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A non-linear reaction–diffusion system with cross-diffusion describing the COVID-19 outbreak is
studied using the Lie symmetry method. A complete Lie symmetry classification is derived and it is
shown that the system with correctly specified parameters admits highly non-trivial Lie symmetry
operators, which do not occur for all known reaction–diffusion systems. The symmetries obtained are
also applied for finding exact solutions of the system in the most interesting case from applicability
point of view. It is shown that the exact solutions derived possess typical properties for describing the
pandemic spread under 1D approximation in space and lead to the distributions, which qualitatively
correspond to the measured data of the COVID-19 spread in Ukraine.
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1 Introduction

The outbreak of the COVID-19 coronavirus in China has attracted extensive attention of many
mathematicians working in the field of mathematical modelling. The first papers were already
published in February–April 2020 (see, e.g., [8, 10, 18, 25, 31, 34, 36, 38]). At the present time,
the COVID-19 outbreak is already spread over the world as a pandemic. There were 83.8. mln.
coronavirus cases and 1.8 mln. deaths caused by this coronavirus up to date 31 December [5].

Nowadays, there are many mathematical models used to describe epidemic processes and they
can be found in any book devoted to mathematical models in biology and medicine (see, e.g., [7,
16, 23, 28] and papers cited therein). The paper [24] is one of the first papers in this direction. The
authors created a model based on three ordinary differential equations (ODEs), which nowadays
is called the SIR model. There are several generalisations of the SIR model, and the SEIR model
(see the pioneering works [4, 17]), which involves four ODEs, is the most common among them.
These two models are mostly used for numerical simulations in mathematical modelling for the
COVID-19 outbreak (see, e.g., [8, 18, 31, 38]).

On the other hand, one may note that the spread of many epidemic processes, including the
COVID-19 pandemic, is often highly non-homogenous in space. This fact can be taken into
account in different ways, but the most common approach consists in dividing the large domain
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(say a country) into many small sub-domains (regions of the country) and applying the standard
models based on ODEs to each sub-domain. However, there is another way when one uses the
reaction–diffusion equations in order to model the spread of the infected population as a diffusion
process [26, 33, 40] (see also earlier papers cited therein). A possible model was also suggested
in our previous work [11]. The model has the form:

ut = d1�u + u(a − buγ ),

vt = d2�u + k(t)u,
(1.1)

where the lower subscript t means differentiation with respect to (w.r.t.) the time variable, � is
the Laplace operator, u = u(t, x, y) and v = v(t, x, y) are two unknown functions, k(t) is the given
smooth positive function, d1 and d2 are diffusivities, and a, b and γ are non-negative constants.

The function u(t,x,y) describes the density (rate) of the infected persons (the number of
COVID-19 cases) in a vicinity of the point (x,y), while v(t,x,y) means the density of the deaths
from COVID-19. The diffusion terms d1�u and d2�u describe the random movement of the
infected persons, which cause acceleration of the pandemic spread on long distances. Formally
speaking, one may take d1 = d2. However, we believe that d1 > d2 because the movement of
the infected persons leads firstly to higher rate of new COVID-19 cases but only some of them
cause new deaths. Each coefficient in the reactions terms, a, b, γ and k(t), has the meaning as
described below.

The parameter a is defined as a0S, where a0 < 1 is the infection rate and S is an average
number of healthy persons, who was contacted by a fixed infected person (the so-called
mechanism of the virus transmission). Obviously, each infected person can be in contact only
with a limited number of people (usually it is relatives and close friends). The term buγ has an
opposite meaning to a, because one reflects the efforts B in order to avoid contacts with infected
persons and to follow other restrictions introduced by the government. The coefficient B should
increase with growing number of infected persons. In other words, the government and ordinary
people should apply stronger measures in order to stop the increasing of the function u(t,x),
otherwise the control on the epidemic process will be lost. Therefore, we assume that B ≈ bu1+γ

with γ > 0 and the term buγ (here b> 0) arises in (1.1). In the case γ = 1, the first equation in
(1.1) is nothing else but the well-known Fisher equation. However, we have shown that γ < 1
leads to the results, which better fit to the known data of COVID-19 cases in several countries
during the first wave of this pandemic [11].

The coefficient k(t)> 0 reflects the effectiveness of the health care system of the country (or a
region) in question. From mathematical point of view, this coefficient should have the asymptotic
behaviour k(t) → 0, if t → ∞, otherwise all infected people will die. In particular, the useful form
is k(t) = k0 exp(−αt), α > 0[11].

Of course, this model is an essential simplification because some factors causing the spread
of COVID-19 are not taking into account. In paper [40], for example, the authors construct the
diffusion model, which is essentially based on the SEIR model. As a result, their model consists
of five partial differential equations (PDEs), which can be analysed only using numerical
methods. Our idea was to construct a simpler model, which can be solved using analytical
approaches, in particular, the Lie symmetry method [6, 14, 30] and to show its applicability
for the spread of the coronavirus pandemic. It is interesting to note that equations (3) and (5) in
the model developed in [40] produce a modification of our model (1.1). In fact, the density of
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infected population is proportional to that of the total living population and is proportional to the
exposed population density (generally speaking, the relevant coefficients are some functions but
we may keep constants). Having such assumptions, one arrives at the system (in our notations):

ut = ∇(d1u∇u) + u(a − bu),
vt = k(t)u,

(1.2)

The difference between (1.1) with γ = 1 and (1.2) consists only in the diffusion terms. In our
model, the diffusivity is taking to be a constant, while one is a linear function in paper [40].
Notably, the diffusivities are some constants in [33] while those are time-dependent functions
in [26].

