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Long-wave instability of a helical vortex
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We investigate the instability of a single helical vortex filament of small pitch with
respect to displacement perturbations whose wavelength is large compared to the
vortex core size. We first revisit previous theoretical analyses concerning infinite
Rankine vortices, and consider in addition the more realistic case of vortices with
Gausssian vorticity distributions and axial core flow. We show that the various
instability modes are related to the local pairing of successive helix turns through
mutual induction, and that the growth rate curve can be qualitatively and quantitatively
predicted from the classical pairing of an array of point vortices. We then present
results from an experimental study of a helical vortex filament generated in a water
channel by a single-bladed rotor under carefully controlled conditions. Various modes
of displacement perturbations could be triggered by suitable modulation of the
blade rotation. Dye visualisations and particle image velocimetry allowed a detailed
characterisation of the vortex geometry and the determination of the growth rate of the
long-wave instability modes, showing good agreement with theoretical predictions for
the experimental base flow. The long-term (downstream) development of the pairing
instability leads to a grouping and swapping of helix loops. Despite the resulting
complicated three-dimensional structure, the vortex filaments surprisingly remain
mostly intact in our observation interval. The characteristic distance of evolution of
the helical wake behind the rotor decreases with increasing initial amplitude of the
perturbations; this can be predicted from the linear stability theory.

Key words: vortex flows, vortex instability, vortex interactions

1. Introduction
Vortex filaments are basic ingredients of transitional and turbulent flows and

the study of their fundamental dynamics and interactions may help understand the
behaviour of the often complicated flows encountered in nature or industry. Along
with pairs and arrays of straight vortices and vortex rings, an infinite helical filament
is one of the elementary vortex configurations that have been considered in the
past. It is the simplest geometry combining the effects of mutual induction (between
neighbouring helix turns) and self-induced motion due to the curvature and torsion
of the filament. It has the special property of preserving its shape under its own
influence (Kida 1981), which results in a ‘rigid’ translation and rotation. Helical
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vortices may arise in various situations, e.g. from the destabilisation of an initially
straight vortex (Ash & Khorrami 1995), in particular when there is an axial flow
present in the core, or from the instability of a round jet (Koch et al. 1989). A
specific application is the modelling of the flow around rotors, whose near and
intermediate wake consists of a system of interlaced helical vortices generated at the
rotor blade tips. Examples include ship propellers (Felli, Camussi & Felice 2011),
helicopters (Leishman 2006) and horizontal-axis wind turbines (Vermeer, Sørensen
& Crespo 2003). The stability properties of these flows have practical relevance: for
wind turbines, the tip vortex instabilities contribute to the transition from an organised
vortex system to a turbulent wake behind the rotor (Sørensen et al. 2014), and they
may be related to the inception of the dangerous vortex ring state of the wake of a
helicopter in steep descent (Leishman, Bhagwat & Ananthan 2004; Bolnot, Le Dizès
& Leweke 2014).

The stability of helical vortex systems has been analysed theoretically by a number
of authors. These studies can be divided into two groups according to the type of
vortex interaction considered for the stability analysis (Leweke et al. 2014). One
mechanism involves perturbations displacing the vortices locally as a whole, i.e.
without change of their core structure, with wavelengths that are large compared to
the core radius. A second mechanism is linked to the amplification of short-wave
perturbations inside the vortex cores. The growth of these modes is due to the
modification of the core structure by an external strain field, induced, e.g. by a
second nearby vortex, or by the curvature and torsion of the vortex. These effects
produce the so-called elliptic instability (Kerswell 2002) or curvature instability
(Fukumoto & Hattori 2005; Hattori & Fukumoto 2009).

The present work concerns the long-wavelength displacement instability, for which
the vortices can be approximated by filaments whose shapes evolve under the effect
of their mutually- and self-induced velocities. Betchov (1965) and Kida (1982)
studied the stability of a single helical vortex using the local-induction approximation,
where the velocity of a point on the filament depends only on the local curvature.
This approach is appropriate for helices with large pitch (nearly-straight vortices).
Instability was found for long-wavelength perturbations. Widnall (1972) included the
effects of the entire filament on the self-induced velocity through the Biot–Savart
line integral associated with the cutoff method (Crow 1971) to avoid its singularity
(a much earlier study by Levy & Forsdyke (1928) of the same configuration was
shown to be erroneous). Additional modes of instability were found for small pitch,
when successive helix turns are close enough to interact significantly. The most
unstable perturbations are those for which the displacements of neighbouring turns
are out of phase. Fukumoto & Miyazaki (1991) extended this work by considering
an axial flow along the vortex core, which was found to suppress the instability for
certain configurations with large pitch. Gupta & Loewy (1974), and later Okulov &
Sørensen (2007), considered systems of several interlaced helices, in the latter case
also including a straight central vortex which models the hub vortex of a rotor wake.
Again, the most unstable perturbations involve out-of-phase displacements between
successive vortex loops. Interestingly, a similar behaviour is found for an infinite
array of vortex rings (Levy & Forsdyke 1927; Bolnot et al. 2014), whose geometry
for small separations is close to a helix with small pitch.

Evidence of the instability modes predicted by the above theories can be found in a
number of numerical and experimental studies, mostly dedicated to the investigation
of rotor wakes. Bhagwat & Leishman (2000) and Leishman et al. (2004) have
calculated the vortex wake of a hovering helicopter using a free vortex method.
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Long-wave instability of a helical vortex 689

The stability analysis of these configurations showed qualitatively the same unstable
modes and growth rate curves as in Widnall (1972) and Gupta & Loewy (1974).
More recently, Walther et al. (2007) have simulated several of these modes using
a vortex method. Similar observations were reported by Ivanell et al. (2010) and
Sarmast et al. (2014), who have used the actuator line method (Sørensen & Shen
2002) to simulate the wake of a three-bladed wind turbine. Laboratory experiments
with models of ship propellers (Felli et al. 2011), helicopter rotors (Stack, Caradonna
& Savaş 2005; Ohanian, McCauley & Savaş 2012) and wind turbines (Alfredsson &
Dahlberg 1979; Sherry et al. 2013; Naumov et al. 2014; Nemes et al. 2015) exhibit
‘grouping’, ‘leapfrogging’ and ‘merging’ of the helical wake vortices, which are all
manifestations of the pairing instability predicted by Widnall (1972). Nevertheless, a
precise quantitative comparison between experimental and theoretical results is still
lacking; it is one of the objectives of the present work to fill this gap.

