
Mathematical Structures in Computer Science (2019), 29, pp. 733–762
doi:10.1017/S0960129518000300

ARTICLE

Proof nets for multiplicative cyclic linear logic
and Lambek calculus
V. Michele Abrusci and Roberto Maieli∗,†

Department of Mathematics and Physics,“Roma Tre" University, Rome, Italy
∗Corresponding author. Email: maieli@uniroma3.it

(Received 1 December 2015; revised 1 September 2017; accepted 3 July 2017; first published online 22 February 2019)

Abstract
This paper presents a simple and intuitive syntax for proof nets of the multiplicative cyclic fragment
(McyLL) of linear logic (LL). The main technical achievement of this work is to propose a correctness
criterion that allows for sequentialization (recovering a proof from a proof net) for all McyLL proof nets,
including those containing cut links. This is achieved by adapting the idea of contractibility (originally
introduced by Danos to give a quadratic time procedure for proof nets correctness) to cyclic LL. This
paper also gives a characterization of McyLL proof nets for Lambek Calculus and thus a geometrical (i.e.,
non-inductive) way to parse phrases or sentences by means of Lambek proof nets.

Keywords: Categorial grammars; cyclic orders; Lambek calculus; language parsing; linear logic; noncommutative logic; proof
nets; sequent calculus

1. Introduction
Proof nets (PNs) are one of the most innovative inventions of linear logic (LL, Girard 1987): they
are used to represent demonstrations in a geometric (i.e., non-inductive)manner, abstracting away
from the technical bureaucracy of sequential proofs. PNs quotient classes of derivations are equiv-
alent up to some irrelevant permutations of inference rule instances. Following this spirit, we
present a simple syntax for PNs of the multiplicative cyclic fragment of LL (McyLL). In particular,
we introduce a new correctness criterion for McyLL PNs which can be considered as the noncom-
mutative counterpart of the famous contraction criterion by (Danos 1990) for PNs of LL. The
proposed syntax (i.e., the correctness criterion) is shown to be stable under (i.e., preserved by) cut
elimination.

This work marks an important improvement compared to previous works on the same subject
by the authors (see, e.g., Abrusci and Ruet 2000; Maieli 2003). The proposed new syntax admits a
sequentialization (i.e., a way to associate a sequent proof to each PN) for the full class of McyLL
PNs including those ones with cuts.

1.1 Themultiplicative cyclic fragment of linear logic (McyLL)
We briefly recall the necessary background of the McyLL fragment without units. We arbitrar-
ily assume literals a, a⊥, b, b⊥, ... with a polarity: positive (+) for atoms, a, b, ... and negative (−)

†This work contains new original contributions and improvements w.r.t. the contents of a previous paper (Abrusci and
Maieli, 2015a) on the same subject presented by the authors at the 22nd Workshop on Logic, Language, Information and
Computation (WoLLIC2015), held at the Indiana University (Bloomington, USA) from the 20th to the 23rd of July 2015.

© Cambridge University Press 2019

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300
mailto:maieli@uniroma3.it
https://doi.org/10.1017/S0960129518000300

734 V Michele Abrusci and R Maieli

a⊥, b⊥... for their duals. A formula is built from literals by means of two groups of multiplica-
tive connectives: negative, � (“par”) and positive, � (“tensor”). For these connectives, we have
the following De Morgan laws: (A� B)⊥ = B⊥�A⊥ and (A�B)⊥ = B⊥

�A⊥. An McyLL proof
is any derivation tree built by the following inference rules where sequents �,� are lists of
formulas occurrences endowed with a total cyclic order (or cyclic permutation) (see the formal
Definition 1):

id�A,A⊥ � �,A A⊥� cut� �,�
� �,A � B,�

�� �,A� B,�
� �,A, B �� �,A�B

It is worth noting that the formula (A� B)−◦(B�A)≡ (A� B)⊥�(B�A) is not provable in
McyLL: that is the reason why this logic is called “non-commutative.” Negative (or asynchronous)
connectives correspond to a kind of true determinism in the way we apply bottom-up their
inference rules (the application of �-rule is completely deterministic). Vice versa, positive (or
synchronous) connectives corresponds to a kind of true non-determinism in the way we apply
bottom-up their inference rules (there is no deterministic way to split the context �,� in the
�-rule).

A total cyclic order can be thought of as follows: consider a set of points of an oriented circle; the
orientation induces a total order on these points as follows: if a, b, and c are three distinct points,
then b is either between a and c (a< b< c) or between c and a (c< b< a). Moreover, a< b< c is
equivalent to b< c< a or c< a< b.

Definition 1 (total cyclic order). A total cyclic order is a pair (X, σ), where X is a set and σ is a
ternary relation over X satisfying the following properties:

1. ∀a, b, c ∈ X, σ (a, b, c)→ σ (b, c, a) (cyclic),
2. ∀a, b ∈ X,¬σ (a, a, b) (anti-reflexive),
3. ∀a, b, c, d ∈ X, σ (a, b, c)∧ σ (c, d, a)→ σ (b, c, d) (transitive),
4. ∀a, b, c ∈ X, σ (a, b, c)∨ σ (c, b, a) (total).

In the following, we adopt the syntax σ (X) to denote a total cyclic order on a set X.

1.2 The quest of satisfactory syntaxes for McyLL proof nets
Themost simple and intuitive definition ofMcyLL PNs is given byMoot and Retoré (2012): “proof
nets for the cyclic fragment of MLL are intuitively quite simple graphs (special kinds of MLL proof
nets) which can be drawn on a plane without intersecting axioms and keeping the same design
and top-down orientation for links. This condition is strictly stronger than being simply planar
graphs because we ask for the links to be drawn observing the left-right and up-down orientation
as shown in the figures.”

While there are a variety of nice (satisfying, indeed) syntaxes and correctness criteria for the
commutative PNs of MLL, this is not the case with PNs of the noncommutative, cyclic, fragment
of MLL. Actually, despite the commutative MLL case, the presence of cut links is “quite tricky”
in the noncommutative case, since cut links are not equivalent, from a topological point of view,
to tensor links: these latter make appear new conclusions that may disrupt the original (i.e., in
presence of cut links) conclusions cyclic order.

But, what is supposed to be in general a “satisfactory” correctness criterion for PNs? There is
not a so obvious answer. Let us say that a “good” correctness criterion should at least meet the
following conditions, according to Moot and Retoré (2012):

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 735

1 (de-sequentialization) every sequent proof should be mapped to a correct proof structure
in such a way that each instance of inference rule corresponds to a link; in particular,
each proof with cuts (resp. cut-free) should be mapped to a proof structure with the
corresponding cut links (resp., to a cut-free proof structure);

2 (sequentialization) every correct PN should correspond to a sequent proof in such a way
that each link corresponds to an instance of inference rule; in particular, each PN with
cuts (resp. cut-free) should be mapped to a sequent proof with the corresponding cut rule
instances (resp., to a cut-free sequent proof);

3 (canonicity) sequent proofs which only differ up to permutations of some inference rule
instances should be mapped to the same PN;

4 (stability) the correctness criterion should be preserved by cut elimination.

There currently exist several syntaxes for McyLL PNs, like notably those ones of (Abrusci and
Ruet, 2000), (Maieli, 2003) andMelliès (2004). As far as the authors know, only the Melliès’ syntax
fully satisfies the four conditions above while both Abrusci–Ruet and Maieli’s syntaxes only fully
satisfy conditions 1 and 4 while they only partially satisfy conditions 2 and 3 (only when PNs are
cut-free). We find interesting to recall and compare in the following the two previous syntaxes
(Abrusci and Ruet 2000) and (Maieli 2003), given by the authors, highlighting the points where
they mostly differ.

Definition 2 (concrete proof structure (PS)). A (concrete) proof-structure (PS) of McyLL is an
oriented graph π , in which edges are labeled by formulas and nodes are labeled by connectives
of McyLL , built by juxtaposing the following special graphs, called links, in which incident (resp.,
emergent) edges are called premises (resp., conclusions):

In a PS π each premise (resp., conclusion) of a link must be conclusion (resp., premise) of exactly
(resp., at most) one link of π . We call conclusion of π any emergent edge that is not premises of any
link.

We are interested in those McyLL PSs that correspond to McyLL proofs.

1.2.1 “Trip-based” criterion by Abrusci and Ruet
We recall some basic definitions of Abrusci–Ruet’s syntax (Abrusci and Ruet, 2000). We consider
as in (Girard 1987) formulas with decorations: ↑ (question) or ↓ (answer). A decorated formula
is of the form A↑ or A↓, where A is an McyLL formula. For each link l we consider two sets of
decorated formulas:

— lin is the set of all decorated formulas Ax, where A is a premise of l and x is ↓, or A is a
conclusion of l and x is ↑;

— lout is the set of all Ax, where A is a premise of l and x is ↑, or A is a conclusion of l and x
is ↓.

