au-TILTING FINITE CLUSTER-TILTED ALGEBRAS

STEPHEN ZITO

Department of Mathematics, University of Connecticut-Waterbury Waterbury, CT 06702, USA (stephen.zito@uconn.edu)

(Received 20 January 2020; first published online 21 July 2020)

Abstract We prove if B is a cluster-tilted algebra, then B is τ_B -tilting finite if and only if B is representation-finite.

Keywords: tilted algebras; cluster-tilted algebras; τ -tilting finite algebras

2020 Mathematics subject classification: Primary 16G60, 16G70

1. Introduction

The theory of τ -tilting was introduced by Adachi et al. [1] as a far-reaching generalization of classical tilting theory for finite-dimensional associative algebras. One of the main classes of objects in the theory is that of τ -rigid modules: a module M over an algebra A is τ_A -rigid if $\mathrm{Hom}_A(M,\tau_AM)=0$, where τ_AM denotes the Auslander–Reiten translation of M; such a module M is called τ_A -tilting if the number |M| of non-isomorphic indecomposable summands of M equals the number of isomorphism classes of simple A-modules. Recently, a new class of algebras were introduced by Demonet et al. [10] called τ_A -tilting finite algebras. They are defined as finite-dimensional algebras with only a finite number of isomorphism classes of basic τ_A -tilting modules.

An obvious sufficient condition for an algebra to be τ_A -titling finite is for it to be representation-finite. In general, this condition is not necessary. The aim of this note is to prove for *cluster-tilted algebras*, this condition is in fact necessary.

Tilted algebras are the endomorphism algebras of tilting modules over hereditary algebras, introduced by Happel and Ringel [11]. Cluster-tilted algebras are the endomorphism algebras of cluster-tilting objects over cluster categories of hereditary algebras, introduced by Buan et al. [8]. The similarity in the two definitions lead to the following precise relation between tilted and cluster-tilted algebras, which was established by Assem et al. [3].

There is a surjective map

$$\{ \text{tilted algebras} \} \longmapsto \{ \text{cluster-tilted algebras} \}$$

$$C \longmapsto B = C \ltimes E$$

© The Author(s), 2020. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

where E denotes the C-C-bimodule $E = \operatorname{Ext}^2_C(\operatorname{DC}, C)$ and $C \ltimes E$ is the trivial extension. This result allows one to define cluster-tilted algebras without using the cluster category. Using this construction, we show the following.

Theorem 1.1. Let B be a cluster-tilted algebra. Then B is τ_B -tilting finite if and only if B is representation-finite.

2. Notation and preliminaries

We now set the notation for the remainder of this paper. All algebras are assumed to be finite dimensional over an algebraically closed field k. If A is a k-algebra then denote by mod A the category of finitely generated right A-modules and by ind A a set of representatives of each isomorphism class of indecomposable right A-modules. We denote by add M the smallest additive full subcategory of mod A containing M, that is, the full subcategory of mod A whose objects are the direct sums of direct summands of the module M. Given $M \in \text{mod } A$, the projective dimension of M is denoted $\text{pd}_A M$. We let τ_A and τ_A^{-1} be the Auslander–Reiten translations in mod A. We let D be the standard duality functor $\text{Hom}_k(-,k)$. Finally, $\Gamma(\text{mod } A)$ will denote the Auslander–Reiten quiver of A.

2.1. Tilted algebras

Tilting theory is one of the main themes in the study of the representation theory of algebras. Given a k-algebra A, one can construct a new algebra B in such a way that the corresponding module categories are closely related. The main idea is that of a tilting module.

Definition 2.1. Let A be an algebra. An A-module T is a partial tilting module if the following two conditions are satisfied:

- (1) $pd_A T \leq 1$.
- (2) $\operatorname{Ext}_{A}^{1}(T,T) = 0.$

A partial tilting module T is called a *tilting module* if it also satisfies the following additional condition:

(3) There exists a short exact sequence $0 \to A \to T' \to T'' \to 0$ in mod A with T' and $T'' \in \operatorname{add} T$.