This paper deals with the long-wave displacement instability of a single helical
vortex of moderate pitch (less than one helix radius). In the following, we first
review the main theoretical results from the work of Widnall (1972) and Gupta &
Loewy (1974) concerning this phenomenon, including some minor corrections and
an extension from the Rankine vortex model (constant-vorticity core) used in these
studies, to a more realistic Gaussian vorticity model with an additional axial core
flow. Building upon the observed phase relation of the unstable perturbation, we
establish a quantitative link with the classical pairing instability of an infinite row of
point vortices in two dimensions (see, e.g. Lamb 1932, § 156). We then present a
detailed experimental study of a single helical vortex generated by a one-bladed rotor
in water. The control of the blade rotation was used to select the different instability
modes individually, in order to visualise them clearly and to determine their growth
rates. Together with the full set of base flow parameters, this allows a meaningful
quantitative comparison with theoretical predictions. The nonlinear evolution of the
perturbed vortex, as it moves downstream, is also discussed.

2. Theoretical background
2.1. Helical vortex configuration

We consider an infinite helical vortex filament in a cylindrical reference frame (r, θ , z),
as depicted in figure 1, which represents a simplified model of the wake behind the
single-bladed rotor used in the experiments described in §§ 3–6. The helix geometry
is defined by the radius R and the pitch h of the vortex centre line, whose coordinates
rh are

rh =
rh
θh
zh

=
 R

θ

hθ/2π

 ; θ ∈R. (2.1)

R and h are both considered as constant. Additional parameters are the vortex
circulation Γ and the core radius a.

The structure of the filament is further characterised by the distributions of
azimuthal and axial velocities in the local cylindrical reference frame (ρ, φ, ξ ) of the
vortex (see figure 2), which are axisymmetric at leading order. Previous theoretical
studies have mostly considered Rankine-type vortices, with constant vorticity inside
the core, zero vorticity outside and without axial flow. In the present analysis, we
allow for a more realistic smoother vorticity (and swirl velocity) profile, as well as
an axial core flow, as shown in figure 2. One model which includes these features
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zr
R

2a

FIGURE 1. (Colour online) Schematic of an infinite helical vortex including the relevant
parameters: pitch h, radius R, core size a and circulation Γ .

Axial velocity

0

0

Swirl velocity

FIGURE 2. (Colour online) Schematic of the azimuthal (φ) and axial (ξ ) velocity profiles
of the vortex.

is the Batchelor vortex with a Gaussian vorticity distribution, whose azimuthal and
axial velocities are respectively given by

vφ(ρ)= Γ

2πρ
[1− exp(−ρ2/a2)] and vξ (ρ)= Vmax

ξ exp(−ρ2/a2). (2.2a,b)

The core radius a in this model is related to the radius amax of maximum swirl velocity
(see figure 2), which can easily be determined from experimental measurements, by
the relation

amax ≈ 1.12 a. (2.3)

The non-dimensional parameters describing a helical vortex with a structure given
by (2.2) are the Reynolds number Re=Γ/ν (ν: kinematic viscosity), the scaled pitch
h/R and core radius a/R and an axial flow parameter

W = 2πaVmax
ξ /Γ, (2.4)

representing the ratio between maximum axial velocity and maximum swirl velocity.
It is equivalent to an inverse swirl number. Typical parameter values for the present
study are: Re= 104; h/R= 0.5; a/R= 0.05; and W= 0.5. For an infinite helical vortex,
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the fluid velocities in the direction z of the axis of symmetry differ by an amount Γ/h
between the inside and the outside of the cylinder containing the helix. In a reference
frame where the z-velocity vanishes at large r, the helix is convected with a velocity
of approximately Γ/2h (a small difference comes from the self-induced motion due
to the vortex curvature). In the following, the pitch h and the velocity Γ/2h are used
for normalisation. In particular, the time 2h2/Γ is used to obtain non-dimensional
instability growth rates. It corresponds roughly to the time it takes the helix to move
one pitch in the axial direction under its own influence.

In order to be able to use previous theoretical results for Rankine vortices, we
recall the concept of an equivalent core size first introduced by Widnall, Bliss
& Zalay (1971). The distributions of azimuthal and axial velocity have an effect
on the self-induced motion of the vortex. It can be shown that, for long-wave
displacement perturbations such as the ones considered in the present work, the
self-induced dynamics of a vortex with velocity profiles vφ(ρ) and vξ (ρ), evolving on
a characteristic radial scale a, exhibit the same self-induced dynamics as an equivalent
Rankine vortex without axial flow, with the same circulation and a core radius given
by

ae = a exp
[

1
4 − A+C

]
, where (2.5)

A= lim
ρ→∞

[
4π2

Γ 2

∫ ρ

0
ρ ′v2

φ(ρ
′) dρ ′ − ln

ρ

a

]
and C= 8π2

Γ 2

∫ ∞
0
ρ ′v2

ξ (ρ
′) dρ ′. (2.6a,b)

For the Batchelor vortex (2.2) one finds

ae = a
√

2 exp
[

1
4
− γ

2
+ W2

2

]
≈ 1.36 a exp

(
W2

2

)
. (2.7)

γ ≈0.577 is Euler’s constant. Equation (2.7), together with (2.3), is used in § 3 for the
comparison between experimental and theoretical results (the fact that the experimental
vortex is not exactly Gaussian is discussed in § 4).

2.2. Displacement instability
In its unperturbed base state, the helical vortex rotates around its axis and translates in
the direction of this axis due to its self-induced velocity, without changing shape. The
stability of this configuration is analysed by considering the evolution of displacement
perturbations of the base geometry in (2.1). Following Widnall (1972) and Gupta &
Loewy (1974), perturbations of the form

δrh =
δrh
δθh
δzh

 exp(αt+ ikθh), (2.8)

with azimuthal wavenumber k and (complex) growth rate α, are considered. The
evolution of the filament shape is obtained by computing its self-induced velocity
from the Biot–Savart law. For a vortex of small core size, the velocity u induced at
a point r0 in the fluid is given by

u(r0)= Γ

4π

∫ [r0 − r(l)] × dl
|r0 − r(l)|3 , (2.9)
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where l is the curvilinear coordinate along the vortex centre line. For a point on this
line, i.e. r0= r(l0), the integral in (2.9) diverges, and the detailed core structure has to
be taken into account in order to determine the correct self-induced velocity. Widnall
(1972) employed the cutoff method, in which the interval l0− ε < l< l0+ ε containing
the singularity is excluded from the integration. For a Rankine vortex with core radius
ae and without axial flow, the correct cutoff distance is given by ε= (ae/2) exp(1/4).
Gupta & Loewy (1974) used a different approach, initially proposed by Rosenhead
(1930), to desingularize the integrand in (2.9). The denominator is replaced by |[r0−
r(l)]2 + µ2|3/2, where µ is a length proportional to the core size. If µ = (2/e)ε =
ae exp(−3/4) ≈ 0.47ae, this procedure is equivalent to the cutoff method (Saffman
1992). Gupta & Loewy (1974), however, used µ=ae, which explains the discrepancies
with Widnall’s (1972) results for large core size.

