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The incomplete gamma functions

G. J. O. JAMESON

Definitions and elementary properties
Recall the integral definition of the gamma function:

for .  By splitting this integral at a point , we obtain the two
incomplete gamma functions:

Γ(a) = ∫
 ∞
0 ta− 1e−tdt

a > 0 x ≥ 0

γ (a, x) = ∫
 x

0
ta − 1e−tdt, (1)

Γ (a, x) = ∫
 ∞

x
ta − 1e−tdt, (2)

 is sometimes called the complementary incomplete gamma function.
These functions were first investigated by Prym in 1877, and  has
also been called Prym's function.  Not many books give these functions
much space.  Massive compilations of results about them can be seen stated
without proof in [1, chapter 9] and [2, chapter 8].  Here we offer a small
selection of these results, with proofs and some discussion of context.  We
hope to convince some readers that the functions are interesting enough to
merit attention in their own right.

Γ (a, x)
Γ (a, x)

Clearly,  and Γ (a,  0) = Γ (a)

γ (a,  x) + Γ (a,  x) = Γ (a) (3)
for all  and .  Also,  and .x ≥ 0 a > 0 Γ (1,  x) = e−x γ (1,  x) = 1 − e−x

For , the integral (2) converges for all real , so we regard it as
defining  for all such .  In particular,  is the ‘exponential
integral’ .  This case has a number of features of its own: some
were described in the recent Gazette article [3].

x > 0 a
Γ (a,  x) a Γ (0,  x)
∫
 ∞
x t−1e−tdt

The integral (1) only converges for , but in fact the definition of
 can be extended to negative , as we see later.

a > 0
γ (a,  x) a

Note on complex and :  The definition of  makes sense for
complex  with , and the definition of  for all complex .
Also, with due interpretation of the integrals, one can replace  by a
complex variable .  However, in this note we confine ourselves to the case
where  and  are real.  Some of the results, which interested readers will be
able to recognise, apply without change when  is complex.

a x γ (a,  x)
a Re a > 0 Γ (a,  x) a

x
z

a x
a

Of course,  and  can be considered both as functions of
(for fixed ) and as functions of  (for fixed ).  Our emphasis will be firmly
on them as functions of .  First, some simple facts.  Since the integrand is
non-negative, so are  and .  For fixed ,  is an
increasing function of , with , and  is a

γ (a,  x) Γ (a,  x) x
a a x

x
γ (a,  x) Γ (a,  x) a γ (a,  x)

x lim
x → ∞

γ (a,  x) = Γ (a) Γ (a,  x)
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decreasing function of  with  (this applies also for

).  By the fundamental theorem of calculus, we have 

x lim
x → ∞

Γ (a,  x) = 0

a ≤ 0

d
dx

 γ (a,  x) = −
d
dx

Γ (a,  x) = xa − 1e−x. (4)

If , this is largest when .a > 1 x = a − 1

We record some inequalities that follow very easily from the integrals
(1) and (2), and shed some light on their nature for small and large .
Firstly, since  for , we have  for
such .  Now , so 

x
e−x ≤ e−t ≤ 1 0 ≤ t ≤ x ta− 1e−x ≤ ta− 1e−t ≤ ta− 1

t ∫
 x
0 ta − 1dt = xa / a

e−x 
xa

a
≤ γ (a, x) ≤

xa

a
. (5)

Hence  as .  (Recall that the notation
as  means  as .)

γ (a, x) ∼ xa / a x → 0+ f (x) ∼ g (x)
x → x0 f (x) / g (x) → 1 x → x0

Secondly, if , then  for , hencea ≥ 1 ta − 1 ≥ xa − 1 t ≥ x

Γ (a, x) ≥ xa − 1 ∫
 ∞

x
e−tdt = xa − 1e−x, (6)

and clearly the opposite holds for .  For , another inequality,
comparable to the left-hand side of (5), and stronger than (6) for small , is

a ≤ 1 a < 0
x

Γ (a, x) ≤ e−x ∫
 ∞

x
ta − 1dt = e−x 

xa

−a
. (7)

We remark that (5) gives , while (6) gives
.  Hence we have shown, with minimal effort, that

 for , an elementary inequality of the same type as
Stirling's formula.

