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We use a variational formulation incorporating the full Navier–Stokes equations to
identify initial perturbations with finite kinetic energy E0 which generate the largest
gain in perturbation kinetic energy at some time T later for plane Couette flow. Using
the flow geometry originally used by Butler & Farrell (Phys. Fluids A, vol. 4, 1992,
pp. 1637–1650) to identify the linear transient optimal perturbations for E0→ 0 and
incorporating T as part of the optimization procedure, we show how the addition
of nonlinearity smoothly changes the result as E0 increases from zero until a small
but finite Ec is reached. At this point, the variational algorithm is able to identify
an initial condition of completely different form which triggers turbulence – called
the minimal seed for turbulence. If instead T is fixed at some asymptotically large
value, as suggested by Pringle, Willis & Kerswell (J. Fluid Mech., vol. 703, 2012,
pp. 415–443), a fundamentally different ‘final’ optimal perturbation emerges from
our algorithm above some threshold initial energy Ef ∈ (0,Ec) which shows signs
of localization. This nonlinear optimal perturbation clearly approaches the structure
of the minimal seed as E0→ E−c , although for E0 < Ec, its maximum gain over all
time intervals is always less than the equivalent maximum gain for the ‘quasi-linear
optimal perturbation’, i.e. the finite-amplitude manifestation of the underlying linear
optimal perturbation. We also consider a wider flow geometry recently studied by
Monokrousos et al. (Phys. Rev. Lett., vol. 106, 2011, 134502) and present evidence
that the critical energy for transition Ec they found by using total dissipation over
a time interval as the optimizing functional is recovered using energy gain at a
fixed target time as the optimizing functional, with the same associated minimal
seed emerging. This emphasizes that the precise form of the functional does not
appear to be important for identifying Ec provided it takes heightened values for
turbulent flows, as postulated by Pringle, Willis & Kerswell (J. Fluid Mech., vol.
703, 2012, pp. 415–443). All our results highlight the irrelevance of the linear energy
gain optimal perturbation for predicting or describing the lowest-energy flow structure
which triggers turbulence.
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1. Introduction
The investigation of hydrodynamic stability is one of the canonical problems of

fluid dynamics. A particularly interesting archetypal flow is plane Couette flow (PCF),
i.e. the flow between two parallel plates separated by a distance 2h moving at a
relative velocity 2U. PCF is linearly stable for all Re= Ud/ν (Romanov 1973), where
ν is the fluid’s kinematic viscosity, yet turbulence has been observed experimentally
as low as Re = 325 (Bottin & Chate 1998). It has been hypothesized that transient
perturbation growth, due to the non-normality of the underlying linear operator of the
Navier–Stokes equations, may explain this disconnect. Several authors (e.g. Gustavsson
1991, Butler & Farrell 1992, Reddy & Henningson 1993) demonstrated that substantial
transient kinetic energy gain G(T) = E(T)/E(0) (where E(T) is the infinitesimally
small kinetic energy at the final ‘target’ time T of the chosen optimization interval)
could be achieved by a linear (infinitesimal) optimal perturbation (see Schmid 2007
for a review). Henceforth, we shall refer to such a perturbation as a LOPT (see
glossary), where the subscript T denotes the particular specific target time T chosen.
The optimal gain for such perturbations can be quite large, with maximum values
for Re ' 1000 of G ' O(1000) for T = TL = O(100), where TL is the time at which
the transient perturbation reaches its maximum energy amplitude, as shown by Butler
& Farrell (1992). Proponents of such an essentially linear mechanism for energy
growth point to the Reynolds–Orr equation (Schmid 2007) as an indication that energy
growth is a linear effect because dE/dt is independent of the nonlinear advective
terms in the Navier–Stokes equations. The argument is that if a real flow is seeded
with a ‘small’ yet finite amplitude perturbation with the same structure as a LOPT ,
the transient energy gain formally identified for the LOPT when its amplitude is
assumed infinitesimal could be sufficiently large to ‘push’ the perturbation into a
finite-amplitude nonlinear regime where the perturbation affects the base flow, and
hence perhaps to trigger transition.

However, this line of thinking is based on a couple of implicit assumptions: that
the entrance into the nonlinear regime of this specific class of perturbation, determined
through consideration of a formally linear problem, will lead to turbulence; and that
the so-determined linear optimal perturbation (LOPT) is still the ‘best’ choice for the
growth of inherently nonlinear, finite-amplitude perturbations. Furthermore, it is not
a priori clear what the most appropriate choice for the optimization time T is, though
an obvious choice might be the time TL which maximizes the gain across all possible
time intervals within the linear problem.

Perhaps the more significant assumption that the LOPT is the ‘best’ choice even for
nonlinear problems can be explicitly probed by posing the optimal growth problem for
initial perturbations of finite amplitude which can affect the base flow as they grow.
This has been done recently for pipe flow (Pringle & Kerswell 2010, henceforth
referred to as PK10) and boundary layer flow (Cherubini et al. 2010, 2011a,b);
see also Duguet, Brandt & Larsson (2010) for preliminary work in plane Couette
flow. Within such studies, as the initial energy of the perturbation increases from
arbitrarily small values, it is natural to find a finite-amplitude perturbation which can
be directly related to the formally linear optimal perturbations discussed above. In
this paper, we shall refer to such a finite amplitude perturbation as a ‘quasi-linear
optimal perturbation’ or ‘QLOPT’ to make explicit its connection with the previously
considered linear problem, with the subscript T , as before, denoting the optimization
time interval for the particular optimization problem considered. All these recent
studies did identify such perturbations, whose maximal energy gain (over all time
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intervals) typically does occur for an optimization time interval TQ quite close to TL,
the ‘best’ time interval for the linear problem.

Interestingly, they also discovered the existence of inherently nonlinear optimal
perturbations which have a very different structure to the quasi-linear optimal
perturbations. We shall refer to such a qualitatively different optimal perturbation
as an ‘NLOPT’, where as before T denotes the optimization time interval. For the
same flow geometry, parameters and optimization time interval T , the NLOPT , which
PK10 and Cherubini et al. (2010) identified, has a larger gain than the QLOPT beyond
a small but finite energy threshold, and so naturally emerged as the dominant optimal
perturbation. Unfortunately, PK10 were unable to investigate whether the NLOPT

played any role in triggering transition, or to determine the critical initial perturbation
energy threshold ‘Ec’ to lead to a turbulent state, because of convergence issues.
However, a follow-up study, Pringle, Willis & Kerswell (2012) (henceforth referred
to as PWK12), with a more efficient code run at higher resolution succeeded in
identifying the NLOPT for larger initial energies. At E0 = Efail , they again found a
failure to converge but noticed that this corresponded to their optimization algorithm
encountering turbulent (end) flows. The conclusion was that this failure energy Efail

is sufficiently large to enable an initial perturbation to undergo the transition to
turbulence: i.e. Efail > Ec. In dynamical systems parlance, this initial perturbation
is then in the basin of attraction of the turbulence, or more generally (if the
turbulence is actually not an attractor but a chaotic saddle), has crossed the ‘edge’,
a hypersurface which separates initial conditions which become turbulent from those
which relaminarize (Itano & Toh 2001; Skufca, Yorke & Eckhardt 2006; Schneider,
Eckhardt & Yorke 2007; Duguet, Willis & Kerswell 2008). The picture then put
forward by PWK12 is that as E0 increases from 0, the E = E0 hypersurface in phase
space intersects the edge for the first time at E0 = Ec and that the initial perturbation
which corresponds to their (generically unique) intersection at E0 = Ec is the ‘minimal
seed’ for triggering turbulence. This seed is ‘minimal’ in the sense that it is the
lowest-energy state on the edge and therefore represents the most energy-efficient way
of triggering turbulence by adding an infinitesimal perturbation to it. PWK12 also
find evidence to suggest that there is an identifiable (and hence unique) NLOPT (in
the nomenclature we are using here, qualitatively different from the QLOPT) which
tends to the minimal seed associated with this loss of convergence (and transition to
turbulence) as E0→ E−c . PWK12 summarize their thinking as two conjectures.

Conjecture 1. For T sufficiently large, the initial energy value Efail at which the energy
growth problem first fails (as E0 is increased) to have a smooth optimal solution will
correspond exactly to Ec.

Conjecture 2. For T sufficiently large, the optimal initial condition for maximal energy
growth at E0 = Ec − ε2 converges to the minimal seed at Ec as ε→ 0.