Definition 3 (switchings). For each link l we define a set S(l) of (partial) functions from lin to lout,
called switching positions of l, as follows (see also next picture):

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

736 V Michele Abrusci and R Maieli

— if l is an identity (or axiom) link A⊥ A, then S(l)= {id} where
id : (A⊥)↑ �→A↓,A↑ �→ (A⊥)↓;

— if l is a cut link A⊥ A, then S(l)= {cut} where
cut : (A⊥)↓ �→A↑,A↓ �→ (A⊥)↑;

— if l is a �-link A B
A�B , then S(l)= {�R} where

�R : (A� B)↑ �→A↑,A↓ �→ B↑, B↓ �→ (A� B)↓;
— if l is a �-link A B

A�B , then S(l)= {�R,�L,�3} where
�R : (A�B)↑ �→ B↑,A↓ �→A↑, B↓ �→ (A�B)↓,
�L : (A�B)↑ �→A↑,A↓ �→ (A�B)↓, B↓ �→ B↑,
�3 : (A�B)↑ �→A↑, B↓ �→ (A�B)↓.

A switching for a proof structure π is a function s s.t. for every link l of π , s(l) ∈ S(l). Given a proof
structure π and a switching s for π , the switched proof structure s(π) is the oriented graph with
the decorated formulas labeling π as vertices and with an oriented edge from Ax to By iff either
By = s(l)(Ax) for some link l ∈ π or Ax = C↓ and By = C↑ for some conclusion C of π . Then we
call trip any cycle or maximal path in s(π). A cycle v in s(π) is bilateral if v is not of the form
Ax, ..., By, ...,Ax̄, ..., Bȳ, ...,Ax where A and B are occurrences of formulas in π and ↑̄ =↓ (resp.,
↓̄ =↑).

Definition 4 (Abrusci–Ruet’s criterion). A PS π is AR-correct (i.e., it is anMcyLL PN by Abrusci
and Ruet, 2000) iff for every switching s for (π):

1 there exists exactly one cycle σ in s(π),
2 σ contains all the conclusions of π ,
3 σ is bilateral.

1.2.2 “Seaweed-based” criterion by Maieli
We recall some basic definitions of Maieli’s syntax for PNs as presented in (Maieli 2003).

Definition 5 (switchings & seaweeds). Assume an McyLL PS π with conclusions �.

— A Danos–Regnier switching (see Danos and Regnier, 1989) S for π , denoted S(π), is the non-
oriented graph built on nodes and edges of π with the modification that for each �-node we
take only one premise, which is called left or right �-switch.

— Let S(π) be an acyclic and connected switching for π ; S(π) is the rootless planar tree1 whose
nodes are labeled by �-nodes, and whose leaves X1, ..., Xn (with � ⊆ X1, ..., Xn) are the termi-
nal, i.e., pending, edges of S(π); then S(π) is a ternary relation, called seaweed, with support
X1, ..., Xn; we say that an ordered triple (Xi, Xj, Xk) belongs to the seaweed S(π) iff:
– the intersection of the three paths XiXj, XjXk and XkXi is a node �l;
– the three paths Xi�l, Xj�l and Xk�l are in this cyclic order while moving anticlockwise
around the �l-nod, like in the leftmost-hand-side picture of Figure 1:

If A is an edge of the seaweed S(π), then Si(π) ↓A is the restriction of the seaweed S(π), that
is, the sub-graph of S(π) is obtained as follows:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 737

Figure 1. Seaweeds and total cyclic orders.

1 disconnecting the graph below (w.r.t. the orientation of π) the edge A;
2 deleting the graph not containing A.

The restriction of a seaweed can easily be extended to consider a set of formulas.

Fact 1 (seaweeds as cyclic orders). Any seaweed S(π) can be viewed as a cyclic total order
(Definition 1) on its support X1, ..., Xn; in other words, if a triple (Xi, Xj, Xk) ∈ S(π), then Xi, Xj, Xk
are in this cyclic order Xi < Xj < Xk.

Naively, we may contract (“�”) any seaweed (by associating the �-nodes while preserving the
order of the incident edges) until we get a (collapsed) single n-ary �-node with n pending edges
(its support), like the rightmost h.s. seaweed of Figure 1.

Definition 6 (Maieli’s criterion). A PS π isM-correct (i.e., it is anMcyLL PN by Maieli, 2003) iff:

1 π is a standard MLL PN, that is, by (Danos and Regnier 1989), any switching S(π) is a
connected and acyclic graph (therefore, S(π) is a seaweed);

2 for any �-link A B
A�B the triple (A, B, C) must occur with this cyclic order A< B< C in any

seaweed S(π) restricted to A, B (i.e., (A, B, C) ∈ S(π) ↓(A,B)) for every conclusion C (if any) in
the support of S(π) ↓(A,B).

1.2.3 Comparing the two previous syntaxes
Abrusci–Ruet’s criterion and Maieli’s criterion are not equivalent; moreover, even though they
are both stable undercut reduction, they suffer of the same drawback: they do not allow a direct
sequentialization of PNs with cuts; this means that PNs must be normalized (reduced in cut-free
normal form) before sequentialialization, as shown by the following proof structures:

π1 is not correct according to Abrusci–Ruet; you can find a switching, like the s(π1) on the
right-hand-side picture, containing only two paths, the dotted and the dashed ones: neither
of them is a cycle.

On the contrary, π1 is correct according to Maieli even though it is not directly sequen-
tializable: this proof structure contains only two terminal links, the leftmost �-link and

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

738 V Michele Abrusci and R Maieli

the (unique) cut link; neither of these links is “splitting” (sequentializable); as soon as you
“remove” one of them, you get a sub-proof structure that is not correct. By the way, π1 can
be easily sequentialized once it has been reduced to cut-free form.

π2 is not correct according to Maieli (assume B=D= E= F = (A⊥
�A)): actually,

you can easily find a seaweed S(π2) ↓B,D, restricted to the premises of the B D
B�D -link, contain-

ing a “bad” triple (B, C,D) (follow the anticlockwise intersection of the dotted lines above);
on the contrary, π2 is correct according to Abrusci–Ruet even though it is not directly
sequentializable (it can only be sequentialized after cut elimination).

Anyway, as we will see in Section 2, these two proof structures, π1 and π2, are not recognized
as correct by our new correctness criterion2 (see Definition 9). Following the original Danos ter-
minology (Danos 1990), these proof structures are not contractible (i.e., they do not reduce to
a collapsed or elementary graph, made by a single node). The new contraction system �, for
cyclic (abstract) proof structures, is quite simple and natural; it mainly differs from the original
one �, for MLL (abstract) proof structures, by the following facts: (i) abstract proof structures are
enriched with special handling nodes, denoted by “◦,” to distinguish the conclusions of a proof
structure; (ii) for each node, the set of its incident edges is endowed with a total cyclic order
(following the anticlockwise orientation); (iii) contraction steps are performed obeying some
“natural” order constraints on the edges occurring in the redex graph. The stability of this new
syntax undercut elimination is then proved in Section 2.1 while the direct sequentialization3 of
the full class of correct PNs is shown in Section 2.2.

1.3 Lambek calculus and proof nets as parsing structures
McyLL can be considered as a classical extension of Lambek Calculus (LC; see Lambek 1958;
Abrusci, 2002; Moot and Retoré, 2012) one of the ancestors of LL. The LC represents the first
attempt of the so-called parsing as deduction, i.e., parsing of natural language by means of a logi-
cal system. Following (Andreoli and Pareschi 1991), in LC parsing is interpreted as type checking
in the form of theorem proving of Gentzen sequents. Types (i.e., propositional formulas) are asso-
ciated with words in the lexicon; when a string w1...wn is tested as a sentence, the types t1, ..., tn
associated with the words are retrieved from the lexicon and then parsing reduces to proving
the derivability of a one-sided sequent of the form � t⊥n , ..., t⊥1 , s, where s is the type associated
with sentences. Moreover, forcing constraints on the Exchange rule by allowing only cyclic per-
mutations over sequents of formulas gives the required computational control needed to view
theorem proving as parsing in Lambek Categorial Grammar style. Anyway, LC parsing presents
some syntactical ambiguity problems; actually, there may be:

1 non-canonical proofs, i.e., more than one cut-free proof for the same sequent;
2 lexical polymorphism, i.e., more than one type associated with a single word.

