ∈ Γ}.

Notice that L([(xi, gi)h, (xih, 1)]) = 0, i = 1, 2. It is then easy to see that the family

{B([(x1, g1), (x2, g2)])}[(x1,g1),(x2,g2)]∈G(XΓ ,Γ,α)

is a family of domains of L-decompositions.
Moreover, any triangle ([(x1, g1), (x2, g2)], [(x2, g2), (x3, g3)], [(x3, g3), (x1, g1)]) of the

groupoid G(XΓ , Γ, α) has a B-pinching ([(x1, 1), (x2, 1)], [(x2, 1), (x3, 1)], [(x3, 1), (x1, 1)])
in the set of triangles of the local groupoid G(X, Γ, α).

On the other hand, we have [(xi, gi)h, (xih, 1)] = [(xi, gi), (xi, αxi,xihh−1)], i = 1, 2.
Since αxi,xihh−1 ∈ Γxi

, ∀h ∈ Γ , this implies that #B([(x1, g1), (x2, g2)]) � C2. This
means that the groupoid G(XΓ , Γ, α) is of polynomial rigid B-growth. By using Proposi-
tion 1.33, Lemma 1.24 follows. �

1.3.2. The tetrahedral change of faces

A quadruplet (α1, β1, α2, β2) of elements of G is a tetrahedron if the pairs (α1, β1),
(α2, β2) are composable and have the same product α1β1 = α2β2. A tetrahedron
is obtained from a pair of triangles {(α1, β1, γ1), (α2, β2, γ1)} having a common side
γ1 called the base. These two triangles are faces of the tetrahedron. The two other
faces are given by the triangles (α−1

1 , α2, γ2) and (β1, β
−1
2 , γ2). We call this jump from

the pair of triangles {(α1, β1, γ1), (α2, β2, γ1)} having a common base γ1 to the pair
{(α−1

1 , α2, γ2), (β1, β
−1
2 , γ2)} with a common base γ2 a tetrahedral change of faces (see

Figure 1).

Definition 1.34.

(i) We say that a set of triangles T ′ is a tetrahedral change of faces of a set of triangles
T if for any pair of triangles in T having a common base, the pair of triangles
obtained by tetrahedral change of faces is in T ′.

(ii) For a given polynomial P , we say that a set of triangles T ′ is a tetrahedral P -
change of faces of a set of triangles T if for any n ∈ N, there exist sets of triangles
T k

n , 1 � k � P (n), for which T ′ is a tetrahedral change of faces and such that
Tn ⊂

⋃
k T k

n where Tn = {(α, β, γ) ∈ T , L(α) � n}.

(iii) We say that a set T ⊂ G(3) is L-balanced if there exists a polynomial Q such that
for any (α, β, γ) ∈ T , L(β) � Q(L(α)).

We then have the following proposition.
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Proposition 1.35. Let P be a given polynomial and let T , T ′ ⊂ G(3)
0 . If T ′ is a tetra-

hedral P -change of faces of T , (T ′, L) satisfies the Haagerup inequality and T is L-bal-
anced, then (T , L) satisfies the Haagerup inequality.

Proof. Let n ∈ N and let φ1, φ2 ∈ R+G with the support of φ1 in BL(n). We have

φ1 ∗T φ2 = φ1 ∗Tn φ2 �
∑

1�k�P (n)

φ1 ∗T k
n

φ2.

Now, fix an integer k, 1 � k � P (n), and denote by Qk
n the set of tetrahedrons obtained

from the set T k
n . We have

‖φ1 ∗T k
n

φ2‖2
2 =

∑
(α1,β1,α2,β2)∈Qk

n

φ1(α1)φ1(α2)φ2(β1)φ2(β2)

�
∑
γ∈G

φ∗
1 ∗T ′ φ1(γ)φ2 ∗T ′ φ∗

2(γ) � ‖φ∗
1 ∗T ′ φ1‖2‖φ2 ∗T ′ φ∗

2‖2.

Since T is L-balanced, we can assume that the support of φ2 lies in BL(Q(n)). Thus we
have

‖φ∗
1 ∗T ′ φ1‖2‖φ2 ∗T ′ φ∗

2‖2 � P1(n)P1 ◦ Q(n)‖φ1‖2
2‖φ2‖2

2,

where P1 is the polynomial given by the Haagerup inequality satisfied by T ′. We obtain

‖φ1 ∗T φ2‖2 � P (n)2P1(n)P1 ◦ Q(n)‖φ1‖2
2‖φ2‖2

2.

�

Remark 1.36. Notice that we do not need to assume in this proof that the set T is
L-balanced if it is a B-pinching of another set of triangles and satisfies assumption (1)
of Proposition 1.33.

1.4. First applications

The aim of this subsection and the following one is to show how to find, with some
improvement, all the known examples of groups satisfying the Haagerup inequality by
using these two geometrical tools of manipulating triangles.

Theorem 1.37. In all of the following cases, the group Γ satisfies the Haagerup inequal-
ity:

(i) Γ is a finitely generated free Abelian group;

(ii) Γ is a free non-Abelian group, not necessarily finitely generated, with respect to
its canonical word length;

(iii) Γ is a word hyperbolic group;

(iv) Γ is a group of polynomial growth.
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= 1α β

α β

α βγ = 1α β γ

(a) (b)

Figure 2. Free cases: (a) Z
2; (b) F2.

Proof. In any of these cases, it is possible to choose a suitable domain B for which the
group Γ is of polynomial B-growth and any triangle of Γ has a degenerate B-pinching.
By using Propositions 1.28 and 1.33, where T is taken to be the set of all triangles of Γ

and T ′ is taken to be the set of degenerate triangles, the theorem follows.
In the first two cases, choose for the domain B the following:

∀g ∈ Γ, B(g) = {(g1, 1, g2) | g = g1g
−1
2 and |g| = |g1| + |g2|}.

In both these cases, the group Γ is of polynomial B-growth. Indeed, for the free Abelian
group Zd, take for P2 a suitable polynomial of degree d, while for any free non-Abelian
group, take for P2 the polynomial P2 = X + 1.

On the other hand, any triangle in Γ in both these two cases admits a degenerated B-
pinching. Indeed, consider for a triangle (α, β, γ) of Γ the element t, as shown in Figure 2,
defined by

(1) in the Abelian case Zd, the jth component tj of t is the medium integer by ordering
the jth components αj , βj , γj for j = 1, . . . , n;

(2) in the non-Abelian case, t the common prefix of the minimal decompositions of α

and γ−1.

