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SUMMARY
We propose a distributed algorithm for estimating the 3D pose (position and orientation) of
multiple robots with respect to a common frame of reference when Global Positioning System
is not available. This algorithm does not rely on the use of any maps, or the ability to recognize
landmarks in the environment. Instead, we assume that noisy relative measurements between pairs
of robots are intermittently available, which can be any one, or combination, of the following:
relative pose, relative orientation, relative position, relative bearing, and relative distance. The
additional information about each robot’s pose provided by these measurements are used to improve
over self-localization estimates. The proposed method is similar to a pose-graph optimization
algorithm in spirit: pose estimates are obtained by solving an optimization problem in the underlying
Riemannian manifold (SO(3) × R

3)n(k). The proposed algorithm is directly applicable to 3D pose
estimation, can fuse heterogeneous measurement types, and can handle arbitrary time variation in
the neighbor relationships among robots. Simulations show that the errors in the pose estimates
obtained using this algorithm are significantly lower than what is achieved when robots estimate their
pose without cooperation. Results from experiments with a pair of ground robots with vision-based
sensors reinforce these findings. Further, simulations comparing the proposed algorithm with two
state-of-the-art existing collaborative localization algorithms identify under what circumstances the
proposed algorithm performs better than the existing methods. In addition, the question of trade-offs
between cost (of obtaining a certain type of relative measurement) and benefit (improvement in
localization accuracy) for various types of relative measurements is considered.
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1. Introduction
In recent years, interest in utilizing teams of autonomous mobile robots has grown rapidly. Multi-robot
teams are beneficial in many ways. Utilizing a group of low cost robots may be more economical
than risking a single, more costly robot. In search and rescue operations, a group of robots can cover
a larger area than a single robot. In hazardous conditions, the innate redundancy of a group of robots
may be necessary to prevent catastrophic loss of mission capability. Regardless of the application,
localization is a crucial task for any autonomous mobile robot team.

Localization, the estimation of an autonomous robot’s global position and orientation, can be
accomplished using a variety of sensors. Some of the more common sensors include Inertial
Measurement Units (IMUs), vision-based sensors (cameras, LIDARs), and Global Positioning System
(GPS). Of the three, GPS is the only senor capable of providing global measurements of a robot’s
position. However, in many situations, GPS measurements may not be available, or may only be
intermittently available. For example, a group of unmanned aerial vehicles (UAVs) operating in
an urban environment may temporarily lose GPS measurements when the signal is blocked by large
buildings. In such a situation, the global pose (position and orientation) can be obtained by integrating
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over the relative pose measurements obtained using IMUs or vision-based sensors. This method of
localization is referred to as dead reckoning.

Localization through dead reckoning can lead to a rapid growth in localization error.19, 29 When
a team of robots is deployed, relative measurements between pairs of robots may be available. For
instance, a robot equipped with a monocular camera can measure another robot’s bearing with respect
to itself whenever the other robot is in its field of view. These measurements, although noisy, provide
additional information on the robot’s poses that can be used to improve localization accuracy.

In this paper, we propose a method for fusing measurements of various types to perform
collaborative localization that improves localization accuracy over dead reckoning. We assume that all
robots are equipped with proprioceptive sensors (cameras, IMUs, etc.) allowing each robot to measure
its change in pose between time steps. We refer to these noisy measurements as inter-time relative pose
measurements. In the absence of any other information, each robot can perform localization through
dead reckoning using these noisy measurements. We further assume that each robot is equipped with
exteroceptive sensors so that noisy relative measurements between robots may become available
intermittently. These measurements, which we call inter-robot relative measurements, can be one (or
a combination) of the following: relative pose, relative orientation, relative position, relative bearing,
and relative distance, between a pairs of robots. We provide a method to perform collaborative
localization by fusing the inter-time and inter-robot relative measurements to obtain an estimate of
the absolute pose of every robot.

We provide both centralized and distributed algorithms for collaborative localization. In the
centralized algorithm, all the measurements are assumed to be instantly available to a central processor.
In the distributed algorithm, each robot performs localization using measurements from on-board
sensors and information exchanged with neighboring robots. The complexity of the computations
performed by a robot is only a function of the number of its neighbors at any given time, not of the
total number of robots. This makes the distributed algorithm scalable to arbitrarily large groups of
robots. In addition, the communication requirements are small. At every update, a pair of neighboring
robots needs to exchange only (i) the relative measurement between them, and (ii) their current pose
estimates.

Both simulations and experimental results (with a pair of P3-DX robots) are presented. In each
case, the Monte Carlo method was used to empirically obtain the bias and standard deviation of
estimation error by conducting multiple trials. Results show that the proposed collaborative algorithm
substantially improves upon dead reckoning even when the team consists of a small number of robots.
An examination of improvement versus measurement type provides a basis for deciding whether the
cost of the sensors required for obtaining certain types of measurements is commensurate with the
localization accuracy they provide.

1.1. Related work and contributions
Collaborative localization has been considered in the context of collaborative simultaneous
localization and mapping (C-SLAM). Robots exchange local maps which are aligned and merged to
improve robots’ location estimates as well as to improve the maps (see refs. [2, 14, 28] and references
therein). This requires the ability to identify common features in distinct maps generated by the robots.
Recognizing common landmarks in distinct maps is often challenging. In addition, exchanging image
data or maps between robots requires high bandwidth communication.

The second body of work therefore considers the collaborative localization problem as one in which
only relative measurements (of pose, position, orientation, etc.) between pairs of robots are obtained
and used to improve localization accuracy over self-localization. Our work falls into this category,
which we term collaborative localization from relative measurements. Collaborative localization from
relative measurements without map building is potentially useful to autonomous agents operating
over large areas where collaborative mapping may be infeasible due to large computation, memory,
and communication requirements.

Two features of the problem of collaborative localization from relative measurements make it
challenging: (i) The nonlinear relationship between the variables to be estimated (absolute positions
and orientations) and measurements (relative position, orientation, bearing, distance, etc.), and (ii)
the non-commutativity of rotations in 3D.

Two distinct approaches to localization of single or multi-robot teams are relevant to the discussion
of prior art: (i) pose-graph optimization methods, and (ii) filtering approaches.
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The pose graph-based methods (also known as network or view-based representations) have been
popular and successful in SLAM (see ref. [20] and references therein) and bundle adjustment.34 A
pose graph is a graph consisting of nodes that correspond to unknown poses of robots at various
time instants and landmarks, and edges that correspond to observations between robot–landmark
pairs. The best set of pose estimates are estimated by minimizing a cost function that quantifies
how well a given set of poses predict the measurements. Under certain Gaussian assumptions on
the measurement noise, the least square solution obtained is the maximum likelihood (ML) estimate
of the poses. With additional statistical information on prior belief of the poses, again involving
Gaussianity, the least square solution turns out to be the maximum a posteriori estimate (MAP) as
well. Pose-graph optimization methods used in bundle adjustment and single robot SLAM can be
directly applied to the multi-robot case. A centralized algorithm for ML collaborative localization
through pose-graph optimization is presented in ref. [13]. Distributing the computations among the
robots presents additional challenges;15 addresses them by using relative pose graphs. The MAP
estimator for 2D collaborative localization proposed in ref. [27] also belongs to this category. In
ref. [17] a pose graph-based algorithm for distributed collaborative localization in 3D is proposed
that uses a linearization of the relation between the pose measurements involving rotations.

When robots’ absolute orientations are known, the problem of cooperative localization through
pose-graph optimization becomes a linear estimation problem.4, 33 The problem we consider is,
however, nonlinear since orientations are not known. In ref. [3], the authors use a two-phase approach
to solve the 2D collaborative localization problem, where each phase is solved using linear estimation
techniques: First, the absolute orientations are estimated using relative orientation measurements,
then these are used along with relative position measurements to obtain absolute position estimates,
and finally an improved estimate of the absolute orientations are obtained from the position estimates.
This method is restricted to 2D localization.

The method proposed here also belongs to the pose graph-based approach: the estimation problem
is formulated as an optimization defined by a graph, where nodes represent robot poses at various
times and edges represent inter-time and inter-robot measurements. There is a subtle – but major –
distinction between existing pose-graph optimization methods, which we call the Euclidean Pose-
Graph Optimization (EPGO), and our proposed method. While existing methods use a vector space
parameterization of orientation (such as the complex part of the unit quaternion representation) and
then apply vector-space minimization techniques to search for the minima, we perform optimization
directly on the product Riemannian manifold in which the problem is naturally posed without relying
on a specific parameterization. A gradient-descent method on the Riemannian manifold is then used
for searching for the minima. The gradient descent algorithm is independent of parameterization as
well; any parameterization of the orientations can be used for numerical implementation without
affecting the solution obtained. The advantages of doing so are discussed in detail in Section 3
(see Remark 1). Simulations show that the proposed method based on the Riemannian Manifold
Pose-Graph Optimization, which we call RPGO, outperforms EPGO, the traditional pose-graph
optimization performed by vector-space-based methods, when the measurement noise is large.

For EPGO in 3D, various tricks have to be employed to ensure that the result from vector-
space optimization leads to accurate results (see ref. [10] and references therein). The Kalman filter
(KF)-based approaches require, in addition to a specific vector-space parameterization of rotations,
linearization of nonlinear relationships between variables and measurements. Indeed, most of the
papers on collaborative localization consider the 2D case: a robot’s pose is described by three scalars:
x, y-coordinates and an angle θ . Rotations in 2D commute and a vector-space parameterization does
not lead to serious difficulties. Although many of these 2D algorithms can be extended to the 3D
case in principle, the extensions are far from straightforward. In fact, no details are provided for the
extension to 3D case; all simulation and experimental results in refs. [3, 8, 13, 21, 32, 33] are for
the 2D case. The belief propagation approaches of refs. [8, 13, 21], although developed without a
specific parameterization, are feasible only if a vector-space parameterization of the orientations is
used. Otherwise belief propagation of orientation estimates requires representation and computation
of conditional probability density functions in SO(3), a particularly challenging problem in itself.
Some progress in fusion and propagation of pdfs in SO(3) has been reported in refs. [22, 36].