Linearisation of the evolution equations for the perturbed helix shape, using one
or the other adapted versions of (2.9), then leads to an eigenvalue problem for
the growth rate α, whose real part σ characterises the growth or decay of the
perturbation amplitude. The corresponding eigenvectors (δrh, δθh, δzh) define the
mode shape. Details of the calculations can be found in Widnall (1972) and Gupta
& Loewy (1974). Figure 3 shows an example of the non-dimensional growth rate
σ ∗ = σ(2h2/Γ ) as a function of the perturbation wavenumber k. It corresponds to
one of the cases discussed by Widnall (1972), with values of the helix pitch and
core size close to the ones considered in the present study. The difference between
Widnall’s analytical result and the corresponding figure in her paper is believed to
be due to the difficulties (at the time) in numerically evaluating the rather complex
functions and integrals appearing in the expression of the growth rate, or simply to
a plotting error. The growth rate has local maxima for wavenumbers which are odd
multiples of 1/2. The highest growth rate is obtained for k = 1/2, its value is close
to σ ∗ =π/2.

The theoretical development by Widnall (1972) assumes that the wavelength of the
displacement perturbations is large compared to the core size, which corresponds to an
upper limit of validity for the (dimensional) wavenumber kl along the vortex centre
line. Leweke & Williamson (1998) have estimated this limit for a straight Rankine
vortex of radius ae, based on the exact dispersion relation for perturbation waves of
such a vortex (Kelvin waves), to be klae ≈ 0.4. This result can be used to estimate
the range of validity of the theory for the helical geometry. From the definition of the
non-dimensional wavenumber k (= number of perturbation wavelengths in one helix
turn of length L= [h2 + (2πR)2]1/2), it is straightforward to show that the long-wave
condition corresponds to

k .
(ae/R)−1

5π

√
(h/R)2 + 4π2. (2.10)

For the case shown in figure 3 (ae/R= 0.1), one obtains k . 4.0 (for ae/R= 0.33, the
range of validity is even reduced to k . 1.2, but this configuration is unrealistic since
successive helix turns have overlapping cores). In the experimental study presented in
§ 3, we observe very thin-cored vortices (ae/R≈ 0.05), for which the limit of validity
of the long-wave theory is not a concern.

The effect of viscosity was neglected in the above analysis. The correction of the
growth rate due to viscous damping can be estimated to be of the order of −νk2

l ,
which in non-dimensional form equals −(8π2/Re)k2(h/L)2. For the parameter ranges
considered in this study (h/R< 1, k < 4, Re= O(104)), the non-dimensional viscous
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FIGURE 3. (Colour online) Growth rate as function of wavenumber for a helical Rankine
vortex with h/R=π/5. Black (thin) lines: figure 5(d) from Widnall (1972), the numbers
indicate ae/R (reproduced with permission); red (thick) line: analytical result from Widnall
(1972) for ae/R= 0.1. The long-wave assumption used in the theory is not valid in the
shaded area.

correction is of O(10−2) and will therefore not be considered further here (for full-
scale applications such as wind turbines, where the Reynolds number is several orders
of magnitudes larger, viscous effects on the pairing instability are even less relevant).

The instability growth rates obtained with the formalism of Gupta & Loewy (1974),
using the correct parameter µ, are identical to the ones from Widnall’s (1972) analysis,
within the range of validity of the theory. For the comparison with our experimental
measurements, we use the former procedure, which is appreciably easier to implement.

Figure 4 presents two examples of deformations of the initially helical vortex due
to the displacement instability by plotting the perturbed helix geometry rh+ δrh ((2.1)
and (2.8)). The perturbation δrh is the unstable eigenmode corresponding to the given
wavenumber k. Figure 4(a) shows one of the most unstable perturbations, for k= 3/2.
For this value of the wavenumber, as for all odd multiples of 1/2, the displacement
perturbations of successive helix loops are exactly out of phase at a given azimuthal
position θ . The developed plan view reveals that these perturbations correspond to a
local pairing of neighbouring helix turns, with the pattern repeating after two turns.
For wavenumbers away from the local maxima of the growth rate curve, e.g. for
k = 4/3 in figure 4(b), the perturbation repeats at constant θ after a longer period,
but a local grouping of two successive helix loops is still found at various azimuthal
positions. One can easily work out that a perturbation with a wavenumber of the form
k=m/n repeats after n cycles and exhibits m azimuthal locations where local grouping
occurs. Further examples of unstable perturbation modes can be seen in figures 17
and 18.

2.3. Pairing of vortex arrays
As seen in the previous section, the long-wave displacement instability of a helical
vortex is characterised by a periodic local pairing of successive turns. This is further
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(a) (b)

(c)

z

(d)

FIGURE 4. (Colour online) Geometrical deformation and local paring predicted by Widnall
(1972) for the case h/R= 0.5. (a,b) k= 3/2; (c,d) k= 4/3. Three-dimensional view (a,c)
and developed plan view (b,d). The vertical scale of the plan views is compressed by a
factor 2.

illustrated by considering a longitudinal plane containing the helix axis. In this plane,
the helical vortex appears in the form of two periodic rows of concentrated vortices
(see, e.g. figure 21). These rows bear a resemblance to arrays of point vortices in
two dimensions, which are also known to be unstable with respect to the pairing
mechanism. In addition to this qualitative similarity, we now establish a quantitative
link between the helix instability and the classical pairing of a point vortex array.

The stability of an infinite row of identical point vortices was treated by Lamb
(1932) based on earlier work by von Kármán & Rubach (1912). The vortices of
circulation Γ are separated by a constant distance b from their next neighbours, and
this base configuration is stationary. The position of each vortex is then perturbed
periodically along the array, with a phase difference Φ for the displacements of two
adjacent vortices. It is found that the array is unstable for all perturbations with
non-zero Φ (Φ = 0 corresponds to a neutral translation of the entire row), and that
the instability growth rate σp is given by:

σp(Φ)= Γ

4πb2
Φ(2π−Φ). (2.11)

The maximum is reached for Φ = π, i.e. for out-of-phase displacements of
neighbouring vortices, which corresponds to the pairing shown schematically in
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0

1 3

2

h

h

b

z
2h

FIGURE 5. (Colour online) Schematic of the developed plan view of the helix, showing
the parameters used in the analysis.

figure 21(b). The growth rate for this case is σp = πΓ/4b2 or, in non-dimensional
form, σp(2b2/Γ )=π/2.