In both these cases, one has

α = t1t′−1, β = t′1t′′−1, γ = t′′1t−1.

For (iii) and (iv), we give the proof in more general cases. To do this, let us recall some
definitions.

Definition 1.38. Let (X, d) be a pseudo-metric space.

(1) The space (X, d) is said to be weakly geodesic if there exists a constant δ � 0 such
that for every pair (x, y) of points of X and every t ∈ [0, d(x, y)] there exists a point
w ∈ X such that d(x, w) � t + δ and d(y, w) � d(x, y) − t + δ.

(2) The space (X, d) is said to be hyperbolic if there exists a constant δ � 0 such that
for every quadruplet (x1, x2, x3, x4) of points of X we have

d(x1, x2) + d(x3, x4) � max{d(x1, x4) + d(x2, x3), d(x1, x3) + d(x2, x4)} + δ.
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(3) The space (X, d) is said to be uniformly locally finite if, for any r � 0, there exist
a constant K(r) such that #B(x, r) � K(r) for all x ∈ X.

Recall that a word hyperbolic group is a finitely generated group which is hyperbolic
in the sense of (2) of Definition 1.38 when equipped with its word distance. Any such
group is weakly geodesic, take for example δ = 1

2 , and uniformly locally finite since it
is finitely generated. The following proposition, extracted from already known results,
gives two essential geometric properties inducing the Haagerup inequality.

Proposition 1.39. Let (X, d) be a pseudo-metric space. If (X, d) is weakly geodesic,
hyperbolic and uniformly locally finite, then there exist two constants C, δ � 0 such that

(1) for all x1, x2, x3 ∈ X, there exists w ∈ X such that

d(xi, w) + d(w, xi+1) � d(xi, xi+1) + δ, for i = 1, 2, 3;

(2) for all x, y ∈ X and for all r ∈ R+,

#{w ∈ X | d(x, w) + d(w, y) � d(x, y) + δ, d(x, w) � r} � C(r + 1).

Proof of Proposition 1.39. Let δ1, δ2 � 0 be constants in (1) and (2) of Definition 1.38,
respectively, and set δ = 2δ1 +2δ2 and C = K(1+2δ), given in (3) of the same definition.

(1) Let x1, x2, x3 ∈ X and consider a point w ∈ X such that

d(x1, w) � (x2 | x3)x1 + δ1 and d(x2, w) � d(x1, x2) − (x2 | x3)x1 + δ1,

where (x2 | x3)x1 = 1
2 (d(x1, x2) + d(x1, x3) − d(x2, x3)). We have

d(x3, w) + d(x1, x2) � max{d(x2, x3) + d(x1, w), d(x1, x3) + d(x2, w)} + δ2

� 1
2 (d(x1, x2) + d(x2, x3) + d(x3, x1)) + δ1 + δ2.

By simplification and easy computations we can prove (1).

(2) Let x, y ∈ X and fix for any integer n ∈ [0, d(x, y)] a point wn ∈ X such that
d(x, wn) � n + 1 + δ1 and d(y, wn) � d(x, y) − n + δ1. For any point w ∈ X such
that d(x, w) � n + 1 + δ and d(y, w) � d(x, y) − n + δ, we have

d(x, y) + d(w, wn) � max{d(x, wn) + d(y, w), d(x, w) + d(y, wn)} + δ2

� d(x, y) + 1 + 2δ.

This proves that

{w ∈ X | d(x, w) + d(w, y) � d(x, y) + δ, d(x, w) � r} ⊂
⋃

0�n<r

B(wn, 1 + 2δ)

and then we have (2).

�

Theorem 1.40. Any discrete groupoid G acting freely and by isometries on a weakly
geodesic, hyperbolic and uniformly locally finite pseudo-metric space (X, d) satisfies the
Haagerup inequality.
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This theorem is a generalization of (iii) of Theorem 1.37 since the action by left trans-
lation of any word hyperbolic group on its self is freely and by isometries.

Proof of Theorem 1.40. By Proposition 1.21, it suffices to prove it for the local
groupoid G(X, G) together with the length-function given by d. Let δ be the constant
given by Proposition 1.39. For any x, y ∈ X, let B([x, y]) = {([x, w], [w, w], [y, w]) |
d(x, w) + d(w, y) � d(x, y) + δ}. By (ii) of Proposition 1.39, the local groupoid G(X, G)
is of polynomial B-growth, and by (i), any triangle in G(X, G) admits a degenerate B-
pinching. �

For a generalization of (iv) of Theorem 1.37, let us give the following definition.

Definition 1.41. We say that a groupoid G is of polynomial growth with respect to a
length-function L if there exists a, d > 0 such that for all u ∈ G(0) and for all r ∈ R+,

#(Γu ∩ BL(r)) � a(r + 1)d
,

where Γu = G(u) is the isotropy group at u.

This definition coincides with the notion of polynomial growth in the case of a finitely
generated group. It is a refinement of Definition 4.2.9 given in [Tal01].

When the groupoid G is a disjoint union of groups, Definition 1.41 coincides with
the one given by Black [Bla98] for an infinite family of finite groups endowed with a
uniformly bounded generator system family. Black proved in that paper (Theorem 2.1)
that the notion of polynomial growth of such a family does not depend on the choice of
the generator system family, although the associated algebraic lengths are not necessarily
equivalent. These are, in fact, the families of groups S = {Γi}i∈I for which there exist two
constants c, l > 0 such that any group Γi ∈ S admits a normal subgroup of a nilpotence
class at most c and of index at most l in Γi.

When the groupoid is G(X, Γ ), where the group Γ acts freely and by isometries on the
discrete metric space (X, d) as in Definition 1.2, this definition is equivalent to saying
that there exists a polynomial P such that

#BLx(r) � P (r), ∀x ∈ X, r ∈ R+,

where BLx(r) designs the ball in Γ of radius r with respect to the length Lx defined in
Proposition 1.13.

Proposition 1.42. If G is a groupoid of polynomial growth with respect to a length-
function L, then it satisfies the Haagerup inequality for this length.

Proof. By Proposition 1.17, it is enough to show that there exist C, r > 0 such that,
for all u ∈ G(0), the isotropy groups Γu satisfy the Haagerup inequality with respect to
the restriction of L for the same constants C, r. But constants C, r depend only on the
constants a, d given in Definition 1.41.