There is a large body of work on collaborative localization from relative measurements using a
filtering-based approach in both centralized and distributed settings. Extended Kalman Filter (EKF)-
based formulations have been adopted in refs. [25, 30, 32]. Collaborative localization of two aircrafts
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from indirect relative measurement (observing common feature points on the ground) using the EKF
has been proposed in ref. [26]. The papers8, 12, 31 propose particle-filter-based methods for collaborative
localization. Leung et al.21 propose the Bayesian framework such that many filtering-based methods
can be applied within it. They propose decentralized algorithms to update a robot’s belief of its own
pose that is equivalent to the centralized belief whenever a certain Markovian property holds.

In comparison with the KF-based methods described above, our method offers a distinct advantage.
The linearization involved in the EKF requires a small angle approximation to hold at all times. Unless
the time interval between two successive inter-vehicle measurements is extremely small, which is
unlikely in many practical situations, the small angle approximation is violated, which is likely to lead
to poor covariance updates and poor pose estimates. This is verified through simulations presented
here.

This work, as compared with much of the earlier work on collaborative localization from relative
measurements, differs in a number of novel ways. The proposed approach is (i) directly applicable
to 3D pose estimation, (ii) able to utilize heterogeneous measurement types (of the relative position,
orientation, bearing, distance, or any combination thereof) between pairs of robots, and (iii) able to
handle a time-varying neighbor relationship in the distributed setting. To the best of our knowledge,
although earlier works have some of these features, no existing method has all three features.

Ability to fuse heterogeneous relative measurements provides an important functionality. In
particular, many of the papers mentioned above3, 8, 10, 13, 32 require measurements of relative pose,
i.e., position and orientation, between robot pairs. While relative position can be obtained through
stereo vision or laser range finders, obtaining relative orientation is quite challenging. It requires
robots to be equipped with recognizable targets with known geometry, but even then orientation
measurements can be quite noisy. In fact, obtaining relative position measurements with stereo vision
is also challenging due to small baseline enforced by the size of robots. Laser range finders have
limited range and therefore are not suitable to, say, UAVs, where the distance between two UAVs
may be large. However, even if only one camera of a robot sees a neighboring robot, a bearing
measurement can be obtained. Or, radio frequency (RF)-based techniques, such as time of arrival
(TOA) measurements, can be used to measure distance during wireless communication. With the
ability to fuse all types of relative measurements, all available measurements can be utilized for
improvement in localization accuracy. Although Martinelli et al.25 and Rekleitis et al.31 consider the
case of heterogeneous measurements, their algorithms are limited to the 2D case. Our work extends
to 3D, the comparison between various measurement types initiated in refs. [25, 31].

The third contribution of the paper is the low communication requirements of the proposed
algorithm. A crucial requirement in some of the prior works3, 7, 13, 25, 27, 32 on collaborative localization
is that of constant all-to-all communication among robots. In contrast, the proposed distributed
algorithm allows the number of neighbors of a robot (those it can exchange information with) to vary
in an arbitrary manner with time. In the extreme case when the number of neighbors is always 0, the
proposed algorithm simply degenerates into dead reckoning.

Some preliminary aspects of the proposed method were reported in ref. [18]. Compared with that
paper, we make several novel contributions here. While the method in ref. [18] required all inter-robot
measurements to be of the relative pose, here we extend the methodology to enable fusion of many
types of measurements. As discussed above, this represents a significant extension. We also present
detailed proofs of all the mathematical results, which were not present in ref. [18]. Finally, here we
include substantially more simulation and experimental results than in ref. [18].

The rest of the paper is organized as follows. The problem is precisely stated in Section 2. A
centralized estimation scheme is described in Section 3, and a distributed algorithm that is inspired
by the centralized scheme is described in Section 4. In Section 5, two existing state-of-the-art
algorithms are reviewed briefly. Simulation and experimental results with the proposed algorithms
are presented in Sections 6 and 7, respectively. The paper concludes with a discussion in Section 8.

2. Problem Statement

2.1. The collaborative localization problem
Consider a group of r mobile robots indexed by i = 1, . . . , r . Time is measured by a discrete counter
k = 0, 1, 2, . . . . Each robot is equipped with a local, rigidly attached frame of reference, that is, a
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coordinate system defined in the robot’s local reference frame. We call the frame of reference attached
to robot i at time k frame i(k). Between any two frames of reference, say frames u and v, we denote
the Euclidean transformation from v to u by Tuv , where Tuv is an element of the special Euclidean
group SE(3). Specifically, if pu is a point expressed in frame u and pv is the same point expressed in
frame v, then pu = Tuvpv . We call Tuv the relative pose of frame v with respect to frame u.

Let frame 0 denote some fixed frame of reference that is common to all robots. The absolute pose
of frame u is then given by the transformation T0u. We will often denote the absolute pose simply as
Tu. Robot i is said to be localized at time k when an estimate is known for the absolute pose of frame
i(k). We denote such an estimate by T̂i(k).

In this work, we consider the case when measurements of a robot’s absolute pose, perhaps from
the measurements of a GPS and compass, are either not available or only rarely available. Instead,
each robot is equipped with proprioceptive sensors such that, at every time k, the robot is able to
obtain a relative pose measurement with respect to its previous pose. That is, a robot i at time k is able
to measure the relative pose Ti(k−1)i(k). We refer to these measurements as inter-time relative pose
measurements. Such measurements can be obtained with inertial sensors or vision-based sensors. In
addition, they need not be obtained from a sensor alone. Instead, a measurement could also be the
estimate computed by fusing sensor measurements with predictions of the robot’s motion from a
dynamic/kinematic model.

In addition to the aforementioned proprioceptive sensors, each robot is equipped with exteroceptive
sensors so that occasionally robot i is able to obtain a relative measurement of one or more other
robots. We call these inter-robot relative measurements. If robot i collects a measurement of robot j

at time k, it can be one of the following:

• Relative pose: The Euclidean transformation from frame j (k) to frame i(k); denoted by the
symbol T.

• Relative orientation: The element of SO(3) that describes change in orientation from frame j (k)
to frame i(k); denoted by the symbol R.

• Relative position: The vector in R
3 that describes change in position between the frames i(k)

and j (k), expressed in frame i(k); denoted by the symbol t.
• Relative bearing: The vector of unit length that points from frame i(k) to frame j (k), expressed

in frame i(k); denoted by the symbol τ .
• Relative distance: The distance between frames i(k) and j (k); denoted by the symbol δ.

Which pairs of robots will be able to obtain an inter-robot relative measurement will depend on
many factors, including the kind of sensors they have on board, the range of sensors, etc. An implicit
assumption here is that a robot is able to uniquely identify another robot of which it obtains a
relative measurement, so that there is no ambiguity on which pair of robots a relative measurement
corresponds to.

The collaborative localization problem is the problem of estimating the pose of every robot at
the current time k with respect to the common frame of reference by utilizing the inter-time and
inter-robot measurements collected up to time k.

The above situation is best described in terms of a directed, time-varying, fully labeled graph
G(k) = (V0(k), E(k), �(k)), where nodes V0(k) correspond to variables, and edges E(k) correspond
to measurements, and shows how the noisy relative measurements relate to the absolute pose of each
robot at every time step. The graph is defined as follows. For each robot i ∈ {1, . . . , r} and each time
k′ ≤ k, a unique index (call it u) is assigned to the pair (i, k′). How this indexing is done is immaterial.
The indices {1, . . . , rk} define a set V (k) that is a subset of the node set V0(k) of the graph. We refer
to the frame of reference attached to robot i at time k′ as frame u, where u is the node assigned to
the pair (i,′ ). We introduce another node, denoted by 0, that corresponds to the common frame of
reference in which every robot’s pose is to be determined. Node 0 is called the grounded node. The
node set of the graph is then defined as V0(k) := V (k) ∪ {0}. The relative pose of frame u with respect
to frame 0 is denoted simply by Tu. We call the poses {Tu}u∈V (k) the node variables of G(k).

The set of directed edges at time k, denoted as E(k), corresponds to the noisy inter-time and
inter-robot measurements collected up to time k. That is, suppose robot i is able to measure robot j ’s
relative pose at time k′, and let u, v be the nodes corresponding to robots i, j at time k′, respectively.
Then for all k ≥ k′, there exists a directed edge e ∈ E(k) corresponding to this measurement. Since
robot i measures robot j , the edge e leaves node u and arrives at v, we denote this by e � (u, v).
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Fig. 1. A time history of three robots up to time k = 3 with inter-time and inter-robot relative measurements.
Each (robot, time) pair is labeled with the corresponding node index from V0(3). Arrows indicate edges in E(3),
i.e., relative measurements. Each edge is labeled to indicate the type of measurement. Each robot had GPS
and compass measurements at the initial time k = 0. Thereafter, no other GPS or compass measurements were
available.

Similarly, each inter-time relative pose measurements of a robot also creates an edge in the graph.
To delineate the type of measurement, a label from the set { T (pose), R (orientation), t (position),
τ (bearing), δ (distance) } is attached to each edge. The map from the set of edges to the set of
labels is denoted by �(k). For each edge, e ∈ E(k), where e � (u, v), if �(k)(e) = s, which means
there is a measurement of type s for frame v with respect to frame u, where s ∈ {T, R, t, τ , δ}. The
noisy relative measurement associated with edge e � (u, v) is denoted by T̂u v, R̂u v, t̂u v, τ̂ u v, or δ̂u v

for �(k)(e) = T (pose), R (orientation), t (position), τ (bearing), or δ (distance), respectively. A
measurement of type T is really two measurements, one of type R and another of t. We still use the
nomenclature “measurement of type T” for ease of comparison with prior work, since relative pose
measurements are commonly considered in the existing literature.

If the absolute pose in global GPS coordinates of at least one robot is known at time 0 through
the use of GPS and compass, then node 0 can be associated with a terrestrial reference frame. When
such measurements are not available, node 0 could correspond to the initial frame of reference of one
of the robots. In either case, estimating the node variables is equivalent to determining the robots’
poses with respect to the frame of the grounded node 0. Without the grounded node, the problem of
localization from relative measurements is indeterminate up to a rotation and a translation.

The graph G(k) is called the measurement graph at time k. Figure 1 shows an example of the
graph corresponding to the measurements collected by three robots up to time index 3. Because each
robot may be equipped with more than one sensor, multiple distinct edges may exist between a pair
of nodes.

To ensure that at least one estimate exists for every robot at each time k, we make the following
assumption.

Assumption 1. Each robot has access to an estimate of its absolute pose at time 0.