Now, multiplicative PNs are commonly considered an elegant solution to the first problem of
representing canonical proofs, since they allow to quotient classes of (cut-free) proofs that are

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 739

equivalent up to irrelevant permutation of inference rules; in this sense, in Section 3.1, we also
give an embedding of pure LC into McyLL PNs. In Section 3.2, we show how McyLL proof struc-
tures can be used to parse phrases or sentences; some linguistic examples that can be also found
in (Moot 2002).

Unfortunately, there is no an equally brilliant solution to the polymorphism problem men-
tioned above. However, we think that extending parsing by means of additive PNs (MALL; Girard,
1995; Hughes and van Glabbeek, 2003; Maieli, 2007) could be a step toward a proof-theoretical
solution to the problem of lexical polymorphism; technically speaking, the cyclic fragment of
MALL PNs allows to manage formulas (types) superposition (polymorphism) by means of the
additive connectives & and ⊕ (see Appendix A.4).

2. McyLL proof nets
Definition 7 (abstract structure (AS)). An abstract structure (AS) is a non-oriented graph π =
〈V , E〉, equipped with a set C(π) of pairs of coincident edges graphically denoted by a crossing arc
(with, possibly, “�” written above) close to the base. Edges are labeled by McyLL formulas. Nodes
are displayed as bullets (•) except the handling ones (conclusions) displayed as circles (◦); all edges
incident to a node are endowed with an total cyclic order displayed as an anticlockwise oriented
dotted arrow around a node. An abstract link is any elementary AS made by a single node together
with its incident (possibly paired) edges (premises). The size of an AS π (resp., of a PS) is given by
the triple 〈�V , �E, C(π)〉 (resp., by the pair 〈�V , �E〉).

We call abstract proof structure (APS) the AS πab obtained from a concrete PS π (Definition 2)
by means of the abstraction rules of Figure 2: each rule maps a concrete link L of a PS π to an
abstract link Lab (L �→ Lab) of πab; moreover, every edge of π labeled by a conclusion C is mapped in
πab to a special handling node, denoted by a circle ◦, with a single incident edge labeled by C, called
conclusion abstract link.

Definition 8 (Retraction system � for ASs). Given an AS π , a retraction step is a replacement
(also, deformation or rewriting) of a subgraph S (called, redex graph) of π with a new graph
S′ (called, reductum graph), leading to an AS π ′ according to one of the following rules (of the
retraction system �), preserving the anticlockwise orientation:

1 R1 (structural) with the conditions that the edge c does not occur in any pair in π and the two
displayed vertexes in the redex are distinct;

2 R2 (multiplicative) with the conditions that the two vertexes in the redex are distinct and
edges c and d does not occur in any pair except that one displayed in the redex; moreover, c
must occur in this anticlockwise cyclic order, c< d < a, together with every (if any) edge a
(with a �= c, d) incident to the vertex opposite to the base of the pair c, d (as displayed in the
figure);

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

740 V Michele Abrusci and R Maieli

Figure 2. Transforming concrete proof structures into abstract proof structures.

3 R3 (handling conclusions) with the conditions that every incident edges to the vertex • in the
redex belongs to a handling conclusion link (at least one, i.e., n≥ 1).

Definition 9 (�-correctness by retraction (�CC)). Assume an AS π , then π is said:

— one step contractible, if there exists an AS π ′ �= π s.t. π � π ′ by an instance of one of the
retraction rules of �, otherwise, π is said terminal;

— collapsed (or elementary), if it consists of a single node • (with no incident edges);
— (full) contractible, if there exists a non-empty sequence of retraction steps starting at π and

terminating with a collapsed AS (i.e., π �∗ •); we also say that π is quasi-collapsed when it
collapses only by means of finite sequences of structural or conclusions retraction rules, R1 and
R3 (in other words, no multiplicative instances).

A PS π is �-correct (�CC) so, it is a PN, when its corresponding APS, πab, is contractible (i.e., it
collapses). Equivalently, the end result of the retraction of a PN (i.e., the last collapsed reductum)
could be simply be one black node with any number of white nodes, instead of a single black node;
this means that the final retraction rule R3 could be considered redundant.

In the following we give below some instances, π1, π2, and π3, of �-correct proof structures
together with an instance π4 of an incorrect proof structure.

Observe that the reason why π2 is correct, but π4 is not, it is because the sub-proof π2 is cut against
contracts and disappears, so that the edges of the tensor node can be rotated to disentangle the
crossed axioms.

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 741

The retraction system � is a (noncommutative) refinement of the original (Danos’s 1990)
retraction system �; this latter contains only two retraction rules: the structural R1 and the
multiplicative R2, with the proviso that:

— abstract structures contain only standard nodes of type • (no handling nodes ◦);
— the anticlockwise order condition on the incident edges has been relaxed (both in the redex

and in the reductum).

Theorem 1 (convergence of �). If π is a contractible AS then every retraction strategy ends up
with the collapsed AS (•).
Proof. The convergence (termination and confluence) of � is proven exactly like in in the stan-
dard commutative case (Danos, 1990). Observe that, like in the MLL case, since π is contractible
then there are no pairs of instances of contraction rules that are critical4.

Observe that, in general, � is not confluent if we consider the full class of ASs including the
non-contractible ones. Consider the following AS π on the leftmost-hand side: π may retract, by
an instance of structural rules, either to π ′ or to π ′′; none of these latter is (one step) retractible;
moreover, given the different cyclic orders of resp, their incident edges,π ′ andπ ′′ diverge. Remind
that retraction is neither confluent in the general case of MLL non-retractible ASs as illustrated by
the rightmost-hand-side AS π◦.

Next fact is immediate once: (i) every handling node ◦ is replaced by a standard node • and (ii)
any instance of conclusions contraction rule R3 is mapped in to possibly multiple instances of the
structural rule R1.

Fact 2 (�-contraction (�CC) ⇒ �-contraction (�CC)). If π collapses by � then it also
collapses by �; so we say that π is also weakly (also, � or Danos) contractible.

Fact 3 (switching and seaweeds for APSs). The notions of switching and seaweed (resp., restric-
tion of a seaweed) of Definition 5 straightforwardly extended to the image APS πab of any PN π

(since the incident edges of each vertex in πab are naturally equipped with an anticlockwise strict
cyclic order and each pair in πab can be switched by mutilating one of its paired edges).

Definition 10 (cyclic order conclusions).We can derive the order on the conclusions of a PN from
its structure. Assume π is an McyLL PN with conclusions �; we call order of conclusions of π the
cyclic order σ on � (denoted by σ (�)) induced by an arbitrary seaweed5 S(π) restricted do � (i.e.,
S(π) ↓�).

2.1 Cut reduction
Definition 11 (cut reduction). Let L be a cut link in a PN π whose premises A and A⊥ are, resp.,
conclusions of links L′, L′′. Then we define the result π ′ (called reductum) of reducing this cut in π

(called redex), as follows:

Ax-cut: if L′ (resp., L′′) is an axiom link then π ′ is obtained by removing in π both formulas A
and A⊥ (as well as L) and giving to L′′ (resp., to L′) the other conclusion of L′ (resp., L′′) as new
conclusion.

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

742 V Michele Abrusci and R Maieli

(� /�)-cut: if L′ is a �-link with premises B and C and L′′ is a �-link with premises C⊥ and B⊥,
then π ′ is obtained by removing in π the formulas A and A⊥ as well as the cut link L with L′
and L′′ and by adding two new cut links with, resp., premises B, B⊥ and C, C⊥, as follows (this
is also called logical cut):

Theorem 2 (stability of correctness undercut reduction). If π is a PN that reduces to π ′ by one
step of cut reduction, π �→ π ′, then π ′ still a PN.
Proof. The case when π reduces to π ′ by an instance of axiom-cut reduction is trivial since
an axiom-cut reduction step corresponds to an instance of structural rule R1, πab �R1 π ′ab. So
assume that in π there are only logical cuts. πab is �-contractible and so, by Fact 2, π is also
�-contractible; therefore, by stability of� (Danos, 1990), also the reductumπ ′ab is�-contractible.
Assume by absurdum that πab is �-contractible while π ′ab is only weakly contractible (π ′ab is not
�-contractible). By convergence of �, π ′ab can be contracted following a strategy s that delays all
the structural instances of R1 contracting handling conclusion nodes ◦ (trivially, in� any instance
of structural rule R1 that contracts a handling conclusion node ◦ does not prevent the application
of any other contraction rule, so this latter can be performed before the former one). Now, observe
that each retraction step of this “delayed” strategy s can be mimicked (i.e., it can be performed as
well) in � except in the case when this step consists of an instance of multiplicative retraction R2
whose redex does not meet the (anticlockwise) cyclic order condition on the incident edges, as
follows:

This means that if we restore in π ′ab the just reduced logical cut, then by eventually exploit-
ing the convergence of � (i.e., by permuting some instances of retraction rule, if necessary, by
Theorem 1), πab will contain one of the two sub structures; this means that in both cases πab is
not �-contractible, contradicting the assumption:

Lemma 1 (stability of order conclusions undercut reduction). If π is a PN, with conclusions
σ (�), that reduces in one step of cut reduction to π ′, then π ′ has conclusions σ (�) too.