We now transpose this result to the case of a helical vortex by considering the
developed plan view of this configuration in figure 5. In this representation, the helix
appears as a periodic array of inclined straight vortices that can be associated with
a row of point vortices in a plane going through 1 and 2 . From the form of the
perturbations of the helix instability in (2.8), the phase difference between 1 and 3 ,
separated by a complete turn, equals 2πk. The phase difference Φ between 1 and
2 is reduced from this value by a fraction ∆/L, where L is again the length of one
helix turn. The geometrical relations in figure 5 lead to ∆= h2/L, and therefore:

Φ = 2πk
(

1− h2

L2

)
= 2πk

(
1+ (h/R)

2

4π2

)−1

. (2.12)

Combining (2.11) and (2.12), normalising by 2h2/Γ and using b2 = h2 − ∆2, one
obtains an expression for the dimensionless growth rate of the pairing instability in
the helical geometry:

σ ∗p (k)= 2πk

[
1− k

(
1+ (h/R)

2

4π2

)−1
]
. (2.13)

This result is plotted in figure 6(a) for the first lobe of the growth rate curve (06 k6 1)
(see figure 3), for three values of the non-dimensional pitch h/R. For h→ 0, the
maximum growth rate is σ ∗p = π/2 for k = 1/2. For increasing pitch, the maximum
growth rate increases, and it is reached at slightly higher wavenumbers. This is in
very close agreement with the results from the full stability analysis of the helical
geometry, an example of which is shown in figure 6(b).

The prediction of the growth rate in (2.13) is based on the assumption that the
helical geometry can locally (in the azimuthal direction θ ) be approximated by an
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1.7(a) (b)
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k
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k
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FIGURE 6. (Colour online) (a) Prediction of the growth rate for various h/R, based on
the result (2.13) for two-dimensional pairing (Lamb 1932). (b) Growth rate from the full
stability analysis of a helical vortex with ae/R= 0.1 (Gupta & Loewy 1974).

array of straight vortices. The curvature of the vortex loops is neglected in this
approach, as is the self-induced velocity due to this curvature. The core size ae,
which influences the curvature-induced velocity, does not appear in the analysis,
which is based on a point vortex system. The dependence on this parameter in the
full analysis is weak for thin-cored vortices (ae/R . 0.1). Levy & Forsdyke (1927)
have studied the stability of an infinite series of vortex rings, a configuration which,
for small separation distances between the rings, resembles a helical vortex of small
pitch. They also find a weak dependence of the growth rate on the curvature and core
size in this parameter range, and as h/R (the normalised curvature) tends to zero,
the non-dimensional maximum rate converges to the value π/2 for two-dimensional
pairing.

The result in (2.13) is expected to become invalid for large helix pitch, for which
the mutual interaction between neighbouring loops becomes much weaker and the
dynamics are dominated by the local induction from the vortex curvature and torsion.

The present analysis can in principle be extended to wavenumbers k larger than 1.
Since the phase difference Φ in the growth rate (2.11) for point vortex arrays is
to be taken modulo 2π, the lobe of the growth rate curve in figure 6(a) repeats
itself in the same way for higher k. However, as k increases, i.e. as the wavelength
of the displacement perturbation decreases, the assumption of arrays of locally
straight vortices becomes increasingly less valid. Robinson & Saffman (1982) have
investigated the pairing instability for arrays of sinusoidally perturbed vortices.
They found that the maximum growth rate decreases with increasing perturbation
wavenumber, which is consistent with the decrease of the local maxima for the
higher wavenumbers observed in figures 3 and 23.

It can be concluded that the growth rate of the long-wave displacement instability
of a helical vortex with moderate pitch (h . R) and small core size (ae/R . 0.1)
is predicted remarkably well using the results from the classical pairing (in two or
three dimensions) of infinite vortex arrays, showing that vortex pairing is the dominant
mechanism involved in this phenomenon.
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ShaftRotor

Step motor
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U

(a) (b)

FIGURE 7. (Colour online) (a) Experimental set-up (side view of the water channel test
section) and (b) schematic of the rotor blade geometry.

In the following sections, we describe an experimental study aimed at clearly
identifying the pairing instability of a helical vortex in a real flow (wake of a
rotor), and to compare measurements of its growth rate with theoretical predictions.
Observations of the later stages of this phenomenon, not accessible by linear theory,
are also shown.

3. Experimental details
3.1. Set-up

Experiments were carried out in a recirculating free surface water channel with a test
section of dimensions 38 cm (height) × 50 cm (width) × 150 cm (length). A helical
vortex was generated near the test section entry by a single-bladed rotor mounted on
an ogive-tipped shaft (diameter 15 mm) and driven by a computer-controlled stepper
motor outside the channel using a belt (figure 7a). The rotor blade geometry, shown
schematically in figure 7(b), is based on the low Reynolds number airfoil A18 by
Selig et al. (1995). It is designed to operate in the wind turbine regime and produce
a constant radial circulation distribution (Joukowsky rotor) over the outer 75 % of
the span, in order to generate a highly concentrated tip vortex. The chord and twist
distributions of the blade are given in figure 8. The rotor has a radius R0 = 80 mm
and a tip chord ctip= 10 mm. Details of the design procedure can be found in Bolnot
(2012). For the present experiments, the blade is rotated at a frequency f0 = 6 Hz,
and placed in a uniform incoming flow of velocity U = 36 cm s−1. This results
in a tip chord-based Reynolds number of approximately 30 000 and a tip speed
ratio 2πf0R0/U = 8.4, representing the design conditions for the blade geometry.
Experiments were also carried out for two higher tip speed ratios (9.6 and 12.3), by
varying the free stream velocity U, leading to lower values of the (non-dimensional)
pitch. The results are qualitatively similar to the ones of the design case presented in
the following sections, leading to the same overall conclusions.

3.2. Perturbation method
Although the helical vortex generated with this set-up is known to be unstable from
theory, the turbulence intensity in the channel (<1 %) and the level of vibrations of the
rotor support were low enough so that no significant perturbation of the helix shape
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FIGURE 8. Radial distributions of (a) chord c and (b) twist angle ζ of the blade.

d h

FIGURE 9. (Colour online) Schematic of the experimental helix perturbation consisting
of an axial displacement (k= 1/2, d/h= 0.2). The dashed line represents the unperturbed
geometry. The amplitude is chosen here to be much higher than in the experiments for
improved visual clarity.

was visible in the field of observation, which covered approximately 10 turns (see
figure 11). This made it possible to impose controlled displacement perturbations of
the helix, by introducing suitable periodic modulations of the initially constant blade
rotation frequency. Varying the rotation speed results in a shift of the tip vortex in
the axial direction with respect to its unperturbed position. Based on the form of the
unstable modes of the instability given by (2.8), we aim for a helix with a perturbed
z-coordinate given by

zp = h
2π
θ + d cos(kθ), (3.1)

where d is the amplitude of the displacement. An example with an out-of-phase
displacement of successive helix turns (k = 1/2) is shown schematically in figure 9.
Given that, in the frame of reference of the helical vortex, the rotor moves with a
velocity hf0 in the axial direction, we may write z= hf0t. Derivation with respect to
time and the relation θ̇ = 2πf then lead to

f = f0

[
1− 2πk

d
h

sin(kθ)
]−1

, (3.2)
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FIGURE 10. Modulation of the rotor rotation rate for a perturbation with k = 1/2 and
d/h= 0.03: (a) as function of the angular position θ , and (b) as function of time t.

which gives the rotation rate of the rotor as function of its angular position. Numerical
integration of (3.2) then provides the rotation rate as function of time, which is
programmed into the step motor controller. Figure 10 contains an example of such
a modulation, for the case shown in figure 9, with a typical value of the amplitude
used in the experiments. The modulation has a period of 2 (=1/k) rotor cycles.
The rotation is faster than the mean in the first cycle and slower in the second.
Whereas the rate varies almost sinusoidally with the azimuthal position (for small
d/h), the dependence on time is more distorted. The motor (Parker CompuMotor
AMP 5034-232) and controller (Parker Gemini GT6K) have a maximum resolution
of 128 000 microsteps per revolution, which enables them to execute the prescribed
modulation precisely. Amplitudes of only a few per cent of the helix pitch were
sufficient to trigger the desired instability mode.

