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For two independent principles of intergenerational equity, the implied discount rate
equals the growth rate of real per capita income, say, 2%, thus falling right into the range
suggested by the U.S. Office of Management and Budget. To prove this, we develop a
simple tool to evaluate small policy changes affecting several generations, by reducing the
dynamic problem to a static one. A necessary condition is time invariance, which is
satisfied by any common solution concept in an overlapping-generations model with
exogenous growth. This tool is applied to derive the discount rate for cost–benefit analysis
under two different utilitarian welfare functions: classical and relative. It is only with
relative utilitarianism, and assuming time-invariance of the set of alternatives (policies),
that the discount rate is well defined for a heterogeneous society at a balanced growth
equilibrium, is corroborated by an independent principle equating values of human lives,
and equals the growth rate of real per-capita income.

Keywords: Overlapping Generations, Policy Reform, Intergenerational Equity,
Cost–Benefit Analysis, Discount Rate, Utilitarianism

1. INTRODUCTION

Public decisions often involve trade-offs where economic costs and benefits are
spread over time. The choice of discount rate to map policy effects into net present
value is then crucial. Arguably, at least for long-term projects, the choice should
be governed by principles of intergenerational equity and yet, there is no robust
method for deriving the social discount rate from such principles.
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62 JEAN-FRANÇOIS MERTENS AND ANNA RUBINCHIK

Traditional cost–benefit analysis (CBA) requires using the interest rate for
present-value calculations.1 Although easy to use, this approach is not compati-
ble with a normative one, as required to study intergenerational equity, because
typically the only corresponding (utilitarian) social welfare function (SWF) im-
plies that the current equilibrium is optimal. Drèze and Stern (1987) stress the
importance of formulating a SWF as a basis for policy analysis, and Mertens and
Rubinchik (2010) analyze the implications of consistency between discounting
and a SWF—among others, some form of stationarity in the model.

Recent literature [e.g., Stern (2006) and Arrow (2007), following earlier work
of Arrow and Kurz (1970)] obtains the discount rate for final consumption from
a classical welfarist function. This method requires evaluating the final impact
of a policy on individual consumption, and thus a full equilibrium computation.
This is why the usual derivations of the discount rate in this framework are for
a discount rate on final consumption, and for a single type of agent (or even a
single infinitely lived agent). On the other hand, this method does offer a way
to relate intergenerational equity requirements (through the SWF) to the discount
rate (cf. Section 1.2).

The solution here shares this last advantage with the simplicity of use of the
first method; i.e., no equilibrium computation is needed: one can directly discount
policy variations, e.g., transfers (endowment perturbations). Further, heterogeneity
of agents, even in their attitudes toward risk, is handled correctly.

To keep it simple, this paper presents only the main ideas, relegating all the
real difficulties to an assumption of differentiability of the SWF as a function
of policy. This differentiability implies in particular both regularity [a fortiori, a
form of determinacy, contrary to the widespread preconception that overlapping-
generations (OG) models are indeterminate] and stability of all balanced growth
equilibria. It is shown to hold generically, in the classical particular case of our
model (one good, one type of agent, etc.), in Mertens and Rubinchik (2009)—thus
providing at least a proof of nonvacuity for the results here. That method also yields
much richer and deeper results, such as the full expression of all derivatives—in
particular, of all possible impulse responses—and not only the implied discount
rate; and this even (but much less explicitly) with nonstationary policies as
baseline. But for the moment it is still much harder, by orders of magnitude.

1.1. Intergenerational Equity

Even the U.S. Office of Management and Budget (OMB) (see Note 1) refers
explicitly to the requirement of equity vis-à-vis future generations, and acknowl-
edges it by suggesting, for projects with substantial long-term impact, a further
analysis at a rate “between 1 and 3%” (p. 36), with no further precision.2

The issue of discounting utility and, more broadly, intergenerational justice has
been controversial in the literature3 since, probably, Sidgwick (1874, p. 414).4

Ramsey (1928) (p. 543) presents discounting future utility (“enjoyments”) as a
“practice which is ethically indefensible and arises merely from the weakness of
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the imagination.” He suggests a way to overcome technical difficulties of con-
structing a discount-free utilitarian social welfare criterion using the differences
between actual and “bliss” utility levels. Utility discounting is not required per se
in our case either, as we evaluate temporary policy changes, and thus aggregate
utility differences from a baseline.5

1.2. Welfarist Deduction of the Discount Rate

One could follow Arrow and Kurz (1970), as, e.g., in Stern (2006) and in Dasgupta
(2008).

For simplicity, take a discrete-time model where individuals live for just one
period, with utility function U(c) = c1−ρ

1−ρ
, where ρ > 0. The economy is on a

balanced growth path with per capita consumption growing exponentially at rate
γ > 0, production being black-boxed for now. The baseline per capita consumption
at time t is c0e

γ t , with c0 > 0. Consider a policy that involves a variation in
aggregate consumption δCt for each generation t . It is to be evaluated at time 0,
using the classical criterion, W = ∑

t

∑
n∈Nt

e−βtU(cn
t ), where Nt is the set of

individuals at time t . Then the net (social) benefit equals

δW =
∑

t

∑
n∈Nt

e−βtU ′(c0e
γ t )δcn

t =
∑

t
c
−ρ

0 e−(ργ+β)t δCt .

In this case, discounting is consistent with a welfare evaluation, and the resulting
social discount rate is ργ + β, whereas there is no interest rate, because agents
live for one period.

There are two major conceptual difficulties with this approach.
First, even if one is to rely on this simplistic model, it provides no guidance for

obtaining an intergenerationally fair discount rate.
In a welfarist interpretation, only the indifference map is retained as an in-

dividual characteristic, so the choice of utility representation is thought of as a
parameter of the welfare function (here, ρ). Hence this theory merely substitutes
for a unknown number, the discount rate, an even less known function U and
parameter β.

This is illustrated, e.g., by the recent controversies about Stern’s report
[Arrow (2007); Stern (2007)] and is typically settled by arbitrarily fixing one
of those parameters (ρ or β) to get a “reasonable” discount rate.

In contrast, in a utilitarian interpretation, one views ρ as the individual coeffi-
cient of relative risk aversion with respect to lifetime income, i.e. (or alternatively),
as the income elasticity of the marginal utility of income. Even when interpreting,
then, intergenerational equity as meaning β = 0, reasonable estimates of β + ργ

still vary widely (cf. Section 6), and there is evidence of substantial variation of ρ

within the population.
We postpone the discussion of the estimates for this social discount rate to

Section 6, once it is established.
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More importantly, this example is misleadingly simple: in particular, because
individuals live only one period, they have no incentive to save, so there can be
no capital accumulation and growth. When there is growth and savings, there is
also an interest rate, which individuals would use to smooth the shock over their
lifetime, each according to their own time preferences, so one might expect the
result to be driven back to the interest rate. Thus, to establish such a result, we need
at least a growth model (to see the parameter γ coming out), with generations,
to be able to talk of intergenerational equity, and those should overlap lest there
be no capital accumulation and hence no growth—shortly, an OG model. Finally,
nonzero population growth must be used, so γ is unambiguously distinguished
from the (e.g., golden rule) interest rate. The reason for using exogenous growth
in this model will be explained after Assumption 3 in Section 4.2.

In addition, a major difficulty with the above approach is that for a policy to be
evaluated, it has to be translated into changes in personal consumption, which are
then discounted; further, just computing the change in aggregate consumption (as
in the above example) is not sufficient as soon as individuals differ, whether in their
preferences or in their endowment. Hence the method requires a full equilibrium
computation, taking into account all aftereffects of the policy shock as well as its
anticipatory effects. For instance, even for a lump-sum transfer policy, it would be
wrong to aggregate changes in individual utility as if individuals consumed their
transfer, because the recipient might well experience a welfare loss in competitive
equilibrium (transfer paradox).

1.3. The Solution

We start with the simplest general model, which has only two elements: a policy
(as a function of time) and an objective function defined over policies. In this
model, we ask what property of the objective function ensures that its derivative
has a net present value form, i.e., the sum of discounted policy changes at each
point in time. The desired property is time invariance (a function over policies is
an invariant welfare function (an IWF) when a time shift of policies multiplies
welfare by a constant and adds a constant); this fact is established in Theorem 1,
which also shows how to calculate the discount rate.

To apply this main result, we consider a growth model (OG), as required (cf.
supra), in a general equilibrium fashion, adding the minimal assumptions needed
for the existence of balanced growth equilibria, and prove that the composite
map—from policies to individual allocations, then to individual utilities, them-
selves aggregated into welfare—is an IWF. This result stems explicitly from the
properties of the individual maps involved in the composition, in particular, that
the first map is an outcome function (Definition 10), for example, the selection of a
locally unique equilibrium in the neighborhood of a balanced growth equilibrium
(BGE).6

The composite map is an IWF, so, without any equilibrium computation, the
change in welfare resulting from policy perturbations has a discounted sum form,
with an explicit social discount rate.

https://doi.org/10.1017/S1365100510000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100510000386


DISCOUNT RATE FOR POLICY ANALYSIS 65

In sum, our main result rationalizes the commonly practiced net present value
calculation for a broad set of economies and policies.

In particular, we allow heterogeneous preferences (e.g., ρ), only requiring ho-
mogeneity of individual lifetime utility with respect to consumption, which is
needed for balanced growth. Time separability is not necessary. Durable and
storable goods are included (Section 3.1.2), so agents can smooth shocks over
time, when those are represented as endowment perturbations.

Finally, to describe naturally the anticipation of policy variations, time starts at
−∞ rather than 0.7 Continuous time is at first sight only a matter of convenience,
or of more transparency, and a general precaution to avoid pathologies associated
with discrete time; however [cf. also Demichelis and Polemarchakis (2007)], it
may well prove crucial to avoid indeterminacy,6 which would have made our result
vacuous. The proof of nonvacuity itself is in Mertens and Rubinchik (2009).

1.4. Results for the Social Discount Rate

The two welfare functions we consider yield different social discount rates as
applied to monetized policies in the OG model.

Classical utilitarian welfare with homogeneous preferences. Discounting is
still valid, and with rate ργ + β, exactly as in the example in Section 1.2, though
we deal with a very different concept: the endowment equivalent of policies is
being discounted, not the final consumption.

Classical utilitarian welfare with heterogeneous preferences. If preferences
with respect to lifetime consumption differ across agents, the derivative of the
classical utilitarian welfare function with respect to policies does not exhibit
the discounted sum form anymore, even when allowing for any form of time-
dependent discounting.