Proof. See (Maieli 2003).

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 743

Theorem 3 (convergence of cut reduction). Cut reduction is convergent (i.e., terminating and
confluent).

Proof. Easy, almost like in the standard MLL case (Danos, 1990).

Example 1. Below, the PN π2 reduces to a proof structure π ′
2 that is correct: we use indexed formulas

B1, B2, and B3 to distinguish several occurrences of B.

2.2 Sequentialization via splitting lemma
In this section, we show a correspondence, also known in the literature as sequentialization,
between McyLL PNs and sequential proofs. A first sequentialization result, only for cut free
noncommutative (McyLL) PNs, can be found in (Retoré 1996). Similarly to the standard (com-
mutative) MLL case, the crucial point of the sequentialization procedure is given by the Splitting
Lemma 5. Actually, as observed in Bagnol et al. (2015) in the MLL case, there exists an alternative
way (straightforward, indeed, that skips the Splitting Lemma) to sequentialize McyLL PNs, based
on the following “contraction as parsing” strategy: if an APS is contractible, then by convergence
of �, there exists a “contraction strategy” which starts by contracting the axioms links and whose
retraction steps can be interpreted as instances of inference rules of a (possibly open) sequential
proof; in the case of success, the retraction sequence ends up with a collapsed graph (as usual, a
•-node) labeled by a closed sequent proof (see details in the Appendix A.2).

In order to simplify the syntax and when it is clear from the context, we sometimes denote
simply π (resp., L) instead of πab (resp., Lab) the APS (resp., the abstract link) corresponding to a
concrete PSπ (resp., to a concrete link L). Moreover, since we are going to reason on abstract struc-
tures that are immediate abstraction of concrete proof structures, it will be natural to use notions
like “terminal links,” “splitting links” and “cut-reduction steps” directly defined on these APSs.

Definition 12 (terminal and splitting link). An abstract tensor (resp., axiom or par) link L is
terminal when its conclusion edge also belongs to a handling conclusion link ◦ (see next picture).
Given a contractible APS π , a terminal tensor link L is said splitting link (resp., weakly splitting)
when (i) we can delete its handling conclusion link labeled by C (ii) disconnect the premises, A and
B of L, and (iii) get still two contractible (resp., weakly contractible) APSs, πA and πB, as follows
(similarly, we define a splitting cut link):

We say that π is splitting (resp., weakly splitting) when it contains at least a terminal tensor link
or a cut link that is splitting (resp. weakly splitting). Finally, we say that π is in splitting condition
when (i) it is not reduced to an axiom link, (ii) it does not contain any terminal par link and (iii) it
contains at least a terminal tensor link or a cut-link.

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

744 V Michele Abrusci and R Maieli

Lemma 2 (APS splitting under weakly contraction). Let πab be the abstraction of a concrete PS
π ; assume πab is �-contractible and in splitting condition, then there exists at least one terminal
tensor link (or a cut link) Lab that is weakly splitting.

Proof. By Fact 2, πab is �-contractible; so by the well-known equivalence “Danos’s MLL correct-
ness ⇔ Girard’s MLL correctness” (see Danos, 1990) π is also a standard MLL PN by Girard, and
so by the MLL Splitting Lemma of (Girard 1987), we conclude that π is weakly splitting at a ter-
minal tensor link (or cut link) L in two components, π1 and π2 whose abstractions, πab

1 resp., πab
2 ,

are clearly weakly contractible.

Lemma 3 (splitting tensor link). If π is a contractible APS that is weakly splitting at a tensor
terminal link L A B

A�B , then π is also splitting at L, i.e., removing L splits π in two �-contractible
APSs, πA and πB.

Proof. Immediate.

Proposition 1 (terminal pair link). Let π be a �-contractible AS:

1 assume π contains a terminal pair link L then π ′, obtained by replacing L with two handling
◦-links, a1 and a2, like in Case 1, is still contractible;

2 assume π contains a terminal pair link L then π ′ obtained by replacing L with an elementary
•-link a1 and a handling ◦-link a2, like in Case 2, is still contractible;

3 assume π contains a link L with an incident pair and assume a�-contractible AS π ′ obtained
by replacing, in π , L with an elementary •-link and a handling link C′, like in Case 3; then
πo obtained by adding the handling link C′ to π is still contractible.

Proof. By induction of the size of π .

Proposition 2 (handling links). Assume π is a �-contractible AS consisting of two disjoint
components, π1 and π2, which are only connected through an edge e; then:

1 assume π1 does not contain any conclusion and π contracts by � to π ′∗ like in the middle
figure below, then πo

1 and π•
2 (on the rightmost-hand side) are both �-contractible:

2 assume π1contains at least a conclusion of π and assume π �-contracts to π ′∗ like in the
middle figure below, then πo

1 and πo
2 (on the rightmost h. s.) are both �-contractible.

Proof. By induction on the size of π1.
https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 745

Figure 3. (Weakly) splitting cut link.

Proposition 3 (weakly splitting cut link). Let π be a �-contractible APS that is only weakly
splitting and let L be cut link A A⊥ weakly splitting, like in Figure 3, then:

1 π is �-contractible by a sequence of retraction steps that contracts πA⊥ (resp., πA) to a
(quasi-)collapsed APS before starting with contracting πA (resp., πA⊥); moreover,

2 either πo
A⊥ is a�-contractible APS not containing any conclusion of π , where πo

A⊥ is obtained
by adding to πA⊥ the handling ◦-link, labeled by A⊥, like in Figure 3, and πo

A⊥ has A⊥ as
single conclusion;

3 or πo
A is a �-contractible APS not containing any conclusion of π , where πo

A is obtained
by adding to πA the handling ◦-link, labeled by A, like in Figure 3, and πo

A has A as single
conclusion.

Proof. Since π is contractible and weakly splitting, it is always possible, by convergence of �

(Theorem 1) to commute the order of the retraction steps in such a way that those ones involving
(i.e., whose redex belongs to)πA (resp.,πA⊥) are performed before (i.e., independently from) those
ones involving πA⊥ (resp., πA); this strategy can be pursued until the retraction has turned πA in
to an AS π∗

A that is (there are two cases for π∗
A):

1 either in quasi-collapsed form (see Definition 9),
2 or in non-retractible form (different from the quasi-collapsed one).

In Case 1, we trivially proved statement 1. Moreover, observe that in this case, the quasi-collapsed
π∗
A cannot contain any handling conclusion of π , otherwise by Proposition 2(1), both πo

A and πo
A⊥

will be �-contractible, contradicting the assumption that π is only weakly splitting at L. Thus, by
Proposition 2(1), πo

A with A as single conclusion is contractible (this proves statement 3). Case 2
(i.e., π∗

A is non-contractible but not quasi-collapsed) implies that π is retractible by means of a
retraction sequence that starts by contracting πA⊥ to a quasi-collapsed π∗

A⊥ , before starting with
contracting πA, like below:

Now observe that π∗
A⊥ cannot contain any handling conclusion link of π , otherwise, since π∗

A
is in a non-retractible terminal form (it is not quasi-collapsed), we will conclude that π is not
contractible, like illustrated below (a contradiction).

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

746 V Michele Abrusci and R Maieli

Thus, we proved statements 1 and 2 (this latter, by Proposition 2(1)). The remaining case, when
π contracts by a sequence starting with contracting πA⊥ to a (quasi-)collapsed π∗

A⊥ before
contracting πA, is symmetric to the previous one and so omitted.

Lemma 4 (splitting of�-contractible APSs). Let π be a�-contractible APS in splitting condition;
assume π is only weakly splitting (i.e., π only contains terminal tensor links or cut links that are only
weakly splitting), then there exists a splitting tensor link or a splitting cut link L.

Proof. Assume, by absurdum, there exists such an APS π that it is only weakly splitting. By
Lemma 3, π cannot contain any terminal tensor link that is only weakly splitting. Therefore, let π
be a minimal APS (w.r.t. the size) containing only weakly splitting cut links and let L be a weakly
splitting cut link like in Figure 3.

By Proposition 3, either πo
A⊥ (case 2) or πo

A (case 3) must be �-contractible with a single con-
clusion A⊥, resp., A. Assume πo

A⊥ is � contractible (case 2), therefore πo
A must be only weakly

retractible. We reason on link L1 of πA.