γ (a, a) ≥ aa − 1e−a

Γ (a, a) ≥ aa − 1e−a

Γ (a) ≥ 2aa − 1e−a a ≥ 1

We mention some equivalent forms given by simple substitutions.  For
, the substitution  givesc > 0 ct = u

∫
 x

0
ta − 1e−ctdt = ∫

 cx

0
(u
c )a − 1

e−u 
1
c

 du =
1
ca

 γ (a, cx) , (8)

and similarly .  Note the case :  ∫
 ∞
x ta−1e−ctdt = 1

ca Γ (a, cx) x = 1

γ (a, c) = ca ∫
 1

a
ta − 1e−ctdt.

The substitution  givest = x + u

Γ (a, x) = e−x ∫
 ∞

0
(x + u)a − 1 e−udu. (9)

The substitution  givesu = tn

∫
 x

0
e−tn

dt =
1
n ∫

 xn

0
e−uu

1
n − 1du = 1

nγ (1
n, xn) .
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Integration by parts; two basic identities; evaluation for positive integer a
The most basic property of the gamma function is the identity

.  We now show how this identity decomposes into two
companion ones for the incomplete gamma functions.  This is achieved by a
very simple integration by parts.  Clarity and simplicity are gained by stating
the basic result for general integrals of the same type.  Given a function
on , write

Γ (a + 1) = aΓ (a)

f (t)
(0, ∞)

If (x) = ∫
 x

0
f (t) e−tdt,  Jf (x) = ∫

 ∞

x
f (t) e−tdt

if these integrals exist.   

If  and  exist and , then for , If (x) If ′ (x) f (0) = 0 x > 0

If (x) = [−f (t) e−t] x
0 + ∫

 x

0
f ′ (t) e−tdt = −f (x) e−x + If ′ (x) . (10)

Similarly, if  and  exist and  as , thenJf (x) Jf ′ (x) f (x) e−x → 0 x → ∞

Jf (x) = f (x) e−x + Jf ′ (x) . (11)

If , then  and , and
similarly for  and .  Also,  if , and  for

any , so we conclude:

f (t) = ta If (x) = γ (a + 1, x) If ′ (x) = aγ (a, x)
Jf Jf ′ f (0) = 0 a > 0 lim

x → ∞
f (x) e−x = 0

a

Theorem 1:  For  and , x > 0 a > 0

γ (a + 1, x) = aγ (a, x) − xae−x. (12)
For  and all ,x > 0 a

Γ (a + 1, x) = aΓ (a, x) + xae−x. (13)

Added together, (12) and (13), with (3), reproduce the identity
.Γ (a + 1) = aΓ (a)

The process in (10) and (11) can be repeated by application to  and
higher derivatives.  In the case of (11), the statement is:

f ′

Theorem 2:  Suppose that  exists for  and that
 as  for .  Then

Jf r (x) 0 ≤ r ≤ k
f (r) (x) e−x → 0 x → ∞ 0 ≤ r ≤ k − 1

Jf (x) = e−x [f (x) + f ′ (x) +  …  + f (k − 1) (x)] + Jf (k) (x) . (14)
With , the condition  is, of course,

satisfied for all .  The corresponding development of (10) is trickier to
apply, because it requires the condition  for successive , which
will fail for some .

f (x) = xa lim
x → ∞

f (r) (x) e−x = 0

r
f (r) (0) = 0 r

r
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One can write out explicitly what (14) says for  in general: the
outcome is a fairly complicated asymptotic expression effective for large .
However, for positive integers , it simplifies and delivers at once a closed
expression for .  For more pleasant notation, we will state this with

: note that .  Of course, once we have
evaluated , the value of  is given by

.