The remainder of this paper is organised as follows. In Section 2, a complete Lie symme-
try classification (LSC) (another useful terminology is ‘group classification’) of system (1.1) is
derived. In particular, we have proved that there are systems with the correctly specified parame-
ters d1, d2, a and γ when the system in question admits highly non-trivial Lie symmetry, which
have no analogues for other known reaction–diffusion systems. The results were obtained using
the Lie–Ovsiannikov method [30], which is a combination of the classical Lie method and the
known technique for finding equivalence transformations (ETs). The modern description of this
method, its extension and applications can be found in [14] (Chapter 2).

In Section 3, exact solutions of a specified system of the form (1.1) are constructed using
its Lie symmetry operators. In particular, the travelling wave type solution is derived and its
applicability is extensively discussed. It is shown that this exact solution describes adequately
the spread of the coronavirus pandemic provided the 1D approximation in space is assumed.
Finally, we discuss the main results of the paper in the last section.

2 Main results

In this section, it is identified that the basic system (1.1) for the pandemic modelling possesses a
very reach Lie symmetry depending on the parameters a, γ , d1 and d2 and the function k(t). First
of all, we note that for the LSC, we need only the restrictions d2

1 + d2
2 �= 0 (otherwise, the system

in question degenerates into the ODE system, which was solved in [11]), k �= 0 (otherwise, the
system in question seems to be useless for applications) and b �= 0 and γ �= 0, −1 (otherwise, the
system in question is linear, hence is also integrable).

First of all, we present a statement about the group of ETs of system (1.1). For this purpose,
we apply the technique, which was developed in [3, 21] (see also Section 2.3 in [14]).

Theorem 2.1 The group of the continuous ETs’ transforming system (1.1) to that with the same
structure, that is,

ut = d1�u + u(a − buγ ),

vt = d2�u + k(t)u,
(2.1)

is the infinite parameter Lie group generated by the transformations:

t = β1t + α0,

x = β2 (x cos β0 + y sin β0)+ α1,
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y = β2 (y cos β0 − x sin β0)+ α2,

u = β3u, v= β4v + f (x, y),

k = β4

β1β3
k, d1 = β2

2

β1
d1, d2 = β2

2β4

β1β3
d2, a = a

β1
, b = b

β1β
γ

3

, γ = γ . (2.2)

Here,αi (i = 0, 1, 2) and βj (j = 0, . . . , 4) are the real group parameters with the restrictions
β1β2β4 �= 0, β3 > 0, and f(x,y) is an arbitrary smooth function.

Remark 2.1 In order to obtain system (2.1) with the non-negative parameters (this is the bio-
logically motivated requirement explained above), the additional restrictions β1 > 0 and β4 > 0
should take place.

Sketch of Proof of Theorem 2.1 is based on the known technique for constructing the group of
ETs. It is nothing else but a modification of the classical Lie method. In the case of system (1.1),
one should start from the infinitesimal operator:

E = ξ 0(t, x, y, u, v)∂t + ξ 1(t, x, y, u, v)∂x + ξ 2(t, x, y, u, v)∂y + η1(t, x, y, u, v)∂u

+ η2(t, x, y, u, v)∂v + ζ (t, x, y, u, v, k)∂k +μ1∂d1 +μ2∂d2 +μ3∂a +μ4∂b +μ5∂γ , (2.3)

being ξ 0, ξ 1, ξ 2, η1, η2 and ζ to-be-determined functions, while μi (i = 1, . . . , 5) to-be-
determined constants. The operator E involves the additional terms with the coefficients μi and
ζ , because d1, d2, a, b, γ and k(t) should be treated as new variables.

In order to find the operator E, we should apply Lie’s invariance criteria to the system of
equations consisting of (1.1) and a set of differential consequences of k(t) w.r.t. the variables
t, x, y, u and v. Of course, each consequence is equal to zero, excepting ∂k

∂t = k′(t) (the latter
is not useful because it is identity). As a result, we obtain a multicomponent system consisting
of equations from (1.1) and primitive equations like ∂k

∂x = 0. Applying to this system the Lie’s
invariance criteria, that is, the second prolongation of the infinitesimal operator E, for deriving
the system of determining equations, the coefficients ξ 0, ξ 1, ξ 2, η1, η2, ζ and μi (i = 1, . . . , 5)
were found. They have the form:

ξ 0 = C1t + C2, ξ 1 = C3x + C4y + C5,

ξ 2 = C3y − C4x + C6,

η1 = C7u, η2 = C8v + h(x, y), ζ = (C8 − C1 − C7) k, μ1 = (2C3 − C1) d1,

μ2 = (2C3 − C1 + C8 − C7) d2,

μ3 = −C1a, μ4 = − (C1 + C7γ ) b, μ5 = 0,

(2.4)

where Ci, i = 1, . . . , 8 are arbitrary constants and h(x,y) is an arbitrary smooth function. The
operator (2.3) with the coefficients (2.4) generates the Lie group (2.2).