1 If L1 is not (weakly) splitting, then we can reduce the cut link L of π and get a PN π ′ (by
Theorem 2) with two reduced cut links, L′ and L′′: since neither of these new cuts is weakly
splitting and since all the other cut links (as well as the terminal tensor links) of π ′ remain
not splitting, we found an APS π ′, strictly smaller than π , that is not splitting, contracting
the assumption of minimality of π .

2 Otherwise, assume L1 is weakly splitting, like in the next left-hand-side picture; then, as
before, we can reduce the cut link L and get (by Theorem 2) an APS π ′ with two reduced
cut links, L′ and L′′ like in the r.h.s. picture below:

Now observe that, in the reductum π ′ neither L′ nor L′′ is splitting; otherwise:
(a) assume that L′′ is splitting, then after splitting π ′ we get two separated components like

in the leftmost-hand-side case below:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 747

now, by assumption πo
A⊥ is contractible, then by Proposition 1 (Case 2), also π ′

A⊥
(enclosed in the dotted line above) will be so; this means that, both π1

A and π2
A are con-

tractible (with abuse of notation “(•, •)” in the figure above), and so also πo
A (Figure 3)

is contractible contradicting the assumption L is only weakly splitting;
(b) assume that L′ is splitting, then splitting π ′ produces two separated components like

below; so, we get a contradiction by a similar argument to the case (2a).

Now observe that, in π ′:

(i) none terminal tensor link is (weakly) splitting; otherwise, assume by absurdum there
exists a terminal tensor link Ls that is weakly splitting in π ′; now, since cut-reduction did
not introduce new ones, all terminal tensor links in π ′ were already occurring in π ; more-
over, by Proposition 3(2), πo

A⊥ does not contain any terminal link, except L2; thus Ls must
occur in πA; this means (simply, by reasoning on MLL APSs) that Ls was already weakly
splitting in π , contradicting the assumption that (by minimality) π was not containing
weakly splitting terminal tensor links;

(ii) none cut link is splitting; in particular, by 2a and 2b, L′ and L′′ are both not splitting; the
remaining cut links in π ′ are not splitting for similar reasons seen in the previous case (i).

Therefore, we have found a non-splitting π ′, strictly smaller than π , contradicting the
assumption that π was a minimal non-splitting APS.
In the other case, when by Proposition 3(3), πo

A is � contractible with A as single conclu-
sion, we proceed like before except for the fact that, in order to get a contradiction in the
analogous of the subcase 2a, we reason as follows:

— since by assumption π and πo
A are both contractible, we deduce that the AS (enclosed

in a dotted line) on left-hand side of next picture is �-contractible, where π∗
A denotes

the collapsed form of πA; obviously, if πo
A is contractible then also πA (without its single

handling node) is contractible (it contracts exactly to π∗
A);

— since by assumption L′′ is splitting, then after splitting π ′ we get two separated
�-contractible components, like those ones in the middle side below;

— this means that, by Case 3 of Proposition 1 (applied to the ASs below enclosed in
dotted rectangle frames, after a structural step), πo

A⊥ is contractible, contradicting the
assumption the L in π is not splitting.

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

748 V Michele Abrusci and R Maieli

Lemma 5 (McyLL PN splitting). Let π be an McyLL PN in splitting condition (π is not reduced
to an axiom link, it contains at least a �-link (resp., a cut-link) and it does not contain any
�-conclusion), then there must exist a �-link A B

A�B (resp., a cut-link A A⊥) that splits π in two
McyLL PNs, πA and πB (resp., πA and πA⊥).

Proof. If π is anMcyLL PN in splitting condition, then by Lemma 4, its abstraction πab is splitting.
Assume πab splits at the abstract terminal tensor link Lab : A B

A�B in two contractible πab
A and πab

B ;
clearly removing L in π produces two correct PNs πA and πB. The case when πab is splitting at a
cut link is similar.

Lemma 6 (conclusions order of a PN). Let π be an McyLL PN with conclusions �, then all
seaweeds Si(π) ↓� , restricted to �, induce the same cyclic order σ on � (σ (�)).

Proof. By induction on the size of π . If π is reduced to an axiom link, then obvious, otherwise we
reason as follows:

1 If π contains at least a conclusion A�B, then � = �′,A�B; by hypothesis of induction the
sub-PN π ′ with conclusion �′,A, B has cyclic order σ (�′,A, B), and so, by condition 2 of
Definition 6 applied to π , we know that each restricted seaweed Si(π) ↓(�′,A,B) induces
the same cyclic order σ (�′,A, B); finally, by substituting [A/A�B] (resp., [B/A�B]) in
the restriction Si(π) ↓(�′,A) (resp., Si(π) ↓(�′,B)), we get that each seaweed Si(π) ↓(�′,A�B)

induces the same cyclic order σ (�′,A�B).
2 Otherwise π must contain a terminal splitting �-link or cut-link. Assume π contains a
splitting �-link, A B

A�B , and assume by absurdum that π is such a minimal (w.r.t. the size)
PN with at least two seaweeds Si(π) and Sj(π) s.t. (X, Y , Z) ∈ Si(π) and (X, Y , Z) �∈ Sj(π).
We follow two subcases:
(a) It cannot be the case X = B, Y =A and Z = C otherwise, by definition of seaweeds,

Si(π) and Sj(π) will appear as follows:

Si(π) ↓(�1,A�B,�2)= Si(πA) ↓(�1,A) �Si(πB) ↓(B,�2), Sj(π) ↓(�1,A�B,�2)= Sj(πA) ↓(�1,A) �Sj(πB) ↓(B,�2)

Now, by hypothesis of induction, all seaweeds on πA (resp., all seaweeds on πB) induce
the same order on �1,A (resp., �2, B), then in particular,

Si(πA) ↓(�1,A)= Sj(πA) ↓(�1,A) and Si(πB) ↓(B,�2)= Sj(πB) ↓(B,�2)

but this implies Si(π) ↓(�1,A�B,�2)= Sj(π) ↓(�1,A�B,�2).
(b) Assume both X and Y belong to πA (resp., πB) and Z belongs to πB (resp.,

πA); moreover, assume for some i, j, (X, Y , Z) ∈ Si(π) ↓(�1,A�B,�2) and (X, Y , Z) �∈
Sj(π) ↓(�1,A�B,�2); by Splitting Lemma 5, each seaweeds for π , Si(π) and Sj(π), must
appear as follows:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 749

so, by restriction, (X, Y ,A) ∈ Si(πA) ↓�1,A and (X, Y ,A) �∈ Sj(πA) ↓�1,A, contradicting
the assumption (by minimality) that πA is a correct PN with a cyclic order on its
conclusions �′

1, X, Y ,A= �1,A.

The remaining case, when π contains a splitting cut, is similar and so omitted.

Lemma 7 (contractible pair). If π is a contractible APS, then there does not exist a pair (A, B) (an
abstract link A�B) in π and a seaweed S(π) s.t. the three paths AC, BC and AB intersect in a •-node
with the anticlockwise order, for a conclusion C, as follows:

Proof. By induction of the size of π .

Fact 4 (seaweed splitting). Assume π is a PN in splitting condition with order conclusions
σ (�)= �1 <A� B< �2; assume π splits at a tensor (resp., cut) link L: A B

A�B (resp., L:A A⊥
), then,

after splitting, the PN πA has order conclusions σ (�) ↓�1,A= �1 <A and the PN πB (resp., πA⊥)
has order conclusions σ (�) ↓�2,B= �2 < B (resp., σ (�) ↓�2,A⊥= �2 <A⊥).

Proof. By Definition 10 of order conclusions σ (�) of a PN and by Lemma 6, each seaweed
Si(π) ↓� is given by the composition Si(π) ↓�1<A� B< Si(π) ↓�2 like below:

then, by restriction and substitution, each seaweed for πA (resp., for πB) will be given by
Si(πA) ↓�1,A (resp., Si(πB) ↓�2,B), that is, the order conclusions of πA (resp., πB) will be σ ↓�1,A=
�1 <A (resp., σ ↓�2,B= �2 < B).

Theorem 4 ((de-)sequentialization). If π is an McyLL PN with conclusion σ (�) then it sequen-
tializes into a sequent proof with same conclusion σ (�) and vice versa.

Proof. The sequentialization part is proved by induction on the size of a PN π with conclusions
order σ (�). The case when π is reduced to an axiom link is immediate, otherwise we reason as
follows.