Due to Assumption 1, an estimate of the pose of robot i at any time k (equivalently, the node
variable Tu, where node u corresponds to the pair (i, k)) can be computed by composing the inter-
time relative pose measurements obtained by robot i up to time k. This estimate is equivalent to robot
i performing dead-reckoning. In practice, Assumption 1 holds if all robots have a GPS and compass
measurement at time 0. If no GPS measurement is available, but each robot can obtain a relative pose
measurement with respect to, say, robot 1, then again the assumption holds.

Often many more edges are present in the graph G(k) than those necessary to form a single
estimate of the node variables; robots can benefit from collaborative localization in such a scenario.
As an illustrative example, consider the scenario shown in Fig. 1. The path (0, 1, 4, 7, 10) provides
the dead-reckoning estimate of robot 1 at time 3, or equivalently an estimate of T10. Similarly,
the path (0, 2, 5, 8, 11) provides as estimate for the node variable T11. In addition, the three edges
between nodes 10 and 11 corresponding to relative position, orientation, and distance measurements
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all provide additional information about how T10 and T11 relate. Because there is noise in each relative
measurement, by incorporating the information found in these three edges, we expect to get a better
estimate of both T10 and T11. The goal of collaborative localization is to utilize all edges in the graph
G(k) to improve over any estimates of the node variables that are obtained using only a single path.
When the measurements are linearly related to the node variables, this can be accomplished by using
the Best Linear Unbiased Estimator, as done in refs. [3, 4]. In our case, the relationship between the
measurements and the node variables is nonlinear.

The discussion above also shows that Assumption 1 is not necessary, but merely sufficient for
localization. For robot i to be localized, all that is needed is that there exists a time k so that there is
an undirected path from node u (where u corresponds to i, k) to node 0 such that the edges along this
path are of type T. In that case, an estimate of tu can be obtained by concatenating the relative pose
measurements along the path from 0 to u, and hence robot i is localized at time k. After that, even if
no inter-robot relative measurements are available, robot i can perform dead reckoning. Assumption 1
is taken in order to simplify the presentation.

2.2. The distributed collaborative localization problem
The problem stated above does not put any restriction on access to the measurements collected up to
time k. In particular, a method that assumes that all measurements collected by all the robots up to time
k are instantly available to a central computer is allowed. However, when a large number of robots are
involved, with communication accomplished through the use of low bandwidth wireless links with
limited range, such a centralized scheme is not feasible. In addition, retaining past measurements
indefinitely will quickly exhaust both available memory and available processing capabilities of a
centralized computing unit.

We now modify the problem by including constraints on communication and computation. In
particular, a robot is now required to localize itself by using information that is available from on-
board sensors and data it can collect from its neighbors. Two robots i and j are said to be neighbors
at time k if they can communicate at time k.

The distributed collaborative localization problem is the following: Each robot is to localize itself
by using measurements collected by on-board sensors and information it can obtain by communicating
with its neighbors. To simplify the development of the distributed algorithm, the following assumption
is made.

Assumption 2. If robot i can obtain a relative measurement of robot j at time k, then i and j can
communicate at that time.

Although this assumption may seem strict, it can, in fact, always be satisfied: robot i simply drops
any measurements involving j if it cannot communicate with j .

3. Centralized Collaborative Localization Algorithm
In this section, we present a solution to the collaborative localization problem where all the relative
measurements are instantly available to a central processor at each time k. To distinguish this algorithm
from other pose-graph methods discussed in the sequel, we will refer to it as the RPGOalgorithm.
The centralized solution naturally leads to a distributed scheme, which will be described in the next
section.

3.1. Localization through optimization over a graph
Instead of addressing the problem of estimating the robots’ current poses at time k, we examine
the more general problem of estimating all the node variables

{
Tu

}
u∈V (k) of the measurement graph

G(k) using the noisy relative measurements,
{
M̂e

}
e∈E(k), where for each (u, v) 	 e ∈ E(k), M̂e is a

measurement from node u to node v of one of the following: relative pose, orientation, position
bearing, or distance.

In the following, we will interchangeably refer to both the absolute pose Tu and its corresponding
orientation and position, Ru and tu respectively, as node variables. Similarly, a pose measurement
T̂u v will be identified with its corresponding orientation and position measurements, R̂u v and t̂u v .
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We pose the collaborative localization problem as an optimization of a cost function over the
set of node variables, where the cost function measures how well a given set of absolute poses
explain the noisy measurements collected up to time k. The initial condition for each node variable
Tu = (Ru, tu), u ∈ V (k) is given by the dead-reckoning estimate, whose existence is assured by
Assumption 1.

Given a measurement M̂e between nodes u and v, let ce(Ru, Rv, tu, tv | M̂e) ∈ R+ denote the cost
of the measurement M̂e as a function of the node variables. A suitable cost function must be chosen
for each of the four measurement types (excluding pose measurements and instead considering a
orientation/position pair) such that a higher cost indicates more disagreement between the observed
measurements and the estimated node variables. This is done by considering the following fact. When
the node variables and measurements are know exactly, each measurement can be given as a function
of the node variables as follows:

R̂u v = RT
u Rv,

t̂u v = RT
u (tv − tu),

τ̂ u v = RT
u (tv − tu)/‖tv − tu‖,

δ̂u v = ‖tv − tu‖.
(1)

Since noise is present in the measurements, how much a noisy measurement differs from its value
given as a function of the node variables provides a suitable cost.

In (1), t̂u v, τ̂ u v , and δ̂u v are all elements of a real vector space (R3 or R) and so the standard
Euclidean norms can be used to measure the distance between the noisy measurements and the
equivalent node variable representations. In contrast, both R̂u v and RT

u Rv are elements of the
manifold SO(3) and are thus considered to be abstract operators and not equated to any particular
parameterization (such as rotation matrices). To this end, a suitable distance function on the manifold
SO(3) must be chosen to measure their relative distance. Such a function is given by the Riemannian
distance,

d : SO(3) × SO(3) → R+, (p, q) �→
√

−1

2
Tr

(
log2(pT q)

)
, (2)

where Tr denotes the trace function. More details on this distance function can be found in Appendix A.
The cost function at each time k is chosen as a sum of edge costs over all edges (measurements):

f
({

Tu

}
u∈V (k)

)
:=

∑
(u,v)	e∈E(k)

ce(Ru, tu, Rv, tv | M̂e), (3)

where ce(Ru, tu, Rv, tv | M̂e), the cost for edge e � (u, v), is given by

ce(Ru, tu, Rv, tv) := 1

2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2(R̂u v, RT
u Rv) +‖t̂u v − RT

u (tv − tu)‖2 if �(k)(e) = T

d2(R̂u v, RT
u Rv) if �(k)(e) = R

‖t̂u v − RT
u (tv − tu)‖2 if �(k)(e) = t

‖(τ̂ u v‖tv − tu‖
) − RT

u (tv − tu)‖2 if �(k)(e) = τ

‖(δ̂u v − ‖tv − tu‖
)‖2 if �(k)(e) = δ

(4)

and ‖ · ‖ indicates the standard Euclidean norm on R
3.

If the relative measurements were completely error-free, the minimum value of the cost function
would be 0. By minimizing the cost function, we expect to find an improved estimate for the absolute
pose of each robot over what can be determined through dead reckoning alone. The cost function
in (3) is similar to one proposed in ref. [35] for a static camera network; here the cost function changes
with time.
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3.2. Optimization over the product manifold
Finding the minimum of a function defined over a vector space has been studied extensively. However,
the function f (·) in (3) is defined on a curved surface, specifically, the product Riemannian manifold
(SO(3) × R

3)n(k), where n(k) = |V (k)|, the cardinality of the set V (k). Although it is possible to
parameterize the product manifold and thus utilize standard vector space optimization techniques,
such a parameterization will inevitably introduce either an increase in dimensionality, and thus
introduce constraints, or the parameterization will fail to be bijective over the entire domain. See ref.
[37] for a discussion of the relevant parameterizations of SO(3) and their associated problems.

In contrast, we desire a method that allows us to solve an unconstrained optimization problem in
which the solution remains on the manifold during all intermediate steps. We accomplish this through
the use of a gradient descent algorithm on product manifold.

Gradient descent in a Riemannian manifold is analogous to gradient descent in a vector space in
the following sense. Given a smooth real-valued function f defined on a manifold M , the gradient
of f at p ∈ M , denoted as grad f (p), is a vector in the tangent space of M at p, which is denoted by
TpM . Just as in Euclidean space, grad f (p) points in the direction of the greatest rate of increase of
f . An explicit expression for the gradient of the cost function (3) is provided in the next proposition;
the proof is in Appendix C.

Proposition 1. The gradient of the cost function shown in (3) at p = (R1, t1, . . . , Rn(k), tn(k)) ∈(
SO(3) × R

3
)n(k)

is

grad f (p) = (
grad f (R1), grad f (t1), . . . , grad f (Rn(k)), grad f (tn(k))

)
,

where for u = 1, . . . , n(k),

grad f (Ru) =
∑

e∈E(k)

grad ce(Ru) grad f (tu) =
∑

e∈E(k)

grad ce(tu).

The gradients of the edge cost ce with respect to each manifold, grad ce(Ru) and grad ce(tu) for all
u ∈ V (k), are provided in Appendix D.

Consider a function f : S → R for some set S. When S is a vector space, the function S is
minimized using gradient descent by iteratively updating an estimate pt ∈ S such that pt+1 = pt −
ηtgrad f (pt), where ηt ∈ R+ is chosen so that f (pt+1) < f (pt ).5 An analogous update law can be
defined when S is instead a Riemannian manifold. The key difference is that, in general, the addition
operator is not defined on the manifold. Rather, the parallel transport map can be used to traverse
the manifold in the direction of −grad f .