The sketch of the proof is now completed.
In order to provide a complete LSC of system (1.1), one should identify the principal algebra

of invariance (see definition, for example, in [14], page 23) from the very beginning. In fact,
system (1.1) involves an arbitrary function k and several parameters (some of them can vanish).
Thus, it should be considered as a class of systems of PDEs, if one is going to provide a rigorous
LSC.
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Theorem 2.2 The principal algebra of invariance of system (1.1) is infinite-dimensional Lie
algebra generated by the operators:

∂x, ∂y, y ∂x − x ∂y, F(x, y) ∂v , (2.5)

where F(x,y) is an arbitrary smooth function.

The proof of this statement can be derived in different two ways. The direct approach consists
of application of the classical Lie method to the system (1.1), assuming that all parameters are
arbitrary. The second way is useful if the group of ETs is known. So, having Theorem 1, we sim-
ply calculate when transformations (2.2) transform (1.1) in itself, that is, system (2.1) coincides
with (1.1). The result immediately leads to formulae (2.5).

Now we present two main theorems, which completely solve the LSC problem for (1.1). It
turns out that there are two essentially different cases, d1 �= 0 and d1 = 0, leading to absolutely
different results.

Theorem 2.3 System (1.1) with d1 �= 0 admits the extension of the principal algebra (2.5) only
in five cases. These cases and the corresponding Lie symmetry operators are as follows”

(1) k(t) = 1 : ∂t;

(2) a = 0, k(t) = 1
t : 2t ∂t + x ∂x + y ∂y − 2

γ
(u∂u + v∂v);

(3) a = 0, d2 = 0, k(t) = tp, p �= −1, 0 : 2t∂t + x ∂x + y ∂y − 2
γ
(u∂u + (1 − γ p − γ )v∂v) ;

(4) d2 = 0, k(t) = ept, p �= 0 : ∂t + pv∂v;

(5) a = 0, d2 = 0, k(t) = 1 : ∂t, 2t∂t + x ∂x + y ∂y − 2
γ
(u∂u + (1 − γ )v∂v).

Here, p is an arbitrary constant.
Any other system (1.1) with d1 �= 0 admitting an extension of the principal algebra (2.5) is

reduced by an ET from (2.2) to one of the listed in cases (1)–(5).

Remark 2.2 Using the simple ET from (2.2), one can set k0k(t) (k0 is an arbitrary constant)
instead of k(t) in each case of Theorem 2.3 without any changes in Lie symmetry operators. It is
useful from the applicability point of view.

Remark 2.3 As it follows from Theorem 2.3, there are only three different forms of the function
k(t) leading to the extensions of the principal algebra: 1, tp and ept (the case 1

t is a subcase of
tp). The function k(t) reflects the effectiveness of the health care system. Thus, the form k(t) = 1
is rather unrealistic because the condition k(t) → 0, if t → ∞ is not satisfied, that is, all infected
people will die (see the second equation in (1.1)). Two other forms are realistic that provided the
exponent p< 0.

Theorem 2.4 System (1.1) with d1 = 0 (then automatically d2 �= 0) admits the extension of the
principal algebra (2.5) only in four cases. In each case, the additional operators have the
structure:

X = ξ 0(t, u) ∂t + ξ 1(x, y) ∂x + ξ 2(x, y) ∂y + η1(t, u) ∂u

+ (
G(t, x, y, u) + (ξ 0

t − 2ξ 1
x + η1

u)v
)
∂v , (2.6)
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where the functions ξ 1 and ξ 2 form an arbitrary solution of the famous Cauchy–Riemann
system:

ξ 1
x = ξ 2

y , ξ 1
y = −ξ 2

x , (2.7)

and G is an arbitrary solution of the linear first-order PDE

Gt + u(a − buγ )Gu = k(t)
(
η1 + 2uξ 1

x − uη1
u

) + uk′(t)ξ 0 + u2k(t) (a − buγ ) ξ 0
u . (2.8)

In the operator X, the functions ξ 0 and η1 depending on the parameters γ and a have the
forms :

(1) if γ �= 1 and a �= 0 then

ξ 0 = α1 + α2eat

au
(a − aγ + bγ uγ ) (a − buγ )−1+ 1

γ , η1 = α2eat (a − buγ )
1
γ ;

(2) if γ �= 1 and a = 0 then

ξ 0 = α1 − γα2t, η1 = α2u;

(3) if γ = 1 and a �= 0 then

ξ 0 = aω2F′′(ω)

u(a − bu)
+ 2bωF′(ω)

a − bu
− 2bF(ω)

a
,

η1 = aω2F′′(ω) + 2buωF′(ω), ω= a − bu

u
eat;

(4) if γ = 1 and a = 0 then

ξ 0 = F′′(ω)

2bu2
− F′(ω)

bu
+ F(ω)

b
,

η1 = −F′′(ω)

2
+ uF′(ω), ω= 1

u
− bt.