Indeed, let us consider, for any u ∈ G(0), the set Bu(g), for g ∈ Γu, given by

Bu(g) = {(h, 1u, g−1h) | h ∈ Γu, L(h) � L(g)}.
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It is clear that (Γu, L) is of polynomial Bu-growth where all polynomials do not depend
on u but only on a, d. On the other hand, any triangle (g1, g2, g3) in Γu admits a degen-
erate Bu-pinching. Indeed, let us fix k ∈ Z/3Z such that L(gk) � L(gk±1). We have the
following decompositions:

gk+1 = gk+11u1u, gk−1 = 1u1ugk−1, gk = g−1
k−11ug−1

k+1.

This means that the degenerate triangle (1u, 1u, 1u) is a Bu-pinching of (g1, g2, g3).
And by Propositions 1.28 and 1.33, we obtain the desired result. �

�

1.5. Connection with Lafforgue’s properties Hδ and Kδ

In this paragraph, we give definitions of Lafforgue’s properties Hδ and Kδ in terms of
pinching and tetrahedral change of faces to show how to deduce the analytical part of
his results.

Definition 1.43. Let δ � 0, let (X, d) be a metric space, let Γ be a group acting freely
and by isometries on (X, d), and consider for any α ∈ G(X, Γ ) the following domain of
L-decompositions, where L is the length given in Proposition 1.13:

B(α) = {(u, α̃, v), α = uα̃v−1, L(u) + L(α̃) + L(v) � L(α) + δ}.

(1) We say that X satisfies (Hδ) if there exists a polynomial P such that, for any r ∈
R+, x, y ∈ X, one has #{t ∈ X, d(x, t) + d(t, y) � d(x, y) + δ, d(x, t) � r} � P (r).

(2) We say that X and Γ satisfy (Kδ) if there exist two sets T , T ′ of triangles of
G(X, Γ ) and k ∈ N such that

(Kδ(a)) there exists C ∈ R+ such that any triangle (α1, α2, α3) of G(X, Γ ) has a
B-pinching (α̃1, α̃2, α̃3) in T such that

max
i

L(α̃i) � C min
i

L(αi), for i = 1, 2, 3;

(Kδ(b)) the set T ′ is a tetrahedral k-change of faces of the set T and has a degenerate
B-pinching.

Notice that property (Hδ) implies that the groupoid G(X, Γ ) is of polynomial B-growth.
Thus, if, for some δ � 0, X and Γ satisfy (Hδ) and (Kδ) and T and T ′ are such as above,
then (T ′, L) satisfies the Haagerup inequality by Propositions 1.33 and 1.28. But the set
T ′ is a tetrahedral k-change of faces of T and T is a B-pinching of the set of triangles of
G(X, Γ ). By Proposition 1.35 and Remark 1.36, (T , L) satisfies the Haagerup inequality.
By applying Proposition 1.33 once more we deduce Theorem 2.5 in [Laf00].

Theorem 1.44. If for some δ � 0, X and Γ satisfy (Hδ) and (Kδ), then the groupoid
G(X, Γ ) satisfies the Haagerup inequality with respect to L and therefore Γ satisfies the
Haagerup inequality.
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Using Theorem 1.44, Lafforgue proved in [Laf00] that cocompact lattices in SL3(R)
and SL3(C) satisfy the Haagerup inequality. In [Cha01], Chatterji generalized his result
by using the same theorem to cocompact lattices of SL3(H) and SL3(O) and their
products.

2. The Haagerup inequality and affine buildings

Let ∆ be an affine combinatorial building and let V∆ be the set of its vertices. We
provide V∆ with the theoretic metric d given by the 1-skeleton of the building ∆ and
let Γ be a group acting freely and by isometries on (V∆, d). In what follows, we will
apply the geometrical deformations tools developed before to sets of triangles of the
groupoid G(V∆, Γ ) defined in Definition 1.2 with respect to the length-function given by
d to show the Haagerup inequality for G(V∆, Γ ). By using Proposition 1.21 we deduce
this inequality for the group Γ .

To prove some technical lemmas, we need to consider the geometric realization |∆| of
the building ∆. This is the affine realization of the building endowed with a metric ∂

which, restricted to the affine realization of any apartment, is Euclidean [Bro89, § VI.3].
The set V∆ can be seen as a subset of |∆| and is therefore provided with another metric
∂. For any two vertices x, y ∈ V∆ we will denote by [x, y]∂ the unique geodesic line in
|∆| between x and y, to distinguish it from the element [x, y] of G(V∆, Γ ).

2.1. For a suitable domain B
We have to consider for any element [x, y] of G(V∆, Γ ) a suitable domain B([x, y]) such

that the groupoid G(V∆, Γ ) is of polynomial B-growth. Until now, all the domains B
produced in the previous sections were given by the length. If we do the same in this case
and consider for example the set C([x, y]) = {([x, z], [z, t], [y, t]) ∈ G(V∆, Γ )3, d(x, y) =
d(x, z)+d(z, t)+d(t, y)}, the groupoid G(V∆, Γ ) will not be of polynomial C-growth with
respect to the metric d when the building ∆ is thick and will be of type other than Ã1, Ã2

or their product. This is because the set C(x, y) = {z ∈ V∆, d(x, y) = d(x, z) + d(z, y)}
is not, in general, contained in an apartment.

Indeed, let us consider a thick affine building ∆ of irreducible type other than Ã1 or
Ã2. A classification of affine buildings can be found in [Bou68, Chapter VI, Theorem 4].
Let C be a chamber of ∆ contained in an apartment Σ. Let H and H ′ be two orthogonal
walls of C in Σ. These walls exist because we can find two vertices in the Coxeter graph
of all affine buildings of irreducible type, excepting those of type Ã1 or Ã2, which are not
connected by an edge. Let S be the maximal face of C contained in H ∩H ′. The simplex
S is of codimension 2. Now consider the two vertices x, y contained in the wall H such
that S ∪ {x} and S ∪ {y} are simplices, as shown in Figure 3.