It is important to stress that these conjectures actually do not take a position
on the relevance of the results of the linear optimization problem to the transition
to turbulence. In principle, it is possible that the ‘optimal initial condition for
maximal energy growth at E0 = Ec − ε2’ corresponds to QLOPT . The evidence from
both PWK12 and Cherubini et al. (2010, 2011a,b), however, suggests that another
distinct state, NLOPT , emerges for sufficiently large E0, and PWK12 observe that
this particular ‘final’ NLOPT connects smoothly with the minimal seed as E0→ E−c
(Cherubini et al. use a relatively small T and actually achieve convergence for E0 > Ec

because of this.) We will henceforth refer to this ‘final’ optimal as NLOP(f )T which,
like QLOPT , can be thought of as a solution branch of the optimization procedure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.417


Triggering turbulence efficiently in plane Couette flow 247

Seed

NLOPT
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E(t) Edge

QLOPTQ (PWK12)

TQ

FIGURE 1. (Colour online) Schematic representation of the time evolution of the energy
of perturbations in pipe flow with initial energies close to Ec found in PWK12. The final
nonlinear optimal perturbation NLOP(f )T with initial energy Ec − ε2, and which approaches
the minimal seed as ε → 0, is plotted with a dot-dashed blue line, the edge state which
connects to the minimal seed with initial energy Ec is plotted with a dotted magenta line, and
a turbulent seed with initial energy Ec + ε2 is plotted with a dashed green line. The NLOP(f )T
and the turbulent seed both approach a plateau of substantial and approximately constant
energy gain for a significant period of time, sandwiching (as shown in the blown-up inset)
the time evolution of the edge state for which the minimal seed is the lowest-energy state and
initial condition. This plateau is larger than the maximum gain of the QLOPTQ

at TQ (plotted
with a thin black line).

parametrized by the initial energy E0. Indeed, for sufficiently large initial energies,
the evidence presented by PWK12 suggests that this distinct NLOP(f )T solution branch
always has a larger gain than the associated QLOPT , even over short time intervals
T < TQ ' TL. This is illustrated schematically in figure 1, which shows the time-
dependent behaviour of the different solution branches when E0 is close to Ec. The
evolution of the perturbation with initial energy Ec − ε2, which maximizes energy gain
over the fixed time interval T , and which we refer to as an NLOP(f )T , is shown with
a dot-dashed blue line. This perturbation grows towards a finite-amplitude plateau of
energy for a substantial period of time, before ultimately decaying and relaminarizing.
The plateau reflects the simplest, steady case of an ‘edge state’ (attracting state for
edge-confined dynamics) and is plotted with a dotted magenta line. The minimal
energy for this edge state is Ec, which occurs at time t = 0 for the ‘minimal seed’ flow
structure, by definition. We also plot (with a dashed green line) the time evolution of
a turbulent seed with initial energy Ec + ε2, which ultimately reaches an even higher,
turbulent energy state, having first spent a non-trivial period of time with energy close
to this intermediate energy plateau. Finally, we plot the time evolution of the QLOPTQ

(plotted with a thin black solid line, and labelled as the QLOPTQ
(PWK12)) with initial

energy Ec − ε2. We believe the qualitative behaviour of this QLOPT is generic for
sufficiently large target times, in the sense that the particular initial structure of the
quasi-linear optimal perturbation and its time evolution does not depend strongly on
the specific target time T chosen, although the associated gain does change markedly.
At this initial energy, although the QLOPT still grows to have a substantial peak gain
at a time TQ ' TL (marked with a vertical line), this gain is always below that of
the NLOP(f )T for all times, and so, at least for initial energies this close to the critical
energy Ec, the QLOPT plays no role in the optimization problem.
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In this paper, we wish to investigate further the generic validity of the conjectures of
PWK12 in the context of PCF, paying particular attention to whether the QLOPT has
any relevance to the minimal seed. We consider two sets of geometry and Reynolds
numbers for PCF. Principally, we consider the geometry discussed by Butler & Farrell
(1992) (henceforth referred to as BF92): a relatively narrow spanwise domain with
Re= 1000. BF92 investigated in detail the properties of the optimal perturbation which
maximized the energy gain within a linearized problem for this geometry, and so
it seems natural to consider a fully nonlinear optimization problem within the same
geometry. The second geometry we consider has a double the spanwise domain width
of BF92 with Re = 1500, considered recently in an inherently nonlinear study by
Monokrousos et al. (2011) (henceforth referred to as M11). They identified a turbulent
seed in PCF by considering a different variational problem to that of maximization
of energy gain over a fixed time interval. They searched for a finite-amplitude initial
condition which maximized the total energy dissipation over a long but fixed time
interval (or equivalently the time-averaged dissipation rate). They purposely looked for
a turbulent end state at the end of their optimization time interval, and then worked
downwards in initial energy to identify the threshold for transition.

Most of our study is based around the BF92 geometry, but we believe it is useful
to consider the M11 geometry for two particular reasons. Firstly, by considering two
different flow geometries, we are able to investigate whether there is anything generic
that can be said about the progression, as E0 increases, of the optimal perturbations
for ‘long’ time intervals starting with the (infinitesimal) linear optimal perturbation at
E0 = 0, and ultimately leading (possibly) to the final NLOP(f )T which then connects to
the minimal seed at E0 = Ec, i.e. if the second conjecture of PWK12 is true. Secondly,
we can also compare our results (based around maximizing energy gain at a specific
time horizon) to the results reported in M11 where the optimized functional was the
total energy dissipation over the entire optimizing interval, to get some insight into
whether the predicted minimal seed depends strongly on the particular form of the
optimization problem being solved. Of principal interest will be whether this approach
can identify Ec and the form of the minimal seed either directly (by smooth evolution
of an explicitly identified NLOP(f )T as E0→ E−c ) or indirectly (by failing to converge),
which will address the conjecture that the energy Efail at which the problem ceases to
converge corresponds to Ec, the critical energy for the existence of a minimal seed.

Importantly for our investigation, the calculations reported here for PCF do not,
however, show the same behaviour of the QLOPT solution branch as indicated in
figure 1. Specifically, in PCF, it appears that the energy plateau, attained at some
sufficiently large target time T by the minimal seed with initial critical energy Ec, is
not larger than the energy attained at earlier times by other nonlinear perturbations
with initial energy Ec, although these other perturbations do subsequently decay and
allow the flow to relaminarize. We sketch schematically in figure 2 two such scenarios,
which as we show in this paper actually correspond to the time-dependent behaviour
of PCF in the BF92 flow geometry and the M11 flow geometry respectively.

The principal difference between the pipe flow behaviour observed by PWK12 and
that which appears to occur in PCF is the relative magnitude of the maximum energy
attained by the QLOPTQ

with initial energy close to Ec at time TQ compared to the
energy plateau attained by the minimal seed at longer times. As shown in figure 2(a),
this maximum energy attained by the PCF QLOPTQ

(plotted with a thick black line) is
now larger than the energy plateau attained by the edge state (plotted with a magenta
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FIGURE 2. (Colour online) Schematic representations of two different scenarios for the time
evolution of the energy of perturbations in PCF with initial energies close to Ec. The final
nonlinear optimal perturbation NLOP(f )T with initial energy Ec − ε2, and which approaches
the minimal seed as ε → 0, is plotted with a dot-dashed blue line, the edge state which
connects to the minimal seed with initial energy Ec is plotted with a dotted magenta line,
and a turbulent seed with initial energy Ec + ε2 is plotted with a dashed green line. The
NLOP(f )T and the turbulent seed both approach a plateau of substantial and approximately
constant energy gain for a significant period of time, sandwiching the time evolution of the
edge state for which the minimal seed is the lowest energy state and initial condition. (a) The
energy plateau of the edge state is significantly smaller than the peak energy gain for the
relevant QLOPTQ

at TQ (plotted with a thick black line), in the BF92 flow geometry and so the

QLOPTQ
will dominate and ‘mask’ the NLOP(f )T when optimizing over all time intervals until

the edge is crossed. (b) In the M11 flow geometry in PCF there is now a new solution branch
of nonlinear optimal perturbations labelled NLOP(1)T and plotted with a thick grey line. This
branch is distinct from and has larger gain than the QLOPTQ

(plotted with a thick black line),

but still ‘masks’ the NLOP(f )T when optimizing over all time intervals.

dotted line) and the final NLOP(f )T (plotted with a blue dot-dashed line) conjectured to
approach the minimal seed as E0→ E−c .

As specifically required by the conjectures of PWK12, over a sufficiently long time
horizon, the QLOPT solution branch inevitably decays, and so the NLOP(f )T will indeed
be the optimal perturbation for maximizing energy gain for initial energies sufficiently
close to Ec and sufficiently long optimization intervals T . Therefore, demonstrating
that Efail , where the optimization algorithm first fails to converge, corresponds to
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Ec (the initial energy from which a minimal seed can lead to turbulence) is thus
equivalent to establishing that the variational algorithm employed can indeed converge
to the final NLOP(f )T solution branch for sufficiently long optimization time intervals.
However, right up until Ec, it is entirely possible that the QLOPTQ

will have

larger peak energy gain than the NLOP(f )T for a given choice of T . Therefore, the
emergence of the NLOP(f )T solution branch may be ‘masked’ by the quasi-linear
optimal perturbation, unless sufficiently long optimization intervals, and initial energies
sufficiently close to Ec, are chosen to ensure the decay of the QLOPT and the
existence of the NLOP(f )T solution branch. Such long time evolutions for initial energies
close to the ‘edge’ are likely to be computationally demanding, as the solution
state space may be quite non-smooth due to the incipient onset of the possibility
of ‘turbulent’ flow. We discuss the computational challenge of this issue in more detail
below.