Γ (a, x)
x

a
Γ (a, x)

a = n + 1 Γ (n + 1, x) = ∫
 ∞
x tne−tdt

Γ (n + 1, x) γ (n + 1, x)
γ (n + 1, x) = n! − Γ (n + 1, x)

If , then , so the expression in (14) terminates,
and we have 

f (x) = xn f (n + 1) (x) = 0

Γ(n + 1, x) = Jf (x) = e−x[f (x) + f ′ (x) +  …  + f (n)(x)] . (15)
The bracketed sum simply comprises successive derivatives until they
become zero.  With no further effort, we can write down the first few cases:

Γ (2, x) = e−x (x + 1) ,  Γ (3, x) = e−x (x2 + 2x + 2) ,
Γ (4, x) = e−x (x3 + 3x2 + 6x + 6) .

We now give an expression for the general case.  For this purpose, write

en (x) = ∑
n

r = 0

xr

r!
,

the exponential series truncated after  terms.n + 1

Theorem 3:  For integers  and , n ≥ 1 x ≥ 0

Γ (n + 1, x) = n!  en (x) e−x. (16)

Proof:  For , we have  f (x) = xn

f (k) (x) = n (n − 1) … (n − k + 1) xn − k =
n!

(n − k)!
 xn − k.

Now applying (15) and substituting  for , we obtainr n − k

Γ (n + 1, x) = n!  e−x ∑
n

k = 0

xn − k

(n − k)!
= n!  e−x ∑

n

r = 0

xr

r!
.

This displays  in a rather pleasing way as a fraction of
, and shows that  as  for any

fixed .  It also shows that  as , supplementing
(6).

Γ (n + 1, x)
Γ (n + 1) = n! Γ (n + 1, x) / n! → 1 n → ∞

x Γ (n + 1, x) ∼ xne−x x → ∞

While this derivation is, surely, attractive enough, it is instructive to see
a second, equally efficient proof.

Alternative proof of (16):  By (9), the binomial expansion and the fact that
, we haveΓ (n − r + 1) = (n − r)!

Γ (n + 1, x) = e−x ∫
 ∞

0
(x + u)n e−udu
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= e−x ∑
n

r = 0
( ) xr ∫

 ∞

0
un − re−udun

r

= e−x ∑
n

r = 0
( ) xrΓ (n − r + 1)n
r

= e−x ∑
n

r = 0

n!
r!

 xr.

Note:  Write  for .  It has been known for
students (including my students) to be set the exercise of evaluating, say,
by repeated application of the recurrence relation implied by (12), starting
with .  After at least as much work as either of the methods just described,
the student arrives (barring accidents) at the answer , but
this approach does little to reveal the pattern and the formula for general .

In γ (n + 1,  1) = ∫
 1
0 tne−tdt

I3

I0
I3 = 6 − 16e−1

n
I am indebted to the referee for pointing out that Theorem 3 leads to the

following neat proof of the irrationality of .  By (16), ,

where , which is an integer.  So , where

.  Note that .  Suppose now that , where
and  are integers. Then :  for each , this is
positive and an integer, hence at least 1.  But by (5), , so

 as , a contradiction.

e Γ(n + 1,  1) = Bne−1

Bn = ∑
n

r = 0
n!
r! γ(n + 1,  1) = An − Bne−1

An = n! γ(n + 1,  1) > 0 e = p / q p
q pγ (n + 1,  1) = Anp − Bnq n

γ(n + 1,  1) ≤ 1
n+ 1

pγ (n + 1,  1) → 0 n → ∞

It is clear from (5) and (6) that functions like  and
are particularly relevant.  Using (12) and (13), we can derive very
satisfactory expressions for the derivatives of these functions.  By (4) and
(12), we have 

x−aγ (a, x) exΓ (a, x)

d
dx

 
γ (a, x)

xa
= −

aγ (a, x)
xa + 1

+
xa − 1e−x

xa

=
1

xa + 1
[−aγ (a, x) + xae−x]

= −
γ (a + 1, x)

xa + 1
,

and similarly for .  So if , then
.  We can deduce at once that the  derivative is

.