It is clear that the set C(x, y) contains, in addition to the two vertices in H ′ that are
not in H, other vertices that are not in the apartment Σ. On the other hand, if we take
two apartments Σ and Σ′ that contain x and y, any isomorphism between Σ and Σ′

that fixes x and y transforms C(x, y) ∩ Σ to C(x, y) ∩ Σ′.
This phenomenon makes the map n �→ maxx,y∈V∆ card{z ∈ C(x, y), d(x, z) � n}

grow exponentially, since the building is thick. However, if the building ∆ is of type
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Figure 3. Exponential C-growth.
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Figure 4. Case Ã1.

Ãk1 × · · · × Ãkn
, where ki ∈ {1, 2}, this problem does not appear and the domain C([x, y])

is suitable.
In order to avoid any restriction to some specific affine building, we need to consider

for B another domain which will be defined by using the combinatorial structure of the
building rather than its metric one. To do this, we need the following domain.

Definition 2.1. Fix for any two vertices x, y ∈ V∆ an apartment Σ containing both of
them. Denote by B(x, y) their combinatorial convex closure in Σ. That is, let B(x, y) be
the set of vertices contained in all the roots (half-spaces) of Σ containing both x and y.

When the building ∆ is of type Ã1, i.e. a tree without ends, B(x, y) is nothing but the
set of vertices between x and y, as shown in Figure 4.

When the building ∆ is of dimension 2 (see [Car97] for the form of the apartments),
Figure 5 illustrates some examples of B(x, y).

Remark 2.2. If the building ∆ is of type W1 × W2, the set B(x, y) is identified with
the set B(x1, y1) × B(x2, y2), where the B(xi, yi) is the combinatorial convex closure of
the vertices xi, yi in a building of type Wi, i = 1, 2.

In a similar way, we can define the combinatorial convex closure of any two simplices
of the same dimension, or polysimplices if the building is not of irreducible type, by
fixing an apartment Σ containing both of the two simplices and considering the set of
all simplices of the same dimension contained in the roots (half-spaces) of Σ containing
both the two initial simplices. In particular, for two chambers C1, C2, it is well known
that the convex combinatorial closure B(C1, C2) coincides with the set of chambers of
Σ lying in minimal galleries between C1 and C2 in Σ. But minimal galleries between C1

and C2 in Σ are exactly minimal galleries in the building ∆, which means that B(C1, C2)
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Figure 5. Cases of dimension 2: (a) Ã1 × Ã1; (b) Ã2; (c) B̃2 = C̃2; (d) G̃2.

does not depend on the choice of the apartment Σ. The same thing goes for the vertices
x, y since we have the following lemma.

Lemma 2.3. The set B(x, y) does not depend on the choice of the apartment Σ.

Notice that if two vertices u, v are in B(x, y), then B(u, v) ⊂ B(x, y). This justifies
using the notion of convexity. In a general way, a subset X of V∆ will be called convex
in the sense of buildings if for any x, y ∈ X, B(x, y) ⊂ X. The convex closure of a subset
X of V∆ in the sense of buildings, shall mean the smallest convex set containing X.

Proof of Lemma 2.3. By Remark 2.2 it suffices to prove this lemma in the irreducible
case. First, consider the set B′(x, y) to be the smallest subset of V∆ containing {x, y} and
satisfying the property that, if x′, y′ ∈ B′(x, y) and if z is a vertex of a simplex S such
that the geodesic line [x′, y′]∂ crosses the affine realization |S| (i.e. [x′, y′]∂ ∩ |S| 
= ∅),
then z ∈ B′(x, y). The set B′(x, y) is contained in all apartments Σ containing {x, y}.
This is because if an apartment Σ contains {x′, y′}, then its affine realization |Σ| contains
[x′, y′]∂ (see [Bro89, p. 152]) and therefore contains all the vertices of simplices crossed
by [x′, y′]∂ .

On the other hand, we have B′(x, y) = B(x, y). Indeed, if x′, y′ ∈ B(x, y) ⊂ Σ, any
half-space of Σ containing x′, y′ must contain any simplex S crossed by the line [x′, y′]∂ .
This proves that B′(x, y) = B(x, y). Conversely, consider a vertex z ∈ V∆ satisfying
d(z, B′(x, y)) = 1 and consider the set V of vertices z′ ∈ B′(x, y) such that d(z, z′) = 1.
The set V is contained in a wall which does not contain z. If this is not true, there exist
two vertices z1, z2 in V such that the geodesic line [z1, z2]∂ crosses a simplex containing
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x
u

v

H'

S

H

y

m
π

Figure 6. Example of B(x, y) not contained in C(x, y).

z which contradicts the fact that z /∈ B′(x, y). This wall separates the vertex z from x, y

and then z /∈ B(x, y). �

As seen above, the set C(x, y) is in general not contained in B(x, y) since the latter
is contained in an apartment. Conversely, the set B(x, y) is in general not contained in
C(x, y). This is not true for example whenever an integer m � 4 appears in the Coxeter
matrix of the building ∆.

Indeed, let us consider in an apartment of such a building a simplex S contained in the
intersection of two hyperplanes H and H ′ of angle 3π/m. Take two vertices x in H \ H ′

and y in H ′ \ H such that S ∪ {x} and S ∪ {y} are simplices and such that S ∪ {x, y} is
not a simplex.

Let u and v be vertices not contained in H ∪ H ′ such that S ∪ {x, u}, S ∪ {u, v} and
S ∪ {v, y} are simplices as shown in Figure 6. The set B(x, y) contains u and v while the
set C(x, y) does not contain them. This problem appears in buildings of type B̃n, C̃n for
n � 2, G̃2 and F̃4 (see [Bou68, Chapter VI, Theorem 4]).

When the building is of type Ãn1 × · · · × Ãnk
we have B(x, y) ⊂ C(x, y) and the

equality holds when ni � 2, i = 1, . . . , k. However, in the general case we still have the
following remark.

Remark 2.4. If x, y are vertices of an affine building and if u ∈ B(x, y), then d(x, u) �
d(x, y).

With the aim of defining a suitable domain B, we need to consider the following lemma.

Lemma 2.5. If Γ is a group acting by isometries on (V∆, d), for any pair of vertices x, y

and any element α ∈ Γ , we have B(x, y)α = B(xα, yα).

