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1. Introduction

The theory of τ -tilting was introduced by Adachi et al. [1] as a far-reaching generaliza-
tion of classical tilting theory for finite-dimensional associative algebras. One of the main
classes of objects in the theory is that of τ -rigid modules: a module M over an algebra A
is τA-rigid if HomA(M, τAM) = 0, where τAM denotes the Auslander–Reiten translation
of M ; such a module M is called τA-tilting if the number |M | of non-isomorphic indecom-
posable summands of M equals the number of isomorphism classes of simple A-modules.
Recently, a new class of algebras were introduced by Demonet et al. [10] called τA-tilting
finite algebras. They are defined as finite-dimensional algebras with only a finite number
of isomorphism classes of basic τA-tilting modules.

An obvious sufficient condition for an algebra to be τA-titling finite is for it to be
representation-finite. In general, this condition is not necessary. The aim of this note is
to prove for cluster -tilted algebras, this condition is in fact necessary.

Tilted algebras are the endomorphism algebras of tilting modules over hereditary alge-
bras, introduced by Happel and Ringel [11]. Cluster-tilted algebras are the endomorphism
algebras of cluster-tilting objects over cluster categories of hereditary algebras, intro-
duced by Buan et al. [8]. The similarity in the two definitions lead to the following
precise relation between tilted and cluster-tilted algebras, which was established by Assem
et al. [3].

There is a surjective map

{tilted algebras} �−→ {cluster-tilted algebras}
C �−→ B = C � E
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where E denotes the C-C-bimodule E = Ext2C(DC, C) and C � E is the trivial extension.
This result allows one to define cluster-tilted algebras without using the cluster

category. Using this construction, we show the following.

Theorem 1.1. Let B be a cluster-tilted algebra. Then B is τB-tilting finite if and
only if B is representation-finite.

2. Notation and preliminaries

We now set the notation for the remainder of this paper. All algebras are assumed to
be finite dimensional over an algebraically closed field k. If A is a k-algebra then denote
by mod A the category of finitely generated right A-modules and by indA a set of rep-
resentatives of each isomorphism class of indecomposable right A-modules. We denote
by addM the smallest additive full subcategory of modA containing M , that is, the
full subcategory of modA whose objects are the direct sums of direct summands of the
module M . Given M ∈ mod A, the projective dimension of M is denoted pdA M . We let
τA and τ−1

A be the Auslander–Reiten translations in modA. We let D be the standard
duality functor Homk(−, k). Finally, Γ (mod A) will denote the Auslander–Reiten quiver
of A.

2.1. Tilted algebras

Tilting theory is one of the main themes in the study of the representation theory of
algebras. Given a k-algebra A, one can construct a new algebra B in such a way that the
corresponding module categories are closely related. The main idea is that of a tilting
module.

Definition 2.1. Let A be an algebra. An A-module T is a partial tilting module if the
following two conditions are satisfied:

(1) pdA T ≤ 1.

(2) Ext1A(T, T ) = 0.

A partial tilting module T is called a tilting module if it also satisfies the following
additional condition:

(3) There exists a short exact sequence 0 → A → T ′ → T ′′ → 0 in mod A with T ′ and
T ′′ ∈ add T .

We now state the definition of a tilted algebra.

Definition 2.2. Let A be a hereditary algebra with T a tilting A-module. Then the
algebra B = EndA T is called a tilted algebra.

2.2. Cluster categories and cluster-tilted algebras

Let C = kQ be the path algebra of the quiver Q and let Db(mod C) denote the derived
category of bounded complexes of C-modules. The cluster category CC is defined as the

https://doi.org/10.1017/S0013091520000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000255


952 S. Zito

orbit category of the derived category with respect to the functor τ−1
D [1], where τD is

the Auslander–Reiten translation in the derived category and [1] is the shift. Cluster
categories were introduced in [7], and in [9] for type A.

An object T in CC is called cluster-tilting if Ext1CC
(T, T ) = 0 and T has |Q0| non-

isomorphic indecomposable direct summands where |Q0| is the number of vertices of Q.
The endomorphism algebra EndCC

T of a cluster-tilting object is called a cluster-tilted
algebra [8].

2.3. Relation extensions

Let C be an algebra of global dimension at most 2 and let E be the C-C-bimodule
E = Ext2C(DC, C).

Definition 2.3. The relation extension of C is the trivial extension B = C � E, whose
underlying C-module structure is C ⊕ E, and multiplication is given by (c, e)(c′, e′) =
(cc′, ce′ + ec′).

Relation extensions were introduced in [3]. In the special case where C is a tilted
algebra, we have the following result.

Theorem 2.4 (Cf. [3, Theorem 3.4]). Let C be a tilted algebra. Then B = C �

Ext2C(DC, C) is a cluster-tilted algebra. Moreover, all cluster-tilted algebras are of this
form.

2.4. Slices and local slices

Definition 2.5. Let B be an algebra. A slice Σ in Γ (mod B) is a set of indecomposable
B-modules such that

(1) Σ is sincere.

(2) Any path in modB with source and target in Σ consists entirely of modules in Σ.

(3) If M is an indecomposable non-projective B-module then at most one of M , τBM
belongs to B.

(4) If M → S is an irreducible morphism with M,S ∈ indB and S ∈ Σ, then either M
belongs to Σ or M is non-injective and τ−1

B M belongs to Σ.

The existence of slices is used to characterize tilted algebras in the following way.

Theorem 2.6 (see [12]). Let A be a hereditary algebra, T a tilting A-module, and
B = EndAT a tilted algebra. Then the class of B-modules HomA(T,DA) forms a slice in
mod B. Conversely, any slice in any module category is obtained in this way.