Of course, such ‘masking’ could also occur due to the emergence of one or
more other nonlinear optimal perturbation solution branches qualitatively different
from the linear optimal perturbation. At intermediate finite initial energy amplitudes,
such other nonlinear optimal perturbation solution branches could conceivably have
globally (across all time horizons) larger energy gains than the QLOPT solution branch
and yet, right up to Ec, have larger energy gain than the final NLOP(f )T solution
branch associated with the minimal seed. In figure 2(b), we show schematically just
such a scenario, which, as we discuss below, actually occurs for PCF in the M11
geometry. The principal difference is that above a ‘cross-over’ initial energy E1, i.e.
for a range of initial energies E1 < E0 < Ec, a new qualitatively distinct nonlinear
optimal perturbation appears (which we refer to as an NLOP(1)T , plotted with a thick
grey line). This solution branch attains a higher energy than the equivalent QLOPT

and the plateau associated with the edge state. In general, it is of course conceivable
that there could well be a sequence of such solution branches, each having a window
of initial energy perturbation for which the solution branch has the largest possible
(across all optimization time intervals) energy gain. This scenario will also of course
lead to ‘masking’ of the ‘final’ NLOP(f )T solution branch for all E0 < Ec. In general the
NLOP(f )T solution branch can be ‘unmasked’ by fixing T at a sufficiently large value as
E0→ E−c . (In the scenario considered by PWK12, and shown schematically in figure 1,
this ‘masking’ phenomenon does not arise, and the ‘final’ NLOP(f )T solution branch
may be thought of as an NLOP(1)T solution branch, as it does experience a greater gain
than the QLOPTQ

for initial energies above some cross-over value E1.)
To find turbulent seeds, we find it more efficient to develop further the conventional

variational formulation to include optimization over T , the time horizon of the
optimization time interval window or ‘target time’. This means we are then able
to identify the initial perturbation which achieves the highest gain possible over
all T with the corresponding optimal time interval Topt now an interesting output.
Letting Topt be an output of the optimization requires only a small adjustment in
the algorithm, yet it has far-reaching consequences for the results, particularly in the
context of PCF, due principally to the complicating properties of the transient energy
gain of the relevant quasi-linear optimal perturbation, and the appearance of a new
nonlinear optimal perturbation solution branch for intermediate energies E1 < E0 < Ec.
In particular, if different solution branches ‘mask’ the emergence of the NLOP(f )T

solution branch until the critical threshold E0 = Ec is reached and turbulent seeds can
be identified with markedly higher energy gains, there will be a discontinuity in the
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identified globally optimal time interval Topt , with Topt jumping to substantially larger
values once the initial energy amplitude E0 crosses Ec and so the turbulent seeds
become accessible.

To describe the results of our investigation into the validity of the conjectures
of PWK12, and also the properties of the identified optimal perturbations as initial
energy, optimization time interval, and PCF geometry are changed, the plan of the
paper is as follows. In § 2 we briefly present the variational framework and discuss
how the new target time optimization is carried out. In § 3 we discuss the results
obtained for the BF92 flow geometry. We describe the structure and properties of the
QLOPT solution branch for finite initial energies E0, demonstrate that the algorithm
converges adequately, and also identify the specific time interval TQ where the energy
gain for the QLOPT is maximized across all possible time intervals. We identify the
critical energy for turbulence Ec, showing that the ‘masking’ phenomenon shown in
figure 2 does indeed appear to occur. We discuss the structure and time evolution
of the associated minimal seed, and show that a perturbation of this form does
evolve towards an elevated plateau in energy for a non-trivial period of time, and
then diverges from this (apparent) near-approach to the edge state towards turbulence,
consistent with the schematic picture shown in figure 2. By rescaling the amplitude
of this minimal seed down below Ec and considering a range of fixed optimization
intervals, we gather convincing evidence for the existence of an NLOP(f )T converging
to the minimal seed, and hence support for the two key conjectures of PWK12.
In § 4 we then discuss our results for the M11 flow geometry, paying particular
attention to comparing our results for this flow geometry both to our BF92 results and
the previously reported results of M11. For intermediate initial energies, the greater
spanwise extent and higher Re of this flow geometry appears to allow the dominance
of a spatially localized nonlinear optimal perturbation inherently different from the
QLOPT , i.e. an NLOP(1)T as shown schematically in figure 2(b). The time evolution of
this NLOP(1)T appears to lead towards behaviour very reminiscent of the QLOPT after
an initial period of ‘unpacking’, which allows for somewhat enhanced perturbation
energy gain compared to the equivalent QLOPT . Interestingly, we find that the critical
value of energy Ec for the identification of the minimal seed for our energy gain
optimization problem is entirely consistent with that identified by M11 for their total
dissipation optimization problem. Armed with these results, we draw our conclusions
in § 5, speculating further on the extent to which we believe our results and the
above-quoted conjectures of PWK12 are generically applicable.

2. Variational framework
In essence, we seek the initial disturbance (at time t = 0) of kinetic energy

E0 to a laminar flow which attains the largest relative energy growth or ‘gain’
G(T) := E(T)/E0 a time T later while evolving under the Navier–Stokes equations,
remaining incompressible and respecting the applied boundary conditions. Here
E(T) := 〈u(T),u(T)〉/2, with the angle brackets implying the integral inner product

〈v,u〉 := 1
V

∫
D

v†u dV, (2.1)

where † denotes the Hermitian conjugate, and V is the volume of the domain D . We
consider plane Couette flow (PCF) using a coordinate system such that the streamwise
direction is x, the wall normal direction is y and the spanwise direction is z. The x and
z directions are assumed to be periodic and the separation between the walls (2h) is
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used to scale lengths so that the positions of the walls are given by y=±1. The speed
difference between the walls (2U) scales the velocity so that the non-dimensionalized
background Couette flow is U(y)= yex and the Reynolds number Re := Uh/ν.

As noted in § 1, the functional which we choose to extremize is the energy gain
which, when constrained by the Navier–Stokes equations, the initial energy value
E(0)= E0 and incompressibility, leads to the Lagrangian

L := E(T)

E0
− [∂tu+ N(u)+∇p,v]− [∇ ·u, q]

−
(

1
2
〈u0,u0〉 − E0

)
c− 〈u(0)− u0,v0〉. (2.2a)

In this equation, N is the nonlinear operator

N(ui) := Uj∂jui + uj∂jUi + uj∂jui − 1
Re
∂j∂jui, (2.2b)

and square brackets denote a time average of the inner product,

[v,u] := 1
T

∫ T

0
〈v,u〉 dt. (2.3)

In the Lagrangian, v, q, v0 and c are Lagrange multipliers, u0 is the initial value of the
perturbation velocity u and U the background Couette flow.

Taking first variations of the Lagrangian with respect to v, q, v0 and c and setting
them to zero recovers (respectively) the constraints of the Navier–Stokes equations,
incompressibility, the initial kinetic energy of E0 and initial state u0 = u(0),

δL

δv
= ∂tu+ N(u)+∇p := 0, (2.4)

δL

δq
= ∇ ·u := 0, (2.5)

δL

δv0
= u0 − u(0) := 0. (2.6)

δL

δc
= 1

2
〈u0,u0〉 − E0 := 0. (2.7)

First variations with respect to the physical variables yield a complementary set of
adjoint equations,

δL

δu
= ∂tv+ N†(v,u)+∇q+

(
u
E0
− v
)∣∣∣∣

t=T

+ (v− v0) |t=0 := 0, (2.8)

δL

δp
= ∇ ·v := 0, (2.9)

δL

δu0
= v0 − cu0 := 0. (2.10)

Here,

N†(vi,u) := ∂j

(
ujvi

)− vj∂iuj + ∂j

(
Ujvi

)− vj∂iUj + 1
Re
∂j∂jvi (2.11)
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can be identified as the adjoint of N and v, v0 and q are the adjoint variables
of u, u0 and p. Equation (2.8) is in reality three equations. The first part,
∂tv+N†(v,u)+∇q= 0, must be satisfied at all times and are the adjoint Navier–Stokes
equations. Since the full Navier–Stokes equations have been imposed, the adjoint
operator depends on the velocity field u. The sign of the diffusion term is also
reversed and therefore the adjoint equation can only be solved backwards in time.
The second part of (2.8), (u/E0 − v)|t=T = 0, is a terminal condition, linking our
physical and adjoint variables, and needs only to be satisfied at time T . The third part,
(v− v0)|t=0 = 0, is a condition linking v0 and v(0), which must be satisfied at t = 0.

We also choose to extend previous recent formulations (PK10; Cherubini et al.
2010, 2011a,b; M11; PWK12) and enable optimization over all possible choices of the
target time T . The first variation with respect to T yields the simple relation

∂L

∂T
:= 1

E0

d
dT

E(T)= 0, (2.12)

provided u is incompressible and satisfies the Navier–Stokes equations at t = T . As
discussed in § 1, this introduces a significant further complication to the identification
of ‘optimal’ perturbations as the initial energy E0 is increased. It is entirely possible
that qualitatively different initial perturbations (with qualitatively different optimal time
intervals) will dominate for different ranges of initial perturbation energy E0, and so
there is no necessity for the time interval Topt associated with the optimal perturbation
identified by our algorithm to be a continuous function of E0.