We now state the definition of a tilted algebra.

Definition 2.2. Let A be a hereditary algebra with T a tilting A-module. Then the algebra $B = \operatorname{End}_A T$ is called a *tilted algebra*.

2.2. Cluster categories and cluster-tilted algebras

Let C = kQ be the path algebra of the quiver Q and let $\mathcal{D}^b(\text{mod } C)$ denote the derived category of bounded complexes of C-modules. The cluster category \mathcal{C}_C is defined as the

952 S. Zito

orbit category of the derived category with respect to the functor $\tau_{\mathcal{D}}^{-1}[1]$, where $\tau_{\mathcal{D}}$ is the Auslander–Reiten translation in the derived category and [1] is the shift. Cluster categories were introduced in [7], and in [9] for type \mathbb{A} .

An object T in C_C is called cluster-tilting if $\operatorname{Ext}^1_{C_C}(T,T)=0$ and T has $|Q_0|$ non-isomorphic indecomposable direct summands where $|Q_0|$ is the number of vertices of Q. The endomorphism algebra $\operatorname{End}_{C_C} T$ of a cluster-tilting object is called a cluster-tilted algebra [8].

2.3. Relation extensions

Let C be an algebra of global dimension at most 2 and let E be the C-C-bimodule $E = \operatorname{Ext}_C^2(\operatorname{DC}, C)$.

Definition 2.3. The relation extension of C is the trivial extension $B = C \ltimes E$, whose underlying C-module structure is $C \oplus E$, and multiplication is given by (c, e)(c', e') = (cc', ce' + ec').

Relation extensions were introduced in [3]. In the special case where C is a tilted algebra, we have the following result.

Theorem 2.4 (Cf. [3, Theorem 3.4]). Let C be a tilted algebra. Then $B = C \ltimes \operatorname{Ext}_C^2(\operatorname{DC}, C)$ is a cluster-tilted algebra. Moreover, all cluster-tilted algebras are of this form.

2.4. Slices and local slices

Definition 2.5. Let B be an algebra. A slice Σ in $\Gamma(\text{mod }B)$ is a set of indecomposable B-modules such that

- (1) Σ is sincere.
- (2) Any path in mod B with source and target in Σ consists entirely of modules in Σ .
- (3) If M is an indecomposable non-projective B-module then at most one of M , $\tau_B M$ belongs to B.
- (4) If $M \to S$ is an irreducible morphism with $M, S \in \text{ind } B$ and $S \in \Sigma$, then either M belongs to Σ or M is non-injective and $\tau_B^{-1}M$ belongs to Σ .

The existence of slices is used to characterize tilted algebras in the following way.

Theorem 2.6 (see [12]). Let A be a hereditary algebra, T a tilting A-module, and $B = \operatorname{End}_A T$ a tilted algebra. Then the class of B-modules $\operatorname{Hom}_A(T, DA)$ forms a slice in mod B. Conversely, any slice in any module category is obtained in this way.

The following notion of local slices was introduced in [2] in the context of clustertilted algebras. Let A be an algebra. We say a path $X = X_0 \to X_1 \to \cdots \to X_s = Y$ in $\Gamma(\text{mod } A)$ is sectional if, for each i with 0 < i < s, we have $\tau_A X_{i+1} \neq X_{i-1}$. **Definition 2.7.** Let A be an algebra. A *local slice* Σ in $\Gamma(\text{mod } A)$ is a set of indecomposable A-modules inducing a connected full subquiver of $\Gamma(\text{mod } A)$ such that

- (1) If $X \in \Sigma$ and $X \to Y$ is an arrow in $\Gamma(\text{mod } A)$, then either Y or $\tau_A Y \in \Sigma$.
- (2) If $Y \in \Sigma$ and $X \to Y$ is an arrow in $\Gamma(\text{mod } A)$, then either X or $\tau_A^{-1}X \in \Sigma$.
- (3) For every sectional path $X = X_0 \to X_1 \to X_2 \to \cdots \to X_s = Y$ in $\Gamma(\text{mod } A)$ with $X, Y \in \Sigma$, we have $X_i \in \Sigma$, for $i = 0, 1, \ldots, s$.
- (4) The number of indecomposable A-modules in Σ equals the number of non-isomorphic summands of T, where T is a tilting A-module.