Here α1 and α2 are arbitrary parameters, while F is an arbitrary smooth function.

Proofs of Theorems 2.3 and 2.4 are based on the technique which is a combination of the
classical Lie method and the group of ETs. This technique is often called the Lie–Ovsiannikov
method because L.V. Ovsyannikov was the first person who applied such technique for solving
the LSC problem (group classification problem) for a class of the non-linear heat equations [30].
Here, we present the proof of Theorems 2.4 because that is more complicated compared with the
proof of Theorem 2.3.

Proof of Theorem 2.4.
System (1.1) with d1 = 0, d2 �= 0 can be rewritten as:

ut = u(a − buγ ),

vt =�u + k(t)u.
(2.9)
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using an appropriate ET from (2.2). As usually, we start from the most general form of a Lie
symmetry operator:

X = ξ 0(t, x, y, u, v) ∂t + ξ 1(t, x, y, u, v) ∂x + ξ 2(t, x, y, u, v) ∂y

+η1(t, x, y, u, v) ∂u + η2(t, x, y, u, v)∂v .
(2.10)

In order to find all the Lie symmetry operators of the form (2.10) of system (2.9), one should
apply the following invariance criterion :

X1 (ut − u(a − buγ ))
∣∣∣
M

= 0,

X2 (vt −�u − k(t)u)
∣∣∣
M

= 0,
(2.11)

where operators X1 and X2 are the first and second prolongations of the operator X , and the
manifold M is defined by the system of equations:

ut = u(a − buγ ), vt =�u + k(t)u,

utt = (a − b(γ + 1)uγ ) ut, utx = (a − b(γ + 1)uγ ) ux, uty = (a − b(γ + 1)uγ ) uy.

It should be stressed that the manifold M involves not only the equations of the system in
question but also the first-order consequences of the first equation of (2.9). These consequences
guarantee a complete solving of the LSC problem. Notably, such peculiarity does not occur for
scalar PDEs, but one was noted for some systems of PDEs involving equations of different order
(see, e.g., the relevant discussion in [6] Section 1.2.5).

Having the correctly defined manifold M, the invariance criterion (2.11) after rather standard
calculations leads to the system of determining equations as follows:

ξ 0
x = ξ 0

y = ξ 0
v = 0, ξ 1

t = ξ 1
u = ξ 1

v = 0, ξ 2
t = ξ 2

u = ξ 2
v = 0, (2.12)

η1
x = η1

y = η1
v = 0, η2

v = ξ 0
t − 2ξ 1

x + η1
u, (2.13)

ξ 1
x = ξ 2

y , ξ 1
y = −ξ 2

x , (2.14)

η1
uu = 2 (a − b (1 + γ ) uγ ) ξ 0

u + u (a − buγ ) ξ 0
uu, (2.15)

η1
t = (a − b (1 + γ ) uγ ) η1 + u2 (a − buγ )2 ξ 0

u + u (a − buγ )
(
ξ 0

t − η1
u

)
, (2.16)

η2
t + u (a − buγ ) η2

u = k(t)
(
η1 + 2uξ 1

x − uη1
u

)
+uk′(t)ξ 0 + u2k(t) (a − buγ ) ξ 0

u . (2.17)

Equations (2.12) and (2.13) can be easily integrated; hence, the general form of the infinitesi-
mal operator (2.10) can be specified as (2.6). Now substituting the function:

η2 = G(t, x, y, u) + (
ξ 0

t − 2ξ 1
x + η1

u

)
v,

into equation (2.17) and splitting the equation obtained w.r.t. the variable v, we arrive at the
linear equation (2.8) for G(t,x,y,u) and the equation:

u (a − buγ ) ξ 0
tu + ξ 0

tt + u (a − buγ ) η1
uu + η1

tu = 0. (2.18)
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Obviously, equations (2.14) coincide with (2.7).
Thus, we need only to solve the overdetermined system of equations (2.15), (2.16) and (2.18)

w.r.t. the functions ξ 0 and η1. This is a non-trivial task because the function ξ 0 depends on
the dependent variable u in contrast to the standard situation for the systems of reaction–
diffusion equations (see [12, 13] and the papers cited therein). Differentiating equation (2.15)
w.r.t. t, taking the second-order consequence of equation (2.16) w.r.t. u and making the relevant
calculations, we were able to derive the simple relation:

ξ 0
t = (1 − γ ) η1 − uη1

u

u
. (2.19)

Substituting the derivatives ξ 0
tu and ξ 0

tt derived from (2.19) into equation (2.18), one arrives at the
classification equation:

(1 − γ )
(

u(a − buγ )η1
u − u2(a − buγ )2ξ 0

u + (aγ − a + buγ )η1
)

= 0.