The parallel transport map on the product manifold (SO(3) × R
3)n(k) at a point

p := (R1, t1, . . . , Rn(k), tn(k)) ∈ (SO(3) × R
3)n(k), (5)

denoted by expp, is given by

expp(ξ ) = (
R1 exp(RT

1 ξR1 ), t1 + ξt1, . . . , Rn(k) exp(RT
n(k)ξRn(k) ), tn(k) + ξtn(k)

)
, (6)

where ξ = (ξR1, ξt1, . . . , ξRn(k), ξtn(k) ) is an element of the tangent space Tp

[
(SO(3) × R

3)n(k)
] =

TR1SO(3) × · · · × Ttn(k)R
3, and the exp(·) function appearing on the right hand side of (6) is the

map exp : L(R3) → L(R3) defined by exp(X) = ∑∞
k=0

Xk

k! for x ∈ L(R3). The derivation of (6) is
provided in Appendix B. The gradient descent law is

pt+1 = exppt
(−ηtgrad f (pt)), t = 0, 1, . . . ,
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where ηt ≥ 0 is the step size for iteration t . The parameter ηt is chosen as the Armijo step size
η

(A)
t = βNt α, where Nt is the smallest non-negative integer such that

f (pt ) − f (exppt
(βNt α grad f (pt))) ≥ σβNtα‖grad f (pt)‖ (7)

for scalar tuning parameters α > 0, β, σ ∈ (0, 1). The norm ‖ · ‖ defined in the vector space
Tp

[
(SO(3) × R

3)n
]

is given by

‖(ξR1, ξt1, . . . , ξRn(k), ξtn(k) )‖2 =
n(k)∑
u=1

(1

2
Tr

(
ξT

Ru
ξRu

) + ξT
tu ξtu

)
,

which comes from the Riemannian metric. More details on Riemannian metric can be found in
Appendix A. Theorem 4.3.1 in ref. [1] guarantees that the iterates pt converges to a critical point of
the cost function f defined in (3) as t → ∞.

The pseudo-code of the centralized RPGO algorithm is given in Algorithm 1, where ε > 0 is a
user-specified accuracy threshold. Correctness of the RPGO algorithm (convergence to a critical point
of the cost function f in (3)) follows from Theorem 4.3.1.1

It should be noted that a choice of parameterization is necessary to explicitly compute updates in
the proposed gradient descent algorithm. However, because the gradient descent is carried out on the
manifold, this choice does not impact the particular value of the node variables found at any step.

4. Distributed Collaborative Localization Algorithm
In this section, we propose an algorithm for solving the distributed localization problem. The algorithm
requires limited memory, processor power, and communication bandwidth for its execution. To
distinguish this algorithm from the centralized RPGO algorithm presented in the previous section,
we will refer to it as the Distributed Riemannian Pose Graph Optimization algorithm, or D-RPGO.

For each robot i, let N
(+)
i (k) denote the set of all robots j ∈ {1, . . . , r} such that, at time k, robot

i can obtain a relative measurement with respect to j . Similarly, let N
(−)
i (k) denote the set of all

robots j ∈ {1, . . . , r} such that, at time k, robot j can obtain a relative measurement with respect to
i. The neighbors of robot i at time k are then given by the set Ni(k) = N

(+)
i (k) ∪ N

(−)
i (k). Due to

Assumption 2, robot i can communicate with its neighbors Ni(k) during time k.
Consider the local measurement graph Gi(k) = (Vi(k), Ei(k), �i(k)) of robot i, whose node set is

simply the neighbors of i at time k along with the grounded node 0 and i itself: Vi(k) = Ni(k) ∪ {0, i}.
The edges of Gi(k) correspond to the inter-robot measurements at time k between i and its neighbors
along with an edge e � (0, j ) for each j ∈ Vi(k) (see Fig. 2 for an example). Each node in the local
measurement graph Gi(k) is associated with an absolute pose of a robot at time k. No past poses belong
to this graph. An edge (p, q) 	 e ∈ Gi(k) (where i = p or q) corresponds to an inter-robot relative
measurement between robots p and q at time k. The additional edges e � (0, j ), j ∈ Vi(k) correspond
to the “initial” estimate robot j ’s absolute pose at time k, denoted by T̂0 j (k). Each robot j obtains
the estimate T̂0 j (k) at time k by concatenating its pose estimate obtained at time k − 1 with the noisy
inter-time relative pose measurement describing its motion from k − 1 to k. The estimate T̂0 j (k) is
then used as the measurement associated with edge e � (0, j ). The graph Gi(k) is now a measurement
graph since each edge has an associated noisy relative measurement. The edge (0, j ) 	 e ∈ Ei(k) for
j ∈ Vi(k) ensures that Assumption 1 is satisfied for the local measurement graph Gi(k) for each i.

The distributed algorithm works as follows. At each time k, every robot i ∈ {1, . . . , r} forms
an initial estimate T̂0 i(k) of its absolute pose as described above and obtains inter-robot relative
measurements of each of its neighbors j ∈ N

(+)
i (k). Robot i then transmits to each j ∈ Vi(k) its

initial estimate of its absolute pose T̂0 i(k) along with all inter-robot relative measurements between
itself and j that it obtained at time k. Robot i receives in turn robot j ’s estimate of its current absolute
pose T̂0 j (k) along with relative measurements involving itself that j collected at that time. Robot i

then executes Algorithm 1 on the local measurement graph Gi(k). The unknown node variables on
this graph consist of its own pose and the poses of its neighbors (all at time k). After the computation,
only the estimate of i’s own current pose is retained in its local memory; all other computed values
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Algorithm 1: Centralized Riemannian Pose Graph Optimization
Input: G(k), all noisy measurements on E(k), an initial guess for each node variable (Ru, tu),

u ∈ V (k).
Output:

{
(R̂u, t̂u)

}
u∈V (k)

p̂ → initial guess (p defined in (5));
repeat

foreach u ∈ V (k) do
Compute grad f (R̂u) and grad f (t̂u) for the cost f in (3) (as shown in Appendix D);

end
Determine η(A), the Armijo step size from (7) (with p̂ for pt );
foreach u ∈ V (k) do

R̂u → R̂u exp
(−η(A)R̂T

u grad f (R̂u)
)
;

t̂u → t̂u − η(A) grad f (t̂u);
end

until ‖grad f
({

(R̂u, t̂u)
}

u∈V (k)

)
‖ > ε;

1

2

0
T

T

T R δ

(a)

30 T

(b)

Fig. 2. The local measurement graphs for the robots of Fig. 1: (a) G1(3) and G2(3) (in this example they are the
same), and (b) G3(3).

are discarded. Since the distributed algorithm is simply Algorithm 1 applied to a local measurement
graph, it inherits the correctness property of Algorithm 1. Note that if robot i has no neighbors at time
k, the distributed collaborative localization algorithm is equivalent to performing self-localization
from inter-time relative measurements.

The local measurement graphs G1(3), G2(3), and G3(3) corresponding to the example of Fig. 1
are shown in Fig. 2. At time k = 3, robot 3 can see no other robots, so it will update its absolute
pose using the inter-time relative pose measurement alone, without the aid of any inter-robot relative
measurements. Robots 2 and 1, in contrast, will use the relative measurements between them obtained
at time k = 3 to update their pose estimates.

4.1. Communication requirements
In the distributed algorithm, all the past data are truncated and replaced by the current estimate. As a
result, the size of the problem data for each robot i at time k (encoded in the local subgraph Gi(k)), is
bounded – and small – for all i and k. Specifically, for a robot i with Ni neighbors, the communication
requirement of the distributed algorithm is O(Ni). This can be seen as follows. A robot has to store
current estimates of the node variables in its local measurement graph, and the number of nodes in
that graph is Ni + 1. Each node variable can be represented by 6 numbers (3 for position and 3 for
orientation). The robot also has to store the relative measurements between itself and its neighbors.
The maximum memory requirement is when a robot is able to obtain measurements of all four types of
relative measurements in the same time instant (relative position, orientation, bearing, and distance).
In that case, each neighbor causes a requirement of 3 + 3 + 2 + 1 = 9 numbers to represent the inter-
robot measurements (2 for orientation in 3D, and 1 for distance). Thus, the total memory (storage)
requirement for robot i is at most 6(Ni + 1) + 9Ni . At every time step, a pair of neighboring robots
has to exchange (i) the relative measurement(s) between them, and (ii) their current pose estimates:

https://doi.org/10.1017/S0263574714000794 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000794


1518 Distributed Collaborative 3D Pose Estimation

at most 15 numbers. If information is broadcast to all neighbors, a likely scenario with autonomous
robots communicating wirelessly, a robot only has to transmit 15Ni numbers.

4.2. Computational complexity
Just as the communication requirements scaled with the number of neighbors for a given robot i, so
too does the computational complexity for a given robot’s implementation of the D-RPGO algorithm.
Consider a robot i at time k, and let Ni(k) indicate the number of neighbors for robot i at time k.
The dimensionality of the optimization problem is then equal to Ni + 1. In addition, the number of
operations necessary to find the gradient for robot i is O(Ni(k)3). This follows from the fact that the
gradient is a Ni(k) + 1 dimensional vector found by summing over the number of edges between
neighbors, at most Ni(k)2.

5. Existing Methods of Collaborative Localization
In this section, we briefly introduce two existing state-of-the-art methods for collaborative localization.
The first algorithm we consider is based on standard pose-graph optimization methods (see ref. [20]
and references therein). The second algorithm utilizes an Indirect Extended Kalman filter (IEKF) to
perform collaborative localization, similar to the method used in ref. [26]. These two algorithms will
be compared with the proposed algorithm through simulations in Section 6.3.

5.1. Pose-graph optimization
Unlike the algorithm presented in Section 3, standard pose-graph optimization techniques require a
suitable parameterization of SO(3) to be used. For use in this paper, unit quaternions were chosen for
this parameterization.6 For each node u ∈ V (k), let qu denote the unit quaternion corresponding to the
node variable Ru. Similarly, given a orientation measurement R̂u v, let q̂u v denote the corresponding
unit quaternion. Estimates for the node variables at time k are determined by minimizing the cost
function,

f ({qu, tu}u∈V (k)) :=
∑

(u,v)	e∈E(k)

ge(qu, tu, qv, tv)T Pege(qu, tu, qv, tv), (8)

where Pe > 0 is a scaling matrix and ge(qu, tu, qv, tv) is a suitable vector edge error defined for each
measurement type. Although standard pose-graph optimization is able to handle all measurement
types considered thus far, for ease of exposition, only measurements of the relative position and
orientation will be considered in the following discussion.