Relative utilitarian welfare. This welfare function is the sum of individual
von Neumann–Morgenstern (VNM) utilities, 0–1 normalized on the feasible set
(which will be assumed time-invariant too).8 Now the social discount rate is well
defined even for heterogeneous preferences, and equals the growth rate of per
capita GDP, γ , say, 2% per year.9

1.5. Roadmap

Section 2 presents the basic tool for evaluating policy reforms. In Section 2.2, the
outcome map (IWF) is fully abstracted, as a map from policies to welfare (as in
decision theory); so this would also cover models with a single decision maker,
or an infinitely lived agent. In Section 2.3, this is applied to a model with a bit
more structure, more appropriate for an economy with finitely lived agents: the
map associates with each policy a full profile of individual utilities (as in social
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choice theory), and the aggregation is done explicitly, enabling use of the previous
result. For further usage, the results are particularized to the classical aggregation
in Section 2.4 (Theorem 2).

Section 3.1 describes the overlapping-generations economy with exogenous
growth, and then Section 3.2 defines outcome maps for this model as having still
more structure, being now maps from policies to allocations. The time-invariance
requirement on them is carefully justified by exhibiting an automorphism of the
economy (uniquely) associated with time shifts. The result of Section 2 is then
applied to this economy in Section 4, to derive the discount rates implied by
the classical (Section 4.1) and relative utilitarian (Section 4.2) criteria, with quite
different implications. In each case, we first compute the derivative of welfare w.r.t.
policy variations on an abstract policy space, and then apply this to a specific policy
space of lump-sum taxes and subsidies, thought of as representing the monetized
value of public projects, to derive the discount rate for cost–benefit analysis.

An alternative derivation of γ as the discount rate, based on the value of a
human life, is presented in Section 5. Merits of the two criteria are then discussed
in Section 6. Concluding remarks in Section 7 address the issues of evaluating the
static component of the derivative of welfare and of nonvacuity of the results.

In the formal treatment below, the proofs are kept to a minimum; longer proofs
are deferred to Appendix B.

2. DIFFERENTIATING WELFARE WITH RESPECT
TO POLICY VARIATIONS

Here we start with the simplest model that yields a discount rate, including only
policies and an objective function defined on them. We formulate a sufficient
condition for the derivative of the objective to be of the net-present-value form.
Although initially one might find this condition rather abstract, it is satisfied by
utilitarian welfare functions in balanced growth equilibria of OG models, as shown
in Section 4.

Notation 1. R is the extended real line, R ∪ {+∞} ∪ {−∞}.
For f ∈ E�, the dual of a topological vector space E, 〈f, e〉 def= f (e).

2.1. The Basic Model

2.1.1. Policies. First we describe a general space, F , of policy changes. An
easy example is the space of continuous functions with compact support and the
sup norm.

DEFINITION 1.
(i) Let th : t �→ t + h be the translation by h on R; and let Sh : ξ �→ ξ ◦ t−h be the time

shift on functions of time.
(ii) Fix a Banach space E. KE is the set of infinitely differentiable functions ϕ : R → E

with compact support.10
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(iii) F is a topological vector space of E-valued functions s.t.
(1) ShF ⊆ F .
(2) KE is a dense subset of F .
(3) If ϕn ∈ KE and its successive derivatives converge uniformly to 0 and ∃h ∈

R : |x| ≥ h ⇒ ϕn (x) = 0 ∀n, then ϕn → 0 in F .

Remark 1. KE = {ϕ : R → E | ∀f ∈ E∗, f ◦ ϕ ∈ KR}.
Next, we move to the definition of policies. Basic policies are time-independent

specifications of government actions. They belong to a Banach space, because
income tax schedules, for example, are already in a function space. The baseline
is some basic policy kept constant over time. A policy (reform) is a deviation from
the baseline.

DEFINITION 2.
(i) (B, π̄) is the set B of basic policies, open in the Banach space E, together with

some point π̄ ∈ B, called the baseline policy.
(ii) P is the set of policies π : t �→ π(t) ∈ B s.t. δπ = π − π̄ ∈ F .

The policy space P is shift-invariant, as is F ; i.e., policies can be shifted in time.
Definition 4 below implies that this shift must be meaningful; so we have to think
about a basic policy as expressed in time-invariant terms. This implies, in partic-
ular, that a basic policy has to be unit-free and nondiscriminatory, not prescribing
date-specific actions or special treatment of particular individuals or generations,
to be applicable at any time. For example, the income-tax part of a policy would
satisfy this if brackets of the rate-schedule were indexed to per capita income.

More precisely, in an OG model, a basic policy, if kept constant over time,
should lead to balanced growth (Lemma 7).

The policy space is basically unrestricted until now; for instance, with B = R,
one can very well have as a space of policies the space of all continuous functions
with the topology of uniform convergence on compact sets. Restrictions will come
through the following set ZF , which will be needed throughout the paper, to impose
conditions that some parameter belongs to it. Those conditions translate thus as
an integrability requirement on policies (think of the case where the parameter is
zero), hence excluding permanent deviations, such as a constant policy different
from π̄ . If the parameter is non-null, it is roughly the minimal speed of convergence
to π̄ required of policies.

DEFINITION 3. ZF = {ζ ∈ R | ∀q ∈ E�, f �→ ∫
eζ t 〈q, f (t)〉dt ∈ F�}.11

2.1.2. Objective function

DEFINITION 4. W : P → R is an invariant welfare function (IWF) if ∃ Le-
besgue-measurable ah, bh > 0: ∀h ∈ R,W ◦ Sh = ah + bhW .

Remark 2. That is, VNM preferences on P are shift-invariant if and only if
their representation W is an IWF.
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Example

Consider again the (nonequilibrium) Arrow–Kurz-like setup described in the In-
troduction, and, time being discrete, take h integer. Let E = R, with baseline
π̄ = 0. There is one individual per period. Policy is a consumption pertur-
bation as a fraction of per capita consumption π(t) = e−γ t δct and has finite
support:

W(π) =
∞∑

t=−∞
e−βt [U(c0e

γ t + eγ tπ(t)) − U(c0e
γ t )],

W(Shπ) =
∞∑

t=−∞
e−βt [U(c0e

γ t + eγ tπ(t − h)) − U(c0e
γ t )]

= e(γ (1−ρ)−β)h

∞∑
−∞

e−βt ′ [U(c0e
γ t ′ + eγ t ′π(t ′)) − U(c0e

γ t ′)], t ′ = t − h

by homogeneity of U . So W(Shπ) = e(γ (1−ρ)−β)hW(π) : W is invariant.

LEMMA 1. For an IWF W there exist constants ζ and A ∈ R s.t. ah and bh

in Definition 4 can be taken as ah = Aeζh−1
eζ −1 , bh = eζh, the ratio being defined

by continuity at ζ = 0. Such a ζ is unique if W takes at least two different real
values. ζ is called the parameter of the IWF.

Proof. Use Lemma 8 in Appendix A, identifying values of W with constant
R-valued functions of time.

2.2. The Main Tool

Recall that a map is Gâteaux-differentiable on F if it has directional derivatives
in each direction, which are a continuous linear function of the direction. This is
the weakest form of differentiability. We will need an extension of this form of
differentiability for correspondences:

DEFINITION 5. An R-valued correspondence 
 with domain in F is G-dif-
ferentiable at x iff every f : F → R, s.t. f (y) ∈ 
(y) when 
(y) is defined
and nonempty, is s.t. f (x) ∈ R, and Gâteaux differentiable at x. Their (common)
Gâteaux differential is then the G-differential of 
at x.

THEOREM 1. If an IWF W with parameter ζ ∈ ZF is G-differentiable on P

at π̄ , then its differential equals
∫
eζ t 〈q, δπ(t)〉dt for some q ∈E�.

The theorem justifies discounting, i.e., shows that the time component of the
derivative of welfare is exponential in time, with a time-independent shadow price
q applied to current policy changes δπ(t).
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Mertens and Rubinchik (2009) provide (some) tools to prove the differentiability
assumption.

Next we express the discount rate ζ in terms of the parameters of an OG model.
The first step is to move from the objective of a single decision maker to a welfare
aggregator over individual utilities.

2.3. Constructing an IWF

This section provides sufficient conditions for a welfare function to be an IWF in
an OG model. They are twofold. The first relates individual lifetime utilities over
policies (Definition 6); the second restricts the aggregator (Definition 7).

2.3.1. Population. Individuals differ by type τ ∈ � (� finite) and by birth-
date, x ∈ R. They have life length Tτ , and Nτ

x dx = Nτ
0 eνxdx is the number of

births in (x, x + dx).

2.3.2. Utilities over policies. Assume now that individual lifetime utility func-
tions are defined over policies. The time-invariance property below requires that
whenever any policy π is delayed by h the resulting utility profile v(Sh(π)) equals
that under π up to an affine transformation when also shifting the dates of birth
of the agents: shifting policies and agents preserves interpersonal comparisons of
utility differences.

DEFINITION 6. A profile v of R-valued functions vτ
x defined on P is a valu-

ation if it is weakly shift-invariant, i.e., ∃ Lebesgue-measurable ah ∈ R�, bh >

0: ∀h ∈ R, v ◦ Sh = ah + bhSh ◦ v. The profile is a strict valuation if it is
shift-invariant, i.e., if ah = 0, bh = 1.

There is a simple translation of a valuation into a strict one:

LEMMA 2. For a valuation v there exist constants A ∈ R� and � ∈ R s.t.
uτ

x = Aτ 1−e−�x

e�−1 + e−�xvτ
x is a strict valuation, with x for the ratio at � = 0. �

is unique except if ∀τ , vτ
x1

(π1) = vτ
x2

(π2) whenever vτ
xi
(πi) ∈ R. � is called the

parameter of the valuation.

Proof. By Lemma 8, with n = #�, bh = e�h and ah = Ae�h−1
e�−1 for some

constants A and �, the ratio being h for � = 0. The rest is obvious.

COROLLARY 1. For a valuation v and a constant policy π , vτ
x (π) is of the

form e�xvτ (π) + Cτ .

Proof. Apply Lemma 2, and for v strict, use the definition.

Thus the parameter � is the rate of growth of individual utility scales over
policies. It will be further disentangled in Propositions 2 and 3 into growth effects
and effects of the utility functions in the OG model.
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2.3.3. Aggregation

DEFINITION 7. An invariant welfare aggregator (IWA) is an R-valued function

V on R
�×R

(utility-profiles), s.t. ∃ Lebesgue-measurable ah, bh > 0: ∀h ∈ R, V ◦
Sh = ah + bhV —i.e., V is weakly shift-invariant.12

A proof similar to that of Lemma 1 yields now

LEMMA 3. ah and bh in Definition 7 can be taken as ah = a ech−1
ec−1 , bh = ech,

the ratio being defined by continuity at c = 0. c is unique if V takes at least two
different real values. c is called the parameter of the IWA.

Given the goal of evaluating policy changes from the baseline, it is natural
to aggregate individual utility differences from the baseline. Thus we assume
henceforth, for any valuation v, that vτ

x (π̄) ∈ R ∀τ . This condition is independent
of x by Corollary 1.

LEMMA 4. Take a valuation v with parameter �, and a IWA Vc,r with param-
eter c, positively homogeneous of degree r .