The amplitude of the frequency modulation in figure 10 corresponds to about
10 % of its mean value. Surprisingly, this rather large variation does not induce a
modulation of the vortex parameters of the same order, as might have been expected.
It was found from particle image velocimetry (PIV) measurements that the circulation
and core sizes vary by only a few per cent during a typical perturbation cycle, as
long as the deformation amplitude d/h remains below 5 %. This variation lies within
the uncertainty intervals for these parameters in the measurements of the unperturbed
flow presented in § 4 below. We therefore conclude that the perturbation method does
not significantly modify the helical base flow properties.

3.3. Visualisations and measurements
The helical vortex structure was visualised using fluorescent dye (Leweke 2012).
The rotor set-up could be tilted to be able to apply the fluorescent paint (thickened
fluorescein solution) to the blade tip outside the water. When the spinning rotor was
lowered into channel test section with the water flowing, the dye was washed off
and clearly marked the tip vortex. Volume illumination was achieved with light from
an argon ion laser (model Stabilite 2017 by Spectra Physics), coupled to an optical
fibre equipped with a spherical lens. The helical wake established itself after a short
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0 2 4

FIGURE 11. (Colour online) Dye visualisation of the unperturbed helix. The rotor is on
the left, flow is from left to right. The vertical shaft support is located on the right, just
outside the field of view.

transient, and observation was possible for about 30 s (180 blade rotations) before
the dye disappeared. Images and video sequences were recorded with a standard
digital camera (Canon IXUS 220 HS) in high-speed mode at 120 images per second.
These visualisations were also used to obtain quantitative information about the vortex
geometry (radius, pitch) and to measure the instability growth rates, as explained in
§ 5.2. Additional visualisations were obtained by injecting a dye solution at a fixed
location in the rotor plane in order to observe and measure the flow along the vortex
centre (see figure 16 below).

Velocity fields and vorticity distributions were obtained from PIV. A Nd-YAG
pulsed laser (Quantel Twins Ultra 190) was positioned underneath the test section to
generate a 3 mm vertical light sheet illuminating the centre plane of the rotor flow
(only half of the plane was illuminated behind the rotor since the shaft blocked the
light). The flow was seeded with 30 µm plastic particles, and images were recorded
with a resolution of 2000 × 1336 pixels using a Roper Redlake digital camera. The
images were processed using an in-house code based on an algorithm developed
by Meunier & Leweke (2003), which has been successfully employed in previous
experimental studies of vortex flows (see, e.g. Meunier & Leweke 2005; Roy et al.
2011). PIV measurements were used to determine the base flow properties of the
helical rotor wake (circulation, core size, etc.).

Further details about the experimental set-up and procedures are given in Bolnot
(2012).

4. Unperturbed rotor wake
We first present the flow generated in the wake of the one-bladed rotor without any

perturbation, and determine the properties of the helical tip vortex serving as the base
configuration for the stability study.

Figure 11 shows a dye visualisation of the unperturbed tip vortex. A regular helical
shape is observed over a distance of three rotor diameters. Towards the end of
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FIGURE 12. (Colour online) (a) Phase-averaged distribution of azimuthal vorticity ωθ
in the central plane of the rotor, obtained from 100 instantaneous PIV fields. (b) Mean
velocity profile of the tip vortex inside the circle in (a); the measurements (u) are well
fitted by the VM2 profile (—) of Fabre & Jacquin (2004). The dashed line is a fit to the
profile of a Gaussian vortex with the same maximum.

FIGURE 13. (Colour online) Three-dimensional reconstruction of the tip and root vortices,
using 20 phase-averaged vorticity fields as in figure 12. Isosurfaces of the azimuthal
vorticity are plotted for ωθ = 50 s−1 (red) and ωθ =−20 s−1 (blue).

the observation interval, some distortions of the vortex filament are seen, which are
induced by the presence of the shaft’s support structure (see figure 7a). The periodicity
of the flow is illustrated by the superposition of instantaneous dye images, recorded
at intervals of one rotor period, shown in figure 20. The unperturbed configuration in
figure 11 is the reference case of our study. It is quite close to the theoretical base
flow in figure 1, even if its geometry evolves slightly in the downstream direction, as
shown by the measurements below.
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FIGURE 14. Downstream evolution of helix parameters. (a) Radius R; (b) pitch h.

The phase-averaged azimuthal vorticity field in the near-wake centre plane of the
rotor, obtained from 100 instantaneous PIV fields, is presented in figure 12(a). The
cross-sections of the tip vortex are clearly visible. One also recognises the signature
of the blade’s root vortex of opposite-signed vorticity at r/R0 ≈ 0.4, as well as the
boundary layer on the shaft. A series of these fields, taken at different phases of the
blade rotation, can be used to reconstruct the vortex structures in three dimensions,
by interpolation in the azimuthal direction θ . The result in figure 13 shows that the
inner root vortex, not visible in the dye visualisations, has a different pitch than the
blade tip vortex.

The visualisations and PIV measurements were used to evaluate the geometrical
parameters and the vortex properties of the base flow. The radius and pitch of the
helical tip vortex were measured directly from the visualisations, by locating the
centres of the dye loops at the top and bottom of the helix. Since some fluctuations
were observed in the downstream part of the helix (see figure 20a), 5–7 individual
images were treated for each measurement in order to determine the mean positions
with precision. The helix radius and pitch are plotted as functions of the distance
from the rotor in figure 14. The radius shows the typical downstream increase for
the wake of a rotor in the wind turbine regime. It grows from its initial value R0
by about 15 % and reaches its asymptotic value R∞ two diameters behind the rotor.
The pitch is found to be remarkably constant from the start. It is about 58 % of
the blade span. R and h were also determined from PIV measurements, using the
coordinates of the maxima of azimuthal vorticity; the agreement between the two
sets of measurements is good. The pitch of the root vortex is about 75 % of the tip
vortex pitch, i.e. about 0.5R0, which makes the pitch-to-radius ratio larger than 1 for
this vortex.