No canonical vector edge error exists for parameterization; many choices are possible. One suitable
choice, which is the vector edge error used in the subsequent comparisons, is given as follows:

ge(qu, tu, qv, tv) =
{

q−1
u ⊗ qv ⊗ q̂−1

u v − 1 if �(k)(e) = R
C(qu)T (tv − tu) − t̂u v if �(k)(e) = t

, (9)

where e � (u, v), ⊗ denotes the quaternion multiplication,6 and C denotes the map that takes a unit
quaternion to its corresponding 3 × 3 rotation matrix representation. Many vector-space optimization
algorithms can be used to search for (9). One common choice is to use the Levenberg–Marquadt
algorithm, as was done in ref. [20]. To implement the Levenberg–Marquadt algorithm, a minimal
parameterization is utilized, e.g., the first three components of the four-element unit quaternion. More
details of the EPGO algorithm used for comparison with the RPGO algorithm can be found in ref.
[16].

Remark 1. The orientations (R(·)) that appear in our problem formations and throughout the
development of the RPGO algorithm are abstract rotation operators, or elements of SO(3). No
particular parameterization (rotation matrices, quaternions, etc.) is assumed during the development.
In contrast, the cost function for the EPGO algorithm, (9) utilizes a specific parameterization in
the form of unit quaternions. A different parameterization would necessarily lead to a different
cost function, and possibly a different estimate delivered by the corresponding algorithm. The
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estimates found using the EPGO algorithm are functions of both the measurements and the chosen
parameterization, rather than a function of the measurements alone.

5.2. Indirect extended Kalman filter
We next consider an algorithm based on IEKF, similar to that used in ref. [26]. The two primary
differences between the algorithm used in ref. [26] and the IEKF algorithm given below are as follows.
(i) Inter-time relative measurements are of the relative pose, rather than measurements of linear and
angular velocities. This is motivated by the idea that measurements are captured by a camera, rather
than an inertial measurement unit. (ii) The IEKF algorithm presented here utilizes measurements of
the relative position between robots, where as the algorithm presented in ref. [26] uses measurements
of the bearing with respect to a time-varying set of feature points. Under these two changes, the
IEKF algorithm is able to function under the same circumstances as the RPGO algorithm presented
in Section 3.

As with the EPGO algorithm, and in contrast to the RPGO algorithm, the IEKF algorithm
requires a suitable parameterization of SO(3) to be used. Unit quaternions are again chosen for
this parameterization. A complete description of the resulting filtering equations is available in ref.
[16]; here we omit the details due to lack of space.

6. Simulation Results
In this section, we present simulations comparing the centralized and distributed algorithms and study
the effect of collaboration on localization accuracy using each of the inter-robot measurement types.

First, in Section 6.1, we consider the case that all inter-robot relative measurements are of the
relative pose. We examine the difference in localization accuracy between the centralized and
distributed algorithms, as well as the effect of increasing number of robots on localization accuracy.
In Section 6.2, we consider the heterogeneous measurement case in which the inter-time relative
measurements are of relative pose, but the inter-robot relative measurements may be of relative pose,
orientation, position, bearing, or distance. We examine the effects these various measurement types
have on the accuracy of location estimates.

To study the change in localization accuracy, we consider the following metrics. The position
(estimation) error of robot i is ei(k) := t̂i(k) − ti(k), where ti(k) is its global position at time k and
t̂i(k) is the estimate of this position. The bias in the position estimation error of robot i is defined as
‖ E[ei(k)]‖, where E[·] denotes expectation and ‖ · ‖ refers to 2-norm, and the standard deviation as√

Tr (Cov(ei(k), ei(k))), where Cov(·, ·) denotes the covariance.

6.1. Centralized RPGO versus DRPGO
To compare the centralized and distributed algorithms, we examine the localization of a group of
five robots. All inter-robot relative measurements were of the relative pose. Each of the five robots
travels along a distinct zig-zag path in 3D, as shown in Fig. 3(a). Two robots could obtain relative
pose measurements at time k if the Euclidean distance between them at that time was less than 7
m. Due to Assumption 2, communication between robots is possible between at least those pairs
with a distance of less than 7 m. Furthermore, 25% of these potential measurements were dropped to
simulate random failure. A plot of the number of neighbors of robot 1 over time is shown in Fig. 3(b).
The orientation measurements for each relative pose (both inter-robot and inter-time) were corrupted
by independent identically distributed (i.i.d.) unit quaternions drawn from the Von Mises–Fisher
distribution24 centered around the zero-rotation quaternion and with a concentration parameter of
10, 000. Noise in the relative translation measurements was simulated by adding i.i.d. zero-mean
normal random variables with a covariance matrix I3×3 × 10−6.

Figure 4 shows the bias and standard deviation in the position error of a single robot acting in
a five-robot team, estimated using a 100-iteration Monte Carlo simulation. The group of robots
performed localizing using either the centralized or distributed collaborative localization algorithms
with all inter-robot measurements being of the relative pose. The plots indicate that improvement
in localization accuracy with the distributed algorithm is quite close to that with the centralized
algorithm. This is promising since the distributed algorithm is applicable to large teams of robots
in highly dynamic scenarios that can lead to arbitrary time variation in neighbor relationships. The
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Fig. 3. (a) The 3D trajectories for robots 1 through 5, used in all simulations, and (b) the number of neighbors
of robot 1 as a function of time.
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Fig. 4. The (a) bias and (b) standard deviation in position error for a robot acting in a group of five localizing
using either the centralized or distributed algorithm. This estimate was obtained using a 100-iteration Monte
Carlo experiment.

centralized algorithm is not applicable in a realistic setting, but it provides a measure of the best
possible performance. From this point forward, we will only study the distributed algorithm.

We next conduct a series of Monte Carlo simulations with the distributed algorithm and compute
means and variances of the resulting localization errors. One goal of this study is to verify that the
accuracy improvements observed above are not a chance occurrence. Another goal is to examine how
the localization accuracy varies with the number of robots in the team.

In each of the sample runs of the Monte Carlo simulation, the robots traveled the same paths
as shown in Fig. 3(a). Measurement noise was introduced in the same manner as in the previous
simulations, and varied randomly from run to run. Neighbor relations were again determined as
described earlier, and kept the same from run to run to preclude that from being an additional source
of randomness. Simulations for robot teams of size 1, 2, 3, 4, and 5 were carried out. In each case
1000 iterations were performed. When only one robot is present in the team, collaborative localization
is equivalent to self-localization without the aid of any inter-robot relative pose measurement. As the
number of robots in the team increases, the number of neighbors for a robot at any given time will
tend to increase and so greater improvement in localization accuracy is expected.

The bias and standard deviation in the position estimation error ei(k) for robot 1 (i = 1) are
shown in Fig. 5. Both bias and standard deviation show significant improvement with distributed
collaborative localization over self-localization. This is evident even for a team of only two robots.
As the number of robots in the team increases, the localization error of robot 1 decreases. The
improvement in accuracy, however, shows a diminishing return with increasing team size.
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Fig. 5. The (a) bias and (b) standard deviation in the position estimation error for robot 1 utilizing the distributed
algorithm. The curves correspond to the number of robots in the group: 1, 2, 3, 4, or 5.

6.2. Effect of measurement type
We now perform simulations for the case when inter-robot relative measurements are of various
types (pose, orientation, position, bearing, and distance). To examine the effect that measurement
type has on localization accuracy, in each experiment, we let all inter-robot relative measurements
be of the same type. The Monte Carlo simulations were conducted, in which we again consider five
robots traveling in zig-zag paths shown in Fig. 3(a). Errors in the pose, orientation, and position
measurements are introduced as described in Section 6.1. Noise in the bearing measurements is
induced by rotating the true bearing through the application of a unit quaternion generated from the
i.i.d. Von Mises–Fisher distribution. The noise in the distance measurements is normally distributed.
The bias and standard deviation of position error for robot 1 are shown in Fig. 6.

We see from the plots that improvement over self-localization occurs for all measurement types,
with the exception of distance measurements. While distance measurements improve the standard
deviation of the position estimates, they have little or no effect on the bias. That distance has little
effect on the accuracy is consistent with the conclusions in the study25 for 2D localization. The fact
that bearing measurements lead to higher improvement over distance or position measurements was
also observed in ref. [25] for the 2D case. While the conclusions in ref. [25] were based on single
simulations, ours are based on Monte Carlo simulations.

Trade-offs between cost of sensors and the resulting benefit in localization can be analyzed
from these empirically observed trends. Although full pose provides the most benefit to localization
accuracy, it is clear that any of the considered inter-robot measurement types can be used to improve
localization accuracy over dead reckoning. In particular, after relative pose, relative position seems to
be the most valuable types of inter-robot measurements, leading to significant reduction in both bias
and variance over dead reckoning. This means that the cost of having sensors capable of measuring
relative position (stereo vision, laser range finder, or monocular camera-based bearing sensor along
with an RF-based distance measurement) may very well be justified by the localization accuracy
they lead to. On the other hand, it is also apparent that the improvement due to inter-robot bearing
measurements is quite comparable to that due to inter-robot relative position measurements. Yet only
a single camera is necessary to measure the bearing, where as (in general) stereo vision is necessary
to measure the full relative position, which is still quite prone to large errors unless large baseline
stereo is used. Thus, given cost, payload, and reliability constraints, monocular cameras might be a
better choice than stereo vision. These conclusions come with the caveat that they have been drawn
from one set of Monte Carlo simulations; more extensive studies are needed to establish how general
these trends are.

6.3. Comparison with alternate methods of distributed collaborative localization
We now present simulations that provide some insight into how the D-RPGO algorithm performs
when compared with two state-of-the-art collaborative localization algorithms. All inter-robot relative
measurements are of the relative pose for these simulations.
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Fig. 6. Simulation: The (a) bias and (b) standard deviation in position error for robot 1 when the distributed
algorithm is applied to a group of five robots utilizing inter-robot relative measurements. The labels “pose,”
“orientation,” “position,” “bearing,” and “distance” indicate the group of robots used inter-robot measurements
of the respective types to perform collaborative location using the distributed algorithm.
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Fig. 7. Simulation: Comparison between D-RPGO and D-EPGO algorithms when (a) inter-robot orientation
measurements are less noisy (K = 10, 000) and (b) inter-robot orientation measurements are more noisy
(K = 100), where K is the concentration parameter for the Von Mises–Fisher distribution from which the noisy
measurements are drawn. The bias in position estimation error of robot 1 (in a group of five robots utilizing
noisy inter-robot relative pose measurements), computed with both algorithms, averaging over the same graph,
is shown.