Then W(·) def= Vc,r (v(·) − v(π̄)) is an IWF with ζ = �r + c.
If the valuation is strict, homogeneity is not needed, and ζ = c.

We could continue and use general IWAs throughout (homogeneous in Sec-
tion 4.1); however, for concreteness, and to have an explicit parameter c, we
concentrate henceforth on the classical case, and first summarize for future use
our results for that case.

2.4. The Utilitarian Aggregator

The two social welfare functions (SWF) used in Section 4 are based on the same
utilitarian aggregator. It may, however, be just a correspondence, e.g., as the integral
in Definition 8 may very well diverge for some policies, so some additional care
is required.

DEFINITION 8. The utilitarian aggregator S maps a valuation v to S(v) =∫ ∞
−∞ e−βx

∑
τ Nτ

x (vτ
x − vτ

x (π̄))dx, understood as the interval between the lower
and upper wide Denjoy integrals [e.g., Gordon (1994)].13

LEMMA 5. For a valuation v with parameter �, and S∗ the upper bound of S

(the upper integral), S∗(v) is an IWF with ζ = � + ν − β.

Proof. S∗(v) = W of Lemma 4, using the IWA, with degree r = 1 and
parameter c = ν − β, Vc,r : u �→ ∫ ∗

e−βx
∑

τ Nτ
0 eνxuτ

xdx.

THEOREM 2. Let v be a valuation with parameter �. If W = S(v) is G-
differentiable on P at π̄ and �+ν −β ∈ ZF , then ∃q ∈ E�s.t. W ’s G-differential
at π̄ equals

∫
e(�+ν−β)t 〈q, δπ(t)〉dt .

Proof. ζ = �+ν −β ∈ ZF . G-differentiability of W implies that of S∗, whose
differential from Theorem 1 is the G-differential of W .
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We obtain thus β − ν − � as discount rate for policies. Our purpose in the next
two sections is to identify the last parameter, �, in terms of economic primitives
in an OG model.

3. A GROWING ECONOMY

Valuations with their built-in time invariance might seem confined to stationary
economies, but they also arise naturally in models with exogenous growth. We
impose only the minimal conditions required for the existence of balanced growth:
homogeneity of utility functions with respect to consumption, constant returns
to scale in production, absence of land and natural resources, and labor-saving
technological growth.

3.1. The Economy

3.1.1. Consumption and labor. Instantaneous consumption is a nonnegative
bundle of n consumption goods and h fractions of total time allocated to h different
types of labor. Individual preferences over lifetime streams of time allocation and
consumption bundles are described by a utility function Uτ , homogeneous of
degree 1 − ρτ in consumption. There are two interpretations of the parameter
ρτ : (1) relative risk aversion coefficient and (2) income elasticity of the marginal
utility of income. Indeed, by fixing consumption prices and relative wages, labor
income varies linearly with the wage level, by homogeneity, so the individual
indirect utility function, as a function of labor income, has, by homogeneity, the
specified relative risk-aversion coefficient or elasticity.

The fraction of time, zτ
i (s, t), devoted at date t to activity i by an agent of type

τ and age s is multiplied by a nonnegative and integrable efficiency factor ετ
i (s) to

form effective time. Effective time devoted at date t to any activity is multiplied by
eγ t to form effective labor input, eγ t ετ

i (s)z
τ
i (s, t), thus representing labor-saving

technological progress.

Example

With γ = 0 and ε(s) = 1 in the first part of life and zero thereafter, the model is a
continuous-time reinterpretation of the standard OG model, as, e.g., in Samuelson
(1958) or Gale (1973).

3.1.2. Production. There are m capital goods and a corresponding invest-
ment good for each, linked by the usual capital accumulation equation, Ki ′(t) =
I i(t) − δiKi(t),14 Ki ≥ 0 denoting capital and I i investment of type i, with δi

as depreciation rate. Consumption and investment goods are manufactured instan-
taneously by production firms from (the services of) capital and effective labor
(and, possibly, from investment), with as instantaneous production set a closed
convex cone Y ⊆ Rh

− × Rm
− × Rm × Rn of production vectors (−L,−K, I, C),

satisfying the classical free-disposal and irreversibility (Y contains no straight
line) conditions. An investment firm of type i acquires capital Ki(t0) at time t0,
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chooses investment flows, rents out accumulated capital to production firms, and
sells Ki(t1) at time t1 > t0.

Investment goods can be viewed both as outputs and as inputs. E.g., disvestment
is crucial to model resource extraction. Or, to model a storable good, introduce a
corresponding investment good and capital good (“the good in storage”). A pro-
duction firm creates the storable investment good, purchased by an intermediary
investment (“storage”) firm that transforms it into the corresponding capital good,
which has no use in production. At the time of consumption, the investment firm
disinvests and sells the corresponding investment good to a production (“market-
ing”) firm, which transforms it one to one into the corresponding consumption
good. So allow all investment firms to disinvest as well as invest in all goods;
restrictions on disinvestment are described by Y .

To include consumer durables, introduce the corresponding investment and
capital goods. A production firm creates the durable investment good, purchased
by an intermediary investment firm, which rents the capital good out to a leasing
production firm, which produces with this capital the consumption good (services),
purchased by consumers.

3.1.3. Initial condition. This section ensures that the production set (set of
feasible input and output paths) is well defined. Indeed, the formula in Lemma 6
implies that Ki(·) is uniquely determined by I i(·), but does not suffice for any
investment policy (e.g., I is a function of current K instead of time, cf. example
infra) to have a well-determined outcome.

To ensure its boundedness, assume capital cannot reproduce itself:

Assumption 1 (No Rabbit Economy). (0,−K, I, 0) ∈ Y ⇒ I ≤ 0.

Remark 3. Observe that although production of durables, as described before,
involves a production of consumption good with only capital and no labor input,
it does not violate our assumption on Y that no investment good can be produced
without some form of labor input. Similarly, production activities (as for storable
goods) transforming investment goods one to one into consumption goods, without
any capital or labor input, do not violate this assumption.

To see the need for Assumption 1, consider the following “rabbit economy”:

Example

Assume a single good, a single type of labor, and a CES production function
(AKα + BLα)1/α , A1/α ≥ R with R = γ + ν + δ. In order to get an upper
bound on capital and investment, consider a path with all agents working full
time and consuming nothing. Note that Lt = L0e

(γ+ν)t , so for D = BLα
0 ,

K ′(t) = [AKα(t)+Deα(γ + ν)t ]1/α − δK(t); or with x(t) = K(t)e−(γ + ν)t ,
x ′(t) = [Axα(t)+D]1/α − Rx(t) ≥ D1/α > 0. Because x(t) ≥ 0, there is no
solution; i.e., the upper bound of K(t) is infinity. And even if B = 0, the solutions
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are x(t) = Ce(A1/α−R)t , with C ≥ 0 arbitrarily large, so K(t) is unbounded in this
case too.

As for any differential equation, initial conditions are needed. Their natural
form is that the capital stock Kt converges at −∞ to given initial values, which
become part of the description of the techology. Note that non-null initial values
can occur only for capital goods with δi = 0, corresponding to land and resources.
But, for balanced growth, those initial values must be zero, thus ruling out land
and natural resources:

Assumption 2 (Initial Condition). Let δ = mini δ
i . Then eδtKt converges

exponentially fast to 0 along some sequence t → −∞.

Also assume R
def= γ + ν + δ > 0.

LEMMA 6.
(i) Ki(t) = ∫ t

−∞ eδi (s−t)I i (s)ds, where the L1-norms of all feasible integrands are
bounded by a constant times e(γ+ν)t ; in particular, the integral is a Lebesgue integral.

(ii) Let it = e−(γ+ν)t It , kt = e−(γ+ν)tKt . There exists K̄ s.t. along any feasible path,∫ b

a
‖it‖dt ≤ K̄(b − a + 1) for any pair a ≤ b, and (hence) ‖kt‖ ≤ K̄ .

Remark 4. As explained and addressed in Appendix C, the initial condition is
a bit too stringent conceptually, requiring exponential convergence to 0 instead of
just plain convergence. This is not crucial in this paper: land and natural resources
being ruled out anyway by the need for balanced growth, it is natural to expect all
δi > 0, so just Kt bounded at −∞ already ensures exponential convergence to 0.

3.2. Time-Invariant Solution Concepts

To apply the main result, one has to obtain time-invariant profiles of utilities, or a
valuation v for this economy.

Consider, to fix ideas, a map from policies to corresponding equilibria. It in-
duces a profile of utility functions over policies. For this to be a valuation, a
very natural consistency requirement must hold. When a policy is delayed, the
resulting allocation should be the same as under the original policy, only in a
transformed economy, with time shifted and quantities scaled up appropriately.
Say the policy increases the income tax rate by 1% above a given quantile of the
income distribution for 10 years and returns to the baseline thereafter. Delaying
it by a year should induce the same response of the economy as applying it
today, renaming the affected agents (and dated goods), and rescaling all quantities
according to their growth rate. More precisely,

DEFINITION 9. The transformation Th

(i) applies Sh to allocations and production plans;
(ii) multiplies individual consumption bundles by eγh;

(iii) multiplies aggregates—effective labor, capital, investment, and consumption—by
e(γ+ν)h.
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Remark 5. Equivalently, Th shifts the origin of time back by h, multiplies
population measure and thus all aggregates by eνh, and divides units of all nonlabor
goods by eγh.

DEFINITION 10. An outcome function ς is a map from policies to individual
allocations, which is invariant under all Th: Th ◦ ς = ς ◦ Sh.

Remark 6. We abstract away the exact nature of outcome functions, keeping
only the time-invariant structure, to blackbox the policy space.

The rest of this section justifies Definition 10, in Section 3.2.2, gives exam-
ples of outcome functions in Section 3.2.3, and further, in Section 3.2.5, de-
fines balanced growth paths and shows that they are the outcomes of constant
policies.

3.2.1. Isomorphism between Arrow–Debreu economies. To motivate Defi-
nition 9, first define isomorphism between two Arrow–Debreu economies with
finitely many goods and individuals. They are isomorphic if there is a linear map
ξ from the commodity space of one economy to that of the other and there are
one-to-one mappings from the sets of individuals and of firms of one to those of
the other such that

(i) the consumption set, preferences, and endowment of any agent in the first economy
are mapped by ξ to those of the corresponding agent in the second economy;

(ii) the production set of each firm in one economy is mapped by ξ to that of the
corresponding firm in the second;

(iii) shareholdings are preserved.

When consumption sets are the nonnegative orthant, it must be that ξ maps the
commodity names in the first economy one to one to those in the second, together
with appropriate rescalings (changes of unit).

Another aspect of isomorphism, which is more familiar with a continuum of
agents, is to multiply the population measure by a positive constant C. Share-
holdings refer then for each firm to a probability distribution over the agents;
and the one-to-one mapping of agents has to be understood to be measurable,
as well as its inverse, and such that the induced map on measures maps the
first population measure to 1/C times the second. Further, the firms’ production
sets, as well as points therein, are multiplied by C (in addition to the above
rescalings).