Thus, the following two cases must be examined separately : γ �= 1 and γ = 1.
In the case γ �= 1, one immediately obtains

η1
u = u (a − buγ ) ξ 0

u + (a − aγ − buγ ) η1

u (a − buγ )
. (2.20)

Differentiating equation (2.20) w.r.t. the variable u and substituting the expression obtained for
η1

uu into equation (2.15), one arrives at the equation:

ξ 0
u = a (γ − 1) η1

u2 (a − buγ )2
. (2.21)

Equations (2.20) and (2.21) can be easily integrated. The general solutions are

ξ 0 = g(t) + f (t)

au
(a − aγ + bγ uγ ) (a − buγ )−1+ 1

γ , η1 = (a − buγ )
1
γ f (t), (2.22)

if a �= 0 and

ξ 0 = g(t), η1 = f (t)u, (2.23)

if a = 0. Here, f (t) and g(t) are arbitrary smooth functions at the moment. In order to find the
functions f (t) and g(t), one needs to substitute (2.22) and (2.23) into equation (2.16). As a result,
cases (1) and (2) of Theorem 2.4 were identified.

In the case γ = 1, equations (2.15), (2.16) and (2.19) take the forms:

ξ 0
t = −η1

u,
ξ 0

tu + u(a − bu)ξ 0
uu + 2(a − 2bu)ξ 0

u = 0,
η1

t + 2u(a − bu)η1
u = (a − 2bu) η1 + u2(a − bu)2ξ 0

u ,
(2.24)

while equation (2.18) is satisfied identically.
Now, one can isolate ξ 0

u from the third equation of (2.24) :

ξ 0
u = η1

t

u2(a − bu)2
+ 2η1

u

u(a − bu)
+ (2bu − a)η1

u2(a − bu)2
. (2.25)

https://doi.org/10.1017/S095679252100022X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252100022X


A reaction–diffusion system with cross-diffusion 793

Substituting (2.25) into the second equation of (2.24) and the equation ξ 0
tu + η1

uu = 0 (i.e., the
differential consequence of the first equation of (2.24) w.r.t. the variable u), we arrive at the
equations:

η1
tu + u(a − bu)η1

uu + (a − 2bu)η1
u + 2bη1 = 0, (2.26)

and

η1
tt + 2u(a − bu)η1

tu + u2(a − bu)2η1
uu + (2bu − a)η1

t = 0, (2.27)

respectively.
It turns out that equation (2.27) is reduced to the ODEs w.r.t. the time variable:

ηtt +
(

a − 2aω

ω+ beat

)
ηt = 0,

and

(ω+ bt)ηtt + 2b ηt = 0,

by the transformation:

η1(t, u) = η(t,ω), ω=

⎧⎪⎨
⎪⎩

a − bu

u
eat, a �= 0,

1

u
− bt, a = 0,

in the cases a �= 0 and a = 0, respectively.
Integrating the above ODEs, we easily derive the general solution, that is, the function:

η1 = uH1(ω) + H2(ω), ω=

⎧⎪⎨
⎪⎩

a − bu

u
eat, a �= 0,

1

u
− bt, a = 0,

where H1 and H2 are arbitrary smooth functions at the moment. Substituting the above function
into (2.26), we arrive at the restriction:

H2 =
⎧⎨
⎩

a

2b

(
ωH1

′ − H1
)

, a �= 0,

−H1
′

2
, a = 0.

Thus, using notations H1 = 2bωF′ (in the case a �= 0) and H1 = F′ (in the case a = 0), one
finds the function ξ 0 from the first equation of system (2.24)

ξ 0 =

⎧⎪⎨
⎪⎩

aω2F′′(ω)

u(a − bu)
+ 2bωF′(ω)

a − bu
− 2bF(ω)

a
+ g(u), a �= 0,

F′′(ω)

2bu2
− F′(ω)

bu
+ F(ω)

b
+ g(u), a = 0,

where g(u) is to-be-determined function.
Substituting the functions ξ 0 and η1 into equation (2.25), we obtain g(u) = const. As a result,

cases (3) and (4) of Theorem 2.4 are derived.
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At the final stage, the functions, ξ 0 and η1, should be inserted into (2.8). The equation obtained
is an integrable first-order PDE and its general solution is easily constructed in an explicit form
provided that the function k(t) is given. Thus, all the coefficients of operator (2.6) are identified.

The proof is now complete.
Let us present examples of highly non-trivial Lie symmetries in cases (3) and (4) (see Theorem

2.4). Setting F(ω) =ω3, one can specify the functions ξ 0 and η1 as follows:

ξ 0 = 2

au4

(
3a2 + 2abu + b2u2

)
(a − bu)2e3at, η1 = 6

u3
(a + bu)(a − bu)3e3at,

and

ξ 0 = 1

bu3
− b2t3, η1 = 3bt (btu − 1) ,

in cases (3) and (4), respectively.
Now one should use the functions ξ 0 and η1 for finding the function G from equation (2.8). In

order to avoid cumbersome formulae, we additionally take the particular solution ξ 1 = y, ξ 2 =
−x of the Cauchy–Riemann system (2.7) and fix the function k(t) : k(t) = e−3at (case 3)) and
k(t) = t−2 (case 4)). As a result, one arrives at the Lie symmetry operators:

X = 2

au4

(
3a2 + 2abu + b2u2

)
(a − bu)2e3at∂t + 6

u3
(a + bu)(a − bu)3e3at∂u

+ y∂x − x∂y +
(

6b3 ln u + 3

u3
(a − bu)(2a2 − abu + b2u2) + H

(
x, y,

a − bu

u
eat

) )
∂v ,

(2.28)

and

X =
(

1
bu3 − b2t3

)
∂t + y∂x − x∂y + 3bt (btu − 1) ∂u

+
(

− 2b ln(tu) + 1−btu
bt2u2 + H

(
x, y, 1

u − bt
) )
∂v

, (2.29)

in cases (3) and (4), respectively. Here H is an arbitrary smooth function.

3 Exact solutions and their interpretation

Theorems 2.3 and 2.4 allow us to reduce the basic system (1.1) to that of lower dimensionality.
In fact, using the Lie symmetry operators (or their linear combinations) listed in Theorems 2.3
and 2.4, one can reduce (1.1) to the corresponding (1 + 1)-dimensional system and the latter to
an ODE system. Here, we examine two cases in order to show that those lead to useful exact
solutions.

First of all, one may simplify the non-linear system (1.1) using the ETs (2.2) with the correctly
specified parameters:

t = at, x =
√

a

d1
x, y =

√
a

d1
y,

u =
(

b

a

)1/γ

u, v =
(

b

a

)1/γ

v,
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to the form:

ut =�u + u(1 − uγ ),

vt = D�u + 1
a k

(
t
a

)
u, D = d2

d1
.

(3.1)

Here and in what follows, we preserve the old notations for all the variables.

Example 3.1. Let us apply the operator ∂y from the principal algebra (2.5) for reduction of the
basic system (3.1). Obviously, this operator produces the trivial ansatz u = u(t, x), v = v(t, x), so
that we arrive at the system:

ut = uxx + u(1 − uγ ),

vt = Duxx + 1
a k

(
t
a

)
u, D = d2

d1
.

(3.2)

This system is nothing else but the initial system under the assumption that the distribution of
the infected persons is one-dimensional in space (i.e., the diffusion w.r.t. the axis y is very small).
In this case, the distribution of the total number of deaths will be also one-dimensional.

Making the further plausible assumption d1 	 d2, that is, the space diffusion of the infected
persons leads mostly to increasing the total number of COVID-19 cases and not so much to
new deaths, we may put D = 0. Following our previous paper [11], we specify the function
k(t) = k0e−αt (hereafter, k0 > 0, α > 0). Thus, system (3.2) takes the form:

ut = uxx + u (1 − uγ ) ,

vt = k0
a exp

(−αt
a

)
u.

(3.3)

Using Theorem 2.3 (see case 4) therein), one notes that system (3.3) admits the Lie symmetry
∂t − α

a v∂v . So, taking the linear combination of this operator and the operator ∂x:

X = c∂x + ∂t − α

a
v∂v , c ∈R,

we obtain the ansatz:

u = φ(ω), v= exp

(
−αt

a

)
ψ(ω), ω= x − ct. (3.4)

Substituting (3.4) into (3.3), one arrives at the ODE system:

φ′′ + cφ′ + φ (1 − φγ )= 0,

cψ ′ + α
aψ = − k0

a φ.
(3.5)

The first equation in (3.5) is the known second-order ODE, which arises in many applications
(e.g., for studying the Fisher equation and its natural generalisations [27]). The general solution
of this ODE can be presented only in parametric form (see, e.g., [32]), which is not useful for fur-
ther analysis. However, an exact solution in the explicit form can be constructed for the correctly
specified parameter c = γ+4√

2(γ+2)
. To the best of our knowledge, this parameter and the relevant

solution were established in [1] for the first time (see more references in [20]). As a result, we
obtain the travelling front solution of the first equation in system (3.3):
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u(t, x) =
(

1 + A exp

(
γ√

2(γ + 2)
ω

))−2/γ

, ω= ± x − γ + 4√
2(γ + 2)

t, A> 0. (3.6)

Notably, (3.6) with A< 0 is still a solution; however, one possesses a singularity. It should be
also noted that the basic system (1.1) and its particular cases derived above are invariant under
the discrete transformation x → −x; therefore, we may put ω= x − γ+4√

2(γ+2)
t in what follows.

Having the function u in the explicit form (3.6), one easily derives the function v from the
second equation of system (3.3):

v(t, x) = k0

a

∫
exp

(
−αt

a

) (
1 + A exp

(
γ√

2(γ + 2)
ω

))−2/γ

dt + g(x), (3.7)

where g(x) is an arbitrary smooth function. The integral in the right-hand side of (3.7) cannot be
expressed in the terms of elementary functions for arbitrary parameters a, α and γ ; therefore,
we study below a particular case.