Our target-time-optimization algorithm proceeds as follows. We first start with a
suitable guess for the optimal initial condition, u0, and a target time T . We then
time-march our initial condition to time T using the Navier–Stokes equations and
use (u/E0 − v) |t=T = 0 to ‘initialize’ the adjoint equations, which are then solved
backwards in time to calculate v0. This procedure ensures that all the variational
equations are satisfied apart from (2.10) and (2.12). If the current value for u0 is
optimal then (2.10) will be satisfied: on the other hand, if (2.10) is not satisfied, it
provides an estimate for the gradient δL /δu0, i.e.

δL

δu(n)0

' g(n) = v(n)0 − c(n)u(n)0 , (2.13)

where the superscript denotes the nth iteration. We then update the initial condition
using a method of steepest ascent by setting

u(n+1)
0 = u(n)0 + εg(n) (2.14)

(note that u(n+1)
0 is incompressible as ∇ · g(n) = 0), where c(n) is selected to impose the

normalization condition explicitly, i.e.

1
2 〈u(n+1)

0 ,u(n+1)
0 〉 = E0. (2.15)

The parameter ε determines how big a ‘step’ we take after each iteration, and typically,
we choose ε to be sufficiently small so that the gain increases monotonically with
iteration, i.e.

G(n+1) > G(n). (2.16)

We find that if a condition of this form constraining the variation of gain from one
iteration to the next is not imposed, the algorithm experiences very large fluctuations
for E0 > Efail . Typically, ε varies by several orders of magnitude during a particular
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sequence of iterations. Once a new value of u0 is obtained, T is updated by integrating
the Navier–Stokes equations forward in time using the updated u0 as an initial
condition until a maximum value of E(t) is reached. The time of this maximum
is taken as the new value of Topt for this particular value of E0 and (2.12) is
then satisfied. Convergence of the procedure was assessed by examining how the
normalized residual

Rn := 〈δL /δu(n)0 , δL /δu(n)0 〉/〈v(n)0 ,v
(n)
0 〉, (2.17)

at the nth iteration, behaved as n increased.

3. BF92 geometry
The underlying objective of this paper is to investigate how optimal initial

conditions for energy growth over a finite time interval T change as a function of
E0. We are interested in three particular core issues: the role played by the finite-
amplitude manifestations of the optimal perturbations of the underlying strictly linear
optimization problem (i.e. the perturbations we refer to as belonging to the QLOPT
solution branch) as E0 increases towards Efail ; whether it is possible to identify, for
sufficiently long optimization time intervals, the special ‘final’ nonlinear optimal
perturbations (which we refer to as the NLOP(f )T solution branch) which converge
towards the minimal seed as E0 approaches Ec from below; and whether we can
find evidence, either direct or indirect, that suggests that the NLOP(f )T are convergent
solutions to our optimization problem for all energies less than but sufficiently close
to Ec, thus suggesting that Efail = Ec. To investigate these issues, we present results
for the geometry studied previously in the linear regime (E0 → 0) in BF92: a
periodic box with dimensions Lx = 2π/0.49 = 13.66, Ly = 2 and Lz = 2π/1.9 = 3.31
(or 4.08π× 2× 1.05π) with Re= 1000. We use a modified version of the Diablo CFD
solver (Taylor 2008), which is spectral in x and z and finite-difference in y, to solve
the forward and adjoint equations as described in the previous section.

3.1. The quasi-linear optimal perturbation
For sufficiently small initial energies E0, a resolution of 128 × 256 × 32 in x, y and
z respectively and time step 1t = 0.025, we found that the optimal perturbation
resembled that previously reported (see BF92 for more details) linear optimal
perturbation in both gain and structure, justifying our identification of this perturbation
as a ‘quasi-linear optimal perturbation’ (QLOPT). As noted by BF92, the form of the
initial perturbation and its time evolution vary relatively little with the particular
length of the optimization time interval T , provided the optimization interval is
sufficiently long. The peak value of the gain for this particular optimal perturbation is
approximately 1100, and occurs for an optimization interval T = TQ ' TL = 125.25 (in
units of h/U). With increasing but still small E0, the peak gain and globally optimal
time horizon T = TQ of the QLOPTQ

remains close to constant (i.e. TL = TQ = Topt as
shown in figure 3a,b).

However, beyond a certain energy threshold (approximately 2.2 × 10−6 < Efail <

2.25 × 10−6), there is a sudden and large jump in the gain achievable, as shown
in figure 3(a), and the associated optimal time tends to very large values as E0

approaches this threshold energy from above. As discussed in the following subsection,
the initial conditions found by our algorithm for these values of E0 > Efail evolve into
turbulent states, and our algorithm fails to converge. The observed decrease in gain as
E0 increases above this threshold energy Efail (figure 3a indicates G ∼ 1/E0) suggests
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FIGURE 3. (Colour online) Variation with initial energy E0 of (a) the gain G(T) = E(T)/E0
and (b) the globally optimal time Topt for the BF92 flow geometry. The critical energy
2.2 × 10−6 < Ec < 2.25 × 10−6, where Topt jumps markedly, is indicated by a vertical green
dashed line. In the insets, the gain (1130) and Topt (125.25) for the underlying linear problem
are marked with a horizontal blue solid line. Blue circles mark the properties of QLOPTopt
(i.e. TQ = Topt ), while the red squares mark the properties of turbulent seeds. The filled circle
corresponds to QLOPTopt for E0 = 2.2 × 10−6 shown in figure 4 and in figures 5(a) and 6(a),
while the filled square corresponds to the ‘critical’ Tc turbulent seed for E0 = 2.25 × 10−6

shown in figure 4 and in figures 5(c) and 6(c).

that the saturated energy for these perturbations is approximately constant, or at least
largely insensitive to the value of E0, provided E0 > Efail , which is consistent with a
(turbulent) attractor being reached. These results suggest that the critical energy Ec for
turbulence to be accessible satisfies Ec . Efail . It is also apparent that the behaviour
of the optimal time Topt associated with the maximum gain over all possible time
horizons is entirely consistent with the schematic picture shown in figure 2(a) and
described in detail in § 1: the QLOPTopt (shown by the thick black line in the figure)

‘masks’ the potential presence of the final nonlinear optimal perturbation NLOP(f )T ,
which is conjectured to converge to the turbulent seed for all E0 < Ec. As the initial
energy amplitude E0 approaches Efail from below, the QLOPTopt remains dominant,
with gain (and optimal time) very similar to the values from the linear problem.

There is strong evidence that the algorithm converges straightforwardly to this
perturbation from a range of initial conditions for all values of E0 < Ec. Figure 4(a)
plots the normalized residual Rn against iteration n for the QLOPTopt at E0 = 2.2×10−6,
whose gain G(T) and optimal time Topt are marked with filled blue circles in figure 3.
For the calculation shown in figure 4, we use random noise as an initial guess, which
gives rise to the relatively large initial value of the normalized residual Rn (for n 6 5).
The observation that Rn drops so strongly (by fifteen orders of magnitude) while the
gain rapidly asymptotes to a specific value (1118) very close to the value (1130) for
the underlying linear problem, lends credibility to the assertion that our algorithm is
converging to this optimal perturbation. Rerunning the procedure for a further five
randomly chosen initial conditions reproduces the same result. We also saw similarly
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FIGURE 4. (Colour online) Gain E(T)/E0 (blue solid line) and Rn (as defined in (2.17) and
plotted with a red dashed line) plotted against iteration for (a) the QLOPTopt at E0 = 2.2×10−6

where the gain is 118, and (b) the critical Tc turbulent seed with E0 = 2.25 × 10−6 where the
gain is G> 5.6× 104.

strong convergence for all the other perturbations on the QLOPTopt solution branch
with E0 < 2.2× 10−6.

In fact, it is possible to converge to the QLOPTopt solution branch for Ec < E0 . 2Ec

if the initial guess for the algorithm is chosen sufficiently closely to the QLOPTopt ,
demonstrating that it persists as a local maximum in (optimal) solution space for
a wide range of initial energies. Our identification of this perturbation as being
closely related to the linear optimal perturbation can be confirmed by consideration
of its spatial and temporal structure. In figures 5(a) and 6(a), we plot contours and
isosurfaces of streamwise velocity u at various times. These images clearly show the
expected streamwise-aligned and spanwise-periodic streak structure characteristic of
the linear optimal perturbation as identified by BF92.

3.2. Turbulent seeds
As is apparent in figure 3, when the initial energy E0 crosses the threshold value
Efail , both the globally optimal time Topt and the gain increase to values very much
larger than those associated with the linear problem. There is clearly a disconnect
between the perturbations identified by our algorithm either side of this threshold
energy. Therefore, in this flow geometry, optimizing perturbations over all possible
time horizons does not address the validity of the conjectures of PWK12, showing
that this flow is qualitatively different from the pipe flow which they considered. In
particular, it is clear that T ' TL = 125 is not sufficiently ‘long’ to allow the testing of
their conjectures.