The first alternative that we consider is the standard pose-graph implementation presented in
Section 5.1, referred to as the EPGO algorithm. To maintain comparability, we provide the same local
measurement graph to both D-RPGO algorithm and EPGO algorithm, which we call the D-EPGO
algorithm.

A group of five robots are simulated to move along the 3D path described above. Errors in the pose
measurements were induced as in simulations in Section 6.2. Simulations were performed varying
the concentration parameter K in the Von Mises–Fisher distribution, from which the noisy rotations
(quaternions) used to corrupt the inter-robot orientation measurements are drawn. These simulations
show that when K is very large, that is, the variance is very low, D-EPGO does very well, even
outperforming the D-RPGO algorithm. However, when K is small, that is, the noise variance is large,
D-RPGO outperforms D-EPGO. Due to lack of space, only the results for K = 10, 000 and 100
are shown; see Fig. 7. It is clear that the proposed D-RPGO algorithm outperforms the D-EPGO
algorithm when K = 100 (more noise), while the D-EPGO algorithm outperforms the D-RPGO
algorithm when K = 10, 000 (less noise). The standard deviation is shown in Fig. 8. In the case of
standard deviation, difference between the two algorithms is small.

Next, we consider the IEKF algorithm presented in Section 5.2. A pair of robots is simulated
traveling along distinct sinusoidal paths in 3D space. Measurements are generated as described
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(a) Low noise measurements.
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Fig. 8. Simulation: Comparison between D-RPGO and D-EPGO algorithms when (a) inter-robot orientation
measurements are less noisy (K = 10, 000) and (b) inter-robot orientation measurements are more noisy
(K = 100), where K is the concentration parameter for the Von Mises–Fisher distribution from which the noisy
measurements are drawn. The standard deviation in position estimation error of robot 1 (in a group of five
robots utilizing noisy inter-robot relative pose measurements), computed with both algorithms, averaging over
the same graph, is shown.
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Fig. 9. Simulation: Comparison between D-RPGO and IEKF algorithms with two different sampling periods
for inter-robot measurements. The bias in position estimation error of robot 1 (in a group of two robots utilizing
noisy inter-robot relative pose measurements) computed with both algorithms.

earlier. The trends observed from extensive simulations can be summarized as follows. When the
time interval between successive inter-robot measurements, call it �T , is small, the IEKF performs
well as, or better than, the D-RPGO algorithm. However, when the time between measurements is
large, the D-RPGO algorithm provides significantly better estimates of the robots’ poses compared
with the IEKF algorithm. Figure 9 provides numerical results for the case of a large �T (30 sec in
this example), when IEKF performs poorly, and a small �T (0.1 sec), when the IEKF performs well.
How small �T has to be for IEKF to perform well depends on many factors, including the motion
of the robots, noise in the measurements, etc. For the parameters used in the simulations mentioned
above, �T has to be smaller than 0.1 sec for the IEKF to perform as well as the D-RPGO algorithm.

We believe the reason for this behavior of the IEKF is the error introduced by the linearization
involved in covariance propagation. The linearized state equations rely on the assumption that the
angle between the true and estimated orientation is very small. When the time interval between
inter-robot measurements is sufficiently small, this approximation holds. In that case the error in the
covariance matrix due to linearization is small enough that it does not outweigh the added benefit
of using covariance information. However, the small angle approximation is violated for large time
intervals, leading to quite poor covariance estimates, which in turn lead to poor pose estimates.
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Fig. 10. (a) The 3D trajectories for robots 1 through 5 corresponding to one particular realization of the random
path, and (b) the number of neighbors of robot 1 as a function of time for the given paths.

6.4. Application to randomized paths
Thus far the D-RPGO algorithm has only been applied to a single deterministic set of paths, which
is necessary for the careful evaluation of algorithm’s performance. To address any concerns about
possible dependency on paths, we now present a simulation in which the paths of the robots are
random. The random paths were generated such that each robot tended to follow the same moving set
point. The probability of moving toward that point was scaled by the distance from it. One particular
realization of such a path for each of the five robots is found in Fig. 10(a). The number of neighbors
for robot 1 during the given path is shown in Fig. 10(b).

We again consider the case when all inter-robot measurements are of the relative pose. A 500-
iteration Monte Carlo simulation was conducted and the root-mean-square localization error was
estimated for both self-localization (dead reckoning) and D-RPGO algorithm cases. The root-mean-
square position estimation error is shown in Fig. 11.

Comparing these results with those presented in Fig. 5, we observe that improvement in localization
accuracy by using the D-RPGO algorithm appears to be largely independent of the path. In addition,
the results seen in Fig. 11 are indicative of an observation made early in this work: that the average
number of neighbors, not the total number of robots, is the dominant factor determining localization
improvement in the application of the D-RPGO algorithm. In contrast to our previous simulations,
the average number of neighbors here proves to be �1 and so we see improvements more akin to the
r = 1 case in Section 6.1, rather than the r = 5 case.

7. Experimental Results
In this section, we present results for experiments conducted with two Pioneer P3-DX robots; these
are shown in Fig. 12. Each robot was equipped with a calibrated monocular Prosillica EC 1020 camera
and wheel odometers. Measurements from these sensors were fused to obtain the noisy inter-time
relative pose measurements. Each robot is additionally equipped with a target allowing the on-bard
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Fig. 11. Simulation: The root-mean-square position error for robot 1 when the distributed algorithm is applied
to a group of five robots utilizing inter-robot relative measurements over random paths.

Fig. 12. Two Pioneer P3-DX robots equipped with cameras and targets. Robot 1 is shown on the left, while
robot 2 is on the right.

cameras to measure the inter-robot relative pose by exploiting the known geometry of each target. The
true pose of each robot was determined using an overhead camera capable of tracking each robot’s
target. The sensor suite was polled every 0.2 sec with the noisy inter-robot relative pose measurements
available at most of, but not all, times.

All robots moved in straight lines with their paths approximately parallel. Six different pose
estimates of the robots were obtained at each time. The first was a dead-reckoning estimate, obtained
from the inter-time relative pose measurements alone. The remaining five estimates were obtained
by using the distributed collaborative localization algorithm with the inter-robot noisy relative
measurements being of full pose, orientation only, position only, bearing only, or distance only
respectively. These measurements were obtained by projecting the relative pose measurements. The
resulting global position estimates, along with the true positions, for robot 1 are reported in Fig. 13.
Simulations presented in Section 6 indicate that we should see significant improvement in localization
accuracy even in this small team, and the experimental results are consistent with that conclusion. As in
the simulations, distinct improvement in localization accuracy is seen when collaborative localization
is performed irrespective of the type of inter-robot measurement, although the improvement varied
depending on the measurement type.

To show that the improvements seen in the previous experiments are not just a random occurrence,
the previous experiment was repeated 24 times to produce an empirical estimate of the bias and
standard deviation in position estimation error (by taking appropriate averages) for each type of inter-
robot measurement. The results are reported in Fig. 14. The experimental results again show that
all measurement types lead to an increase in localization accuracy, with relative pose measurements
leading to maximum improvement, as expected. This is also the same trend as was observed in
the simulations. In contrast to the simulations, here we see that distance measurements do lead to
a non-negligible improvement in the bias of localization accuracy. As in the simulations, we see
that both bearing and position measurements lead to similar improvement in the bias. However, in
contrast to the simulations, in the experiments orientation measurements seem to improve the bias
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Fig. 13. Experimental: A plot of the location of robot 1 in the overhead camera frame of reference when both
robots move in a straight line. The true path (determined using the overhead camera), estimated path using self
localization, and estimated path using the distributed collaborative localization algorithm are all reported. The
various curves correspond to the type of inter-robot relative measurement used.
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Fig. 14. Experimental: The (a) bias and (b) standard deviation in position error for robot 1 with collaborative
localization when both robots move in a straight line. The bias and standard deviation were empirically estimated
by averaging over 24 repeated trials.

more than bearing or position measurements. The trend of the standard deviation improvement with
orientation, position, and orientation measurements are similar in both simulation and experiments.
The most significant difference between the trends observed in simulations and experiments are in
the standard deviation improvement between pose, orientation, and position measurements: they are
much closer in the experiments than in the simulations. In fact, the standard deviation with position
or orientation measurements seem to be a little smaller than that with pose measurements. We believe
this is an artifact of the small number of experimental samples averaged to estimate the bias and
standard deviation empirically, which limits the accuracy of the estimates.

In short, the experiments verify that the proposed algorithm for distributed collaborative
localization leads to statistically significant improvement in localization accuracy even with a small
number of robots. Several trends seen in the experiments about the relative merits of the different types
of measurements are consistent with those in the simulations. However, there are a few noticeable
differences as well. Although the exact cause of these differences is not clear, one should note that
the simulations and experiments differ in a number of ways. The biggest difference is that the bias
and standard deviations estimated from the experiments are likely to have higher error than in the
simulations due to the small number of experimental samples, which in turn is due to the difficulty
associated with conducting repeated experiments. The other significant difference comes from the
measurement noise distributions. In the simulations, measurement noise was drawn from distributions

https://doi.org/10.1017/S0263574714000794 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000794


Distributed Collaborative 3D Pose Estimation 1527

that were somewhat arbitrarily chosen, while the noise distributions in the experiments are unknown.
The third potential source of difference is the paths of the robots. In ref. [19], which examined the
growth of dead-reckoning error, we showed that the path traversed by a robot plays a crucial role in
the bias and standard deviation of the localization error. In particular, the bias grows without bound if
the robot moves in a straight line, but stays uniformly bounded by a constant if the robot stays inside
a bounded region. Similar effects are likely in collaborative localization. Therefore, the difference
between the paths used in the simulation and experiments might be another source of difference in
localization accuracy observed.

8. Summary
In this paper, we introduce a novel distributed algorithm (D-RPGO) for estimating the 3D pose of
multiple robots when noisy inter-robot measurements of various types (relative pose, orientation,
position, bearing, or distance) between pairs of robots are intermittently available. The distributed
algorithm is inspired by a centralized algorithm for solving a least square-type problem. The cost
function is chosen to measure how well the estimates explain the relative measurements. A gradient-
descent in a product Riemannian manifold is used to solve the optimization problem.