Γ (a, x) f (a, x) = x−aγ (a, x)
d
dxf (a, x) = −f (a + 1, x) n th
(−1)n f (a + n, x)

By (4) and (13), we have

d
dx

[ex Γ (a, x)] = ex [Γ (a, x) − xa − 1e−x] = ex (a − 1) Γ (a − 1, x) ,

and similarly for .  In particular,  increases with  when
, and decreases when .  

γ (a, x) exΓ (a, x) x
a ≥ 1 a < 1
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Series expression for  and extension to γ (a, x) a < 0
We now give an explicit power-type series expression for .γ (a, x)

Theorem 4:  For  and ,a > 0 x > 0

γ(a, x) = xa ∑
∞

n= 0

(−1)nxn

n!(a + n)
= xa(1

a
−

x
a + 1

+
x2

2!(a + 2)
−… ). (17)

Proof:  This expression is obtained at once by termwise integration on
of the series

[0, x]

ta − 1e−t = ∑
∞

n = 0

(−1)n

n!
 ta + n − 1.

Termwise integration, for any readers who care, is justified by uniform
convergence of the power series for  on bounded intervals (after
separating out the first term if ).

e−t

a < 1

In principle, (17) enables us to calculate , although in practice the
calculation is only pleasant for fairly small .

γ(a, x)
x

For a fixed , the series (17) converges for all  except 0 and
negative integers, so we take it as the definition of  for such .  We
will show that the extended function still satisfies the basic identity (12).

x > 0 a
γ(a, x) a

For the gamma function itself, the usual procedure is to extend the
definition by the identity : given , this defines

.  Meanwhile,  is already defined for all .  We show that the two
extensions are compatible, in the sense that the identity (3) still holds. 

Γ(a + 1) = aΓ(a) Γ(a + 1)
Γ(a) Γ(a, x) a

Theorem 5:  For all  except 0 and negative integers, and all ,    a x > 0

γ (a + 1, x) = aγ (a, x) − xae−x. (18)
If the definition of  is extended in the way just stated, then

 for all such .
Γ(a)

γ (a, x) + Γ (a, x) = Γ (a) a

Proof:  We have

aγ (a, x) = xa ∑
∞

n = 0

(−1)n xn

n!
a

a + n

= xa ∑
∞

n = 0

(−1)n xn

n! (1 −
n

a + n)
= xae−x − xa ∑

∞

n = 0

(−1)n xn

(n − 1)! (a + n)

= xae−x + xa ∑
∞

m = 0

(−1)m xm + 1

m! (a + m + 1)
= xae−x + aγ (a + 1, x) .
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Now write .  We know that
for .  By (13) and (18), .  Hence if we know
that , it follows that .  By repeated
backwards steps of length 1, it now follows that  for all
except 0 and negative integers.  

γ (a, x) + Γ (a, x) = F (a, x) F (a, x) = Γ (a)
a > 0 F (a + 1, x) = aF (a, x)
F(a + 1, x) = Γ(a + 1) F (a, x) = Γ (a)

F (a, x) = Γ (a) a

A satisfying application of Theorem 5 is that it gives an explicit formula
for the extended function .  For this purpose, we only need to take

, obtaining
Γ (a)

x = 1

Γ (a) = γ (a,  1) + Γ (a,  1) = ∫
 ∞

1
tn − 1e−tdt + ∑

∞

n = 0

(−1)n

n! (a + n)
.

In fact, as an alternative to the procedure described above, one can adopt
this as the definition of  for such .  If this approach is chosen, then the
conclusion from (18) is that the gamma function (extended in this way) still
satisfies .

Γ (a) a

Γ (a + 1) = aΓ (a)

Since the identity  still applies, so does the
identity .  In particular,  is an
increasing function of .  However, it may well be negative: indeed (18)
shows that it is certainly negative when .

γ (a,  x) + Γ (a,  x) = Γ (a)
d
dx γ (a,  x) = − d

dxΓ (a,  x) = xa − 1e−x γ (a,  x)
x

−1 < a < 0

Some integrals
We now evaluate some integrals of expressions involving the

incomplete gamma functions.  Since these are already defined as integrals,
the integrals considered will appear as double integrals, and evaluation will
be achieved by reversing them (which is valid, because the integrands are
positive).  The answers will be in terms of the gamma function itself.