However, it is possible to establish that the threshold energy we have identified
may be interpreted as being the energy Efail at which our algorithm fails to converge,
and also that for initial energies greater than this threshold the initial perturbations
may be thought of as ‘turbulent seeds’, since they trigger transition eventually. We
show the generic behaviour of our algorithm for perturbations with E0 > Efail in
figure 4(b), for the special ‘critical’ Tc perturbation with E0 = 2.25× 10−6 shown with
a filled red square in figure 3. Although the gain apparently saturates at a substantially
elevated value compared to QLOPTopt at E0 = 2.2× 10−6 in figure 4(a), the normalized
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FIGURE 5. Contours of streamwise velocity u at times 0, 150, 250, 350 for (a) QLOPTopt

with E0 = 2.2 × 10−6, (b) the edge state calculated by using the conventional bisection
approach with E0 ' Ec, and(c) the ‘critical’ Tc turbulent seed for E0 = 2.25 × 10−6 &
Ec. Contour levels, from top to bottom, are: (a) (min, spacing, max) = (−6, 2, 6) ×
10−5, (−0.1, 0.05, 0.1), (−0.1, 0.02, 0.1), (−0.06, 0.02, 0.06); (b) (min, spacing, max) =
(−2, 0.5, 1.5) × 10−3 and (−0.1, 0.05, 0.1) subsequently; (c) (min, spacing, max) =
(−2, 0.5, 1.5)× 10−3, (−0.1, 0.05, 0.1), (−0.6, 0.1, 0.5), (−0.6, 0.2, 0.6).

residual Rn as defined in (2.17) does not drop to small values, suggesting highly
non-smooth properties of the solution space, which would be expected to occur when
the flow can become turbulent. This figure also shows that the gain jumps during
one iteration, indicative of suddenly finding a ‘turbulent’ end state. The residual
remains relatively high, and in fact it proves very difficult to continue the iteration.
This suggests that there are several turbulent seeds for this initial energy, and so
E0 = 2.25× 10−6 should be considered as an upper bound on Ec.
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FIGURE 6. (Colour online) Isosurfaces of streamwise velocity u, at 60 % of maximum and
minimum values, at times 0, 150, 250, 350, for (a) QLOPTopt with E0 = 2.2 × 10−6, where
the amplitude is decaying for the lower three panels, (b) the edge state calculated by using the
conventional bisection approach with E0 ' Ec, and (c) the Tc turbulent seed above the edge at
Ec < E0 = 2.2× 10−6.

The next natural question to consider is whether this threshold energy Efail can also
be identified with the critical energy for an initial condition to lead to turbulence, i.e.
if Efail = Ec the initial energy of the minimal seed. In figures 5(c) and 6(c), at the same
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FIGURE 7. (Colour online) Time variation of the gain G(t) = E(t)/E0 (plotted with a thick
blue solid line) and dissipation rate (thick red dashed line) for the critical Tc turbulent seed
with E0 = 2.3 × 10−6. For comparison we have also plotted the time variation of the gain
(thin blue solid line) and dissipation rate (thin red dashed line) associated with a perturbation
with the same initial structure as the Tc turbulent seed but with rescaled initial energy of
E0 = 2.2× 10−6.

times as for the QLOPTopt at E0 = 2.2× 10−6 (marked by a filled blue circle in figure 3
and shown in the left-hand panels), we plot contours and isosurfaces of the streamwise
velocity of the flow evolving from the critical ‘optimal’ Tc perturbation identified by
our algorithm with E0 = 2.25 × 10−6, and marked with a filled red square in figure 3.
Three characteristics are immediately apparent. Firstly, the initial structure of this
Tc perturbation is qualitatively different from the QLOPTopt , with the Tc perturbation
showing strong initial spatial localization. Secondly, as time passes, this localized
Tc perturbation ‘unpacks’ and extends throughout the computational domain, with
an appreciably smaller spanwise scale than the evolving QLOPTopt perturbation. This
‘unpacking’ leads to enhanced energy gain through a combination of the well-known
Orr and lift-up mechanisms (see PWK12 and Cherubini et al. 2010, 2011b). Finally,
for t > 200, when QLOPTopt is already starting to decay and the flow is relaminarizing,
the Tc perturbation breaks down (through a streak instability, e.g. Reddy et al. 1998),
and indeed appears to undergo a transition to turbulence, justifying our identification
of this initial perturbation as a turbulent seed.

We present further evidence that the Tc perturbation is a turbulent seed in figure 7,
where we plot the time-varying gain (with a thick blue solid line) and instantaneous
dissipation rate (with a thick red dashed line) of the evolving flow for the Tc

perturbation with E0 = 2.25 × 10−6. For comparison, we plot the same quantities
(with thin lines) for an evolving flow with an initial perturbation of the same spatial
structure as the Tc perturbation, whose amplitude is uniformly rescaled so that the
initial energy of the perturbation is 2.2 × 10−6, i.e. just below the critical threshold
energy Efail shown in figure 3. Initially, the evolution of the two flows is very similar.
The dissipation rate remains at a small, essentially laminar value, while the gain grows
substantially, and reaches a plateau, corresponding to a gain of approximately 650.
Importantly, and consistently with the schematic picture presented in figure 2(a), this
plateau is substantially below the maximum attained by the QLOPTopt perturbation
(1118) with similar initial energy at time TQ = Topt = 125.
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FIGURE 8. (Colour online) Perturbation energy against time for various initial states close
to the edge in the BF92 geometry. Every 100 time units, the edge state is rescaled to
produce new upper and lower bounds, and its energy is plotted with a solid blue line.
The dashed (upper) green and (lower) orange lines plot the continued time evolution of
bracketing solutions as they are considered to no longer be on the edge. The QLOP300 with
E0 = 2.23205 × 10−6, and shown in figure 9(a), is plotted with a magenta dotted line. The
initial perturbation identified as the final NLOP(f )300 with E0 = 2.2305 × 10−6 and shown
in figure 9(b) is plotted with the first divergent dashed orange line. The associated initial
perturbations identified as the final NLOP(f )100 with E0 = 2.1× 10−6 and the final NLOP(f )50 with
E0 = 2.0× 10−6 and shown in figure 9(b,c) are plotted with a thick grey dot-dashed line and a
thin black dot-dashed line respectively.

However, at sufficiently late times t > 200 the behaviour of the two perturbations
starts to diverge markedly. The rescaled perturbation with energy below the threshold
energy decays, and the flow is clearly relaminarizing with the dissipation rate
remaining at a very small value. Conversely, the Tc perturbation increases enormously
in magnitude from the intermediate plateau value to a maximum gain G> 5.6× 104 at
a time Topt = 270, associated with a very large spike in dissipation rate. Subsequently
the dissipation rate stays at an enhanced level, indicating that turbulence has been
reached and therefore that the threshold energy marked in figure 3 is close to the
critical energy Ec. This behaviour also suggests that it would be appropriate to
consider an optimization problem with an adequately long fixed time horizon of
T = 300, to investigate the existence (or otherwise) of the ‘final’ nonlinear optimal
perturbation NLOP(f )T solution branch, which is conjectured to converge to the minimal
seed as E0→ E−c .

3.3. The ‘final’ nonlinear optimal perturbation NLOP(f )T

In the conceptual picture presented by PWK12, one unique initial condition to trigger
turbulence – the minimal seed – should emerge as the limiting state of a specific,
convergent nonlinear optimal perturbation (herein referred to as the ‘final’ NLOP(f )T )
as E0 → E−c , and this minimal seed is the lowest accessible energy state on the
laminar–turbulent ‘edge’. To investigate this further, we first refine our estimate for
Ec by following the well-established procedure for ‘edge-tracking’ (Itano & Toh 2001;
Skufca et al. 2006; Schneider et al. 2007; Duguet et al. 2008). The turbulent seed
discussed above is successively rescaled until it stays close to the ‘edge’ for a large
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time of t = 400. Figure 8 makes it clear that the edge state (attracting state for
edge-confined dynamics) has an approximately constant energy of E = 1.6 × 10−3.
This is consistent with the work of Schneider et al. (2008), who treat a PCF
system 4π × 2 × 2π, albeit at Re = 400, and find a steady edge state. From this
calculation, we obtain the refined estimate that 2.23205 × 10−6 < Ec < 2.2321 × 10−6.
The need to consider sufficiently long optimization intervals is illustrated clearly
by the behaviour of the quasi-linear optimal perturbation for the fixed optimization
interval T = 300 with initial energy E0 = 2.23205 × 10−6. This QLOP300 behaves in
an essentially identical manner to the QLOPTopt discussed above, reaching a maximum

gain substantially larger than the intermediate plateau of the edge state at T ' 130,
before decaying, such that the gain at the target time T = 300 is below that of the
plateau, and has G(300) ' 400. Therefore, the final nonlinear optimal perturbation,
which is conjectured to converge to the minimal seed, is expected to have larger
gain than the QLOP300 when T = 300 but not for substantially smaller optimization
intervals.

