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1. Introduction
Let K be an algebraically closed field of characteristic zero, and X be a smooth n-
dimensional quasiprojective variety over K. A rational correspondence g on X is a
quasiprojective variety 0 f together with two maps π1 and π2 to X , such that both
maps are dominant when restricted to every irreducible component of 0 f . Fix a normal
compactification X of X , a compactification 0′f of 0 f extending the maps π1 and π2 to

X , and a desingularization 0 f of 0′f .
Rational correspondences can be iterated (see §2.1); we denote by f p the pth iterate of

the correspondence f . There are invariants of various nature associated to the dynamical
system induced by a given correspondence. They can be transcendental or algebraic, or
arithmetic if K is Q.

Let us present a first invariant defined purely using algebraic geometry. Fix an ample
divisor D on X and an integer k 6 n. Then the k-degree of the correspondence g with
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respect to X and D is the intersection number

degk( f ) := (π∗1 Dn−k
· π∗2 Dk)

on 0 f . The asymptotic behavior of the sequence (degk( f p))p roughly measures the
algebraic complexity of the iterates of f . These degree sequences have been studied
most in the case where 0 f is the graph of a rational map f . The growth of the
sequence of degrees is an essential tool when one studies the group of birational
transformations (see [Giz80, DF01, Can11, BD15, BC16] for surfaces, [DS04] for the
study of commutative automorphism groups in dimension at least 3, and [CZ12, Zha14]
for some characterizations of positive-entropy automorphisms in higher dimension).

When K is the field of complex numbers, Dinh and Sibony [DS05b, DS08] proved
that the sequence of degrees is submultiplicative; this result was recently extended to a
field of arbitrary characteristic [TT16, Dan17]. As a result, Fekete’s lemma implies that
the asymptotic ratio of the sequence degk(g

p), called the kth dynamical degree of g and
denoted by λk(g), is well defined and is equal to the limit

λk(g) := lim
p→+∞

degk(g
p)1/p.

These numbers were first defined for rational maps over the complex projective space
by Russakovski and Shiffman [RS97] and are in general birational invariants [TT16].
Dynamical degrees are also a key ingredient in the construction of ergodic invariant
measures [BS92, Sib99, DS05a, Gue05, DTV10, DS10, DDG11].

The quantity analogous to the dynamical degree in the analytic setting is the topological
entropy—the exponential growth rate of the number of (n, ε) separated orbits that avoid
the indeterminacy locus of a given correspondence. These two invariants are closely
related as the dynamical degrees control the topological entropy [Gro03, DS05b, DS08]
and the equality between the topological entropy and the logarithm of its largest dynamical
degree is achieved for holomorphic maps [Yom87].

Like the entropy, the dynamical degrees are also difficult to compute in general. While
the nth dynamical degree λn is the topological degree of g, the issue when 16 k < n
is that g has a non-empty indeterminacy locus in general and hence the pullback (g p)∗

on the Néron Severi group need not be equal to (g∗)p. Thus computing λk involves
computing infinitely many potentially unrelated pullback maps. Therefore, they have
only been computed in low dimension or for maps which preserve certain geometric
constraints: they are known for regular morphisms, for birational maps of surfaces [DF01],
for endomorphisms of the affine plane [FJ11], for monomial maps [Lin12, FW12], for
birational maps of hyperkähler varieties [LB17] and for Hurwitz correspondences (a class
of mappings and correspondences obtained from Teichmüller theory in the work of Koch
[Koc13]) [KR16, Ram18a, Ram18b]. The properties of dynamical degrees were studied
for particular classes of birational transformations of P3 [DH16, CD18, DL18, Dan18].
Due to this difficulty, there are many open questions. Until recently, it was not known
whether every dynamical degree is an algebraic integer; however, very recently Bell, Diller
and Jonsson [BDJ19] have found a map with a transcendental dynamical degree.

In contrast to the general situation, the dynamical degrees and the sequence of degrees
of monomial maps are well understood [BK08, Lin12, FW12, JW11, DX17]. Fix n > 0,
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and denote by T the n-dimensional torus (K∗)n . Let M = (Mi j ) be an n × n integer
matrix. Then M induces a monomial self-map φ(M) of T, sending (x1, . . . , xn) to
(
∏

j x
M1 j
j , . . . ,

∏
j x

Mnj
j ). If M is non-singular then φ(M) is dominant, with topological

degree det(M). The kth dynamical degree of φ(M) is

|ρ1| · . . . · |ρk |, (1)

where ρ1, . . . , ρk are the k largest eigenvalues of M .
Now let M and N be two non-singular integer matrices. Then we have two dominant

maps, φ(M) and φ(N ), both from T to T. This induces a rational correspondence on T; we
call such a correspondence a monomial correspondence. Here, we compute the dynamical
degrees of monomial correspondences. We show the following theorem.

THEOREM A. For any two n × n integer matrices M and N with non-zero determinant,
the k-dynamical degree of the correspondence (T, φ(M), φ(N )) is equal to

|det(M)||ρ1| · . . . · |ρk |,

where ρ1, . . . , ρk are the k largest eigenvalues of the matrix N · M−1.

We obtain further information on the growth of the degrees when the sequence k 7→
λk( f ) is locally strictly log-concave.