When production has constant returns to scale, as here (capital-accumulation
equations are linear, and the instantaneous production sets, cones), sharehold-
ings become irrelevant (profits being zero), and multiplication by C maps the
production set onto itself.

The isomorphism is equivalently described by a single linear bijection (with
the required structure) between the allocation spaces (product of all consumption
sets and production sets) of both economies. For the isomorphism property, it
suffices then that it maps allocations to and onto allocations, endowments to
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endowments, and preserves preferences, and that population measures are mapped
to each other by the induced map of agents and the multiplication by C, obtaining
C from how the map behaves on production sets as compared to consumption
sets.

We will use this below with a new twist, in that indeed the mass of each agent
is multiplied by C, but with as final effect to preserve the population measure, it
being σ -finite.

3.2.2. Time-invariance in the OG model. The tranformation Th defined above
is a particular case of such isomorphisms: it maps an agent of type τ born at time
t to an agent of the same type born at t +h, multiplying his mass by eνh, and maps
any good dated t to the same good dated t + h, multiplying nonlabor quantities
by eγh, and labor quantities by 1. Individual time is not a good (not marketed), so
the linear ξ map of Section 3.2.1 is applied using the equivalent vector of effective
time. Thus,

PROPOSITION 1. Th is an automorphism of the economy.

Now, Th mapping the economy to itself h time-units later, and policies being unit-
free, the corresponding operation on policies is a pure time-shift, without rescaling.
So, natural solution concepts having the invariance properties of the model, Th

must transform solutions of π to those of Shπ . This justifies Definition 10.

3.2.3. Examples of outcome functions. A first example maps a policy π to a
locally unique equilibrium close to that of the baseline π̄ , defining the map in an
arbitrary invariant way elsewhere.

Indeed, if such a selection exists, then it should satisfy invariance: time-shifts
map the balanced growth path to itself, so neighboring paths are mapped in its
neighborhood; hence, by local uniqueness, the selection is mapped to itself.15

The next example is the maximization of a time-invariant social welfare func-
tion, say a utilitarian one, provided the maximum is unique.

Another example is the “identity map”: policies are perturbations of final con-
sumption. This way our results also yield the usual, nonequilibrium approach to
discounting.

One way to model policy surprises is to assume the contracts signed (“at the
beginning of time”) in anticipation of the baseline policy cannot be changed, so
in the wake of an unexpected policy change, individuals sign additional contracts
taking their baseline consumption as new endowment. The initial equilibrium
being a balanced growth equilibrium, the economy with that endowment is also
time-invariant, and the resulting map from policies is again an outcome function
if the final allocation is locally unique. At least when policies are lump sum taxes
and benefits (endowment perturbations), this case is particularly simple, as net
individual demand under the baseline prices is zero, so income effects disappear
and the variation in individual utility depends just on the value of the endowment
perturbation.
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3.2.4. The case of indeterminacy. Even if dealing with a situation that does
not guarantee local uniqueness, one can choose the prices closest to those in the
initial equilibrium in terms of the L∞-norm

∑
i ‖ln pi(t) − ln p̄i(t)‖∞, p̄(t) being

the baseline price system (or equivalent ones, e.g., the L∞-norm of the �2-norm
over i of the ln differences). Though the price system does not necessarily specify
an equilibrium, it does specify the individual utility levels, which is sufficient for
welfare analysis. The logarithms make the distance independent of price normal-
ization, and hence induce a distance between price rays: for any multiple of p̄i , the
minimum, over all multiples of pi , will be achieved at the corresponding multiple,
and the value of the minimum is independent of this multiple, and remains the
same when the roles of p̄i and pi are permuted. Finally, the L∞-norm being
shift-invariant, the selection will be time-invariant. If the set of minimizers is
not a singleton, their correspondence can be expected to be sufficiently thin so
that hopefully any outcome function obtained as an invariant selection (using the
axiom of choice) generically satisfies the differentiability requirement — e.g., as in
Mertens and Rubinchik (2009), discussed in Section 7. Finally, because Theorem
2 already allows for a correspondence, one could similarly extend Definition 10,
to obviate the need to appeal to the axiom of choice in such cases.

But this is only one example of how to possibly construct outcome functions in
the case of indeterminacy (which we do not expect to occur in the model of Section
3.1); there should be a continuum of such outcome functions then. Because our re-
sults below hold for any of them, conceivably with a linear functional q depending
on the chosen outcome function, the discount rate is established even then.

3.2.5. Balanced growth

DEFINITION 11. A balanced growth path is a T-invariant allocation.

On a balanced growth path individual labor is independent of the birthdate, indi-
vidual consumption grows at rate γ , and all aggregate inputs and outputs at rate
γ + ν, as in the standard (1 type, 1 good) case [e.g., Arrow and Kurz (1970), King
et al. (2002)].

The following sharpens the interpretation of basic policies; see Corollary 1:

LEMMA 7. The outcome of a constant policy is a balanced growth path.

Proof. By Definition 10, it is mapped to itself by any Th.

4. THE DISCOUNT RATE

The discount rate for cost–benefit analysis depends on the social welfare function.
We consider both relative and classical utilitarianism.

Let v = U ◦ ς be the profile of utility functions on P induced by the profile of
utility functions U and the outcome function ς . Assume vτ

x (π̄) ∈ R ∀τ .

4.1. The Classical Utilitarian Approach

In Section 4.1 we assume (1 − ρτ)γ + ν − β ∈ ZF ∀τ .
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4.1.1. Evaluating policies

PROPOSITION 2. Assume all types have the same parameter ρ. Then v is a
valuation with parameter � = (1 − ρ)γ .

Proof. Let (c, l)
def= ς(π). By the time-invariance of ς , ς(Shπ) = Th(c, l) =

(eγhSh(c), Sh(l)). So, by homogeneity of U , v ◦ Sh = e(1−ρ)γ hSh(v). Thus v is a
valuation with ah = 0 and bh = e(1−ρ)γ h.

Proposition 2 and Theorem 2 imply now

COROLLARY 2. Assume all types have the same parameter ρ. If W = S(v)

is G-differentiable on P at π̄ , then for some q ∈ E�, its differential equals∫
e(ν−β+(1−ρ)γ )t 〈q, δπ(t)〉dt .

In a society with type-dependent ρ, classical utilitarianism leads to questionable
implications; besides, it invalidates discounting:

COROLLARY 3. The welfare differential is

∑
τ

∫ ∞

−∞
e(ν−β+(1−ρτ)γ )t 〈qτ , δπ(t)〉dt =

∫ ∞

−∞
e(ν−β+γ )t

〈∑
τ

e−ρτγ tqτ , δπ(t)

〉
dt,

and hence the weight in the welfare function of the types with the smallest ρ

approaches one as time goes to +∞.

There are other ways to express the same idea; e.g., that along any balanced
growth path, in an optimal redistribution of consumption goods (keeping the rest
fixed) the fraction allocated to the agents with the smallest ρ converges to 1.

4.1.2. The discount rate for cost–benefit analysis. In cost–benefit analysis,
the effects of a variation in public policy are traditionally first “monetized”, i.e.,
expressed as an equivalent perturbation of individual endowments of consumption
goods, here initially 0.

Let thus E be the Banach space M of measures16 on age-groups and types,
i.e., on ∪τ ([0, Tτ ] × {τ }), with values in Rn (space of consumption bundles),
with π̄ = 0 as baseline, where b ∈ B determines the endowment perturbation
ω(t) = e(γ+ν)t b ∈ M at t . Equivalently, express b in a unit-free way, letting, for
each set of agents S, b(S) equal the fraction of baseline aggregate consumption S

receives, good by good.
Policies are thus endowment perturbations, representing arbitrary flows of lump-

sum real taxes and benefits. Then we get β+ργ as the discount rate for “aggregate”
resources ω(t),17 confirming our simple calculation of Section 1.2:

COROLLARY 4. Assume all types have the same parameter ρ. If W = S(v)

is G-differentiableon P at 0, then its differential equals, for some q ∈ M�,∫
e−(β+ργ )t 〈q, ω(t)〉dt .
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Proof. By construction, π̄ = 0, so δπ = π and π(t) = e−(γ+ν)tω(t).

Remark 7. Clearly, choosing a different growth rate in the definition of ω would
lead to the same corollary with a different discount rate. That statement would,
however, be empty, because there can be no outcome function: B being a neigh-
borhood of 0, choose a negative measure b s.t. ∀s ∈ [0, 1], sb ∈ B, and let ψ = bφ

for some φ ∈ K with values in [0, 1]. Then ψ is a policy, yet when it is shifted
sufficiently to ±∞, the feasible set under that policy becomes empty, by Lemma 6.

4.2. The Relative Utilitarian Approach

In this section we assume ν − β ∈ ZF .
As an alternative to classical utilitarianism, we suggest applying relative utili-

tarianism (RU),18 the social welfare functional where individual VNM utilities are
normalized between zero and one, and then summed. It is stressed in Dhillon and
Mertens (1999) that the RU-normalization of individual utilities has to be done on
some universal set A of acceptable alternatives, not specific to the problem under
consideration, and representing the constraints both of feasibility and of justice.19

Assumption 3. The set A of acceptable policies is shift-invariant and each
individual utility is bounded on A.

The boundedness is a minimal implication of justice; as to the shift-invariance,
it is clearly a property of feasibility, but in relation to justice it has a strong
meaning, that physical units (such as calories per day) are irrelevant. And without
it RU might lead to quite different conclusions. But it is straight in the spirit of
exogenous growth models—that (acceptable) policies affect only the height of the
growth path, not the growth rate; and it is arguably justified in a world described by
such a model: e.g., if the absolute level of calories per day matter, utilities cannot
be homogeneous. And the latter is the key assumption ensuring time-invariance.
Hence the choice of an exogenous growth model here.

Assume thus vNM utility functions, and that ς is defined on A—and hence v

too, by the definitions at the beginning of this section. Let MA denote the RU-
normalization, i.e., the operation on a profile such that each individual utility is
normalized to have a range of size 1 on A.

DEFINITION 12. The relative utilitarian SWF is W = S(MA(v)).

RU’s anonymity axiom implies β = 0 in the specification of S, Definition 8.
However, to allow for a richer model, incorporating, e.g., a nonzero probability of
the world ending tomorrow, β is not restricted here.

4.2.1. Evaluating policies. In a growing economy the RU-normalization
yields shift invariance, hence strict valuations:

PROPOSITION 3. MA(v) is a strict valuation.
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COROLLARY 5. The RU-normalized utility of an agent of type τ on a balanced
growth path is independent of his birthdate.

Proof. Apply Proposition 3 to the case where the basic policy space is a sin-
gleton, which doesn’t do anything, and where the outcome function maps to the
chosen balanced growth path.