It is important to remember that our algorithm is in fact only able to identify
local maxima in the growth rate of perturbations, and so the particular form of the
‘optimal perturbation’ may well be sensitive to the choice of the initial guess for the
initial perturbation structure we use to start the algorithm. In particular, it is possible
for us still to converge to the QLOP300 even when its gain is below that of the
NLOP(f )300 for initial energies very close to Ec. In figure 9(a), we plot the gain and
normalized residual (as defined in (2.17)) Rn against iteration for the QLOP300 with
E0 = 2.2 × 10−6. As for the QLOPT calculation shown in figure 4, we use random
noise as an initial guess, explaining the initial relatively large value of the normalized
residual Rn defined in (2.17), and clearly are able to obtain strong convergence to this
local maximum in gain G(300)= 421.

However, over this time interval, and for E0 sufficiently close to Ec, the gain of
the inherently nonlinear optimal perturbation which approaches very close to the edge
state for a substantial time (plotted as the first divergent dashed orange line in figure 8)
is expected to be substantially larger than that of the QLOP300. Therefore, for initial
‘guesses’ chosen sufficiently closely to those which evolve into the edge state, we
should be able to identify the ‘final’ nonlinear optimal perturbation NLOP(f )T solution
branch. Our algorithm is indeed able to identify such an initial perturbation, although
when E0 is very close to Ec, the algorithm does not show very good convergence
properties. Increasing the cross-stream resolution substantially (so the total resolution
is now 128 × 1536 × 32) improves matters but does not eliminate the difficulty. In
figure 9(b), we plot the gain and normalized residual (as defined in (2.17)) Rn against
iteration for what we believe to be the NLOP(f )300 with E0 = 2.23025 × 10−6 and the
higher resolution of 128× 1536× 32 in the x, y and z directions and 1t = 0.1. For this
iteration, and the other iterations investigating the NLOP(f ) solution branch shown in
figure 9(c,d), we relaxed the condition on the monotonicity of the gain (2.16) to

G(n+1) > 0.95G(n), (3.1)

which slightly improved the initial convergence properties.
The gain clearly tends to a fixed value just below 700, and the normalized residual

Rn is really quite small (approximately Rn = 3.5 × 10−6) but fails to reduce further,
for reasons we do not understand. The initial structure and time evolution of this
perturbation is essentially indistinguishable from those of the edge state shown in
figures 5(b) and 6(b). The initial structure is spatially localized in a very similar way

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.417


262 S. M. E. Rabin, C. P. Caulfield and R. R. Kerswell

0

100

200

300

400

500

10 20 30

100

105

10–5

10–10

10–15 650

660

670

680

690

700

0 20 40 60 80

10–5

10–6

492

493

494

G
ai

n
G

ai
n

491

495

5 10

Iterations
0 15

10–2

10–3

10–4

10–5

10–6 445

450

455

460

465

470

5 10

10–2

10–3

10–4

10–5

10–1

10–6

N
or

m
al

iz
ed

 r
es

id
ua

l
N

or
m

al
iz

ed
 r

es
id

ua
l

(a) (b)

(c) (d )

Iterations
0 15

FIGURE 9. (Colour online) Gain E(T)/E0 (blue solid line) and normalized residual Rn (as
defined in (2.17) and plotted with a red dashed line) plotted against iteration. (a) The
QLOP300 with E0 = 2.2× 10−6, with resolution 128× 256× 32 in the x, y and z directions and
1t = 0.025, showing an ultimate gain of 421. (b) The NLOP(f )300 with E0 = 2.23025 × 10−6,
with resolution 128× 1536× 32 in the x, y and z directions and 1t = 0.1 showing an ultimate
gain of 696. (c) The NLOP(f )100 with E0 = 2.1 × 10−6, with resolution 128 × 1536 × 32 in the
x, y and z directions and 1t = 0.1 showing an ultimate gain of 495. (d) The NLOP(f )50 with
E0 = 2.0 × 10−6, with resolution 128 × 1536 × 32 in the x, y and z directions and 1t = 0.1
showing an ultimate gain of 466.

to the critical Tc turbulent seed shown in the right-hand panels, and the perturbation
also ‘unpacks’ in the same way along the streamwise extent of the computational
domain, growing through a combination of the Orr and lift-up mechanisms. However,
similar to the time evolution of the rescaled perturbation whose evolution is shown
in figure 7, the amplitude is just too small to trigger turbulence, and the perturbation
approaches a steady quasi-periodic structure, with essentially constant perturbation
amplitude over a very long time interval.

The initial guess which we choose for this perturbation is the initial perturbation
which we have identified as the minimal energy state (the minimal seed) of the
edge state scaled to be just slightly smaller than the critical energy Ec for the
onset of turbulence. This guess is actually very close to the local optimal choice,
as is evidenced by the relatively small value of the normalized residual for the first
iterations. Unfortunately, since the residual does not drop much further, it is hard to
claim convergence. If it had been possible to start further away, the drop to a residual
of O(10−6) would be more convincing of convergence (the fact that the normalized
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residual saturates is consistent with the observations of PWK12 and is not currently
understood).

As the initial energy E0 decreases from Ec, even locally optimal perturbations
cease to follow the time evolution of the minimal seed, and ‘drop off’ the edge,
decaying and relaminarizing at earlier and earlier times. There is a minimum initial
energy E0 = Ef at which initial perturbations will no longer approach the edge at
all, a stage at which we would consider the ‘final’ nonlinear perturbation (NLOP(f ))
solution branch not to exist. To demonstrate the existence of this solution branch, we
therefore reduce the optimization time horizon as we reduce E0 to identify locally
optimal perturbations with similar initial structure to the minimal seed, and thus to
the NLOP(f )300 discussed above. The reduced optimization time horizon allows us to
consider the perturbation’s gain at least close to its maximum (across all time) value,
thus maximizing the chances for our algorithm to converge to this solution branch as
E0 → E+f . The time evolution of the energy of two such perturbations is plotted in
figure 8. When E0 = 2.1 × 10−6 (i.e. E0 ' 0.94Ec) we consider a fixed optimization
time interval of T = 100. We plot with a grey dot-dashed line the time evolution of the
energy of a locally optimal perturbation, with an initial ‘guess’ of the NLOP(f )300, which
clearly continues to trace, at least initially, the temporal evolution of the minimal seed.
Similarly, when E0 = 2.0 × 10−6 (i.e. E0 ' 0.90Ec) we consider an even shorter fixed
optimization time interval of T = 50, and plot the equivalent time evolution with a
black dot-dashed line. For both of these optimization problems, we use consistently the
higher resolution of 128× 1536× 32 in the x, y and z directions and 1t = 0.1.

Since the initial structure of these perturbations is extremely similar to the NLOP(f )300
(and indeed the minimal seed) we identify these two perturbations as part of the
same ‘final’ nonlinear optimal perturbation solution branch, and hence label them as
the NLOP(f )100 and NLOP(f )50 respectively. Also, because these perturbations have initial
energy slightly further away from the critical value of Ec than the NLOP(f )300, we are
now able to demonstrate somewhat better convergence properties for our algorithm. In
figures 9(c) and 9(d) respectively, we plot the gain and normalized residual Rn against
iteration for the NLOP(f )100 with E0 = 2.1× 10−6 and the NLOP(f )50 with E0 = 2.0× 10−6

(which we believe is a good estimate for the minimum energy Ef at which this
solution branch exists). In both cases, the gain appears to be approaching a saturated
value, of 495 for the NLOP(f )100 and 466 for the NLOP(f )50 respectively. Since the initial
guesses are further away from the final ‘optimal’ perturbation than in the NLOP(f )300
calculation, the normalized residual drops substantially with iterations giving better
evidence for convergence, although again Rn appears to saturate at O(10−6).

It is important to reiterate that these perturbations are only locally optimal, as
over these time horizons, the quasi-linear optimal perturbation solution branch (whose
energy evolution is plotted with a dotted magenta line in figure 8) definitely has
larger gain. However, for sufficiently close initial guesses, both in structure and in
original energy E0, to the critical Tc turbulent seed, we believe that we have obtained
convincing evidence for the existence of the ‘final’ nonlinear optimal perturbation,
which converges to the minimal seed as E0 → E−c . This suggests that, within the
nomenclature of the conjectures of PWK12 discussed in § 1, Efail = Ec.

Indeed, in this geometry and at this Re, there is strongly suggestive evidence
consistent with both conjectures of PWK12, provided the optimization problem has
a sufficiently long (and fixed) time interval. Specifically, the threshold energy for our
algorithm to fail to converge corresponds to the critical energy Efail = Ec where a
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minimal seed can be found. Turbulence transition can occur for small perturbations
above this minimal seed, and there is a well-defined nonlinear optimal perturbation
(which we refer to as the ‘final’ NLOP(f )T for T = 300) which converges to the minimal
seed as E0 → E−c . However, in the BF92 geometry, for all energies E0 < Ec, the
finite-amplitude optimal perturbation (which we refer to as the QLOPTopt ) associated

with the linear optimal perturbation always has a larger gain than the ‘final’ NLOP(f )T

for all T . Therefore, for this flow geometry, the behaviour is as shown schematically
in figure 2(a). In the next section, we consider the different PCF geometry discussed
in M11, both to see if the behaviour is different again, and to investigate whether Ec

depends on the particular form of the optimization problem being considered.