Proof. If the building ∆ is of type Ãn1 × · · · × Ãnk
, ni ∈ {1, 2}, this lemma is obvious

since B(x, y) = C(x, y), ∀x, y ∈ V∆. In the general case, notice that a chamber of ∆ is well
defined by the metric d. This means that the action of Γ on (V∆, d) induces an action on
the building ∆. If ∆ is provided with the complete system of apartments [Bro89, § IV.4],
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any element of Γ transforms an apartment to an apartment and a root to a root, which
proves the lemma. �

In view of all this, we can now define our domain B by considering, for any [x, y] ∈
G(V∆, Γ ), the set B([x, y]) = {([x, x′], [x′, y′], [y, y′]) | x′, y′ ∈ B(x, y)}. By Lemma 2.5,
the set B([x, y]) is well defined since it does not depend on the choice of (x, y). By
Remark 2.4, B([x, y]) is a domain, since it satisfies the axioms of Definition 1.30. And we
have the following proposition.

Proposition 2.6. The groupoid G(V∆, Γ ) is of polynomial B-growth.

To prove Proposition 2.6, we first need to make the following remark.

Remark 2.7. There exist two constants a, b > 0 such that a∂ � d � b∂ in V∆. For
example,

a =
1

mind(x′,y′)=1 ∂(x′, y′)
, b = k max

d(x′,y′)=1
∂(x′, y′),

where k is the dimension of the building ∆.

By this remark, if we fix an apartment Σ containing x, y, the set

{z ∈ Σ, d(x, z) � n} ⊂
{

z ∈ Σ, ∂(x, z) � 1
a
n

}

has a volume less than or equal to a polynomial in n since (Σ, ∂) has an isometric
embedding into the Euclidean space Rk. But B(x, y) is contained in Σ. Then the volume
of {z ∈ B(x, y), d(x, z) � n} is less than or equal to a polynomial in n and the proposition
follows.

2.2. Reduced triangles

To state one of the two important results of this section, we first need to define reduced
triangles.

Definition 2.8.

(1) A triplet (x1, x2, x3) in V∆ is said to be reduced if, for all i ∈ Z/3Z, we have
B(xi, xi+1) ∩ B(xi, xi−1) = {xi}.

(2) A triangle ([x1, x2], [x2, x3], [x3, x1]) in G(V∆, Γ ) is said to be reduced if the triplet
(x1, x2, x3) in V∆ is reduced.

(3) Denote by R the set of reduced triangles of G(V∆, Γ ).

Notice that, because of Lemma 2.5, part (2) of this definition does not depend on the
choice of the triplet (x1, x2, x3). To make us more familiar with this definition, let us
illustrate it with examples in some special cases.
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x2

x1 x3

Figure 7. Case Ã2.

x1 x3 x1

x2
x2

x2

x2

x3

1

2(a) (b)

Figure 8. Case B̃2 = C̃2: (a) reduced triplets with three special vertices;
(b) reduced triplets with only two special vertices.

When the building ∆ is of type Ã1, reduced triplets are precisely degenerate ones. This
is because triangles in a tree are tripods.

When the building ∆ is of type Ã2, the non-degenerate reduced triplets contained in
an apartment are exactly equilateral triangles with the form given by Figure 7.

When the building ∆ is of type B̃2 = C̃2, we have two possible cases for the non-
degenerate reduced triplets contained in an apartment. The first case is when the three
vertices of the triangle are specials (i.e. any one of them is contained in four walls of the
apartment) and the second one is when only two of them are specials. In both these two
cases, the form of the reduced triangle is given in Figure 8 up to permutations.

Notice that in the first case of Figure 8, the vertex x2 can be any of the special vertices
between x1

1 and x2
2 on the same wall.

When the building ∆ is of type G̃2, Figure 9 illustrates some examples of non-
degenerate reduced triplets contained in an apartment. In contrast to the previous case,
these are more complicated since special vertices are contained in six walls of a fixed
apartment.

When the building ∆ is of type Ã3, the non-degenerate reduced triplets contained in
an apartment are given by the following.

If the triplet is contained in a wall, it has the form of an isosceles triangle in the
geometric realization of the apartment with the cosine of the principal angle α equal to
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x1

x2

x3

x1

x2

x3

Figure 9. Case G̃2.

x1

x2

x3

α

β β

Figure 10. Case Ã3.

x1

x2

x3

x1

x2

x3

Figure 11. Case Ã3.

1
3 and the cosine of the two other angles β equal to 1/

√
3, as shown in Figure 10. Notice

that we have α > 1
3π > β > 1

4π.
When the support of the convex combinatorial closure of only a pair of vertices of the

triplet is of dimension 2, and the dimension of the other pairs is equal to 1, the triplets
have the form given in the first case of Figure 11 up to permutation of vertices. But
when the support of the combinatorial closure of two pairs of vertices of the triplet is
of dimension 2, the triplets have the form given in the second case of Figure 11 up to
permutation of vertices.

In the first case of Figure 11, the triplet has the form of a pentahedron obtained by
gluing along a same face two tetrahedra with two orthogonal dihedral opposite angles.
In the second case, it has the form of two pentahedra glued along the same edge.
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Lemma 2.9. In an affine building of type W1 ×W2, any reduced triangle T = (x, y, z) is
identified with a triangle of the form ((x1, x2), (y1, y2), (z1, z2)) where the Ti = (xi, yi, zi)
are reduced triangles of a building of type Wi, for i = 1, 2. We will denote this by
T = T1 ∗ T2.

This means that to know the form of reduced triplets of any affine building it is
sufficient to know their form in the irreducible case. In particular, we have the following
remark.

Remark 2.10. For any building ∆ of type Ã1 × · · · × Ã1, reduced triangles of the
groupoid G(V∆, Γ ) are exactly degenerate triangles.

Proof of Lemma 2.9. Indeed, let (x, y, z) be a reduced triplet and let (x1, x2), (y1, y2),
(z1, z2) be the coordinates of vertices x, y, z in the decomposition ∆ = ∆1×∆2 associated
to W = W1 × W2. Since B(x, y) = B(x1, y1) × B(x2, y2) and the same thing occurs for
B(x, z), we have B(x1, y1) × {x2} ∩ B(x1, z1) × {x2} = {(x1, x2)} due to the fact that the
triplet (x, y, z) is reduced. This gives us B(x1, y1)∩B(x1, z1) = {x1}. We do the same for
the other vertices and we obtain the result. �

The following lemma gives a useful estimate of the size of the sides of a reduced triangle.

Lemma 2.11. For any affine building ∆, there exists a constant C such that for any
reduced triangle ([x1, x2], [x2, x3], [x3, x1]) we have

max
i

L([xi, xi+1]) � C min
i

L([xi, xi+1]).