COROLLARY 6. If W = S(MA(v)) is G-differentiable on P at π̄ , then its
differential equals

∫
e(ν−β)t 〈q, δπ(t)〉dt for some q ∈ E�.

Proof. Proposition 3 and Theorem 2.

4.2.2. The discount rate for cost–benefit analysis. As in Section 4.1.2, one
gets now, using Corollary 6, the discount rate β + γ for aggregate resources, even
for a population with variable ρτ :

COROLLARY 7. If W = S(MA(v)) is G-differentiable on P at 0, then its
differential equals

∫
e−(β+γ )t 〈q, ω(t)〉dt for some q ∈ M�.

Restricting basic policies b to have all the same distribution over age-groups
and types, and setting β = 0, yields then the main result in Mertens and Rubinchik
(2006).

The derived discount rate, γ , differs generically from the interest rate, even at
the golden rule equilibrium if ν is nonzero.

5. A VALUE-OF-LIFE ARGUMENT

One touchstone is the case β = 0: no discounting of utilities. Do the prescriptions
of the theory then indeed correspond to the intuitive meaning of treating individuals
of different generations equally?

A compelling implication of equal treatment is to give equal weight to individual
lives (cf. note 2), hence, in cost–benefit analysis, to their monetized values, i.e., the
change in real consumption equivalent for the individual to an extension of his life.

The monetized value of life, according to any criteria [e.g., each of the four in
Mishan’s (1971) introduction, or even judicial criteria in assessing damages], is
proportional to the individual’s lifetime income.20

This is also formally true in the above economic model, when allowing for a
variable lifespan: individual lifetime utility is homogeneous, so willingness to pay
to extend life is proportional to lifetime income.

THEOREM 3. In the model of Section 3, extended by variable lifetimes, γ is
the only discount rate ensuring equal monetary value of human lives.

Proof. Let the lifetime utility, Uτ, be defined on consumption and labor streams
of variable length, ∪T (Rn+m)[0,T ]. Consider, for an agent of type τ , an optimal
lifetime consumption stream c of length T1 (including the labor coordinates, taken
say as negative), and let c′ be the restriction of c to [0, T0], with T0 < T1. Let
c̃ be expenditure-minimizing on [0, T1] s.t. Uτ(c̃) = Uτ (c′). Then 〈p, c − c̃〉 is
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the monetary equivalent of the utility loss from (unanticipated) premature death.
Further, he leaves a debt (positive or negative) of 〈p, c′〉; so, because 〈p, c〉 = 0,
the net monetary equivalent of the loss equals 〈p, c′〉 − 〈p, c̃〉.

By homogeneity, and because in a BGE relative prices are constant under time
shift, when time is shifted by h and c is multiplied by eγh, c′ and c̃ get multiplied
by the same factor. Thus, the willingness to pay to avoid premature death21 is
proportional to eγx . The above computation could obviously have been done in
several different ways (e.g., for the case of anticipated death, let c′ be an optimal
plan for a life length of T0), but all of them would lead to the same conclusion.

So, to treat individuals of all generations equally, future incomes must be
discounted exactly at rate γ , as implied by RU (Corollary 7).

This shows that the conclusions of relative utilitarianism and of Assumption 3
are correct in a world as described by this model.

But maybe the conclusions depend crucially on the special features of the model
itself—exogenous growth, homogeneity, balanced growth? Else discounting may
no longer be valid as an exact derivative of welfare, but insofar as it is nevertheless
used, e.g., “as a first approximation,” human lives should still be treated approxi-
mately equally. If then “value of life” does not decrease over time22 exponentially
fast to 0 as a proportion of lifetime income, the growth rate of per capita consump-
tion is still the only discount rate treating human lives approximately equally: for
any lower (resp. higher) rate, values of future lives would become exponentially
higher (resp. lower) than those of present human beings.

The above argument is valid even with variable or stochastic growth; it does,
however, refer to “average human life” at any given time.23 Else further quali-
fications would be needed in case income distribution became more and more
disperse. Thus we have the following theorem:

THEOREM 4. In a world where the ratio of average value of life to per capita
income is bounded away from 0 and ∞, discounting at the growth rate of per
capita income ensures that the present values of average human lives in different
periods are of the same order of magnitude.

6. THE CHOICE OF SOCIAL WELFARE FUNCTION

Given that classical and relative utilitarianism—together with Assumption 3—
have such different implications for discounting, we discuss some of the underlying
principles of equitable treatment of different generations that each incorporates.

Interestingly, in relative utilitarianism, the implication of a time-invariant set of
alternatives consistent with accepted public policy: the rate based on the relative
utilitarian criterion, γ ≈ 2%, falls exactly in the range, “between 1 and 3%” (cf.
Section 1.1), mandated by the U.S. OMB.

Remarkably, relative utilitarianism is also consistent with the “balanced gen-
erational policy” as presented in Kotlikoff (2002, p. 1905), requiring “. . . that the
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generational accounts [lifetime net tax burdens] of all future generations are equal,
except for a growth adjustment.”

The discount rate β + ργ based on classical utilitarianism (Corollary 4) is well
known in the applied literature. Even if individual risk attitudes were identical
[far from the empirical findings; see Einav and Cohen (2007)], based on reported
estimates [e.g., Drèze (1981)], implied discount rates would be far above the range
suggested by the OMB. To get acceptable conclusions one has to set ρ close to
unity [e.g., Stern (2007, pp. 6–11)]. However, imposing individual elasticity or
risk preferences (ρ) contradicts any utilitarian foundation, because only the indif-
ference map is retained as an individual characteristic. But (neglecting society’s
rationality over risky prospects), it is consistent with a welfarist approach, ρ being
then viewed as a parameter of aggregation rather than an individual characteristic.
Note that imposing ρ = 1 means forcing the discount rate implied by Assumption
3 under RU.

The discount rate under classical utilitarianism depends on ρ because of the
presumption that marginal utility of income is independent of the environment
surrounding the individual. In particular, a 1% increase in real income of any of
our contemporaries has the same effect as it would 100 years ago for the same
individual with the same real income.

In contrast, RU, in the context of a growing economy, implies that to compare
individual utility differences, utilities must first be normalized on the feasible
policies (consumption paths), which is time-invariant by Assumption 3. So the
social value of a 1% increase in real income of an individual at a given quantile
of the income distribution is independent of the date. Forcing logarithmic utilities,
as in Stern (2006), amounts to choosing the best possible approximation to this
under traditional welfarism, given his restriction to β ∼ 0.

However, relaxing this restriction, and viewing β as just an arbitrary parameter
of the welfare aggregator, one could obtain exactly the RU welfare function,
without distorting individual utility functions (ρ), by using a type-dependent (even
if probably negative!) discount factor on utilities, βτ = δ + (1 − ρτ )γ , with δ

the “probability that the world ends tomorrow” (compare Corollaries 3 and 6).
Adjusting β rather than ρ was advocated by Arrow24 (in the single type context
of the Stern report).

So RU provides a consistent methodology to aggregate correctly arbitrary (and
heterogeneous) individual lifetime preferences over lotteries, while keeping the
“ethical judgment” input completely independent of those, in the set of “feasible
and just alternatives”—i.e., in the realm of ethics and political philosophy, where
it belongs.

And it is easier and more objective to consider what are “just” laws rather than
to assign millions of individual utility weights. For example, for transfers, in the
form of income taxes, let y denote individual income as a percentage of per capita
income, and let ty denote the net tax (positive or negative), in the same units. (So
ty integrates to 0 under the income distribution µ.) Let the set of alternative tax
rates ty consist of {t | −t0 ≥ m, t ′ ≤ M , t convex and monotone},25 with the
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minimal income m > 0 and the maximal tax rate M < 1,26,27 and conduct a
sensitivity analysis in terms of the parameters m and M—it is typically for those
that different interpretations of justice may give different bounds. This is easier
and clearer than in terms of the millions of welfare weights: the advantage of the
anonymity requirement on laws.

7. CONCLUDING REMARKS

In general, welfare evaluations of policy changes in a growing OG economy entail
further challenges.

7.1. The Static Component of the Derivative

The problem of evaluating small policy changes, i.e., finding the derivative of
social welfare with respect to policy variations, is now reduced to the static one of
computing the linear functional q on the space of basic policies B.28

Observe that the result can hold only along a balanced growth path: else the
direction of q would be time-dependent, contrary to even a very broad definition
of “discounting” as in Mertens and Rubinchik (2010).

7.2. The Differentiability Assumption

Applicability of the results hinges on the existence of differentiable outcome
functions, as illustrated by Remark 7. For the case of endowment perturbations
(Corollaries 4 and 7), this would be a straight extension of Debreu’s classical
generic regularity theorem (1976). There are, however, several aspects that make
such an extension highly nontrivial. First, it is well known that OG models can give
rise to indeterminacy; see, e.g., Kehoe and Levine (1984) and Geanakoplos and
Brown (1985). Next, even if regularity is ensured, already for the welfare function
to be well-defined, the equilibrium has to be stable: the perturbed equilibrium has
to converge sufficiently fast back to the unperturbed solution, both at +∞ and at
−∞.

This program was successfully completed in Mertens and Rubinchik (2009)
for the most classical case (1 good, 1 type, etc.) of our model, ensuring thus at
least nonvacuity of our results. (Time starting at −∞ seems crucial there too.) We
think this should be extendable to the full model of Section 3.1, with policies as
in Section 4.1.2.

7.3. Permanent Changes

Our exclusion of permanent policy deviations, e.g., to a different constant policy
from the beginning of time (Section 2.1.1), does not necesarily exclude permanent
policy changes, e.g., switching at some time forever from the baseline policy to
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some other constant policy; however, to satisfy the assumption ν − β ∈ ZF (in
Section 4.2), one then needs a natural restriction β > ν.

For evaluating permanent policy deviations, or the above when β ≤ ν, one
should reinterpret welfare functions in this paper as normalized, e.g., in per capita
terms, such as limT →∞ (1/NT )

∫ T

−T
eνx

∑
τ Nτ

0 Uτ
x dx [where NT = ∫ T

−T
eνxdx =

2 sinh(νT )/ν]. Welfare per capita is our preferred interpretation of a social welfare
function, as would have been Harsanyi’s, if we are reading him correctly, e.g., when
thinking of it as the expected utility of an unidentified individual. Welfare as a sum,
as in this paper, is then only a higher-order term (of order 1/NT ) in the expansion
of the above (w.r.t. NT ), to fine tune transitions. In fact, our restriction ν −β ∈ ZF

just ensures that the other terms vanish. This whole area remains to be explored;
we have no idea about the form of an asymptotic expansion, nor a fortiori about
the right way to differentiate it.