The circulation of the tip vortex was calculated from the PIV velocity data using a
line integral on a circular path centred on a given vorticity maximum (see figure 12a).
The diameter of the path was 0.4R0, which allowed capturing all of the vorticity
‘belonging’ to one helix loop. The circulation calculated in this way, in figure 15(a),
increases gradually over a distance of one rotor radius, which is reminiscent of the
roll-up process of the initial vortex sheet shed by the blade. The value Γ∞ measured
at the downstream end of the PIV field is kept as the reference circulation. A recent
comparison with numerical simulations of exactly the same configuration, reported in
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FIGURE 15. Vortex parameters, as determined from particle image velocity measurements.
(a) Circulation Γ ; (b) core size amax. The dashed line in (b) represents a fit to the viscous
evolution for a two-dimensional Gaussian vortex: amax = 1.12

√
4ν(t− t0).

0 21

FIGURE 16. (Colour online) Visualization of the axial flow inside the core of the
unperturbed helix. Dye is continuously injected at a fixed location in the rotor plane.

Ivanell et al. (2015), confirmed that the circulation does not vary by more than 1 %
further downstream. The root vortex circulation was obtained with a similar procedure,
its value is about 30 % of the tip vortex circulation.

The velocity profile of the vortex was obtained by considering the local polar
coordinates (ρ, φ) inside the circle mentioned above (see also figure 2). A profile of
the azimuthally-averaged azimuthal velocity in these coordinates, from which the core
size amax can be determined, is presented in figure 12(b) (the angle between the vortex
axis and the θ -direction is small enough, around 5◦, to be ignored). The downstream
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evolution of amax in figure 15(b) shows some scatter, but it roughly follows the
viscous growth of a Gaussian vortex. Since the helix radius increases downstream,
the tip vortex is subject to stretching along is centreline, which in turn acts against
the viscous growth of the core radius. One can estimate that the combination of these
two effects results in a variation of the core size of about 15 % over the interval
where the linear instability is typically observed. A representative value near z/R0= 2
is taken as reference. The velocity profile in figure 12(b) is not very well represented
by that of a Gaussian vortex. If the core region (ρ . amax) is fitted to such a profile
(dashed line in figure 12b), the velocities are underestimated further from the centre,
which indicates that the outer region also contains some amount of circulation. A
vortex model incorporating this feature is the smooth two-scale profile proposed by
Fabre & Jacquin (2004), named VM2 in their paper, which is indeed found to fit the
experimental data much better. One may ask what influence this difference has on the
long-wave instability, and in particular on its growth rate. The core size and velocity
profile determine the self-induced velocity of the vortex (see § 2.1). Fabre (2002) has
calculated the dispersion relations for perturbations (Kelvin modes) of both types of
vortices, Gaussian and VM2. One of these modes, a displacement mode of azimuthal
(φ) wavenumber 1, can be related to the self-induced velocity of a curved vortex.
The results of Fabre (2002) show that the corresponding dispersion relation, when
scaled using Γ and amax, is almost identical for both types of vortices, in particular
in the range of small wavenumbers we are concerned with here (klamax . 0.5). This
means that, if amax is the same, both profiles have a very similar equivalent core size
ae, and that we can use the procedure for Gaussian vortices described in § 2.1 also
for our case.

The tip vortex generated in the present experiment was also found to contain
a velocity component along its axis, which takes the form of a core jet in the
ξ -direction (figure 2). This jet can be visualised by using the following technique:
instead of coating the blade tip with dye, a thin tube is used to continuously inject
dyed fluid at a fixed location in the rotor plane (z = 0), close to the point where
the blade tip passes, at r = R0. Figure 16 shows that the dye is transported away
from this location within the core of the tip vortex, following the motion of the
blade. In the reference frame moving with the blade, this represents a velocity deficit
inside the tip vortex core, which is likely to be caused by losses in the boundary
layers. The shape of the dye pattern directly represents the axial velocity profile.
We assume here that it can be approximated by an axisymmetric Gaussian profile,
as given by (2.2). One can measure the maximum velocity Vmax

ξ (speed of the dye
tip) and characteristic radial scale (half-width at a fraction 1/e of the profile height)
of such a profile from these visualisations. The latter is close to the core size a
determined from the azimuthal velocity profile. The maximum axial velocity is of
the same order as the maximum swirl velocity, or about 10 % of the blade tip speed.
The measurement from the dye pattern results in an uncertainty of around 7 % (more
precise 3-component PIV measurements were not carried out), which is nevertheless
acceptable for the calculation of the equivalent core size (2.7).

Table 1 summarises the measured geometrical and vortex properties for the rotor
wake base flow, and the resulting non-dimensional parameters characterising the
helical tip vortex. The stated uncertainties result from the scatter of individual
measurements, as well as from estimates of the reliability of the employed procedures.
The values for h∞/R∞ and ae/R∞ are used for the theoretical prediction of the growth
rate of the pairing instability in our rotor wake.
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Γ∞ = (109± 2) cm2 s−1

Vmax
ξ = (30± 2) cm s−1

R∞ = (9.2± 0.1) cm
h∞ = (4.6± 0.1) cm

amax = (0.35± 0.04) cm

Re = 10 900 (±200)
W = 0.54 (±0.08)

h∞/R∞ = 0.50 (±0.01)
ae/R∞ = 0.053 (±0.008)

TABLE 1. Measured parameters of the unperturbed helical tip vortex.

5. Instability of the helical vortex
5.1. Unstable modes

As seen in figure 11, the helical vortex generated by the blade spinning at a constant
rate does not show any significant deformation over the first 3–4 diameters behind
the rotor, even if some ‘scatter’ occurs towards the end of this interval (figure 20a),
likely caused by some interference with the rotor support structure located just
outside the field of view. As soon as the flow is perturbed through a modulation of
the blade rotation, as explained in § 3.2, deformations of the initially regular helix
become visible a short distance behind the rotor, and they are rapidly amplified as
the vortex moves downstream, showing that the vortex is indeed unstable with respect
to these perturbations. Figures 17 and 18 contain dye visualisations of a number of
different perturbation modes, for various azimuthal (θ ) wave numbers k, along with
the theoretical counterparts from the stability analysis.

The modes in figure 17 correspond to the first four maxima of the growth rate
curve (figures 3 and 23), for which k is an odd multiple of 1/2. For these cases,
the perturbation repeats itself after two blade revolutions, and the displacements of
neighbouring helix loops are exactly out of phase. Local pairing occurs at azimuthal
locations where the displacement is maximal. The phase of the blade rotation
modulation was chosen so that pairing always occurs at the top. For k= 1/2, this is
the only location of pairing; for the higher wavenumbers, additional locations around
the azimuth of the helix can be identified. The pattern for k = 3/2 in figure 17(b)
is the same as found by Walther et al. (2007) in their figure 9. The theory in § 2.2
predicts a spatially uniform temporal growth in an infinite helical vortex. In the
experimental configuration, the vortex is generated continuously by the rotor blade,
and perturbations grow (in time) as they are convected downstream. In the frame of
reference of the rotor, this results in a spatial growth of the perturbation amplitude.
The amplitude at a given downstream position depends on its initial value, as well
as on the growth rate of the mode. For the examples shown in figures 17 and 18,
forcing amplitudes d/h∞ (see (3.2)) between 3 % and 5 % were used. The dependence
of the wake evolution on this parameter is further discussed in § 6.