4. M11 geometry
In this section we examine a second, larger geometry of dimensions 4π × 2 × 2π

(essentially twice as wide as that in BF92) at a higher Reynolds number Re = 1500,
as considered in M11. Typically, we choose a resolution of 128 × 288 × 64 in the x,
y and z directions respectively, and a time step 1t = 0.025. Choosing the geometry
and Reynolds number used by M11 has the specific benefit that we can compare our
results to those obtained for a completely different optimization problem. As discussed
in § 1, M11 optimized the total dissipation over a long time interval (T = 300) rather
than the energy gain achieved at a specific target time.

Following the same approach as described in the previous section, and so optimizing
the energy gain G(T) = E(T)/E0 over all possible target times T , we once again
find a threshold energy Efail at which the gain and optimal time interval Topt jumps
markedly, and our algorithm ceases to converge. We believe, as in the BF92 geometry,
that this threshold energy can be identified with the critical energy for the onset of
turbulence and is found to be 3.2 × 10−7 < Efail = Ec < 3.25 × 10−7, plotted as a
vertical dashed line in figure 10(a,b). This particular value agrees well with M11,
who found 3 × 10−7 < Ec < 4 × 10−7 (see their figure 1). (Note that ε0 in M11
is E0 here, as ‖ ‖E in their equation (1) is strictly a kinetic norm with a 1/2
included Monokrousos, personal communication.) Our calculated time for transition at
E0 = 4.0 × 10−7 is approximately 200, not too dissimilar from the transition time of
150 in M11. This suggests strongly that the particular choice of optimizing functional
is not important for the calculation of a minimal seed, or more accurately to identify
the critical energy Ec, provided the functional attains heightened values for turbulent
flows (as discussed in PWK12).

Furthermore, we find that the behaviour of the identified optimal perturbations as
E0 increases from small values towards Ec is actually qualitatively different from that
which we identified for the BF92 geometry. Figure 10(a) indicates that there are now
three different energy intervals in this geometry rather than the two in BF92. As
before, below a certain initial energy value E0 < E1 the QLOPTopt is selected, and
above a critical energy E0 > Ec turbulent seeds with initial conditions significantly
different from the QLOPTopt trigger turbulence. Between these two limiting energy
ranges, however (i.e. for E1 < E0 < Ec), there now exists an intermediate range of
initial energies where our algorithm generates an initial condition different from the
QLOPTQ

, in the sense that it displays localization in the cross-stream (y) direction,
as well as a strong streamwise (x) variation as shown in figure 11. Using the
nomenclature described in § 1, we call this qualitatively different optimal perturbation
an NLOP(1)Topt

, after PK10 and PWK12. Perturbations on this intermediate solution
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FIGURE 10. (Colour online) Variation with initial energy E0 of (a) the gain G(T)= E(T)/E0
and (b) the globally optimal time Topt for the M11 flow geometry. The critical energy
3.2 × 10−7 < Ec < 3.25 × 10−7, where Topt jumps markedly, is indicated by a vertical
green dashed line. In the insets, the gain (2469) and Topt (182.5) for the underlying linear
problem are marked with a horizontal blue solid line. Blue circles mark the properties of
QLOPTopt (i.e. TQ = Topt ), while the red squares mark the properties of turbulent seeds and the
magenta triangles mark the properties of the inherently nonlinear NLOP(1)Topt

solution branch.

The cross-over time E1, at which the NLOP(1)Topt
solution branch becomes apparently globally

optimal, is approximately E1 ' 7.5× 10−8. The filled circle corresponds to the QLOPTopt with
E0 = 2.5 × 10−8 shown in figures 11–12, while the filled triangle corresponds to NLOP(1)T at
E0 = 3.2× 10−7 shown in figures 11–14.
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FIGURE 11. (Colour online) Isosurfaces of streamwise velocity u, at 60 % of maximum and
minimum values, for (a) the QLOPTopt at E0 = 2.5 × 10−8, marked with a filled blue circle in
figure 10, and (b) the NLOP(1)Topt

at E0 = 3.2 × 10−7, marked with a filled magenta triangle in
figure 10.
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FIGURE 12. (Colour online) Gain E(T)/E0 (blue solid line) and Rn (as defined in (2.17)
and plotted with a red dashed line) plotted against iteration for (a) the QLOPTopt with
E0 = 2.5 × 10−8 (and T = 182.5), and (b) the NLOP(1)T perturbation with E0 = 3.2 × 10−7

(and Topt = 205).

branch have significantly enhanced gain occurring over a slightly longer optimization
time than the perturbations on the QLOPTQ

solution branch. Nevertheless, for all

NLOP(1)Topt
, the flow never undergoes a transition to turbulence, and so we believe

this solution branch is completely distinct from the NLOP(f )Topt solution branch, which
approaches a minimal seed for turbulence as E0→ E−c .

Both these optimal perturbations exhibit good convergence properties as shown in
figure 12, where (similarly to figures 4 and 9) we plot the gain and the normalized
residual Rn against iteration for the QLOPTopt with E0 = 2.5 × 10−8 (marked with a
filled blue circle in figure 10) and the NLOP(1)Topt

with E0 = 3.2 × 10−7 (marked with a
filled magenta triangle in figure 10).

For the M11 flow geometry, the cross-over initial energy E1 at which the NLOP(1)Topt
solution branch emerges with a larger gain than the QLOPTopt solution branch appears
to be approximately E1 ' 7.5×10−8. Interestingly, for initial energies E0 ' 1×10−7, we
are able using our algorithm to find either the QLOPTQ

solution branch (the optimal
time interval TQ for this solution branch now being different from the globally optimal
time interval Topt for all initial conditions) or the NLOP(1)Topt

solution branch, depending
on the particular form of the initial ‘guess’ for the perturbation. Even for energies
larger than Ec, if we choose as an initial guess either random noise or the NLOP(1)Topt

near Ec, the algorithm converges to the NLOP(1)Topt
at that E0 even for Ec < E0 . 2Ec.

This robust survival of the NLOP(1)T solution branch above Ec is thus analogous to the
behaviour of the QLOPT solution branch in the BF92 geometry, as discussed above.

Similar to the approach of M11, we estimate Ec by rescaling a turbulent seed
found at large E0 down in energy until the ‘critical’ Tc turbulent seed is found.
This perturbation approaches very closely to the edge for an extended time period
until eventually diverging and undergoing the transition to turbulence. (Although
not reported in detail here, we conducted an edge-tracking procedure for the M11
geometry similar to that shown in figure 8 for the BF92 geometry, and thus were able

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

41
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.417


Triggering turbulence efficiently in plane Couette flow 267

to identify the structure of the edge whose minimum energy state could be identified
as the minimal seed for turbulence in this flow geometry.)

All of these observations are completely consistent with the schematic evolution
shown in figure 2(b). For energies close to Ec, the emergence of the NLOP(f )T solution
branch which converges to the minimal seed as E0 → Ec is ‘masked’ not by the
QLOPTQ

solution branch, but rather by a distinct, inherently nonlinear solution branch

which we refer to as the NLOP(1)Topt
solution branch, plotted in figure 2(b) with a

thick grey line. This new solution branch appears in this flow geometry because the
increased width and higher Re of this flow geometry allows localized perturbations
of this form to undergo an initial (relatively brief) period of growth larger than that
of the QLOPTQ

with the same initial energy E0, before ‘unpacking’ into a periodic,
delocalized structure very similar in form to the QLOPTQ

. This initial delocalization

also explains why the optimal time Topt for an NLOP(1)Topt
is somewhat longer than for

a QLOPTQ
(TQ being typically very close to the optimal time for the underlying linear

problem TL = 182.5), as can be seen in figure 10.
Figures 13 and 14 allow us to compare the time evolution of NLOP(1)Topt

at
E0 = 3.2 × 10−7 to the time evolution of the identified minimal seed and the critical
Tc turbulent seed. The contours of streamwise velocity u shown in figure 13 and
the isosurfaces of u shown in figure 14 establish clearly that NLOP(1)Topt

converges to
a structure very similar to the QLOPTopt shown in figure 11, with the conventional
spanwise-periodic and streamwise-aligned streaks extending across the entire extent
of the flow. Figure 14 also shows how the initially localized NLOP(1)Topt

unpacks
into a series of streamwise streaks. An examination of the early time suggests that
it is a combination of the Orr, oblique and lift-up mechanisms (as discussed in
PWK12) that is responsible for the localized flow unpacking into streamwise streaks.
These observations suggest that while at early time there exists a distinct localized
perturbation associated with the inherently nonlinear NLOP(1)Topt

solution branch, which
is able to extract enhanced gain from the base flow by ‘unpacking’, this solution
branch at later times effectively matches onto the QLOPTQ

solution branch to exploit
the same lift-up mechanisms.

Turning now to a consideration of the time evolution of the minimal seed and the
critical Tc turbulent seed (figures 13 and 14), it is clear that these perturbations also
unpack in the streamwise and cross-stream directions, producing streamwise streaks
which are still cross-stream localized. If there is just sufficient energy in these streaks,
they are unstable, and the transition to turbulence occurs, as is the case for the
turbulent seed. Otherwise the streaks persist, as is the case for the edge state reached
from the minimal seed.