1 Assume π contains a terminal�-link L: A B
A�B , so π has conclusions σ (�)= �′ <A�B, then

we can remove L and consider the proof structure π ′ with conclusions �′,A, B which is
correct since its abstract image π ′ab is contractible by Proposition 1 (case 1) and therefore
it is sequentializable into a proof of � σ ′(�′,A, B). It remains to show that σ ′(�′,A, B)=
�′ <A< B= σ (�)[A�B/A< B]= �′ <A�B. Assume there exists a conclusion C in S(π ′)
s.t. (A< B< C) �∈ S(π ′), like in the next picture

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

750 V Michele Abrusci and R Maieli

that is absurdum, by Lemma 7. Therefore, π sequentializes as follows:

�′
� �′ <A< B= σ ′(�′,A, B)
� �′ <A�B= σ (�′ <A�B)

2 Otherwise, π must be splitting at some link L, by splitting Lemma 5. Assume L is a terminal
splitting �-link L: A B

A�B and π has conclusions σ (�)= �′ <A� B; then by hypothesis of
induction on the size of π , π1

�1,A and π2
�2,B are correct PNs that sequentialize into a proof of

σ ′
1(�1,A)= �1 <A, resp., σ ′

2(�2, B)= �2 < B, fromwhich we can conclude, by Fact 4, with
the following sequentialization of π , where σ (�)= �1 <A� B< �2 with �′ = �2 < �1:

�1
� �1 <A

�2
� �2 < B

�� �1 <A� B< �2

The case when π is splitting at a cut link is similar and so omitted.

Finally, the adequacy-part (the fact the PN syntax is adequate to represent sequent proofs) is
proved by induction on the height of the given sequent proof.

3. Lambek Calculus and McyLL PNs as parsing structures
3.1 Proof nets for Lambek calculus
In this section, we characterize those McyLL PNs that correspond to Lambek proofs. The first
(sound) notion of Lambek cut-free PN, without sequentialization, was given in (Roorda 1992);
see also (Retoré 1996) and (Moot and Retoré 2012) for an original discussion on the embedding
of LC into PNs.

Definition 13 ((pure-)Lambek formulas and sequents of McyLL). Assume A and S are,
respectively, a formula and a sequent of McyLL .

1 A is a (pure) Lambek formula (pLF) if it is an McyLL formula recursively built according to
this grammar: A := positive atoms |A�A |A⊥�A |A�A⊥.

2 S is a Lambek sequent of McyLL iff S = (�)⊥,A where A is a non-void pLF and (�)⊥ is
a possibly empty finite sequence of negations of pLFs (i.e., (�)⊥ is obtained by taking the
negation of each pLF in �).

3 A (pure) Lambek proof is any derivation built by means of the McyLL inference rules in
which premise(s) and the conclusions are Lambek sequents.

Definition 14 (Lambek McyLL PN).We call Lambek McyLL PN any McyLL PN whose edges are
labeled by pure LFs or negation of pure LFs and whose conclusions form a Lambek sequent.

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 751

Corollary 1. Any Lambek McyLL PN π is stable undercut reduction, i.e., if π reduces in one step to
π ′, then π ′ is a Lambek McyLL PN too.

Proof. Consequence of Theorem 2. Any reduction step preserves the property that each edge
(resp., the conclusion) of the reductum is labeled by a Lambek formula or by a negation of a
Lambek formula (resp., by a Lambek sequent).

Theorem 5 (adequacy of Lambek PNs). Any Lambek proof of a sequent � σ (�⊥,A) can be de-
sequentialized in to a Lambek PN with same order conclusions σ (�⊥,A).
Proof. By induction on the height of the given sequent proof.

Theorem 6 (sequentialization of Lambek PNs). Any Lambek McyLL PN of σ (�⊥,A) sequential-
izes into a Lambek McyLL proof of the sequent � σ (�⊥,A).
Proof. Assume by absurdum there exists a pure Lambek McyLL PN π that does not sequential-
ize into a Lambek McyLL proof. We can chose π minimal w.r.t. the size. Clearly, π cannot be
reduced to an axiom link; moreover, π contains neither a negative conclusion of type A⊥�B⊥
nor a positive conclusion of type A⊥�B (resp., A�B⊥); otherwise, we could remove this terminal
�-link and get a strictly smaller (than π) PN π ′ that is sequentializable, by minimality of π ; this
implies that also π is sequentializable (last inference rule of the sequent proof will be an instance
of �-rule) contradicting the assumption. For same reasons (minimality), the unique positive con-
clusion (e.g., A� B) of π cannot be splitting. Therefore, since π is not an axiom link A⊥ A , by
Lemmas 5 and 6, there must exist either a (negative) splitting�-link (Case 1) or a splitting cut-link
(Case 2).

Case 1. Assume a negative splitting conclusion A⊥
� B (resp., A� B⊥). By minimality, π must

split like in the next left-hand-side picture (we useA+, resp.A−, to denote positive, resp., negative,
LF and �− for sequence of negative LFs):

Γ Γ Γ Γ Γ

Now, let us reason on π1 (reasoning on π2 is symmetric): by minimality of π , π1 cannot be
reduced to an axiom link (otherwise �−

1 would not be negative); moreover, none of �−
1 is a

(negative) splitting link, like, e.g., C �D⊥, otherwise we could easily restrict to consider the
sub-PN π ′, obtained by erasing from π the sub-PN π ′′

1 (with conclusions �
′′−
1 , C) together with

the C⊥
�D-link, like the graph enclosed in the dashed line above. Clearly, π ′ would be a non-

sequentializable Lambek PN strictly smaller than π . In addition, π1 must be cut-free, otherwise
by minimality, after a cut-step reduction we could easily build a non-sequentializable reductum
PN π ′, strictly smaller than π , (π ′ will have same conclusions of π). Therefore, there are only two
subcases:

1 either A⊥ = C⊥�D⊥, then from the PN π on the l.h.s. of the next figure, we can easily get
the non-sequentializable PN π ′ (on the r.h.s.); π ′ is strictly smaller than π , contradicting
the minimality assumption:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

752 V Michele Abrusci and R Maieli

2 or A⊥ = C⊥
�D, then this C⊥

�D-link must split by Lemma 5, since π1 is a cut-free
PN in splitting condition without other �-splitting conclusion in �−

1 ; so from π on the
l.h.s., we can easily get the non-sequentializable PN π ′ on r.h.s.; π ′ is strictly smaller of π ,
contradicting the minimality assumption:

Case 2. Assume π contains a splitting cut link, like the leftmost-hand-side picture below, then we
proceed like in Case 1. We reason on π1 with two subcases:

1 either A⊥ = C⊥�D⊥, then we can easily get, starting from the PN π on the middle side
below, a non-sequentializable PN π ′, like the rightmost-hand-side picture; π ′is strictly
smaller than π , contradicting the minimality assumption:

2 or A⊥ = C⊥
�D, then this A⊥-link must be splitting by Lemma 5, since π1 is a cut-free PN

in splitting condition without any other �-splitting conclusion in �−
1 ; so, we can easily get,

starting from the PN π on the l.h.s., a non-sequentializable PN π ′ that is strictly smaller
than π (on the r.h.s.), contradicting the minimality assumption.

3.2 McyLL PNs as parsing structures
In this section, we reformulate, in our syntax, some examples of linguistic parsing (some of them
suggested by RichardMoot in his PhD thesis; Moot, 2002).We use s, np, and n as the types express-
ing, respectively, a sentence, a noun phrase and a common noun. According to the “parsing as

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 753

deduction style,” when a string w1...wn is tested for grammaticality, the types t1, ..., tn associated
with the words are retrieved from the lexicon and then parsing reduces to proving the derivability
of a two-sided sequent of the form t1, ..., tn � s. Remind that proving a two-sided Lambek deriva-
tion t1, ..., tn � s is equivalent to prove the one-sided sequent � t⊥n , ...t⊥1 , s where t⊥i is the dual (i.e.,
linear negation) of type ti. Any phrase or sentence should be read like in a mirror (with opposite
direction).

Assume the following lexicon, where linear implication −◦ (resp., ◦−) is traditionally used for
expressing types in two-sided sequent parsing:

1 Sollozzo, Vito = np;
2 trusts = np−◦(s◦−np) ≡ np⊥�(s�np⊥)

= (np−◦s)◦−np ≡ (np⊥�s)�np⊥;
3 him = (s◦−np)−◦s ≡ (s�np⊥)⊥�s ≡ (np� s⊥)�s;

Cases of lexical ambiguity follow to words with several possible formulas A and B assigned
it. For example, a verb like to believe can express a relation between two persons, np’s in
our interpretation, or between a person and a statement, interpreted as s, as in the following
examples:

(1) Sollozzo believes Vito. (2) Sollozzo believes Vito trusts him.

We can express this verb ambiguity by two lexical assignments as follows:
4 believes = (np−◦s)◦−np ≡ (np⊥�s)�np⊥;
5 believes = (np−◦s)◦−s (np⊥�s)�s⊥.