The proposed method is close in spirit to the pose-graph optimization problems commonly
encountered in mapping and localization. The primary distinction is that our cost function is defined
on a Riemannian manifold and is minimized on that surface without converting the problem to a
vector space optimization problem. The estimator is thus naturally independent of the choice of
parameterization of SO(3) utilized to carry out numerical computation. While Euclidean pose-graph
algorithms may require careful choice of design variables for a specific rotation parameterization for it
to perform well, the Riemannian pose-graph algorithm does not. In addition, the Riemannian version
can achieve better performance in some cases. In particular, the D-RPGO algorithm outperforms
a distributed version of the traditional pose-graph optimization (that uses a specific Euclidean
parameterization of robot orientations) in terms of accuracy when the noise in the inter-robot
measurements is large.

It was found that the computation time of the D-RPGO algorithm is comparable with that of the
D-EPGO algorithm in the simulations we performed. However, there are many ways to speed up
the computations involved in Euclidean optimization that are not currently available for Riemannian
optimizations. We suspect, when applied to large graphs, Riemannian optimization will be slower than
Euclidean optimization. Fortunately, the measurement graphs that appear in distributed computation
are small, since their size scales with the number of neighbors of a robot.

The IEKF has been a popular tool in past work on collaborative localization as well as mapping.
Simulation comparison of the proposed D-RPGO algorithm with the IEKF showed that the IEKF
performs poorly compared with the proposed D-RPGO algorithm unless the time interval between
successive inter-robot relative measurements is quite small. This has important implications for
many practical applications, since it is more likely that inter-robot measurements will be available
infrequently. However, in those special cases when inter-robot measurements arrive frequently,
the IEKF performs better then the D-RPGO algorithm due to the consideration of the estimation
covariance. One such scenario is the one considered in ref. [26], where robots observe common
feature points on the ground. In such a scenario the IEKF maybe preferred over the proposed method.

The focus of this paper has been on relative localization with an arbitrary origin or with GPS
fixes available only in the beginning. The algorithm is readily applicable to scenarios where global
position or orientation measurements may become available over time, such as intermittent GPS or
landmarks with known position/orientation detected by robots. For instance, when a landmark with
a known position or orientation is detected, a new node is introduced in the graph corresponding to
the landmark whose node variable(s) enter the optimization as known values instead of variables to
optimize over. The landmarks are effectively grounded nodes.

A limitation of the proposed method over the IEKF (and other filtering methods) is that the latter
also provides a covariance estimate, while the proposed method does not. A method to estimate the
covariance, or some measure of estimation error, is an important future task. Although simulations
reported here provide an indication of when the proposed method performs over the existing state-
of-the art methods, a more thorough study needs to be conducted to obtain a better understanding of
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the relative merits of the proposed method over alternatives. Future studies will also address issues
such as identification of the neighboring robots, and rejection of outliers in relative measurements.
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Appendix A: Riemannian Manifolds
In this section we provide greater detail on the building blocks of Algorithm 1, including Riemannian
manifolds. A full introduction to the study of Riemannian geometry is outside the scope of this paper;
the interested reader is referred to refs. [1, 9].

A manifold M of dimension d is a topological space that can locally be represented by R
d . The

set of all linear operators on the vector space R
3 is denoted by L(R3). Elements of L(R3) can be

represented by 3 × 3 matrices. We can then describe the manifold of 3D rotations, denoted as SO(3),
by the set

{
R ∈ L(R3) : RT R = id, det(R) = 1

}
. The symbol id denotes the identity operator. Given

a point p ∈ SO(3), the tangent space of SO(3) at p, denoted as TpSO(3), is given by

TpSO(3) = {
pv̂ : v̂ ∈ L(R3), v̂T = −v̂

}
.

A Riemannian metric on a manifold M is given by defining ∀p ∈ M gp : TpM × TpM → R such
that

• ∀p ∈ M , gp is an inner product;
• given two vector fields X and Y on M , the map g : M → R, p �→ gp(Xp, Yp) is smooth.

The Riemannian metric g gives rise to an inner-product norm on the tangent space TpM for each
p ∈ M . That is, for ξ ∈ TpM , ‖ξ‖2 = gp(ξ, ξ ). A Riemannian manifold is a manifold equipped with
a Riemannian metric. The first Riemannian manifold that we consider is (SO(3), g), where g is the
Riemannian metric given by

gp(A, B) = 1

2
Tr

(
AT B

)
(A1)
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for all p ∈ SO(3), A, B ∈ TpSO(3). From this point on, when we refer to SO(3), we mean this
Riemannian manifold. To further simplify the notation, when the argument p ∈ SO(3) is clear, we
will denote gp(Xp, Yp) by g(Xp, Yp).

For a Riemannian manifold, the analog to a straight line in Euclidean space is given by a geodesic.
For two points p and q on a manifold M , a geodesic from p to q, denoted by γpq , is the “shortest” path
from p to q. More precisely, if we consider the set of all parameterized paths from p to q, given by
� = {γ : [0, 1] → M : γ (0) = p, γ (1) = q}, then a geodesic γpq is given by a path that minimizes

∫ 1

0
‖γ ′(t)‖dt

over all paths in �, and γ ′(t) is the derivative of γ (t) with respect to t , which is defined by the
following relationship:

γ ′(t0)f = d(f (γ (t))

dt
|t0

for all f : M → R. Note that the derivative γ ′(0) is an element of the tangent space Tγ (0)M . For the
manifold SO(3), the geodesic from p to q (∈ SO(3)) is given by

γpq(t) = p exp(tv), t ∈ [0, 1],

where v = log(p−1q), the map exp : L(R3) → L(R3) is given by exp(X) = ∑∞
k=0

Xk

k! and log is the
inverse map of exp.1

For an arbitrary Riemannian manifold, the Riemannian metric defines a corresponding distance
function on the manifold as follows. For a Riemannian manifold M , the distance between two points
p, q ∈ M is given by

dM (p, q) =
∫ 1

0
‖γpq(t)‖dt.

In particular, for the manifold SO(3),

dSO(3)(p, q) =
√

−1

2
Tr

(
log2(pT q)

)
.

The subscript SO(3) on the distance function will be omitted when the arguments make it clear what
manifold the distance refers to. The second manifold that we consider is (R3, < ·, · >), standard
Euclidean 3-space with the Riemannian metric given by the inner product on R

3. Given points
p, q ∈ R

3 the (unique) geodesic connecting p and q is the straight line from p to q and d(p, q) =
‖p − q‖ := < p − q, p − q >1/2, the standard Euclidean inner product norm.

In addition to the distance function, the Riemmanian metric also specifies a parallel transport
function. Let M be an arbitrary Riemmanian manifold. For p ∈ M and ξ ∈ TpM , the parallel
transport function, denoted as expp, finds a new point q ∈ M given by moving along a geodesic
beginning at p and with initial velocity ξ . More precisely,

q = expp(ξ ) = γ (1),

where γ is the parameterized geodesic with γ (0) = p and ξ being the tangent to γ (t) at t = 0. In the
case of SO(3), expp(ξ ) = p exp(pT ξ ).

Finally, we consider the gradient for real-value functions defined on the manifold. Given a
Riemannian manifold M and a scalar, real-valued function f : M → R, the gradient of f at p ∈ M ,

1 This use of log(p) for p ∈ SO(3) is only valid on the region where exp is a diffeomorphism, which it is at
least on the open ball about I ∈ SO(3) of radius π (Proposition 1.4).11
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denoted by grad f (p), can be defined by the following relation:

gp(grad f (p), ξp) = (f ◦ γ )′(0) ∀p ∈ M, (A2)

where γ : [0, 1] → M is any curve with γ (0) = p, and (f ◦ γ )′(0) := d(f ◦γ )(t)
dt

|0. For an example of
a gradient calculation that will be useful later, consider the following function:

f1 : SO(3) → R, p �→ 1

2
d2(p, q) (A3)

for some fixed q ∈ SO(3). For an arbitrary p ∈ SO(3), we consider the geodesic γpq(t) = p exp(tv),
where v = log(p−1q). It can be shown that

(f1 ◦ γ )(t) = 1

2
(1 − t)2d2(p, q)

and thus

(f1 ◦ γ )′(0) = −d2(p, q) = 1

2
Tr

(
v2

)
.

The corresponding tangent vector to γ (t) at p is given by ξp := γ ′(0) = pv. It follows from (A1) that

gp(grad f1(p), ξp) = 1

2
Tr

(
(grad f1(p))Tpv

)
.

Applying (A2) we have

grad f1(p) = −pv = −p log(p−1q) ∀p ∈ SO(3). (A4)

For a function f : SO(3) → R, the gradient at R ∈ SO(3) is given by23:

grad f (R) = fR − Rf T
R R, (A5)

where fR ∈ L(R3) is the linear operator whose matrix representation (using the canonical basis
vectors for R

3) is given by: (fR)ij = ∂f

∂Rij
, where Rij represents the (i, j )th entry of the 3 × 3 matrix

representation of R. Gradient calculation for a function f : R
3 → R is straightforward.

Apart from SO(3) and R
3, the other Riemannian manifold that is useful in this study is SE(3).

Instead of SE(3), however, we consider the equivalent manifold SO(3) × R
3. There exists a natural

way to define the Riemannian metric on this manifold, based on the Riemannian metrics in SO(3)
and R

3 so that we can deal with geodesics and gradients. This has to do with the fact that SO(3) × R
3

is a product manifold, which is the topic of the next section.

Appendix B: Product Manifold
Let

{
(Mi, g

(i))ni=1

}
be a set of n Riemannian manifolds. We define the product Riemannian manifold

(M, g) as follows:

M := M1 × · · · × Mn,

gp(ξ, ζ ) :=
n∑

i=1

g(i)
pi

(ξi, ζi)
(B1)

for all p = (p1, . . . , pn) ∈ M and all ξ = (ξ1, . . . , ξn), ζ = (ζ1, . . . , ζn) ∈ TpM . We first restrict
our considerations to product Riemannian manifolds of the form M = M1 × M2 (i.e. n = 2). The
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extension to any finite combination is straightforward. The following lemma will be useful in the
sequel. The proof of the lemma can be found in ref. [23].

Lemma 1. [23] Let M = M1 × M2 be a product Riemannian manifold as defined in (B1) and
consider a smooth function f : M → R. Then for any parameterized path γ = (γ1, γ2) : [0, 1] → M ,

d

dt
f (γ (t))|t0 = d

dt
f (γ1(t), γ2(t0))

∣∣
t0

+ d

dt
f (γ1(t0), γ2(t))

∣∣
t0
,

where t0 ∈ [0.1].