Because under RU, for constant policies π , Uτ
x (π) is independent of x (Corol-

lary 1 and Proposition 3), the above average immediately gives the SWF on
constant policies. But a conjecture that this Uτ might yield q, say as a derivative,
cannot work: it is independent of β, where as q should in general depend on β: e.g.,
policies favoring the old will come out better with high discounting, because the
old were born earlier. This is why the heavier approach in Mertens and Rubinchik
(2009) was needed to get a handle on q analytically.

NOTES

1. Circular A-4 of the OMB [U.S. Office of Management and Budget (2003)] mandates that all
executive agencies and establishments conduct a “regulatory analysis” for any new proposal, and more
specifically (pp. 33–36), a cost–benefit analysis, at rates of both 3% and 7%. Both rates are rationalized
there as “the” interest rate: the first one relative to private savings, the second one relative to capital
formation and/or displacement, i.e., as the gross return on capital.

2. Other practitioners share this view; e.g., “Morally speaking, there is no difference between
current and future risk. Theories which, for example, attempt to discount effects on human health in
twenty years to the extent that they are equivalent to only one-tenth of present-day effects in cost-benefit
considerations are not acceptable” [Wildi et al. (2000)].

3. And it is not our purpose here to argue in favor or against. There may very well be good
arguments, e.g., for rather using the population growth rate to discount.

4. “How far we are to consider the interests of posterity when they seem to conflict with those
of existing human beings? Perhaps, however, it is clear that the time at which a man exists cannot
affect the value of his happiness from a universal point of view; and that the interests of posterity
must concern a Utilitarian as much as those of his contemporaries, except in so far as the effect of
his actions on posterity—and even the existence of human beings to be affected—must necessarily be
more uncertain.”

5. Aggregation of utility differences is also why strong Pareto and Ramsey’s anonymity can be
combined here, avoiding the impossibility results of, e.g., Basu and Mitra (2003) and Crespo et al.
(2009). The literature in welfare economics and social choice offers diverse ways to construct welfare
criteria by weakening one of the two desiderata. Koopmans (1960) axiomatizes discounting utilities,
or “social impatience.” Several authors are concerned with incorporating intergenerational justice
principles into a social welfare criterion. Chichilnisky (1996) offers the “no dictatorship of the past”
and “no dictatorship of the future” axioms (describing “sustainable preferences”) and shows that the
resulting welfare criterion is inconsistent with a sum of discounted utilities. Asheim et al. (2006) and
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84 JEAN-FRANÇOIS MERTENS AND ANNA RUBINCHIK

d’Aspremont (2007) show the existence of welfare functions satisfying some of Koopmans’s postulates
of intergenerational equity, but still, in particular, Chichilnisky’s axioms. For alternative formulations
of ethically acceptable allocations see, e.g., Asheim (1991) and Fleurbaey and Michel (2003).

6. Determinacy (cf. Section. 7) is a must for any form of comparative statics.
7. This poses novel questions concerning the above model, especially how to specify correctly

initial conditions at −∞. This is addressed in Section. 3.1, because those initial conditions are crucial
to our argument (in Proposition. 1); informally, there can be no balanced growth in the presence of
natural resources.

8. See Dhillon and Mertens (1999) for axiomatization.
9. For the United States, e.g., according to Johnston and Williamson (2007), the average until

2006 is 2.1% since 1950, 1.9% since 1900 or 1850, 2% since 1869, the first year when data become
reliable (loc. cit.), especially for growth computations, because by then both colonial expansion and
the immediate aftermath of the Civil War were over.

10. K[= KR] is defined in Schwartz (1957–1959) or Gel’fand and Shilov (1959).
11. Implying that the integrals exist, as improper wide Denjoy integrals (cf. note. 13).

12. One can define in the same way IWAs on any shift-invariant subspace of R
�×R

(e.g., inte-
grable functions). This may sometimes be more convenient, but we will not need this generalization
here.

13. The reader is welcome to think of any other type of integral (say, Lesbegue), as no properties
possessed solely by the wide Denjoy integral are used in the paper. The basic reason for using Denjoy
integration is the capital-accumulation equation in Section. 3.1 below, to be sure any solution of its
differential equation form is also one of the integral form, and then to systematically use always
the same integration theory on R. No harm is done by sticking with the most encompassing one, in
particular, in this case, where a requirement of absolute summability would have no economic meaning
whatsoever.

14. Assumed to hold a.e., and implying the conditions for it to be meaningful: Ki
t is assumed

locally a Denjoy primitive and I i
t locally Denjoy-integrable.

15. Clearly this also needs some form of stability, else as the amount of shifting grows, the
corresponding equilibria might slowly get out of the specified neighborhood. However, for the
welfare differential to exist in this model, much more stringent stability properties are needed
anyway.

16. Or the absolutely continuous measures (L1), or those with continuous densities.
17. More precisely, the “welfare value” of the aggregate endowment perturbation at time t ,∑
τ 〈qτ , ωτ

t 〉 [heuristically,
∑

τ

∫
qτ (s)ωτ

t (ds)], is discounted at this rate.
18. The axiomatization [Dhillon and Mertens (1999)] is for a finite set of agents.
19. Justice including in particular the anonymity requirement on laws. Diamond’s critique was

probably treated too lightly loc. cit., by essentially siding with Harsanyi, and is a source of recurrent
questions and objections. It rests upon a confusion between on one side intuitive concepts of justice—
e.g., in this case, anonymity of laws—, which are described by the “set of feasible and just allocations,”
and on the other requirements for correct aggregation, which are described by the RU axioms. The
“wrong” alternative in his example is dismissed essentially because it involves unjust (non anonymous)
laws, not because it involves an incorrect utility calculus.

20. Even a claim that from the point of view of society, it would be proportional to average lifetime
income at his time would leave our argument below intact.

21. Oher ways to compute a “value of life,” such as fully anticipated lifespans, or adding the welfare
effect on the rest of society, lead to the same theorem.

22. Spending for life extension cannot be invoked as a measure of its value, because it might very
well increase with the probability of success of treatments. But because this probability is bounded
above, it can be invoked for the asymptotic behavior.

23. As opposed to the “social value of a specific individual’s life” at that time, which presumably
depends also on his contribution to society in the rest of his life.

24. Personal recollection from private conversation.
25. Thus ty ≤ 0 for y ≤ 1 (we assume feasibility, i.e., m ≤ M).
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26. To illustrate the positive aspect of this approach, consider the change of attitudes toward justice
reflected by the passage of the sixteenth amendment in the United States.

27. So, to normalize utilities, the minimal and maximal after-tax incomes at y are wy = y +
X(1 − y) with X = M for y ≥ 1 and X = m else, and w̄y = y + M

∫
(x−y)+µ(dx) − [m −

M
∫
(x−y)+µ(dx)]+

∫
(y−x)+µ(dx)∫
min(x,y)µ(dx)

, where z+ def= max(z, 0).

28. Mertens and Rubinchik (2009) obtain q in the classical case of our model, with policies as in
Section 4.1.2.

29. Conceptually our “initial condition” is best thought of as a pair: on the one hand, a general
form, say something like Kt bounded at −∞, provided one can prove from this convergence at
−∞, and on the other hand, a specific assumption to ensure balanced growth, i.e., that the limit
is 0.

30. Independently of the natural requirement that for natural resources (e.g., mining), Y should
force I i ≤ 0, and for land (raw acreage), I i = 0.

31. Note that for m = 1 this bound is attained, so the strong no-rabbit condition is best possible:
else, under the “weak” initial condition, there exist feasible paths with ‖kt‖ unbounded at −∞, and
for any fixed t the set of feasible Kt is unbounded.
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Crespo, Juan, Carmelo Núñez, and Juan Rincón-Zapatero (2009). On the impossibility of representing
infinite utility streams. Economic Theory 40(1), 47–56.

Dasgupta, P. (2008) Discounting climate change. Journal of Risk and Uncertainty 37(2–3), Special
Issue on Discounting Dilemmas, 141–169.

d’Aspremont, C. (2007) Formal welfarism and intergenerational equity. In J. Roemer and K. Suzu-
mura (eds.), Intergenerational Equity and Sustainability, Conference Proceedings of the IEA
Roundtable Meeting on Intergenerational Equity, pp. 113–130. Houndsmills, Basingstoke, UK:
Palgrave Macmillan.

Debreu, G. (1976, May) Regular differentiable economies. American Economic Review 66(2), Papers
and Proceedings of the Eighty-eighth Annual Meeting of the American Economic Association, 280–
287.

Demichelis, S. and H. M. Polemarchakis (2007) The determinacy of equilibrium in economies of
overlapping generations. Economic Theory 32(3), 3461–3475.

Dhillon, A. and J.-F. Mertens (1999) Relative utilitarianism. Econometrica 67(3), 471–498.
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APPENDIX A: AN EQUATION WITH
SHIFT OPERATORS

LEMMA 8. Let E be a set, with maps Sh : E → E s.t. Sh1 ◦ Sh2 = Sh1+h2 . Let V be the
space of functions of time with values in R

n
; note that Sh operates on V by Definition 2.1.

For ϕ : E → V , assume that ∀h ∃ah ∈ Rn, bh ∈ R++, both Lebesgue measurable in h, s.t.
ϕ ◦ Sh = ah + bhSh ◦ ϕ.

Then ∃ζ ∈ R and A ∈ Rn such that ∀h, one can take bh = eζh, ah = Aeζh−1
eζ −1

, the fraction
being defined by continuity if ζ = 0.

ζ is not unique iff ∃α ∈ Rn : ϕi
e(t) ∈ R ⇒ ϕi

e(t) = αi , the superscript denoting the
coordinate. When ζ is unique, Ai is unique iff ∃e, t : ϕi

e(t) ∈ R.

Proof. Let h = h1 + h2. Then ϕ ◦ Sh = ah2 + bh2 [Sh2 ◦ (ah1 + bh1 Sh1 ◦ ϕ)]. So
ah + bhSh ◦ ϕ = ah2 + bh2ah1 + bh2bh1 Sh ◦ ϕ.

If, for some pair h1, h2, bh �= bh1bh2 , then whenever (Sh ◦ ϕ)i
e(t) ∈ R, the above

equation determines its value, say αi . The same obviously holds then for ϕ itself. For
such a ϕ, one can set ah = 0, bh = 1 ∀h; thus we can always assume bh1+h2 = bh1bh2 .
Because bh > 0, taking logarithms reduces it to f (x + y) = f (x) + f (y), of which
it is well known that any Lebesgue-measurable solution is linear [Fréchet (1913)]. Thus
bh = eζh.

As to ah, for each i, if ∃e, t : (Sh ◦ ϕ)i
e(t) ∈ R, then our above equation simplifies, after

substituting the b’s, to ai
h1+h2

= ai
h2

+ai
h1

eζh2 , and otherwise one can set ai
h = 0 ∀h, so again

we can assume that the above equation holds always. The same argument as above implies
then the result in the case ζ = 0. And for ζ �= 0, we get ah2 + ah1e

ζh2 = ah1 + ah2e
ζh1 ,

i.e., ah1(e
ζh2 − 1) = ah2(e

ζh1 − 1). This implies first a0 = 0, hence the result for h = 0,
and next that, for all h1, h2 different from 0, ahi

/(eζhi − 1) is independent of i, so ah

eζh−1
is

constant over all h �= 0. Because ζ �= 0, we can write this constant as A

eζ −1
, thus finishing

the proof, the uniqueness part being elementary.