In order to parse sentence (1), Sollozzo believes Vito, we may proceed in two ways:

— via the sequent calculus, building (bottom-up) a derivation tree in the sequent calculus:
— or via proof structure, by matching pairs of dual literals (i.e., linking) occurring in the top

border of the syntactical trees of the types assigned to the lexical items, including the extra
type for sentence s. Actually, there are two ways of linking dual pairs of literals (np, np⊥),
both of them leading to correct PNs:
– the one in the middle side, with cyclic order conclusions “s<Vito< believes< Sollozzo,”
which sequentializes into the l.h.s. sequent proof, parsing of sentence 3.2;

– the one in the rightmost-hand side, with cyclic order conclusions s< Sollozzo<

believes<Vito, corresponding to the parsing of sentence Vito believes Sollozzo.

Remind that, since we only consider one-side Lambek sequent proofs (PNs), phrases or sentences
should be read “like in a mirror” (following the dashed arrow below the conclusions), i.e., by
inverting the “anticlockwise orientation” of the cyclic order conclusions.

Similarly, the parsing of sentence (2), Sollozzo believes Vito trusts him can be interpreted either
by deriving (bottom-up) a Lambek proof or by constructing, like below, a (bottom-up) a Lambek
PN (given together with its corresponding contractible APS):

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

754 V Michele Abrusci and R Maieli

Further examples can be found in Appendix A.3.

4. Conclusions and further works
In this paper, we presented a correctness criterion for cyclic pure multiplicative (McyLL) PNs
satisfying a sequentialization for the full class of PNs, including those ones with cut links. As
shown in Abrusci and Maieli (2015b), the contraction criterion can be extended to consider the
multiplicative and additive cyclic fragment of linear logic (MAcyLL), thereby allowing to parse
superposition of phrases with lexical ambiguity (finite polymorphism). Intuitively it is enough to
add an additive “box-like” contraction rule to the � system, with the proviso that the syntax of
(abstract) proof structure has been enriched with links for the additive connectives & (with) and
⊕ (plus) together with extra (possibly n-ary) links for contraction (see Appendix A.4).

Retraction systems represent a useful computational tool for:

— proof search, since we can chose special retraction strategies, e.g., parsing, that are “optimal”
w.r.t., e.g., complexity of search space, backtracking, etc. (see Maieli, 2014);

— classifying the complexity class of correctness criteria; concerning the pure multiplicative
fragment of LL, at this moment we know that deciding:
– the correctness of an MLL proof structure is linear in the size of the input proof structure
(Guerrini, 2011) and NL-complete (de Naurois and Mogbil, 2007);

– correctness of McyLL proof structures, restricted to those ones that only allow a cut-free
sequentialization (e.g., Maieli, 2003), is quadratic in the size of the input proof structure
(Mogbil, 2001).

As future work we aim at classifying the complexity class of the proposed new correctness
criterion.

Notes
1 In any switching we can consider as a simple edge every axiom, cut and �-link that remains after the mutilation of one of
the two premises.
2 Indeed, π1 and π2 are neither correct according to Melliès’ criterion. Comparison with Melliès’s condition is out of the
scope of this work as it needs the introduction of some topological notions requiring more space than the one allowed here.
By the way, we briefly recall the criterion in the Appendix A.1 and we postpone to a future work the precise correspondence
between topological condition and retraction.
3 In Appendix A.2, we also discuss an alternative sequentialization procedure based on the parsing of abstract paired graphs
labeled by possibly “open” sequent proofs.
4 A pair of retraction rule instances, Ri and Rj, is called critical pair when the application of Ri prevents the application of Rj
and the application of Rj prevents the application of Ri.
5 We will see that, by Lemma 6, in a proof net π with conclusion �, the order of conclusion σ (�) as defined in Definition 10
is independent indeed from the choice of the seaweed S(π).

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 755

References
Abrusci, V. M. (2002). Classical conservative extensions of Lambek calculus. Studia Logica 71 (3) 277–314 .
Abrusci, V. M. and Maieli, R. (2015a). Cyclic multiplicative proof nets of linear logic with an application to language parsing.

In: Proceedings of the Conference WoLLIC 2015, LNCS, vol. 9160, Bloomington, USA, 53–68.
Abrusci, V. M. and Maieli, R. (2015b). Cyclic multiplicative and additive proof nets of linear logic with an application to

language parsing. In: Proceedings of the Conference FG 2015, LNCS, vol. 9804, Barcelona, Springer, Heidelberg, 43–59.
Abrusci, V. M. and Ruet, P. (2000). Noncommutative logic I: the multiplicative fragment. Annals of Pure and Applied Logic

101 (1) 29–64.
Andreoli, J.-M. and Pareschi, R. (1991). From Lambek Calculus to word-based parsing. In: Proceedings of Workshop on

Substructural Logic and Categorial Grammar, CIS Munchen, Germany.
Bagnol, M., Doumane, A. and Saurin, A. (2015). On the dependencies of logical rules. In: Proceedings of the 18th International

Conference, FoSSaCS 2015, London, UK, 436–450.
Danos, V. and Regnier, L. (1989). The structure of multiplicatives. AML 28 181–203.
Danos, V. (1990). La Logique Linéaire appliquée à l’étude de divers processus de normalisation (principalment du λ-calcul).

Phd Thesis, Univ. Paris VII.
de Naurois, P.J. and Mogbil, V. (2007). Correctness of multiplicative (and exponential) proof structures is NL-complete. In:

Proceedings of CSL 2007, LNCS, vol. 4646, 435–450.
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50 1–102.
Girard, J.-Y. (1995). Proof nets: the parallel syntax for proof theory. In: Ursini, Agliano (eds.) Logic and Algebra, New York,

M. Dekker.
Guerrini, S. (2011). A linear algorithm for MLL proof net correctness and sequentialization. Theoretical Computer Science

412 (20) 1958–1978.
Hughes, D. and van Glabbeek, R. (2003). Proof nets for unit-free multiplicative-additive linear logic. In: Proceedings of the

18th IEEE Logic in Computer Science, Los Alamitos.
Lambek, J. (1958). The mathematics of sentence structure. The American Mathematical Monthly 65 (3) 154–170.
Maieli, R. (2003). A new correctness criterion for multiplicative non-commutative proof-nets. In: Archive for Mathematical

Logic, vol. 42, Berlin Heidelberg, Springer-Verlag, 205–220.
Maieli, R. (2007). Retractile proof nets of the purely multiplicative and additive fragment of linear logic. In: Proceedings of

the 14th International Conference LPAR, LNAI, vol. 4790, Berlin Heidelberg, Springer-Verlag, 363–377.
Maieli, R. (2014). Construction of retractile proof structures. In: Dowek, G. (ed.) Proceedings of the International Joint

Conference RTA-TLCA, Vienna, LNCS, vol. 8560, Switzerland, Springer International Publishing, 319–333.
Melliès, P.-A. (2004). A topological correctness criterion for multiplicative non-commutative logic. In: Ehrhard, T., Girard,

J.-Y., Ruet, P. and Scott, P. (eds.) Linear Logic in Computer Science, London Mathematical Society Lecture Note, vol. 316,
chapter 8, UK, Cambridge University Press, 283–321.

Mogbil, V. (2001). Quadratic correctness criterion for noncommutative logic. In: Proceedings of CSL 2001, Paris, France,
LNCS, vol. 2142, Berlin Heidelberg, Springer-Verlag, 69–83.

Moot, R. and Retoré, Ch. (2012). The Logic of Categorial Grammars: A Deductive Account of Natural Language Syntax and
Semantics, LNCS, vol. 6850, Berlin Heidelberg, Springer-Verlag.

Moot, R. (2002). Proof Nets for Linguistic Analysis. Phd thesis, Utrecht University.
Retoré, C. (1996). Calcul de Lambek et logique linéaire. Traitement Automatique des Langues 37 (2) 39–70.
Roorda, D. (1992). Proof nets for Lambek calculus. Journal of Logic and Computation 2 (2) 21–233.

Appendix A
A.1 Melliès’ topological criterion
Definitions and examples of this section can be founded in Melliès (2004).

Definition 15 (Melliès’ correctness criterion). An McyLL (concrete) proof-structure π

(Definition 2) is a PN iff:

1 its commutative translation π∗ is an MLL PN;
2 its surface ribbon(π) is planar with a unique external border σ ;
3 σ contains all the conclusions of π .

The commutative translation π∗ of an McyLL proof-structure π is the MLL proof-structure
obtained as the result of replacing every � and � link by ⊗ and �, respectively, where according

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

756 V Michele Abrusci and R Maieli

Figure A.1. Examples of surface ribbons of proof structures.

to Melliès’ syntax “�” denotes the non-commutative tensor (denoted in the rest of the paper by
the usual “�”).