There is a relationship between tilted and cluster-tilted algebras given in terms of slices and local slices.

Theorem 2.8 (Cf. [2, Corollary 20]). Let C be a tilted algebra and $B = C \ltimes \operatorname{Ext}_C^2(\operatorname{DC}, C)$ its relation extension. Then any slice in mod C embeds as a local slice in mod B and any local slice Σ in mod B arises in this way.

The existence of local slices in a cluster-tilted algebra gives rise to the following definition. The unique connected component of $\Gamma(\text{mod }B)$ that contains local slices is called the *transjective component*.

The next result says a slice in a tilted algebra together with its τ and τ^{-1} translates full embeds in the cluster-tilted algebra.

Proposition 2.9 (Cf. [4, Proposition 3]). Let C be a tilted algebra, Σ a slice, $M \in \Sigma$, and $B = C \ltimes \operatorname{Ext}_C^2(\operatorname{DC}, C)$ its relation extension.

- (1) $\tau_C M \cong \tau_B M$.
- (2) $\tau_C^{-1}M \cong \tau_B^{-1}M$.

In [2], the authors gave an example of an indecomposable transjective module over a cluster-tilted algebra that does not lie on a local slice. It was proved in [5] the number of such modules is finite.

Proposition 2.10 (Cf. [5, Corollary 3.8]). Let B be a cluster-tilted algebra. Then the number of isomorphism classes of indecomposable transjective B-modules that do not lie on a local slice is finite.

2.5. τ -tilting finite algebras

Following [1] we state the following definition. Let A be an algebra.

Definition 2.11. An A-module M is τ_A -rigid if $\operatorname{Hom}_A(M, \tau_C M) = 0$. A τ_A -rigid module M is τ_A -tilting if the number of pairwise, non-isomorphic, indecomposable summands of M equals the number of isomorphism classes of simple A-modules.

It follows from the Auslander–Reiten formulas that any τ_A -rigid module M is rigid, that is, $\operatorname{Ext}_A^1(M,M)=0$ and the converse holds if the projective dimension is at most 1. In

954 S. Zito

particular, any partial tilting module is a τ_A -rigid module, and any tilting module is a τ_A -tilting module. Thus, we can regard τ_A -tilting theory as a generalization of classic tilting theory. Following [10], we have the following definition.

Definition 2.12. Let A be an algebra. We say that A is τ_A -tilting finite if there are only finitely many isomorphism classes of basic τ_A -tilting A-modules.

The authors of [10] provide several equivalent conditions for an algebra A to be τ_A -tilting finite. In particular, we need the following.

Lemma 2.13 (Cf. [10, Corollary 2.9]). An algebra A is τ_A -tilting finite if and only if there are only finitely many isomorphism classes of indecomposable τ_A -rigid A-modules.

2.6. A criterion for representation-finiteness

We will need the following criterion for-an algebra to be representation-finite.

Theorem 2.14 (Cf. [6, IV Theorem 5.4]). Assume A is a basic and connected finite dimensional algebra. If $\Gamma(\text{mod }A)$ admits a finite connected component C, then $C = \Gamma(\text{mod }A)$. In particular, A is representation-finite.

3. Main result

We are now ready to prove our main theorem.

Theorem 3.1. Let B be a cluster-tilted algebra. Then B is τ_B -tilting finite if and only if B is representation-finite.