Perturbation amplitudes of the same order as for the theoretical shape on the right-
hand side of figure 17 are found near the centre of the experimental visualisation on
the left. The observed deformations are extremely close to the theoretical predictions
for an infinite helix. This demonstrates that we are indeed observing a convective long-
wave (pairing) instability in our flow, and it also shows that the the pairing mechanism
depends mainly on the immediate vicinity of a given vortex group.

Figure 18 presents further instability modes, with wavenumbers below the first
maximum of the growth rate curve. These perturbations are more complex than the
ones of figure 17, their shapes repeat after a larger number of cycles. Their amplitudes
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(a)

(c)

(e)

(g)

(b)

(d)

( f )

(h)

FIGURE 17. (Colour online) Most unstable perturbation modes. (a,c,e,g) Experimental dye
visualisations; (b,d,f,h): sketches of the theoretical mode shapes. (a,b) k= 1/2; (c,d) k=
3/2; (e,f ) k= 5/2; (g,h) k= 7/2.

nevertheless grow downstream, showing their unstable nature. Again, a close similarity
between experimentally observed and theoretically predicted deformation shapes is
found.
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(a)

(c)

(e)

(b)

(d)

( f )

FIGURE 18. (Colour online) Subharmonic instability modes. (a,c,e) Experiment;
(b,d,f ) theory. (a,b) k= 1/3; (c,d) k= 1/4; (e,f ) k= 2/5. The deformation pattern repeats
after 3, 4 and 5 helix/rotor turns, respectively.

Finally, figure 19 shows a case where the tip vortex is perturbed with a wavenumber
k = 1. For integer values of k, theory predicts a growth rate close to zero. Indeed,
the perturbed flow in figure 19 is practically indistinguishable from the base flow in
figure 11: the imposed perturbations are only very weakly amplified.

Overall, our experiments show that the rotor wake is highly receptive to a large
variety of deformation perturbations corresponding to the modes of the theoretically
predicted long-wave instability of a helical vortex.

5.2. Growth rates
It was possible to determine the growth rates of the various deformation modes seen
in the previous section from video sequences of the helical vortex visualised with dye.
For each case, the sequence started with a phase of unperturbed flow, serving as the
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FIGURE 19. (Colour online) Helical vortex perturbed with k = 1 and d/h∞ = 0.03.
The displacement is in phase between successive helix turns. No amplification of the
perturbation can be detected.

(a) (b)

FIGURE 20. Superposition of 10 instantaneous dye images recorded at the same phase of
the blade motion. (a) Unperturbed flow; (b) perturbed flow with k= 1/2 and d/h∞= 0.03.
The white rectangles show the regions represented in figure 21.

(a) (b)
1 2 3

h h

1

2

3

FIGURE 21. (Colour online) Schematic illustrating the determination of the base flow and
perturbation properties from dye visualization. (a) Unperturbed and (b) perturbed helix.
The dots represent the vortex centre positions in the upper part of the centre plane.

reference configuration, before the rotation modulation was switched on. In figure 20,
several images with the same rotor position are superposed for each of the two phases
of one such recording. The mean positions of the upper sections of the vortex loops
were then detected for the unperturbed and perturbed flows, and the distance between
them (d1 and d2 in figure 21) calculated as function of the downstream position. The
evolution of this distance with time can be directly deduced from the rotor mean
frequency f0 and the frame rate of the camera. Measurements of the amplitude were
made up to the point where two successive helix loops first swap their axial position
z (near the centre of the images in figure 20). Up to this point, the patterns are very
repeatable, so that five images were sufficient to obtain the average positions with
precision for each case.

Figure 22 shows a typical growth of the perturbation amplitude as function of
time. At t = 0 the tip vortex leaves the rotor plane. After an initial transient phase,
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0
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100
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0.5
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1.0 1.5

FIGURE 22. Growth of the displacement amplitudes di for a perturbation with k = 3/2
and d/h∞ = 0.03. The slope of the linear part represents the growth rate σ .

in which the deformation adjusts from the imposed axial displacement to the proper
eigenmode of the instability, the amplitude increases exponentially for about 0.7 s,
which corresponds to a distance of about 4h∞ or 2R0. The end of this exponential
growth corresponds roughly to the time/location where the loop swapping occurs,
with a displacement amplitude close to 0.5h∞. The growth rate is found by fitting an
exponential function to the measured data.

The above procedure was repeated for 11 different wavenumbers, including all
examples shown in the previous section. The resulting growth rates are plotted in
figure 23, non-dimensionalised by the measured helix properties. Figure 23 also
contains the theoretical prediction for the pairing instability of an infinite helical
vortex, using the parameter values listed in table 1. The agreement between experiment
and theory is very good. In the theoretical analysis of § 2.2, the presence of an inner
blade root vortex is not taken into account. Adding a straight vortex of the same
circulation as the tip vortex (but of opposite sign) on the helix centre line in the
calculations, results in a variation of the instability growth rate of only a few per
cent. The root vortex in our experiments (figures 12a and 13) is much weaker than
the tip vortex, probably due to the presence of the shaft. Its effect on the growth
rate therefore lies well within the uncertainty interval of the measurements and was
therefore not considered in the theory.

6. Nonlinear evolution
The previous section has shown that, in the near wake of the rotor, the deformations

of the (perturbed) blade tip vortex have the spatial structure of the unstable modes
from the linear stability analysis of the flow. This structure persists, with an
exponentially growing amplitude, until the local pairing of the helix loops leads
to an exchange of the axial positions (swapping) of two neighbouring vortices that
have been grouping together through the pairing instability. From this point onwards,
the vortex loses its linear mode geometry and becomes highly distorted. This can
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k
1 2 3 40

0.5

1.0

1.5

2.0

FIGURE 23. Growth rates of the long-wave instability. The symbols represent experimental
measurements, and the line the corresponding theoretical prediction from Gupta & Loewy
(1974) using the values in table 1.

be partly seen in figures 17 and 18. Despite the complicated interlaced shape of the
vortex loops, the filament structure appears to remain intact up until the downstream
end of the observation interval. No cross-linking or breakdown to small-scale turbulent
motion is observed, which is probably related to the very small core diameter of the
tip vortex. The superposition of images in figure 20(b) shows that, despite some
scatter, the flow is still remarkably periodic.