In order to avoid cumbersome formulae, let us set γ = 1 in system (3.3). In this case, the above
exact solution takes the form:

u(t, x) =
(

1 + A exp
(

1√
6
ω

))−2
, ω= x − 5√

6
t,

v(t, x) = k0
a

∫
exp

(−αt
a

) (
1 + A exp

(
1√
6
ω

))−2
dt + g(x).

(3.8)

Remark 3.1 The expression for u(t,x) in (3.8) presents the well-known travelling front of the
famous Fisher equation ut = uxx + u(1 − u), which was firstly identified in [2].

The integral in the right-hand side of (3.8) can be expressed in the terms of elementary
functions for several values of the parameter α

a . Taking α
a = 5

6 , for example, we obtain

u(t, x) =
(

1 + A exp
(

1√
6
ω

))−2
, ω= x − 5√

6
t,

v(t, x) = g(x) − 6k0
5a exp

(
− x√

6

) (
A + exp

(
− 1√

6
ω

))−1
.

(3.9)

Now we turn to a possible interpretation of solution (3.9). First of all, the functions u and v
should be non-negative for any t> 0 and x ∈ I (here I⊂R) because they represent the densities.
Obviously, the functions u is always positive. It is easily seen that each function g(x) satisfying
the inequality:

g(x) � 6k0

5a
exp

(
− x√

6

) (
1 + A exp

(
− x√

6

))−1

,

guarantees also non-negativity of v. In particular, one may take the function:

g(x) = 6k0

5a
exp

(
− x√

6

) (
1 + A exp

(
− x√

6

))−1

, (3.10)

which guarantees that the zero density of the deaths in the initial time t = 0, that is, v(0, x) = 0.
The initial profile for the density of the COVID-19 cases is

u(0, x) =
(

1 + A exp

(
x√
6

))−2

.
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Examining the space interval I= [x1, x2], x1 < x2, we can calculate the total number of
COVID-19 cases and deaths on this interval as follows:

U(t) = ∫ x2
x1

u(t, x)dx,

V (t) = ∫ x2
x1
v(t, x)dx.

(3.11)

So, substituting solution (3.9) into (3.11), we arrive at the formulae:

U(t) = (x2 − x1) − √
6
[(

1 + A exp
( x1− 5√

6
t

√
6

))−1 −
(

1 + A exp
( x2− 5√

6
t

√
6

))−1

+ ln
(

1 + A exp
( x2− 5√

6
t

√
6

))
− ln

(
1 + A exp

( x1− 5√
6

t
√

6

))]
,

V (t) = ∫ x2
x1

g(x)dx − 6
√

6 k0
5a e− 5

6 t
[

ln
(

1 + A exp
( 5√

6
t−x1√
6

))
− ln

(
1 + A exp

( 5√
6

t−x2√
6

)]
.

(3.12)

Obviously, the functions U(t) and V (t) are increasing and bounded, because

(U , V ) →
(

(x2 − x1),
∫ x2

x1

g(x)dx
)

as t → +∞.

Moreover, taking the appropriate function g(x), we can guarantee that

U(0) = U0 � 0, V (0) = V0 � 0.

Thus, one may claim that the exact solution (3.9) possesses all necessary properties for the
description of the distribution of the COVID-19 cases and the deaths from this virus in time-space
(under 1D approximation).

Examples of the exact solution (3.9) with the specified parameters and the corresponding func-
tions (3.12) are presented in Figures 1 and 2. Notably, the parameters a and k0 were taken
approximately the same as in [11]. It follows from Figure 1 that the spread of the COVID-19
cases in space has the form of a travelling wave and this coincides (at least qualitatively) with
the real situation in many countries. In Ukraine, for example, the COVID-19 pandemic started in
the western part and then spread to the central and eastern parts of Ukraine (the major exception
was only the capital Kyiv, in which the total number of COVID-19 cases was high from the very
beginning). The distribution of deaths in space has more complicated behaviour (see the right
plot in Figure 1). On the other hand, it is easily seen from Figures 1 and 2 that v(t, x) 
 u(t, x)
what is in agreement with the measured data in many countries [5]. Notably, the behaviour of
the function v(t,x) can be essentially changed by the appropriate choice of the function g(x).

Example 3.2. Let us apply the operator y∂x − x ∂y from the principal algebra (2.5) for the
reduction of the basic system (3.1). Obviously, this operator produces the well-known ansatz
u = u(t, r), v = v(t, r) and r2 = x2 + y2, that is, we examine the radially symmetric case. In this
case, we arrive at the system:

ut = 1

r
(rur)r + u (1 − uγ ) ,

vt = D
1

r
(rur)r + 1

a
k

(
t

a

)
u, D = d2

d1
.
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FIGURE 1. Solution (3.9) and (3.10) of the nonlinear system (3.3) with γ = 1. The function u(t,x) (left
surface) describes the density of the COVID-19 cases, while the function v(t,x) (right surface) describes the
density of deaths. The parameters are k0 = 0.01, a = 0.3 and A = 1.

FIGURE 2. The functions (3.12) with (3.10). The function U(t) (left curve) shows the time evolution of the
total number of COVID-19 cases on the space interval [0,10], while the function V (t) (right curve) shows
the time evolution of total deaths. The parameters k0, a and A are the same as in Figure 1.