Proof of Lemma 2.11. By Remark 2.7 it is equivalent to prove that there exists a
constant C ′ such that for any reduced triplet (x1, x2, x3) of V∆ we have

max
i

∂(xi, xi+1) � C ′ min
i

∂(xi, xi+1).

To do this, let us first define a notion of angles of any non-trivial triplet (x1, x2, x3) of V∆.
These are the angles between the geodesic lines [x1, x2]∂ , [x2, x3]∂ and [x3, x1]∂ in the
geometric realization |∆|. They are defined for any vertex xi of such a triplet as follow:
fix an apartment Σi containing both the two simplices Si+1

i , Si−1
i containing {xi} and

crossed, respectively, by ]xi, xi+1[∂ and by ]xi, xi−1[∂ . Define the angle ( ̂xi−1, xi, xi+1)
to be the angle between these two geodesic lines in the geometric realization |Σi| of this
apartment. If Σ′

i is another apartment containing Si+1
i , Si−1

i , its geometric realization is
isometric to |Σi| and therefore gives the same angle.

Remark 2.12. For any affine building ∆ of irreducible type, there exists α > 0 such
that the angles of non-degenerate reduced triplets of V∆ are greater than or equal to α.
Denote by α∆ the maximal such α.

This comes from the fact that for any vertex xi of such a triplet (x1, x2, x3), the
intersection of the two simplices Si+1

i , Si−1
i defined in the proof of Lemma 2.11 is reduced

to {xi}. If the building ∆ is of type Ã2, α∆ = 1
3π. If it is of type B̃2 or Ã3, α∆ = 1

4π. If
it is of type G̃2, α∆ = 1

6π, etc.
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x1
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x3
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π
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π

6
π

6
π

Figure 12. Case G̃2.

Now, consider a non-degenerate reduced triplet (x1, x2, x3) and fix i ∈ Z/3Z such that
∂(xi−1, xi+1) = minj ∂(xj , xj+1). Fix an apartment Σi containing the two simplices Si+1

i ,
Si−1

i defined above and fix a chamber Ci in Σi containing xi. Consider the retraction
ρi = ρΣi,Ci of the building ∆ onto Σi centred at Ci [Bro89, § IV.3]. Set x′

j = ρi(xj) for
j = 1, 2, 3. Since xi ∈ Ci, we have x′

i = xi and ∂(xi, x
′
i±1) = ∂(xi, xi±1) and we have

∂(x′
i−1, x

′
i+1) � ∂(xi−1, xi+1) [Bro89, § VI.3]. On the other hand, we have

( ̂x′
i−1, xi, x′

i+1) = ( ̂xi−1, xi, xi+1) � α∆,

and since (|Σ|, ∂) is isometric to the Euclidean space Rk, this give us the following
inequality: max{∂(xi, x

′
i−1), ∂(xi, x

′
i+1)} � C ′∂(x′

i−1, x
′
i+1), where C ′ = 1/(1 − cos α∆).

We deduce from this that maxi ∂(xi, xi+1) � C ′ mini ∂(xi, xi+1), which proves the lemma.
�

The following proposition gives a perfect characterization of reduced triplets in an
affine building of some special type.

Proposition 2.13. In an affine building of type Ã1, Ã2, B̃2 or their product with the
complete system of apartments, any reduced triplet is contained in an apartment.

This means that reduced triplets in cases Ã2 and B̃2 are precisely those given in
Figures 7 and 8.

Proposition 2.13 is in general not true for an affine building of type G̃2. This is because
the angle α∆ = 1

6π is very small. Figure 12 provides us with an example of a reduced
triplet that cannot be contained in an apartment.

We think, however, that, with the exception of the case of type G̃2 above, this propo-
sition is still true for all other affine buildings of irreducible type and their products.

Proof of Proposition 2.13. The case Ã1 is obvious. For the other cases, it is enough
to prove the proposition in the cases of buildings of type Ã2 and B̃2. The general case is
deduced from these cases by Lemma 2.9.
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x1

y1

y0 =   (x2)

y2 y3

y4

ρ yk =   (x3)ρ

Figure 13. The broken line ρ([x2, x3]∂).

Let us consider for a reduced triplet (x1, x2, x3) the simplices S2
1 , S3

1 defined in the
proof of Lemma 2.11. Fix an apartment Σ containing S2

1 , S3
1 and a chamber C in Σ

containing the vertex x1. Denote by ρ = ρΣ,C the retraction of the building ∆ onto Σ

centred at C.
It is enough to prove that ∂(ρ(x2), ρ(x3)) = ∂(x2, x3). This implies that the triplet

(x1, x2, x3) is contained in an apartment. Indeed, let us consider the set Y = |C|∪{x2, x3},
where |C| is the closure of the affine realization of the chamber C in |∆|. The restriction
of ρ to Y is an isometry to a subset of |Σ| which is isometric to Rk, since, ∀u 
= v ∈ Y ,
if u or v are in C̄, then ∂(ρ(u), ρ(v)) = ∂(u, v) [Bro89, § VI.3]. But the interior of Y is
equal to |C|, which is non-empty. By [Bro89, § VI.7, Theorem 2], Y is contained in an
apartment and therefore (x1, x2, x3).

Let us consider t ∈ [0, 1] �→ pt ∈ [x2, x3]∂ , the geodesic line between x2 and x3. Since
x1 ∈ C, we have for all t ∈ [0, 1], ∂(x1, pt) = ∂(x1, ρ(pt)). There exists a finite subdivision
(t0, . . . , tk) of [0, 1] such that the portion of the segment p[ti,ti+1] is contained in the closure
of the affine realization of a chamber Ci. Since the restriction of the retraction ρ to any
chamber is an isometry, ρ(p[ti,ti+1]) is a geodesic line in |Σ| (i.e. a segment). This implies
that there exists a net of vertices y0 = ρ(x2), . . . , yk = ρ(x3) such that the image of
[x2, x3]∂ by ρ is a union of lines [y0, y1]∂ ∪ · · · ∪ [yk−1, yk]∂ . Take k to be the smallest such
integer. To prove that ∂(ρ(x2), ρ(x3)) = ∂(x2, x3), it is equivalent to prove that k = 1.

If k > 1, this means that ρ([x2, x3]∂) is a broken line. When the dimension of the
building ∆ is 2, by the negative curvature inequality [Bro89, § VI.3] the broken line
ρ([x2, x3]∂), which is planar, does not change the concavity, as shown in Figure 13.