APPENDIX B: PROOFS

B.1. THE SPACE K E

This section is to enable a more convenient laguage (in Lemma 9) for the statement of the
main result: else all topological concepts there (like continuity, Gâteaux-differentiability,
density) would have to be given a more complex “sequential” reinterpretation, entailing in
addition a slight loss of generality (any case covered by that theorem would also be by the
present one, endowing F with the weak topology generated by the sequentially continuous
linear functionals).

Proof of Remark 1. Obviously, for ϕ ∈ KE , f ◦ ϕ ∈ KR. Conversely, because f ◦ ϕ

is C∞ for all f ∈ E∗, ϕ is C∞ with values in E [e.g., Edwards (1965, Ex. 8.14, p. 609)].
Because further each f ◦ ϕ has compact support, it is elementary that ϕ has compact
support.
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DEFINITION 13. The topology on KE is the strongest locally convex topology s.t. ϕn

in KE converges to 0 iff ϕn and its successive derivatives converge uniformly to 0 and
∃h ∈ R : ϕn(x) = 0 for |x| ≥ h.

LEMMA 9. The topology on KE is uniquely defined, and KE is an LF space [e.g.,
Kelley and Namioka (1963; 22C p. 218)]. A sequence in KE converges to 0 iff it is as in
Definition 13. A linear map to a locally convex space is continuous iff it is sequentially so.

Proof. The Kn = {ϕ ∈ KE | |x| ≥ n ⇒ ϕ(x) = 0}, endowed with the topology
of uniform convergence of all derivatives, are an increasing sequence of Fréchet spaces
(using Remark 1, or directly), with Kn topologically a closed subspace of Kn+1. Thus the
specified topology is the strongest locally convex topology s.t. the inclusions Kn ⊆ KE

are continuous: this is the inductive limit topology T [Kelley and Namioka (1963; 16Cb
p. 149)], and also [Kelley and Namioka (1963; 22C p. 218)] the inductive limit (KE, T ) is
an LF space, and is a strict inductive limit [Kelley and Namioka (1963; 17Gb p. 164)].

For the second sentence: a convergent sequence is bounded, hence contained in
some Kn [Kelley and Namioka (1963; 17Gb.iii p. 164)]. Hence it is as specified, using
[Kelley and Namioka (1963; 17Gb.i p. 164)]. The last sentence follows now straight from
Definition 13.

B.2. THE MAIN THEOREM

Proof of Theorem 1. If ζ is not uniquely determined, Lemma 1 implies that W is, on
every straight line through π̄ , constant in a neighborhood of π̄ . Letting q = 0 thus makes
the result true for any ζ .

Else there exists, by definition of a Gâteaux differential, µ ∈ F ∗ s.t.

DWπ̄(δπ) = lim
ε→0

W(π̄ + εδπ) − W(π̄)

ε
= 〈µ, δπ〉. (B.1)

Start with the particular case E = R and F = K , using K for KR.
By Lemma 1, W ◦ Sh = eζhW +Aeζh−1

eζ −1
; hence by constancy of π̄ (Sπ̄ = π̄), and (B.1),

〈µ, Sh(δπ)〉 = eζh〈µ, δπ〉.

Because B is a neighborhood of π̄ , every ϕ ∈ K is a multiple of some δπ ; hence the
following holds for all h ∈ R and all ϕ ∈ K:

〈µ, ϕ − e−ζhShϕ〉 = 0.

Dividing by h and taking the limit (in K !) as h → 0 yields

〈µ, ϕ′ + ζϕ〉 = 0.

The definition of the derivative of a generalized function, µ ∈ K∗,〈
µ′, ϕ

〉 = − 〈
µ, ϕ′〉 ,∀ϕ ∈ K,

yields then
〈ζµ − µ′, ϕ〉 = 0, ∀ϕ ∈ K.
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By Gel’fand and Shilov (1959; p. 53), the equation ζµ − µ′ = 0 has µ = qeζ t for some
q ∈ R as only solutions in K∗, so

DWπ̄(δπ) = 〈qeζ t , δπ〉 = q

∫
eζ t δπtdt,∀δπ ∈ K. (B.2)

The next step is to extend the result to any Banach space E and F = KE .

LEMMA 10. Any function ϕ ∈KE can be approximated in KE by functions with finite-
dimensional range.

Proof. Let Dn = {ϕ(i)
(

j

n!

) | 0 ≤ i ≤ n, j ∈ Z}. Dn is an increasing sequence of finite
subsets of E. Let Fn be the subspace spanned by Dn and pn a projector from E to Fn (i.e.,
pn : E → Fn is the identity on Fn). Its existence follows from Hahn–Banach, Fn being
finite-dimensional. Then ϕn = pn ◦ ϕ ∈ KFn

and converges in KE to ϕ.

Consider policy variations δπ ∈ KE of the form bφ : t �→ bφ(t) with b ∈ E and φ ∈ K .
By (B.1) and (B.2), ∀b ∈ E ∃qb ∈ R s.t. 〈µ, bφ〉 = qb

∫
φ(t)eζ tdt ∀φ ∈ K . So, for

Iφ = ∫
φ(t)eζ tdt �= 0, the map b �→ qb = 〈µ,bφ〉

Iφ
is in E∗, i.e., qb = 〈q, b〉 with q ∈ E∗.

So, for any ϕ of the form bφ,

〈µ, ϕ〉 =
∫

〈q, ϕ(t)〉eζ tdt. (B.3)

Because any ϕ ∈ KE with finite-dimensional range is a sum of policy variations of the
form bφ, (B.3) remains true for them by linearity. They being dense in KE by Lemma 10,
(B.3) extends by continuity to KE .

Finally, we extend the result to arbitrary F .
Because Gâteaux differentials are continuous linear functionals, all assumptions remain

true and ZF is unchanged with the weak topology on F , which is locally convex. The
assumption on F (Definition 1.1) and Lemma 9 imply then that the inclusion map KE ⊆ F is
continuous. Hence, Gâteaux differentiability on F implies that on KE . Thus the assumptions
of the theorem hold on KE too. So the differential is a continuous linear functional on F ,
given on KE by the formula

∫ 〈q, ϕ(t)〉eζ tdt . This being by assumption continuous on F ,
the differential on F must coincide with it, KE being dense in F .

B.3. OTHER PROOFS

Proof of Lemma 4. Because Shπ̄ = π̄ , W(Shπ) = Vc,r (v(Shπ) − v(Shπ̄)); by
Definition 6, Lemma 2, homogeneity of Vc,r , Definition 7, and Lemma 3,

W(Sh(π)) = Vc,r (e
�hSh(v(π) − v(π̄))) = e�hrVc,r (Sh(v(π) − v(π̄)))

= ahe
�hr + e(�r+c)hVc,r (v(π)−v(π̄)) = a′

h + e(�r+c)hW(π). �

Proof of Lemma 6. Because the closed convex cone Y is pointed (irreversibility), there
exists a linear functional α whose unique maximizer on Y is 0. Then 〈α, y〉 ≤ −ε‖y‖ on
Y ; i.e., by rescaling α, 〈α, y〉 ≤ −‖y‖. Observe too that free disposal implies that α >> 0.
Write α as (αL, αK, αI , αC).

The first step is to establish the bound on K sub (ii).
Fix a vector L̄ ∈ Rh s.t. any feasible vector of labor inputs Lt ≤ L̄e(γ+ν)t (i.e., to compute

a given coordinate of L̄, assume that all agents spend 100% of their time on that activity).
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Allow perfect substitution at rates αI between all investment goods and between all
capital goods: let F : R2

+ → R+ : (κ̄, λ) �→ sup{〈αI , I 〉 | ∃K ≥ 0, 〈αI , K〉 ≤ κ̄,

(−λL̄, −K, I, 0) ∈ Y }.
The sup is finite, because 〈αI , I 〉 ≤ 〈αK, K〉 + λ〈αL, L̄〉 and 〈αK, K〉 is bounded on

the compact set K ≥ 0, 〈αI , K〉 ≤ κ̄ (recall α >> 0). Further the sup is achieved, the
sets {y ∈ Y | 〈α, y〉 ≥ −M} being compact (because then ‖y‖ ≤ M), so that the sup
is effectively over a compact set. Clearly F is positively homogeneous of degree 1 and
concave, and is continuous again because locally everything happens within a compact
subset of Y .

Thus by homogeneity F(κ̄, λ) = λϕ( κ̄

λ
), where ϕ(x) = F(x, 1) is concave, ≥ 0, and

continuous. Further, by the “no-rabbit” assumption, F(κ̄, 0) = 0, so, by continuity of F ,
ϕ(x)

x
→ 0 at ∞.

For any feasible path (Lt , Kt , It , Ct ), let ι̃t = 〈αI , It 〉 and κ̃t = 〈αI , Kt 〉. Then, because
δ ≤ δi and K ≥ 0, the capital-accumulation equation implies that κ̃ ′

t ≤ ι̃t − δκ̃t ; further,
Lt ≤ L̄e(γ+ν)t implies (free-disposal) ι̃t ≤ e(γ+ν)tϕ(e−(γ+ν)t κ̃t ). So with (lt , κt , ιt , ct ) =
e−(γ+ν)t (Lt , κ̃t , ι̃t , Ct ) :

κ ′
t ≤ ϕ(κt ) − Rκt .

To bound ‖kt‖, it suffices to prove from this that κt is bounded by some constant
independent of the feasible path, because αI >> 0.

Also, the initial condition yields that eRtκt converges exponentially fast to 0 at −∞; i.e.,
because R > 0, there exists ε : 0 < ε < R such that, with r = R − ε > 0, ert κt → 0 at
−∞ along a subsequence. Because ϕ(x)

x
→ 0 at ∞, there exists A s.t., ∀x, ϕ(x) ≤ A + εx;

so κ ′
t ≤ A − rκt .

The next step is to prove from this that κt ≤ K̄ , with K̄ = A/r .
Otherwise κt0 > K̄ for some t0; because κ ′

t < 0 for κt > K̄ , this implies that κt > K̄

and is decreasing for t ≤ t0. Define y by y ′
t = A − ryt with the prescribed terminal value

κt0 at t0. The relations for κ and y are equivalent to r d

dert (e
rt κt ) ≤ A and r d

dert (e
rt yt ) = A,

so, because dert

rdt
> 0, d

dt
(ert κt ) ≤ d

dt
(ert yt ): for t ≤ t0, κt ≥ yt = A/r + (κt0 − A/rer(t0−t),

contradicting that ert κt → 0 at −∞ along a subsequence.
Hence the uniform bound on ‖kt‖ .
Next, 〈α, y〉 ≤ −‖y‖ yields

∫ b

a
‖it‖dt ≤ ∫ b

a
(〈αL, lt 〉 + 〈αK, kt 〉 − 〈αI , it 〉 − 〈αC, ct 〉)dt .