The second part of the criterion requires “planarity” of π , or more precisely planarity of the
(orientable) surface ribbon(π) obtained by replacing every {�,�, axiom, cut}-link and conclusion
C in π by the associated ribbon diagram as follows:

The criterion rejects the proof structure π of conclusion � (B�A)−◦(A� B) because ribbon(π)
in leftmost-hand side of Figure A.1 it is not planar. The crucial point is that planarity of ribbon(π)
is not sufficient to characterize McyLL proofs among McyLL proof-structures. Typically, the
McyLL proof-structure π of conclusion � (A⊥�B⊥), (A� B), in the middle side ribbon of
Figure A.1 is not sequentializable in McyLL, but its surface ribbon(π) is planar. One possible solu-
tion is to require that all conclusions of π lie on the same border of ribbon(π). Unfortunately, this
criterion would be too weak to characterize proofs with cuts, as witnessed by the example of a non-
sequentializable McyLL proof-structure, with a unique conclusion in the rightmost-hand side of
Figure A.1. These (counter-)examples suggest to reinforce conditions 1 and 2 of Definition 15
by adding extra information (condition 3) concerning the �-link occurring in the border of
ribbon(π). More precisely, given an McyLL proof structure π and a border σ of ribbon(π),
we shall count the number of �-links visited by the border σ on their “thick side” displayed
below:

We call this number the index of σ . A border of index 0 is called external and a border of index
more than 1 is called internal. So, the criterion of Definition 15 rejects the two proof-structures
on the right-hand side of Figure A.1 because one of their conclusions lies on an internal bor-
der. For similar reasons, proof structures π1 and π2 of Section 1.2.3 are non-correct according to
Definition 15.

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 757

A.2 Sequentialization as parsing
In spite of other syntaxes based on correction graphs (set of tests) like “switchings” or “trips,”
retraction gives a direct (simpler, indeed) sequentialization procedure of correct PNs without pass-
ing through a Splitting Lemma. The genuine idea (Bagnol et al., 2015) is that each retraction step
represents itself an inference of a possibly open sequent proof. For this purpose we adopt the inter-
mediate syntax of labeled abstract proof structures (LAPSs) (a “medium” between abstract proof
structures and sequent proofs):

— nodes of abstract paired graphs are labeled with open proofs containing context variables �?;
— open proofs correspond to partial sequentializations, which become larger and larger as

contraction progresses, until reaching a full (complete, closed) McyLL proof;
— open proofs are constructed on (i) cyclic ordered sequents S (i.e., S is endowed with a total

cyclic order σ) with context variables, generated by the following syntax, where F is an
McyLL formula and �? is a context variable:

S := ∅ | S, F | S, �?

(ii) by the following inference rules:

id�A<A⊥ � S � S1 <A A⊥ < S2 cut� S1 < S2
� S1 <A � B< S2

�� S1 <A� B< S2
� S<A< B �� S<A�B

Given a concrete proof structure (CPS) π , the labeled paired graph π lab is a paired graph whose
vertexes are labeled by open proofs (displayed inside rectangles) whose edges are labeled by for-
mulas and obtained by applying the following transformation rules, from CPSs to labeled paired
graphs, also called LAPSs:

(transformation rules: CPSs→ LAPSs)

Definition 16 (labelled retraction system �l). The following rewriting or contraction rules are
applied with (partial) substitution of context variables, where �,
,� stay for possibly open sub-
proofs and
[�/�?

F] denotes the substitution of a context variable �?
F by a (closed) sequent � along

an open proof
:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

758 V Michele Abrusci and R Maieli

Definition 17 (�l-correctness criterion (�lCC)). A CPS π is �l-correct when the corresponding
LAPS π lab collapses by �l in to a single node labeled by a closed sequent proof � (derived from only
logical axioms, id).

Theorem 7 (�CC ≡ �l CC). A CPS π is �-correct (�CC, Definition 9) iff it is �l-correct (�lCC);
moreover, π and the (closed) sequent proof �, labeling the collapsed graph (resulting from the
�l-contraction of π lab), have the same conclusions � endowed by the same cyclic order σ (�).

Proof. By induction on π .

Example 2. Assume the following CPS π1:

In order to check �l-correctness of π , we first transform it into the LAPS π lab below:

then, after a couple instances of R1 (with substitution [A/�?
A⊥] resp., [A⊥/�?

A]) and one instance of
R2 (with substitution [∅/�?

A⊥�A]) we get the following LAPS:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 759

from which, after an instance of R1 (with substitution [∅/�?
A⊥�A]) we get next structure:

then, by another instance of R1 (with substitution [(A⊥ <A)/�?
A⊥�A] we get

from which, finally, after an instance of R2 (with substitution [∅/�?
A⊥�A] we get a collapsed LAPS

(a single node) labeled by the following closed proof � (a sequentialization of π):

Example 3. Assume we want to test for correctness the following (incorrect indeed) proof structure
π2:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

760 V Michele Abrusci and R Maieli

first, let us transform π2 into the labeled proof structure below:

then, after a couple instances of R1, one instance of R2 and one more instance of R1 (with the same
substitutions seen before for π1) we get the structure below which is not contractible anymore:

observe that the only possible substitution [(A⊥
�A)� (A⊥�A)/�?

A�A⊥] does not led to a cut-free
derivable proof of the sequent � (A⊥

�A)� (A⊥�A)<A�A⊥ as follows:

�A<A⊥ �A<A⊥
�A<A⊥

�A<A⊥
�A⊥ <A
�A⊥�A

� (A⊥
�A)� (A⊥�A)<A⊥ <A

non (cut-free) derivable!
� (A⊥

�A)� (A⊥�A)<A�A⊥

A.3 Examples of parsing via Lambek McyLL PNs
In order to better understand how the contraction criterion checks the incorrectness of wrong
parsing of Lambek proof structure, we consider in the following a couple of incorrect parsing
structures of sentence (2): the first one results from a wrong choice of linking (by axioms) some
pairs of literal s, s⊥

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

Mathematical Structures in Computer Science 761

while the second one results from an incorrect linkings of some pairs of literals np, np⊥

PNs are modular objects, that is, you can always replace in a PN a portion (also called “module”)
with another graph with same “behavior” (in term of local correction) and get still a correct PN.
For instance, consider the two alternative parsing structures for sentence (2): they only differ for
the module enclosed within dashed lines: two different syntactical types (even though logically
equivalent!) for the same lexical item “trusts”= np−◦(s◦−np) = np⊥�(s�np⊥).

A.4 Further work: parsing via Lambek MAcyLL PNs
Additive connectives, & and ⊕, allow superpositions of types (lexical ambiguity); in particular, we
may collapse the previous assignment items 4 and 5 of Section 3.2 for the lexical entry believes into
a single additive assignment as follows:

6 believes = ((np−◦s)◦−np)&((np−◦s)◦−s)= ((np⊥�s)�np⊥)&((np⊥�s)�s⊥).

Then, as parsing structure of the superposition of sentences (1) and (2) we may build:

1 either an MAcyLL PN with “minimal superposition of links”; this PN is very close to the
“sequent style“ parsing since it makes use of “additive-boxes”:

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300

762 V Michele Abrusci and R Maieli

2 or a more abstract PN (with “maximal superposition of links”), which exploits a more
compact lexical entry (due to the distributivity law of negative connectives)
believes = ((np−◦s)◦−np)&((np−◦s)◦−s)≡ ((np⊥�s)�np⊥)&((np⊥�s)�s⊥)

= ((np−◦s)◦−(s⊕ nps))= ((np⊥�s)�(np⊥&s⊥)).

Cite this article: Abrusci VM and Maieli R (2019). Proof nets for multiplicative cyclic linear logic and Lambek calculus.
Mathematical Structures in Computer science 29, 733–762. https://doi.org/10.1017/S0960129518000300

https://doi.org/10.1017/S0960129518000300 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000300
https://doi.org/10.1017/S0960129518000300

	Proof nets for multiplicative cyclic linear logic and Lambek calculus
	Introduction
	The multiplicative cyclic fragment of linear logic (McyLL)
	The quest of satisfactory syntaxes for McyLL proof nets
	``Trip-based'' criterion by Abrusci and Ruet
	``Seaweed-based'' criterion by Maieli
	Comparing the two previous syntaxes

	Lambek calculus and proof nets as parsing structures

	McyLL proof nets
	Cut reduction
	Sequentialization via splitting lemma

	Lambek Calculus and McyLL PNs as parsing structures
	Proof nets for Lambek calculus
	McyLL PNs as parsing structures

	Conclusions and further works
	Melliès' topological criterion
	Sequentialization as parsing
	Examples of parsing via Lambek McyLL PNs
	Further work: parsing via Lambek MAcyLL PNs