Making the same assumptions k(t) = k0e−αt and d1 	 d2, that is, D = 0, as in Example 3.1, we
obtain the system:

ut = 1
r (rur)r + u (1 − uγ ) ,

vt = k0
a exp

(−αt
a

)
u.

(3.13)

We have proved that system (3.13) again admits the Lie symmetry ∂t − α
a v∂v (however, the

operator of the space translation ∂r is absent in this case). So, using this symmetry, one obtains
the ansatz:
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u = φ(r), v = exp

(
−αt

a

)
ψ(r), r =

√
x2 + y2. (3.14)

Substituting (3.14) into (3.13), one arrives at the system:

φ′′ + 1

r
φ′ + φ(1 − φγ ) = 0,

−α
a
ψ = k0

a
φ.

Now one realises that the restriction α < 0 should take place because the function v means the
density. So, the density of deaths increases to infinity as t → ∞. It means that the exponential
growing of the function v is rather unrealistic because one obtains the total extinction of the
population in question for a finite time. Thus, one should solve numerically the non-linear system
(3.13) in order to get a realistic solution. Notably, numerical solutions of the Fisher-type equation
from (3.13) can be found, for example, in [22].

4 Conclusions

The main part of this paper is devoted to the LSC of the class of reaction–diffusion system with
the cross-diffusion (1.1). The system in question was suggested in [11] as a natural generalisation
of the mathematical model for describing the COVID-19 outbreak.

Firstly, we present a statement about the group of ETs of system (1.1) (see Theorem 2.1) in
order to establish possible relations between systems that admit equivalent invariance algebras.
Secondly, we find the principal algebra of system (1.1), that is, the maximal invariance algebra
of this system with arbitrary coefficients (see Theorem 2.2). And lastly, we present two main the-
orems (Theorems 2.3 and 2.4) describing reaction–diffusion systems of the form (1.1) admitting
non-trivial Lie symmetry, that is, present the LSC of system (1.1). In Section 3, we demonstrate
that the Lie symmetries identified in Section 2 are useful for finding exact solutions, which can
describe the spread of the COVID-19 pandemic.

From the mathematical point of view, the most interesting Lie symmetry operators of system
(1.1) occur when d1 = 0 and are presented in Theorem 2.4. One sees that the coefficient ξ 0 of the
infinitesimal operator X (see (2.6)) depends on the variable u (excepting case 2)). Moreover, this
dependence is nonlinear. To the best of our knowledge, it is the first example of such dependence
for systems of evolution equations, in particular, reaction–diffusion systems. We assume that
such unusual Lie symmetry of system (1.1) with d1 = 0 can be a consequence of its integrability.
In fact, one may consider the first equation as an ODE with the variables x and y as parameters.
Solving this ODE, one obtains

u(t, x, y) = a1/γ eatC(x, y)
(

a + b Cγ (x, y)
(
eaγ t − 1

) )−1/γ
,

where C(x,y) is an arbitrary function. Substituting this expression for u into the second equation
of the system, one again obtains the integrable ODE to find the function v.

Finally, it should be pointed out that Lie symmetries operators, which are non-linear w.r.t.
unknown functions, were recently identified for a simplification of the Shigesada–Kawasaki–
Teramoto system in [12] (see Section 3). Such peculiarity of Lie symmetry also occurs for a
special Schrödinger type equation [19], which can be rewritten in the form of a reaction–diffusion
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system with the cross-diffusion. However, the coefficient ξ 0 (see operator (2.10)) in all known
Lie symmetries of a wide range of reaction–diffusion systems [12, 13, 15, 19, 29, 35, 37, 39]
(see also Chapter 2 in [9]) does not depend on the unknown function(s) in contrast to those
in Theorem 2.4 and examples (2.28)–(2.29). Moreover, we may conclude that the well-known
‘people theorem’ stating that the coefficient ξ 0 in each Lie symmetry of an arbitrary scalar evo-
lution PDE of the order two and higher can depend only on the time variable (no dependence on
space variables and/or dependent variable!) cannot be generalised on the systems of evolution
equations without additional restrictions. The problem how to define these restrictions is an open
question.

From the applicability point of view, the most interesting system of the form (1.1) admitting
non-trivial Lie symmetry is presented in case (4) of Theorem 2.3. Here the function k(t) of system
(1.1) has the form that can be useful for describing the COVID-19 outbreak [11]. Moreover, the
diffusivity d2 = 0 as it is stated in [40]. In Section 3, we demonstrate how the Lie symmetries
obtained can be applied for the constructing of exact solutions. Furthermore, we prove that an
exact solution (with correctly specified parameters) possesses all necessary properties for the
description of the distribution of the COVID-19 cases and the deaths from this virus in time and
space. Although it was done under 1D space approximation, this solution can be useful for the
prediction of the COVID-19 pandemic if its spread has a favourite direction. A typical example is
Ukraine. Of course, one needs to identify all the parameters in system (1.1) in order to calculate
correct numbers of the COVID-19 cases and make a plausible prediction, but this lays beyond
the scope of this work.
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