The last inner product is nonnegative, and the capital-accumulation equation yields k′
t
j =

i
j
t − Rjk

j
t with Rj = γ + ν + δj as before, so that

∫ b

a
〈αI , it 〉dt = ∫ b

a
〈αI , k′

t 〉dt +∑
j αI

j R
j
∫ b

a
k

j
t dt = 〈αI , kb −ka〉+

∑
j αI

j R
j
∫ b

a
k

j
t dt ≥ −〈αI , ka〉, because Rj > 0. Thus

our bounds on kt and lt imply that
∫ b

a
‖it‖dt ≤ K̄(b − a + 1) for some constant K̄ .

Thus point (ii). For (i), e−(γ+ν)t
∫ t

−∞ eδj (s−t)|I j
s |ds = ∫ ∞

0 e−Rj x |ij
t−x |dx ≤∑∞

n=0 e−Rj n
∫ n+1

n
|ij

t−x |dx is uniformly bounded by (ii). For Mi
t = eδi tKi

t , the dif-

ferential equations become Mi ′
t = hi

t , with hi
t

def= eδi t I i
t ; hence, by the integrability,

Mi
t = Mi

−∞ + ∫ t

−∞ hi
sds. And the initial condition yields limt→−∞ Mi

t = 0, so Mi
−∞ = 0;

hence (i).

Proof of Proposition 1. Comparing the rescaling of consumption goods in the con-
sumption sets (ii) and in the production set (iii) shows that the mass of any agent is to be
multiplied by C = eνh. For labor goods, this ratio is correct too, given the labor-saving tech-
nological growth included in aggregate effective labor. By (i), the “induced map of agents”
maps an individual of type τ born at time t to an individual of the same type born at t +h, so
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the population of the new economy at time t is that of the old at time t −h multiplied by eνh,
and hence equals that of the original economy at t : the population measure is preserved. It
thus remains only to prove that preferences are preserved and that allocations are mapped
to allocations: the one-to-one and onto aspect will then follow from the same property for
the inverse T−h. Consumption sets are unchanged: at any t nonnegativity constraints are
preserved by the rescalings (ii), also, time fractions are not rescaled, so the constraint that
their sum be ≤ 1 is preserved too. Preferences are homogeneous in the consumption goods,
so they are preserved by rescaling (ii). As for production, capital accumulation equations
are linear in capital and investment, so they are preserved given (iii), as well as the initial
condition (also in its weak form of Proposition. 4): both convergence to 0 and exponential
convergence to 0 are preserved under shifting and multiplication by a constant. And Y is
unchanged under scaling by e(γ+ν)h (iii).

Proof of Corollary 3. Let Vc = ∑
τ V τ

c , where V τ0
c with c = ν − β is the utility

aggregator defined as
∫ ∞

−∞ e−βt
∑

τ 1τ0N
τ
t

[
vτ

t (π) − ūτ
t

]
dt . Applying Corollary 2 to each

V τ
c , i.e., to the economy in which utilities of all types but τ are identically zero, one obtains

the differential of W :

∑
τ

∫ ∞

−∞
e(ν−β+(1−ρτ)γ )t 〈qτ , δπ(t)〉dt =

∫ ∞

−∞
e(ν−β+γ )t

〈∑
τ

e−ρτγ t qτ , δπ(t)

〉
dt.

Visibly the criterion qτ of the types with the smallest ρ asymptotically gets all the
weight.

Proof of Proposition 3. Shift invariance of A implies T-invariance of the set of the
induced (acceptable) allocations under an outcome function ς ; thus if ς(π) = (c, l) for
some π ∈ A, then ∀h ς(Shπ) = (eγhShc, Shl), and Shπ ∈ A. So the utility difference
between the worst and best acceptable allocations for an agent of type τ is, by homogeneity
of utilities, proportional to e(1−ρτ )γ x : this is the normalization factor. Thus, again by homo-
geneity, MA[vτ

x (π)] = wτUτ (e−γ xcτ
x , l

τ
x ). Hence, because ς ◦Sh = Th ◦ς and e−γ xThc

τ
x =

Sh(e
−γ xcτ

x ), one gets MA[vτ
x (Shπ)] = wτUτ (Sh(e

−γ xcτ
x , l

τ
x )) = ShMA[vτ

x (π)].

APPENDIX C: INITIAL CONDITIONS

Even with the weakest initial condition, say Kt bounded at −∞, one should expect Ki
t to

converge to 0 at −∞ if δi > 0. But land and natural resources are the typical examples of
goods with δi = 0, so the natural value for δ in a general form of the initial condition and
Lemma 6 is 0.29 The initial condition is thus a bit too stringent conceptually, requiring ex-
ponential convergence to the initial value 0 instead of just plain convergence. An additional
reason to want just plain convergence there is that then the “initial condition” becomes
equivalent to the initial condition for the integral formula of Kt in terms of It : even with
δi = 0, Ki

t = Ki
−∞ + ∫ t

−∞ eδi (s−t)I i(s)ds implies Ki
t → Ki

−∞ at −∞.30 We make a first
attempt here to address this issue.

LEMMA 11.
(i) Every β >> 0 in Rm is the αI of some linear functional α having a unique maximizer

on Y .

https://doi.org/10.1017/S1365100510000386 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100510000386
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(ii) For α >> 0, let ψα(x) = sup{〈α, I 〉 | ∃K ≥ 0, ‖K‖ ≤ x,

(−(1, 1, 1, . . .),−K, I, 0) ∈ Y }. Then
∫ ∞

1
ψα(x)

x2 dx is finite iff the same integral

is finite replacing ψα(x) by ϕα(x)
def= sup{〈α, I 〉 | ∃K ≥ 0, 〈α,K〉 ≤ x, (−L̄, −K,

I, 0) ∈ Y }.
Proof. For point (i), let E be the commodity space Rh × Rm × Rm × Rn, containing Y ,

with vectors typically denoted (−L,−K, I, C). Let F be the subspace where L = C = 0,
and let β ′ extend β with arbitrary positive K-coordinates. Let G = {x ∈ F | 〈β ′, x〉 = 0}.
By the no-rabbit assumption, G∩Y = {0}. By irreversibility, there exists a linear functional
γ on E having a unique maximizer on Y ; so Y ′ = {y ∈ Y | 〈γ, y〉 ≤ −1} and G are disjoint
closed convex sets, with disjoint asymptotic cones: their difference is a closed convex set
disjoint from 0; hence they can be strictly separated. So there is a linear functional α with
〈α,G〉 > 〈α, Y ′〉. G being a subspace, this implies that α vanishes on G, and has 0 as unique
maximizer on Y . Thus some positive multiple of α coincides with β ′ on F ; in particular,
αI = β.

For point (ii), observe first that the integrability condition on ϕα(x) is equivalent to
that on ϕα(cx), for any c > 0. Now, K ≥ 0 and α >> 0 imply that 〈α,K〉 is a norm,
so for any norm there exist c > 0 and c̄ such that c‖K‖ ≤ 〈α, K〉 ≤ c̄‖K‖. The
independence from c of the condition on ϕα allows then to replace that inner product by ‖K‖.
Similarly, to replace L̄ by a vector of 1’s, first majorize and minorize it by a multiple of this
vector.

As the proof of Lemma 6 shows, the “no-rabbit” condition is equivalent to ϕ(x)/x → 0, so
the condition

∫ ∞
1 [ϕ(x)/x2]dx < ∞ appears as a very slight strengthening. This justifies

the following:

DEFINITION 14. The “strong no-rabbit” condition on Y is that
∫∞

1
ψα(x)

x2 dx < ∞ for
some α >> 0.

PROPOSITION 4. Provided that the strong no-rabbit condition holds, the conclusions
of Lemma 6 remain true when weakening the exponentially fast convergence to plain
convergence in the initial condition.

Proof. Fix α according to the strong no-rabbit condition, and, using Lemma 11.i to find
a corresponding α in the proof of Lemma 6, follow that proof until where ϕ (= ϕα) is
majorized by A + εx, and now let f (x) = Rx − ϕ(x), K̄ = inf{k | f (k) > 0}, and fix a
corresponding κt0 .

Then, prove first that, for t ≤ t0, κt ≥ yt , with yt the solution of y ′
t = ϕ(yt ) − Ryt

with prescribed value at t0: reversing time, and translating t0 to 0, we have, using xt for κt ,
x ′

t ≥ f (xt ) a.e., y ′
t = f (yt ) a.e., x0 = y0, f (x0) > 0, f is increasing for x ≥ x0, and need

to show xt ≥ yt for t > 0. Translating f and the functions x, y, we can even assume that
x0 = y0 = 0, f (0) > 0, so f is positive and increasing on R+. So H(x) = ∫ x

0 [1/f (y)]dy

is well-defined, positive, C1, concave, and increasing on R+. Assuming the chain rule for
differentiation established for the composition H ◦ x of such an H with a Denjoy primitive
like xt , we obtain (H ◦ x)′

t = H ′(xt )x
′
t = x′

t

F (xt )
≥ 1, and similarly (H ◦ y)′

t = 1; hence, for
t ≥ 0, H(xt ) ≥ H(yt ) and so xt ≥ yt by strict monotonicity of H .

Thus indeed κt ≥ yt for t ≤ t0. Because further κt and yt are decreasing and continuous
on that range, they have continuous and decreasing inverse functions tκ and ty defined
on [κt0 ,∞[ and values in ]−∞, t0], and there tκ ≥ ty . Now y ′

t = −f (yt ) means that
dy

f (y)
= −dt ; hence, because yt0 = κt0 , ty(x) = t0 − ∫ x

κt0

dz

f (z)
. So tκ (x) ≥ t0 − ∫ x

κt0

dz

f (z)
.
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But the “weak” initial condition is that eRtκ(t) −−−−−→
t→−∞

0; so eRtκ (x)x −−−−−→
x→∞

0, i.e.,

ln(x)+Rtκ(x) −−−−−→
x→∞

−∞, and thus, by our bound on tκ ,31 and replacing ln by its integral

definition, neglecting constants,
∫ x

a
dz

z
− R

∫ x

a
dz

f (z)
−−−−−→

x→∞
−∞, with a = max{1, κt0}.

Given the formula for f , this means
∫ x

a

ϕ(z)

z(Rz−ϕ(z))
→ ∞, and hence, ϕ(z) being negligible

compared to z, and R > 0, that
∫ x

1
ϕ(z)

z2 → ∞, contradicting the strong no-rabbit condition
by Lemma 11.ii. Thus indeed κt ≤ K̄ ∀t . The rest of the proof of Lemma 6 remains
as is.
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