Now consider two walls H1, H2 in Σ separating [y0, x1] and [y0, y1] such that H1 is
closer to [y0, x1] than H2. Both H1 and H2 exist since the triplet (x1, x2, x3) is reduced
and they are secant in y0. Consider, on the other hand, two walls H3, H4 separating
[yk, x1] and [yk, yk−1] such that H3 is closer to [x3, x1] than H4. They are secant in yk. It
is clear that H1, H2, H3 are pairwise secant and that H4 is either equal to H2 or secant
to all the three walls.

When the building ∆ is of type Ã2, it is not possible to have more than three pairwise
secant walls. This means that the walls H2 and H4 are equal and therefore ρ([x2, x3]∂)
is a segment and ∂(ρ(x2), ρ(x3)) = ∂(x2, x3).
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When the building ∆ is of type B̃2, it is not possible to have more than four pairwise
secant walls. If k > 1, let H5 be the wall of Σ such that y1 ∈ |H5|, [y1, y2]∂ and [y0, y1]∂
lie on the same side of |H5| and the reflection of [y1, y2]∂ through |H5| is aligned with
[y0, y1]∂ . The wall H5 exists since it is the support of a panel containing y1 and it cannot
be parallel to any of the four walls H1, H2, H3, H4. But this is not possible and this
proves that k = 1 and therefore ∂(ρ(x2), ρ(x3)) = ∂(x2, x3). �

2.3. The Haagerup inequality and the set of reduced triangles

In this subsection we will make the connection between the set of all triangles of the
groupoid G(V∆, Γ ) and the one of the reduced triangles and simplify the verification of
the Haagerup inequality for any affine building to the set of reduced triangles. To do this,
let us first give the following two lemmas.

Lemma 2.14. Let x, y be two vertices of the affine building ∆. For any vertex u ∈ B(x, y)
such that u 
= y we have y /∈ B(x, u).

Proof. Fix an apartment Σ containing x, y and consider a wall H containing u but not
y. This wall divides Σ in to two half-spaces (roots) Σ+ containing y and Σ−. The vertex
x is not contained in Σ+, if not, this implies that B(x, y) is contained in Σ+, whereas the
vertex u is not contained in it. Since both the vertices x and u are in the closed half-space
H ∪ Σ+, this closed half-space consequently contains B(x, u) but not B(x, y). �

Lemma 2.15. Let (x1, x2, x3) be a triplet in V∆. There exists a reduced triplet
(x′

1, x
′
2, x

′
3) such that x′

i ∈ B(xi, xi+1) ∩ B(xi, xi−1), for all i ∈ Z/3Z.

We will say in this case that (x′
1, x

′
2, x

′
3) is an associated reduced triplet to the triplet

(x1, x2, x3).

Proof. To determine the triplet (x′
1, x

′
2, x

′
3) let us first apply the following process to

the vertex x1 of the triplet (x1, x2, x3).
Set x1

1 = x1 and suppose that the vertex xk
1 , k � 1, has already been defined such

that the intersection B(xk
1 , x2) ∩ B(xk

1 , x3) is contained in B(x1, x2) ∩ B(x1, x3). If this
intersection is reduced to the vertex xk

1 , we can set x′
1 = xk

1 , and the process stops
here. If not, set xk+1

1 to be any vertex of this intersection different from the vertex
xk

1 . By Lemma 2.14, the intersection B(xk+1
1 , x2) ∩ B(xk+1

1 , x3) is strictly contained in
B(xk

1 , x2) ∩ B(xk
1 , x3). Since B(x1, x2) ∩ B(x1, x3) is a finite set, this process may stop

at the end and we obtain our vertex x′
1 ∈ B(x1, x2) ∩ B(x1, x3) such that B(x′

1, x2) ∩
B(x′

1, x3) = {x′
1}.

We apply the same process to the vertex x2 of the new triplet (x′
1, x2, x3) to obtain

x′
2 and then to the vertex x3 of the triplet (x′

1, x
′
2, x3) to obtain our reduced triplet

(x′
1, x

′
2, x

′
3). �

Notice that the vertex x′
1 in the above proof is in general not unique, as shown in the

example given by Figure 14.
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x1

x1

x2x3

'

B(x1,x2) ∩ B(x1,x3)

Figure 14. Associated reduced triplets in type Ã2.

x1

x2

x3

x1 = x2 = x3' ' '

Figure 15. Case Ã1.

When the building is of type Ã2, if the vertex x′
1 is not unique, the associated reduced

triplets to the triplet (x1, x2, x3) are degenerates. This corresponds to the diagram
D′(m, n) of Paragraph 3 of [RRS98].

When the building is of type Ã1, the reduced triplet associated to any triplet (x1, x2, x3)
is given by the common vertex to the geodesics between the three vertices x1, x2, x3, as
shown in Figure 15.

Figure 16 gives a construction of reduced triplets (x′
1, x

′
2, x

′
3) associated to triplets

(x1, x2, x3) contained in the same apartment of an affine building of dimension 2.
Now we are ready to give the first important result of this section.

Theorem 2.16. Let ∆ be any affine building. The groupoid G(V∆, Γ ) satisfies the
Haagerup inequality with respect to L : [x, y] �→ d(x, y) if and only if the set R of
reduced triangles of G(V∆, Γ ) satisfies this inequality with respect to L.

Proof. This theorem is a direct consequence of what has been established before. Indeed,
in § 2.1 we have constructed a suitable domain B with respect to which, by Proposi-
tion 2.6, the groupoid G(V∆, Γ ) is of polynomial B-growth. By Lemma 2.15, the set R
of reduced triangles of G(V∆, Γ ) is a B-pinching of the set of triangles of G(V∆, Γ ). By
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Figure 16. (a) Ã1 × Ã1. (b) Ã2. (c) B̃2. (d) G̃2.

Lemma 2.11, we deduce from part (2) of Proposition 1.33 that if the set R satisfies the
Haagerup inequality with respect to L, the set of triangles of G(V∆, Γ ) satisfies it. �

As a direct corollary of this theorem we have the following result, which generalizes
the case of affine buildings of type Ã1 × Ã1 obtained in [RRS98].