Consider , possibly with .  If , then
convergence at 0 requires .  For , one can show, building on
(7), that  as , so convergence at 0 requires

.  The need for these conditions also shows up clearly in the
following proof.

∫
 ∞
0 xp − 1Γ (a, x)  dx a < 0 a > 0

p > 0 a < 0
Γ (a, x) ∼ −xa / a x → 0+

a + p > 0

Theorem 6:  Suppose that either (i)  and  or (ii)  and
.  Then 

a > 0 p > 0 a ≤ 0
p > −a

∫
 ∞

0
xp − 1Γ (a, x) dx =

1
p

 Γ (a + p) . (19)

In particular, for ,a > −1

∫
 ∞

0
Γ (a, x) dx =  Γ (a + 1) . (20)
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Proof:  Under either condition, .  Reversing the double integral, we
have

p > 0

∫
 ∞

0
xp − 1Γ (a, x) dx = ∫

 ∞

0
xp − 1 ∫

 ∞

x
ta − 1e−tdt dx

= ∫
 ∞

0
ta − 1e−t (∫ t

0
xp − 1dx) dt

=
1
p ∫

 ∞

0
ta + p − 1e−t dt

=
1
p

 Γ (a + p) .

This is (19).  The case  is (20).p = 1

We leave it to the reader to prove in similar style the following
companion result for : for , γ (a, x) 0 < p < a

∫
 ∞

0

1
xp + 1  γ (a, x)  dx =

1
p

 Γ (a − p) . (21)

Note that the case  simplifies to  for

.

p = a − 1 ∫
 ∞

0

1
xa

 γ (a, x)  dx =
1

a − 1
a > 1

An alternative method for both (19) and (21) is integration by parts,
using (4) for  and . One needs (5) and (7) to identify the
limits at 0.

γ′ (a, x) Γ′ (a, x)

Theorem 7: For  and ,a > 0 c > 0

∫
 ∞

0
e−cx γ (a, x)  dx =

Γ (a)
c (c + 1)a, (22)

∫
 ∞

0
e−cx Γ (a, x)  dx =

Γ (a)
c

 (1 −
1

(c + 1)a) . (23)

Proof:  Note that the substitution  gives .

Using this, we have

bt = u ∫
 ∞

0
ta − 1e−btdt =

Γ (a)
ba

∫
 ∞

0
e−cx γ (a, x)  dx = ∫

 ∞

0
e−cx ∫

 x

0
ta − 1e−t dt dx

= ∫
 ∞

0
ta − 1e−t (∫ ∞

t
e−cxdx) dt

= ∫
 ∞

0
ta − 1e−t 

e−ct

c
 dt
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=
1
c ∫

 ∞

0
ta − 1e−(c + 1)tdt

=
Γ (a)

c (c + 1)a,

which is (22).  We deduce (23) using (3) and ∫
 ∞

0
e−cxdx =

1
c

.

In particular, .∫
 ∞

0
e−xγ (a, x) dx =

1
2a Γ (a)

The case  in (23) is special.  To solve it, we need the following
integral: for positive , , 

a = 0
a b

∫
 ∞

0

e−ax − e−bx

x
 dx = log b − log a, (24)

which can be proved by the method of [3, Proposition 2], or, very neatly, by
expressing the integrand as  and reversing the double integral
obtained.  

∫
 b
a e−xydy

Theorem 8:  For , c > −1

∫
 ∞

0
e−cxΓ (0, x) dx =

1
c

log (1 + c) .

Proof:  The integral is

∫
 ∞

0
e−cx ∫

 ∞

x

e−t

t
 dt dx = ∫

 ∞

0

e−t

t (∫ t

0
e−cxdx) dt

= ∫
 ∞

0

e−t (1 − e−ct)
ct

 dt.

By (24), this equals .1
c log (1 + c)
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