In order to explore this evolution to even later stages, experiments were carried
out with higher forcing amplitudes, up to d/h = 0.15. This created a higher initial
displacement of the vortex, and therefore a shorter downstream length of the linear
range, leaving more observation distance for the subsequent nonlinear regime.
Figure 24 shows a series of rotor wake visualisations, where the most unstable
perturbation (with k = 1/2) is triggered with different initial amplitudes. As this
amplitude increases, the swapping location (marked by an arrow, and subsequently
called zs) moves upstream towards the rotor, as expected. The vortex remains intact
well beyond the end of the linear regime. Only for the highest forcing amplitude a
disintegration of the filament into small-scale structures is observed, beyond about
twice the swapping distance. For this case, the large variations of the blade rotation
rate result in non-uniform vortex properties along the filament, which may partly be
responsible for the breakdown.

Inspired by the work of Felli et al. (2011) on propeller wakes, we computed
the time-averaged dye patterns, over a period of 16 rotor cycles, from visualisation
sequences of the cases shown in figure 24. The result in figure 25 reveals a fairly
uniform mean structure of the wake, but the swapping location appears clearly as the
minimum of a partial local contraction of the dye pattern. The dependence of the
measured swapping distance zs, obtained from the images in figure 25 and two further
intermediate cases, is shown in figure 26. zs is found to decrease by more than 60 %
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(a)

(b)

(c)

FIGURE 24. (Colour online) Rotor tip vortex evolution as function of initial perturbation
amplitude for the most unstable mode with k = 1/2. (a) d/h = 0.01; (b) d/h = 0.05;
(c) d/h= 0.15. The arrows show the locations where two successive helix loops first swap
places.

as the initial displacement amplitude is increased from d/h = 0.01 to d/h = 0.15.
Assuming that the rotor wake evolution is governed by the convective exponential
growth of the pairing instability, and that the swapping of helix loops occurs for a
certain constant value of the perturbation amplitude, one can derive an expression for
the swapping location of the form

zs/R0 = c1 − c2 ln(d/h), (6.1)

where c1 and c2 are constants depending on the flow and instability properties. The
values of these constants were found for the data in figure 26 by a least-squares fit,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

47
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.479


712 H. U. Quaranta, H. Bolnot and T. Leweke

(a)

(b)

(c)

FIGURE 25. Time-averaged dye patterns for the perturbed (with k = 1/2) helical rotor
wakes shown in figure 24, allowing the determination of a characteristic distance zs for
the downstream evolution. (a) d/h= 0.01; (b) d/h= 0.05; (c) d/h= 0.15.

and the result is in good agreement with the measurements. Sørensen et al. (2014)
have carried out a similar analysis concerning the downstream evolution of the pairing
instability in their numerical study of the wake of a three-bladed wind turbine. They
have established a link between the constants in (6.1) and the rotor properties (number
of blades, tip speed ratio, thrust coefficient) and instability growth rate, as well as
between the initial perturbation amplitude and the turbulence intensity of the incoming
flow, acting as the trigger for the instability in their case.

7. Summary and conclusion
In this paper, we have explored the long-wave instability of a single helical

vortex, which is one of the elementary structures in vortex dynamics, and which
is used to model the wake generated by rotating lifting surfaces (rotors) in various
configurations. As shown in earlier stability analyses (Widnall 1972; Gupta & Loewy
1974), which were partly corrected and extended here, the long-wave instability
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0
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2 4 6 8 10 12 14 16

FIGURE 26. Characteristic distance zs of wake evolution as function of the initial
perturbation amplitude d. The line represents (6.1), with c1 =−0.1 and c2 = 1.0.

involves the amplification of displacement perturbations deforming the initial helix
without modifying the core structure of the filament. A closer look at the spatial
structure of the unstable modes reveals that, for small helix pitch (h/R . 1),
for which the dynamics are dominated by the mutual interaction between helix
turns, these deformations can be explained by a vortex pairing mechanism between
neighbouring loops of the vortex. The most unstable deformations are out of phase
between successive loops. A correspondence was established between the classical
two-dimensional pairing of a periodic array of identical straight vortices and the helix
instability, which allowed an accurate prediction of the instability growth rate from
the results for two-dimensional pairing, in the regime of small pitch and small core
size (a/R . 0.1).

An experimental study was carried out, where a helical tip vortex is generated by
a one-bladed rotor in a water channel. An accurate perturbation method involving a
modulation of the blade rotation, combined with a low level of noise in the flow,
made it possible for the first time to observe and characterise the various unstable
modes one by one. Detailed comparisons between experimental and theoretical results
were made concerning the geometry of the deformed helix and the growth rate of
the perturbations. The very good agreement between the temporal stability analysis of
a spatially uniform infinite helix and the results obtained for the spatially evolving
experimental flow show that the dynamics of a given vortex loop only depends on a
few nearest neighbours. It shows that the long-wave instability in the wake of a rotor
is indeed a convective process, and that one can deduce the spatial evolution from the
temporal one via the vortex convection speed.

In our experiments, the helical tip vortex was found to be extremely receptive
to even the slightest perturbations. Initial displacements as low as 1 % of the helix
pitch were sufficient to lock the rotor wake in a particular unstable mode, leading
to an entirely different wake evolution (figure 24a) than for the unperturbed case
(figure 11). Vortex pairing has been observed in a number of previous experimental
studies involving rotor wakes (Alfredsson & Dahlberg 1979; Stack et al. 2005; Felli
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et al. 2011; Ohanian et al. 2012; Sherry et al. 2013; Naumov et al. 2014; Nemes
et al. 2015). In all of these experiments, the rotors had at least two blades, and in
most cases it is not clear to which degree the rotor geometry is really symmetric.
Given the high receptivity of the helical vortices to initial perturbations, even a very
small asymmetry in the set-up, which is often unavoidable, may have led to the
observed pairing behaviour in these flows. The use of a one-bladed rotor in the
present study avoids this problem, allowing a controlled selection of the perturbation.

The experimental observations shown in this paper can all be related to the stability
of an idealised infinite helical vortex, as determined by Widnall (1972), Gupta &
Loewy (1974). A further step in the theoretical analysis would be to consider the
spatio-temporal dynamics of the pairing instability of a helical vortex, similarly to
the work of Bolnot et al. (2014) for an array of vortex rings, since the presence of
the rotor selects a particular (moving) reference frame for the helix. In addition, the
variation of the helix parameters in the downstream direction (e.g. in figure 14a for the
radius R) could be taken into account in a global stability analysis of the semi-infinite
helical vortex. These extensions could, for example, help establish a link between
the long-wave pairing instability treated in the present work and the more violent
transition of a rotor wake to a vortex ring state (Leishman et al. 2004) known from
helicopter aerodynamics. Helical vortex wakes in full-scale applications often have a
similar geometry (h/R), but smaller relative core size (a/R) and significantly larger
Reynolds numbers (∼106). The pairing instability will also occur in these conditions,
in a similar manner to that described in this paper, although additional effects, such
as atmospheric turbulence, may lead to more complex evolution scenarios.
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