The following notion of local slices was introduced in [2] in the context of cluster-
tilted algebras. Let A be an algebra. We say a path X = X0 → X1 → · · · → Xs = Y
in Γ (mod A) is sectional if, for each i with 0 < i < s, we have τAXi+1 �= Xi−1.
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Definition 2.7. Let A be an algebra. A local slice Σ in Γ (mod A) is a set of
indecomposable A-modules inducing a connected full subquiver of Γ (mod A) such that

(1) If X ∈ Σ and X → Y is an arrow in Γ (mod A), then either Y or τAY ∈ Σ.

(2) If Y ∈ Σ and X → Y is an arrow in Γ (mod A), then either X or τ−1
A X ∈ Σ.

(3) For every sectional path X = X0 → X1 → X2 → · · · → Xs = Y in Γ (mod A) with
X,Y ∈ Σ, we have Xi ∈ Σ, for i = 0, 1, . . . , s.

(4) The number of indecomposable A-modules in Σ equals the number of non-
isomorphic summands of T, where T is a tilting A-module.

There is a relationship between tilted and cluster-tilted algebras given in terms of slices
and local slices.

Theorem 2.8 (Cf. [2, Corollary 20]). Let C be a tilted algebra and B = C �

Ext2C(DC, C) its relation extension. Then any slice in mod C embeds as a local slice in
mod B and any local slice Σ in mod B arises in this way.

The existence of local slices in a cluster-tilted algebra gives rise to the following
definition. The unique connected component of Γ (mod B) that contains local slices is
called the transjective component.

The next result says a slice in a tilted algebra together with its τ and τ−1 translates
full embeds in the cluster-tilted algebra.

Proposition 2.9 (Cf. [4, Proposition 3]). Let C be a tilted algebra, Σ a slice,
M ∈ Σ, and B = C � Ext2C(DC, C) its relation extension.

(1) τCM ∼= τBM .

(2) τ−1
C M ∼= τ−1

B M .

In [2], the authors gave an example of an indecomposable transjective module over a
cluster-tilted algebra that does not lie on a local slice. It was proved in [5] the number
of such modules is finite.

Proposition 2.10 (Cf. [5, Corollary 3.8]). Let B be a cluster-tilted algebra. Then
the number of isomorphism classes of indecomposable transjective B-modules that do
not lie on a local slice is finite.

2.5. τ -tilting finite algebras

Following [1] we state the following definition. Let A be an algebra.

Definition 2.11. An A-module M is τA-rigid if HomA(M, τCM) = 0. A τA-rigid mod-
ule M is τA-tilting if the number of pairwise, non-isomorphic, indecomposable summands
of M equals the number of isomorphism classes of simple A-modules.

It follows from the Auslander–Reiten formulas that any τA-rigid module M is rigid, that
is, Ext1A(M,M) = 0 and the converse holds if the projective dimension is at most 1. In
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particular, any partial tilting module is a τA-rigid module, and any tilting module is a
τA-tilting module. Thus, we can regard τA-tilting theory as a generalization of classic
tilting theory. Following [10], we have the following definition.

Definition 2.12. Let A be an algebra. We say that A is τA-tilting finite if there are
only finitely many isomorphism classes of basic τA-tilting A-modules.

The authors of [10] provide several equivalent conditions for an algebra A to be τA-tilting
finite. In particular, we need the following.

Lemma 2.13 (Cf. [10, Corollary 2.9]). An algebra A is τA-tilting finite if and only
if there are only finitely many isomorphism classes of indecomposable τA-rigid A-modules.

2.6. A criterion for representation-finiteness

We will need the following criterion for-an algebra to be representation-finite.

Theorem 2.14 (Cf. [6, IV Theorem 5.4]). Assume A is a basic and connected
finite dimensional algebra. If Γ (mod A) admits a finite connected component C, then
C = Γ (mod A). In particular, A is representation-finite.

3. Main result

We are now ready to prove our main theorem.

Theorem 3.1. Let B be a cluster-tilted algebra. Then B is τB-tilting finite if and
only if B is representation-finite.

Proof. The sufficiency is obvious so we prove the necessity. Assume B is τB-tilting
finite but representation-infinite. By Theorems 2.6 and 2.8, we know the transjective com-
ponent of Γ (mod B) exists. Since B is representation-infinite, Theorem 2.14 guarantees
the transjective component must be infinite. By Proposition 2.10 and the fact that the
transjective component is infinite, we must have an infinite number of indecomposable
transjective B-modules which lie on a local slice. Let M be such a B-module. Theorem 2.8
guarantees there exists a tilted algebra C and a slice Σ such that M is a C-module and
M ∈ Σ. It follows from parts (2) and (3) of the definition of a slice that M is τC-rigid.
By Proposition 2.9, we know τCM ∼= τBM . This implies M is τB-rigid. Since M was
arbitrary, we have shown there exists an infinite number of indecomposable transjective
B-modules which are τB-rigid. This is a contradiction to our assumption that B was
τB-tilting finite and Lemma 2.13. We conclude B must be representation-finite. �

Remark 3.2. By Theorem 2.4, every cluster-tilted algebra B is the relation extension
of some tilted algebra C. Thus, it is natural to ask whether a τC-tilting finite tilted
algebra C is also representation-finite. We recall a connected component P of Γ (mod C)
is called a preprojective component if P does not contain an oriented cycle and each
indecomposable module X ∈ P is of the form τ−r

C P for some r ∈ N and an indecomposable
projective C-module P . By [13], tilted algebras have a preprojective component P. Since
P is acyclic, we have HomC(X, τCX) = 0 for every indecomposable X ∈ P. Thus, if C is
τC-tilting finite, it must be representation-finite.
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