Theorem 2.17. Let ∆ be a building of type Ã1 × · · · × Ã1 and let Γ be a discrete
group acting freely on the 1-skeleton of ∆. The groupoid G(V∆, Γ ) satisfies the Haagerup
inequality with respect to L : [x, y] �→ d(x, y) and, therefore, the group Γ satisfies the
Haagerup inequality.

Proof. This is a direct result of Theorem 2.16, because the set of reduced triangles
of G(V∆, Γ ) for such a building coincides with the set of its degenerate triangles, by
Remark 2.10. This set of degenerate triangles satisfies the Haagerup inequality by Propo-
sition 1.28. By using Proposition 1.21, we deduce that the group Γ satisfies the Haagerup
inequality. �

2.4. The Haagerup inequality and buildings of type Ãk1 × · · · × Ãkn with
ki ∈ {1, 2}

Before giving the second important result of this section, let us first denote by D, for
an affine building of any type, the set of triangles of G(V∆, Γ ) admitting a degenerate
B-pinching. These are triangles ([x1, x2], [x2, x3], [x3, x1]) such that B(x1, x2)∩B(x2, x3)∩
B(x3, x1) 
= ∅. We have the following result.

Lemma 2.18. The set of triangles D satisfies the Haagerup inequality with respect to
the length-function L : [x, y] �→ d(x, y).

Proof. Since the set of degenerate triangles satisfies the Haagerup inequality with
respect to L by Proposition 1.28 and obviously satisfies condition (2) of Proposition 1.33,
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x z

x' z't

Figure 17. The trapezium xx′z′z.
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y

y'

x' z'
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Figure 18. Case Ã2.

and since it is a B-pinching of the set D and the groupoid G(V∆, Γ ) is of polynomial
B-growth by Proposition 2.6, this lemma follows directly from Proposition 1.33. �

Lemma 2.19. In an affine building ∆ of type Ãk1 × · · · × Ãkn
, with ki ∈ {1, 2}, the set

of triangles D is a tetrahedral change of faces of the set of triangles R.

Proof. Notice first that if two pairs of triangles T ′i
1 , T ′i

2 , for i = 1, 2, are, respectively,
tetrahedral change of faces of two pairs of triangles T i

1, T i
2, for i = 1, 2, in buildings

∆1, ∆2, the pair of triangles T ′1
1 ∗T ′2

1 , T ′1
2 ∗T ′2

2 is a tetrahedral change of faces of the pair
T 1

1 ∗ T 2
1 , T 1

2 ∗ T 2
2 in the building ∆1 × ∆2. Notice, on the other hand, that if a triangle

T1 of an affine building ∆1 belongs to the corresponding set D1 and if T2 of an affine
building ∆2 belongs to the corresponding set D2, then the triangle T1 ∗T2 of the building
∆ = ∆1 × ∆2 belongs to the corresponding set D. It is then enough to prove this lemma
in the case of an affine building of the irreducible type Ã2.

Let ([x, y], [y, z], [z, x]), ([x, y′], [y′, z], [z, x]) be two reduced triangles having a common
base [z, x]. The corresponding triplets (x, y, z), (x, y′, z) are, by Proposition 2.13, con-
tained, respectively, in apartments Σ, Σ′ and have the form of the equilateral triangles
given in Figure 7. Let t be a vertex contained in the intersection Σ ∩Σ′. The intersection
Σ ∩ Σ′ must then contain the convex combinatorial closures B(x, t) and B(y, t). Thus,
the intersection of the convex combinatorial closure of two sets {x, y, z}, {x, y′, z} which
is contained in Σ ∩ Σ′ has the form of a trapezium xx′z′z given by Figure 17, where
B(x, x′) = B(x, y) ∩ B(x, y′) and B(z, z′) = B(z, y) ∩ B(z, y′).

By applying the tetrahedral change of faces to the pair of triangles

([x, y], [y, z], [z, x]), ([x, y′], [y′, z], [z, x]),

we obtain the pair of triangles

([y, x], [x, y′], [y′, y]), ([y, z], [z, y′], [y′, y]),

as shown in Figure 18.
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Figure 19. Case B̃2.

x x

z z

yy' y

Figure 20. Case Ã3.

But it is clear from Figure 18 that B(y, x)∩B(x, y′)∩B(y′, y) = {x′} 
= ∅ and B(y, z)∩
B(z, y′) ∩ B(y′, y) = {z′} 
= ∅. This means that both triangles ([y, x], [x, y′], [y′, y]) and
([y, z], [z, y′], [y′, y]) belong to D. This proves the lemma. �

If the building ∆ is neither of type Ã1 nor of type Ã2, there exists no polynomial P

for which the set of triangles D is a tetrahedral P -change of faces of the set of reduced
triangles R. Figures 19 and 20 explain this fact when the building is of type B̃2 or Ã3.

In Figure 19 the triplets (y, x, y′), (y, z, y′) obtained by tetrahedral change of faces of
two reduced triplets having a common base (x, y, z), (x, y′z) are themselves reduced and
not degenerate. This is because the walls containing {x, z} are orthogonal to the walls
containing, respectively, {y, y′}. This phenomenon appears whenever an even integer
appears in the Coxeter matrix associated to the affine building and this is the case for all
affine buildings excepting the two cases Ã1 and Ã2. Figure 20 shows the same problem
when the building is of type Ã3.

Now we are ready to give the second important result of this section, which generalizes
the case Ã2 in [RRS98].

Theorem 2.20. Let ∆ be an affine building of type Ãk1 × · · · × Ãkn , where ki ∈ {1, 2},
and let Γ be a discrete group acting freely on the 1-skeleton of ∆. The groupoid G(V∆, Γ )
satisfies the Haagerup inequality with respect to L : [x, y] �→ d(x, y) and, therefore, the
group Γ satisfies the Haagerup inequality.

Proof. By Lemma 2.18, the set D satisfies the Haagerup inequality with respect to L

and by Lemma 2.19 it is a tetrahedral change of faces of the set R. By Lemma 2.11 the
set of triangles R is L-balanced. By using Proposition 1.35 we deduce that the set R
satisfies the Haagerup inequality with respect to L. Now, by using Theorem 2.16, the
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groupoid G(V∆, Γ ) satisfies the Haagerup inequality with respect to L and therefore, by
Proposition 1.21, the group Γ satisfies the Haagerup inequality. �
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[Laf98] V. Lafforgue, Une démonstration de la conjecture de Baum–Connes pour les groupes
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