Theorem 1. Let M = M1 × M2 be a product Riemannian manifold as defined in (B1). Consider
a smooth function f : M → R and for all (p, q) ∈ M (p ∈ M1, q ∈ M2), define

f
q

1 : M1 → R, a �→ f (a, q),

f
p

2 : M2 → R, b �→ f (p, b).

Then for all (p, q) ∈ M

grad f (p, q) = (
grad f q

1 (p), grad f p
2 (q)

)
.

Proof. Fix (p, q) ∈ M and consider an arbitrary tangent vector ξ = (ξ1, ξ2) ∈ T(p,q)M . Choose a
parameterized path (γ1, γ2) = γ : [0, 1] → M such that ξ1 is tangent to γ1(t) at p = γ1(t0) and ξ2 is
tangent to γ2(t) at q = γ2(t0) (and thus ξ is tangent to γ (t) at (p, q) = γ (t0)). Using Lemma 1, we
have

(f ◦ γ )′(t0) = d

dt
(f q

1 ◦ γ1)|t0 + d

dt
(f p

2 ◦ γ2)|t0 .

From this relation and (A2), we find that

g(grad f (p, q), ξ ) = g(1)(grad f q
1 (p), ξ1) + g(2)(grad f p

2 (q), ξ2). (B2)

Let grad f (p, q) = (A, B) ∈ T(p,q)M for some unknown A ∈ TpM, B ∈ TqM . Using the definition of
g given in (B1), we can rewrite (B2) as

g(1)(A, ξ1) + g(2)(B, ξ2) = g(1)(grad f q
1 (p), ξ1) + g(2)(grad f p

2 (q), ξ2).

Since this equality holds for all ξ1 ∈ TpM and all ξ2 ∈ TqM , we have A = grad f q
1 (p), B = grad f p

2 (q),
which completes the proof. �

As the number of manifolds increases, the notation grad f q
1 (p) becomes more cumbersome. We

will therefore simplify the notation by writing grad f (p) (to mean grad f q
1 (p)) whenever the manifold

the gradient is found with respect to is clear from the choice of p and q.
The following corollary is a direct consequence of Theorem 1.

Corollary 1. Given a set of n Riemannian manifolds {(Mi, gi)}ni=1, if the product Riemannian
metric on the product manifold (M, g), where M = M1 × · · · × Mn, is defined as

gp(X, Y ) = g1(X1, Y1) + · · · + gn(Xn, Yn)

for p = (p1, . . . , pn) ∈ M and X = (X1, . . . , Xn), Y ∈ TpM = Tp1M1 × . . . Tpn
Mn, then

grad f (p) = (grad f (p1), . . . , grad f (pn)) .

We next consider what geodesics look like on the product manifold.
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Theorem 2. If M is a product Riemannian manifold as defined in (B1), then a geodesic between
p = (p1, p2) and q = (q1, q2) ∈ M can be obtained by the product of geodesics between p1 and q1,
and p2 and q2, on M1 and M2 respectively.

Proof. Let γpq, γp1q1, γp2q2 denote the geodesics on M , M1, and M2 respectively. By definition,
γpq =: (γ (1), γ (2)) is the path that minimizes

γpq = arg min
γ∈�pq

∫ 1

0
‖γ ′(t)‖2dt,

where �pq denotes the set of all paths on M from p to q, and for γ ∈ �pg , γ (t) denotes a
parameterization of path γ such that γ (0) = p and γ (1) = q. Using the definition of the inner-
product norm on the product manifold, we see that

γpq = arg min
(γ (1),γ (2))∈�pq

∫ 1

0
(‖γ (1)′(t)‖2 + ‖γ (2)′(t)‖2)dt

=
(

arg min
γ∈�p1q1

∫ 1

0
‖γ ′(t)‖2dt, arg min

γ∈�p2q2

∫ 1

0
‖γ ′(t)‖2dt

)

= (γp1q1, γp2q2 ).

�
That parallel transport on M is given by parallel transport on each individual Mi immediately

follows. Thus, proving (6).

Appendix C Proof of Theorem 1

Proof. The cost function (3) is a function from M to R, where M is the product manifold

M := (
SO(3) × R

3
)n

, where n := |V (k)|.

We define the Riemannian metric on this product manifold as follows. For p = (R1, t1, . . . , Rn, tn) ∈
M and X, Y ∈ TpM, where X ∈ TpM is expanded as (XR1, Xt1, . . . , XRn

, Xtn),

gp(X, Y ) :=
∑
i∈n

(
gRi

(XRi
, YRi

)+ < Xti , Yti >
)
.

This meets the conditions of Corollary 1 and so for p = (R1, t1, . . . , Rn, tn) ∈ M, we have

grad f (p) = (grad f (R1), grad f (t1), . . . , grad f (Rh), grad f (th)) .

All that remains is to determine grad f (Ru) and grad f (tu) for u = 1, . . . , n. Using linearity of the
gradient operator, we have

grad f (Ru) =
∑

e∈E(k)

grad ce(Ru), and grad f (tu) =
∑

e∈E(k)

grad ce(tu).

First define f2 := 1
2d2(RT

u Rv, R̂u v), f3 := 1
2‖t̂u v − RT

u (tv − tu)‖2, so that for e � e(u, v), ce = f2 +
f3. For h = u or h = v, we therefore have

grad ce(Rh) = grad f2(Rh) + grad f3(Rh), (C1)

grad ce(th) = 0 + grad f3(th). (C2)
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The Riemannian distance d(p, q) is bi-invariant, meaning that for arbitrary R, R̄ ∈ SO(3),
d(p, q) = d(RpR̄, RqR̄). Using bi-invariance, we obtain d2(RT

u Rv, R̂u v) = d2(Rv, RuR̂u v), which
implies grad f2(Rv) = grad f1(Rv|q), where f1 : SO(3) → R is given by (A3) and q = RuR̂u v .
Applying formula (A4), we obtain

grad f2(Rv) = −Rv log(RT
v RuR̂u v).

The expression for grad f2(Ru) is similarly obtained by thinking of f2 as a function of Ru and keeping
Rv, R̂u v fixed. These gradients are compactly represented as:

grad f2(Rh) =

⎧⎪⎪⎨
⎪⎪⎩

−Rh log
(

RT
h Rv R̂T

u v

)
if h = u

−Rh log
(

RT
h Ru R̂u v

)
if h = v

0 otherwise

.

The gradient of the function f3 : SO(3) → R (thinking of f3 only as a function of Ru while tu, tv,t̂u v

are fixed) can be obtained using (A5) with straightforward but tedious calculations; which turn out to
be grad f3(Ru) = −(tv − tu)t̂T

u v + Rut̂u v(tv − tu)TRu. The gradient of f3 : R
3 → R is simply ( ∂f3(x)

∂x
)T ,

which is

grad f3(th) =

⎧⎪⎨
⎪⎩

(
th + Rh t̂u v − tv

)
if h = u(

th − Ru t̂u v − tu
)

if h = v

0 o.w.

.

These formulae completely specify the gradient of the edge cost, grad ce(·) in (C1). The expressions
for grad f (Ru) and grad f (tu) for u = 1, . . . , n that are provided in the theorem are obtained simply
by adding the components of the gradients that are derived above. �

Appendix D: Gradient of the Cost Function (3) for Heterogeneous Measurements
As in the proof of Proposition 1, the gradient of function f in (3) at a point p = (R1, t1, . . . , Rn, tn) ∈(
SO(3) × R

3
)n

is given by

grad f (p) =
∑

e∈E(k)

grad ce(p) =: (grad f (R1), . . . , grad f (tn)), (D1)

where grad ge(p) is the gradient of the edge cost function for edge e = (u, n). Finding the gradient
of the cost function (3) then reduces to finding the gradients of the edge costs ce (specified in (4)) for
each edge e ∈ E(k).

It follows from Corollary 1 that the gradient of the cost function ce in (4) for the edge e = (u, v) ∈
E(k) is

grad ce(p) =
(

grad ce(R1), grad ce(t1), . . . , grad ce(Rn), grad ce(tn)
)
.
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For �(k)(e) = T (pose), the gradients have already been computed in the previous section, which can
be compactly represented as (e � (u, v))

grad ce(Rh) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2Rh

(
log(RT

h RvR̂T
u v)

+ RT
h (tv − tu)t̂Tu v − t̂u v(tv − tu)T Rh

)if h = u

−2Rh log(RT
h RuR̂u v) if h = v

0 o.w.

,

grad ce(th) = 2Iuv(h)(tu + Rut̂u v − tj),

where Iuv(h) = 1 if h = u, −1 if h = v, and 0 otherwise. If �(k)(e) = R (orientation) or �(k)(e) = t
(position), we have the following expressions for the gradient from the previous section. If �(k)(e) =
R,

grad ce(Rh) =

⎧⎪⎪⎨
⎪⎪⎩

−2Rh

(
log(RT

h RvR̂T
u v) if h = u

−2Rh

(
log(RT

h RuR̂u v) if h = v

0 otherwise

,

grad ce(th) = 0,

and if �(k)(e) = t, then

grad ce(Rh) =
{

−2Rh

(
RT

h (tv − tu)t̂Tu v − t̂u v(tv − tu)T Rh

)
if h = u

0 otherwise
,

grad ce(th) = 2Iuv(h)(tu + Rut̂u v − tv).

If �(k)(e) = τ (bearing) or �(k)(e) = δ (distance), the gradient grad ce(Rh) can be computed by using
formula (A5). The gradient grad ce(th) is obtained by differentiation. We obtain, for �(k)(e) = τ

(bearing)

grad ce(Rh) =
{

−2Rh

(
RT

h (tv − th)τ̂ T
u v‖tu − tv‖ − τ̂ u v‖tv − tu‖(tv − tu)T Rh

)
if h = u

0 otherwise
,

grad ce(th) = −4Iuv(h)[(tv − tu) − ‖tv − tu‖Ruτ̂ u v],

and if �(k)(e) = δ (dist),

grad ce(Rh) = 0,

grad ce(th) = −2Iuv(h)
(δ̂u v − ‖tv − tu‖)

‖tv − tu‖ (tv − tu).

The gradient grad f (p) can now be computed by using these formulas.
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