Proof. The sufficiency is obvious so we prove the necessity. Assume B is τ_B -tilting finite but representation-infinite. By Theorems 2.6 and 2.8, we know the transjective component of $\Gamma(\text{mod }B)$ exists. Since B is representation-infinite, Theorem 2.14 guarantees the transjective component must be infinite. By Proposition 2.10 and the fact that the transjective component is infinite, we must have an infinite number of indecomposable transjective B-modules which lie on a local slice. Let M be such a B-module. Theorem 2.8 guarantees there exists a tilted algebra C and a slice Σ such that M is a C-module and $M \in \Sigma$. It follows from parts (2) and (3) of the definition of a slice that M is τ_C -rigid. By Proposition 2.9, we know $\tau_C M \cong \tau_B M$. This implies M is τ_B -rigid. Since M was arbitrary, we have shown there exists an infinite number of indecomposable transjective B-modules which are τ_B -rigid. This is a contradiction to our assumption that B was τ_B -tilting finite and Lemma 2.13. We conclude B must be representation-finite.

Remark 3.2. By Theorem 2.4, every cluster-tilted algebra B is the relation extension of some tilted algebra C. Thus, it is natural to ask whether a τ_C -tilting finite tilted algebra C is also representation-finite. We recall a connected component \mathcal{P} of $\Gamma(\text{mod }C)$ is called a *preprojective component* if \mathcal{P} does not contain an oriented cycle and each indecomposable module $X \in \mathcal{P}$ is of the form $\tau_C^{-r}P$ for some $r \in \mathbb{N}$ and an indecomposable projective C-module P. By [13], tilted algebras have a preprojective component \mathcal{P} . Since \mathcal{P} is acyclic, we have $\operatorname{Hom}_C(X, \tau_C X) = 0$ for every indecomposable $X \in \mathcal{P}$. Thus, if C is τ_C -tilting finite, it must be representation-finite.

References

- 1. T. Adachi, O. Iyama and I. Reiten, τ -tilting theory, Compos. Math. 150(3) (2014), 415–452.
- I. ASSEM, T. BRÜSTLE AND R. SCHIFFLER, Cluster-tilted algebras and slices, J. Algebra 319 (2008), 3464–3479.
- I. ASSEM, T. BRÜSTLE AND R. SCHIFFLER, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151–162.
- I. ASSEM, T. BRÜSTLE AND R. SCHIFFLER, Cluster-tilted algebras without clusters, J. Algebra 324 (2010), 2475–2502.
- 5. I. ASSEM, R. SCHIFFLER AND K. SERHIYENKO, Modules over cluster-tilted algebras that do not lie on local slices, *Archiv der Math.* **110**(1) (2018), 9–18.
- 6. I. ASSEM, D. SIMSON AND A. SKOWRONSKI, Elements of the representation theory of associative algebras, 1: techniques of representation theory, London Mathematical Society Student Texts, Volume 65 (Cambridge University Press, 2006).
- A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204(2) (2006), 572–618.
- 8. A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, *Trans. Am. Math. Soc.* **359**(1) (2007), 323–332.
- 9. P. CALDERO, F. CHAPOTON AND R. SCHIFFLER, Quivers with relations arising from clusters $(A_n \text{ case})$, Trans. Am. Math. Soc. 358(4) (2006), 359–376.
- L. DEMONET, O. IYAMA AND G. JASSO, τ-tilting finite algebras, bricks, and g-vectors, Int. Math. Res. Notices 2019(3) (2019), 852–892.
- D. HAPPEL AND C. M. RINGEL, Tilted algebras, Trans. Am. Math. Soc. 274(2) (1982), 399–443.
- C. M. RINGEL, Tame algebras and integral quadratic forms, Lecture Notes in Math., Volume 1099 (Springer-Verlag, 1984).
- 13. H. STRAUSS, The perpendicular category of a partial tilting module, *J. Algebra* **144**(1) (1991), 43–66.