It is significant that the minimal and turbulent seeds are spanwise-localized (at
least until the turbulence is reached) in this 2π wide geometry and not in the
1.05π wide geometry of BF92. Of course, the higher Re must be a contributory
factor, but the spanwise dimension does seem important. PK10 originally found an
azimuthally-localized (and radially-localized) inherently nonlinear optimal perturbation
in a short pipe where one could talk about a ‘spanwise’ (azimuthal) length scale of 2π
(radii or half-channel heights). The emergence of an inherently nonlinear and distinct
solution branch (which we label as the NLOP(1)Topt

solution branch, as represented
schematically in figure 2b) in the wider M11 geometry is also noteworthy. The linear
optimal perturbation and, by definition, the associated quasi-linear optimal perturbation
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FIGURE 13. Contours of streamwise velocity u at times 0, 75, 150, 250 and 400 for
the NLOP(1)Topt

with E0 = 3.2 × 10−7 marked in figure 10 with a filled magenta triangle
(a, eventually decaying in amplitude), the edge state calculated by using the conventional
bisection approach with E0 ' Ec (b) and the ‘critical’ Tc turbulent seed (c) for E0 = 3.25 ×
10−7 & Ec. Contour levels are: going down (a) (min, spacing, max) = (−10, 2, 8) × 10−4,
(−0.08, 0.02, 0.04), (−0.1, 0.02, 0.08), (−0.1, 0.02, 0.08), and (−0.06, 0.02, 0.06); going
down (b) (min, spacing, max) = (−10, 2, 8) × 10−4, (−0.1, 0.05, 0.1), (−0.15, 0.05, 0.1),
(−0.2, 0.05, 0.05) and (−0.3, 0.05, 0.1); going down (c) (min, spacing, max)= (−10, 2, 8)×
10−4, (−0.1, 0.05, 0.1), (−0.15, 0.05, 0.1), (−0.3, 0.05, 0.1) and (−0.8, 0.2, 0.8).

are global periodic states which are largely insensitive to the geometry, whereas the
gathering evidence is that it is possible within a nonlinear variational framework for
inherently nonlinear optimal perturbations to arise as an attempt by the fluid to localize
to maximize the energy gain for given global kinetic energy.

As is demonstrated here in the M11 geometry, it is entirely possible for nonlinear
optimal perturbations, completely distinct in structure from the linear optimal
perturbations to arise for ranges of initial energy E1 < E0 < Ec, and indeed for the
minimal seed to be completely unrelated to both this solution branch and the quasi-
linear optimal perturbation solution branch. It appears that the general trend should be
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FIGURE 14. (Colour online) Isosurfaces of streamwise velocity u, at 60 % of maximum and
minimum value, at times 0, 75, 150, 250 and 400, for (a) the NLOP(1)Topt

at E0 = 3.2 × 10−7,
(b) the edge state calculated by using the conventional bisection approach with E0 ' Ec, and
(c) the Tc turbulent seed at E0 = 3.25× 10−7.

that the energy cross-over (E1) from quasi-linear optimal perturbations to inherently
nonlinear optimal perturbations should decrease with increasing domain size. Clearly
this cross-over is above Ec for the BF92 geometry at Re = 1000 and below Ec for the
M11 geometry at Re= 1500.
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Finally, it is interesting to note that the time-evolving structure of the critical
turbulent seed, shown in figure 14(c), is at least qualitatively very reminiscent of
the perturbation shown in figure 4 of M11 (albeit at a slightly different initial energy),
suggesting that we have generated an approximation to the same (presumably unique)
minimal seed. This is further supported by the aforementioned correspondence in their
and our estimates for Ec. Beyond validating each other’s results (which is important
for nonlinear optimization problems), this points to an insensitivity in the choice of
the functional to be maximized for finding the minimal seed. There is one proviso,
of course, that the functional must be selected so that it detects turbulent flows by
assuming large values. Only then will the variational procedure seek out turbulent
seeds from amongst all the possible initial conditions with the same energy.

5. Conclusions
In this paper, we have sought the disturbance to plane Couette flow of a

given finite kinetic energy E0 which will experience the largest subsequent energy
gain G = E(T)/E0 where the time of maximum gain T is an output of our
variational formulation. Two flow situations have been considered: (Lx×Ly×Lz, Re)=
(4.08π × 2 × 1.05π, 1000), as used for the original calculations of linear optimal
perturbations in BF92, and (4π × 2 × 2π, 1500), for which analogous nonlinear
calculations have recently been performed optimizing the total dissipation over a
specified period in M11. We have been particularly focused on assembling evidence to
test the conjectures recently proposed by PWK12.

In both flow geometries, we have found an initial energy Efail beyond which our
variational algorithm no longer converges due to the existence of turbulence-triggering
initial conditions, or ‘turbulent seeds’. Therefore Efail > Ec, the energy above which
turbulence can be triggered. PWK12’s first conjecture is that Efail = Ec if the energy
hypersurface is sufficiently sampled, and we find nothing to contradict this conjecture.
Indeed, by considering in detail the behaviour near to Efail in the BF92 flow geometry,
we find evidence that as E0 approaches Efail from below for a sufficiently long
(and fixed) optimization time interval T , the variational algorithm finds a ‘final’
nonlinear optimal perturbation solution branch, which we refer to as the NLOP(f )T

solution branch. Furthermore, it appears that as E0→ E−fail the NLOP(f )T solution branch
converges to a ‘minimal seed’, the state of minimum energy on the laminar–turbulent
boundary, such that arbitrarily small perturbations of it lead to turbulence. This
evidence gives further support to the first conjecture of PWK12, and also strongly
supports their second conjecture, which proposes that the optimal perturbations for
initial energies E0 = Ec − ε2 for sufficiently small ε and sufficiently long optimization
intervals will converge to the minimal seed as ε→ 0.

Interestingly, in PCF, unlike the pipe flow considered by PWK12, this ‘final’
NLOP(f )T solution branch appears only for initial energies very close to Ec and
large fixed T . If T is part of the optimization procedure, this solution branch
NLOP(f )T is ‘masked’ by other perturbations, which attain larger maximum gain but
over shorter time intervals. In the BF92 situation, for example, the quasi-linear
optimal perturbation, QLOPTopt , always has the largest maximum gain for E0 < Ec,
as illustrated schematically in figure 2 for E0 . Ec. In M11, however, due to the
wider flow geometry and higher Re, there also exists an intermediate range of initial
energies E1 < E0 < Ec in which the globally optimal (across all time intervals) initial
perturbation is spatially localized, and so inherently nonlinear in character. This
NLOP(1)Topt

solution branch has initially enhanced growth as it spatially ‘unpacks’ to
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fill the entire flow geometry, but then subsequently behaves in a manner very similar
to the QLOPTopt . Also, in the M11 flow geometry, the failure of the convergence of our
variational algorithm (which attempts to optimize energy gain at a specific target time)
appears to give the same estimate for Ec and the same spatial structure of minimal
seed as does an algorithm which optimizes the total dissipation over a long fixed time
interval (as recently reported by M11). This confirms the ‘robustness of failure’ of the
variational approach discussed by PWK12, in the sense that the estimation of Ec (or
apparently equivalently Efail) is insensitive to the exact optimization functional selected,
provided that the functional assumes large values for turbulent flows (this condition is
obviously key to ensuring that the variational procedure seeks out any ‘turbulent seeds’
if they exist at that energy level). Taken together, the evidence we have presented in
this paper supports the belief that such a variational approach offers a fairly robust
new theoretical tool to examine the nonlinear stability of fluid flows.

Many applications suggest themselves, but here we note just one: assessing
the stabilizing or destabilizing influence of applied flow perturbations or controls.
Normally, this would be attempted either by investigating the linearized operator
around the base (laminar) flow or by carrying out exhaustive numerical simulations.
The current work suggests a third way where the movement (in phase space) of the
laminar–turbulent boundary towards (destabilization) or away (stabilization) from the
base flow is investigated. We hope soon to report on some calculations along these
lines.

6. Glossary
E0 Initial energy of a perturbation for the optimization procedure.
Efail The minimum energy for which the optimization routine fails to converge.
Ec The minimum energy of the edge (corresponding to the minimal seed) or

equivalently the critical threshold energy to trigger turbulence.
T The preset target time for the optimization procedure.
Topt The optimal time which emerges from the optimization procedure for

maximum gain.
LOPT The linear optimal perturbation which is an initial condition giving rise to

the largest gain after time T in the limit E0→ 0.
QLOPT The quasi-linear optimal perturbation is the finite-amplitude extension of

LOPT .
QLOPTopt QLOPT where T is part of the optimization procedure.
NLOPT A fully nonlinear optimal perturbation which bears no relation to QLOPT .
NLOPTopt NLOPT where T is part of the optimization procedure.
NLOP(1)T The first NLOPT found as E0 increases from 0.
NLOP(f )Topt The final NLOPT found as E0 increases towards Ec.
TL The time over which the gain is maximized in the linear problem.
TQ The time for which gain is maximized for the quasi-linear optimal

perturbation.
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