THEOREM B. Fix two n × n integer matrices M and N with non-zero determinant and
take f to be the monomial correspondence f := (T, φ(M), φ(N )). Suppose that λ2

l ( f ) >
λl+1( f )λl−1( f ) for an integer 16 l 6 n. Then there exist a constant C > 0 and an integer
r such that

degl( f p)= Cλl( f )p
+ O

(
pr
(
λl−1( f )λl+1( f )

λl( f )

)p)
.

We find an appropriate toric compactification Y on which the pullback on the 2k
cohomology is functorial (i.e. ( f p)∗ = ( f ∗)p on H2k(Y (C)) for an embedding of K into
C). We say that f is k-stable when this happens.

THEOREM C. Fix two n × n integer matrices M and N with non-zero determinant and
take f to be the monomial correspondence f := (T, φ(M), φ(N )). Suppose that the
eigenvalues of the matrix N M−1 are all real, distinct and positive. Then there exists a
projective toric variety with at worst quotient singularities on which f is algebraically
k-stable.

Finally, we describe the monomial correspondences by computing these invariants using
arithmetic tools. Recall that given an ample divisor D on Pn , one can associate a function
hD : Pn(Q)→ R+ called a Weil height. These heights are essential to understand rational
points and integral points on algebraic varieties. More precisely, they are used to count
the asymptotic growth of rational points [Sch79], to characterize torsion points on abelian
varieties [Né65, Tat74], to obtain equidistribution results in algebraic dynamics [SUZ97,
Yua08, DM17] and to study stability properties of algebraic families of one-dimensional
maps [MZ10, BD11, DeM16, DWY16, FG18]. In our setting, we fix an embedding from
T into Pn so that we get an injection from T(Q) into Pn(Q). Any monomial map or
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correspondence is regular on the torus T, as are all its iterates, so the indeterminacy locus
on any compactification X is supported on the boundary X r T. Thus if x is a point
in T(Q), its image by a monomial correspondence is a well-defined cycle of dimension
zero, i.e. a finite number of T(Q) points counted with multiplicities

∑
ai [xi ] for ai ∈

Z, xi ∈ T(Q). We define the height of the image as the sum
∑

ai hD(xi ). Take f :=
(T, φ(M), φ(N )) to be a monomial correspondence with M, N two matrices with integer
entries and fix a point x in T(Q). We define the arithmetic degree of x as the asymptotic
limit

α f (x) := lim sup
p→+∞

hD( f p(x))1/p.

In [KS16], Kawaguchi and Silverman defined this quantity and conjectured that when
f is dominant rational map and when x is a rational point whose orbit is Zariski dense, the
quantity α f (x) is equal to the first dynamical degree of f .

THEOREM D. Suppose that the field K=Q is the field of algebraic numbers. Fix two
n × n integer matrices M and N with non-zero determinant and take f to be the monomial
correspondence f := (T, φ(M), φ(N )). Then for any point x ∈ T(Q), the quantity α f (x)
is finite and belongs to the set

{1, |det(M)ρ1|, |det(M)ρ2|, . . . , |det(M)ρn|},

where each ρi is an eigenvalue of N · M−1.

Let us explain how we can obtain these four results. Fix two n × n integer matrices
M, N with non-zero determinant. Our approach relies on a very simple observation:
mainly, by post-composing by the monomial map associated to the matrix det(M)p Id,
we obtain the following diagram:

0p
vp

��

u p

��
T

φ(P p)

''

T

φ(det(M)p Id)
��
T

where 0p is the correspondence associated to g p, TCom(M) is the transpose of the
cofactor matrix of M , P is the matrix TCom(M) · N , and T is the torus Kn . This diagram
allows us to transport the dynamical properties of the monomial map induced by P with the
dynamics of the monomial correspondence. We finally conclude using results of Favre and
Wulcan [FW12], Lin and Wulcan [LW14] and Silverman [Sil14] to prove Theorems A, B,
C, and D.

To pursue the study of these particular correspondences, it is natural to ask whether
we can relate the entropy of such correspondence with their dynamical degrees as in the
rational setting [HP07]. Precisely, we formulate the following question.

Question 1.1. Take two n × n integer matrices M, N with non-zero determinant. Is the
topological entropy of a monomial correspondence f = (T, φ(M), φ(N )) equal to

max
06k6n

λk( f )?
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Once this question is answered, then one would wish to understand the ergodic
properties of our correspondences and construct interesting measures for this class of
correspondences similar to the approach of [Gue05] for rational maps and to [DS06,
Theorem 1.3], mainly as expressed in the following question.

Question 1.2. When all the iterates of the monomial correspondence are irreducible, is
there a measure of maximal entropy and can we compute its Hausdorff dimension?

Structure of the paper. In §2 we review the background on correspondences, degrees
and dynamical degrees. Following this, in §3 we successively prove Theorems A, B, C
and D.

2. Background
2.1. Rational correspondences. A rational correspondence from X to Y is a multi-
valued map to Y defined on a dense open set of X . When K is the field of complex
numbers, they are also called meromorphic multi-valued maps.

Definition 2.1. Let X and Y be irreducible quasiprojective varieties. A rational
correspondence f = (0 f , πX , πY ) : X Y is a diagram

0 f

X Y

πX πY

where 0 f is a quasiprojective variety, not necessarily irreducible, and the restriction of πX

to every irreducible component of 0 f is dominant and generically finite. We say that the
variety 0 f is the graph of the correspondence f .

Over some dense open set in X , πX is an étale map (over C, a covering map), and
πY ◦ π

−1
X defines a multi-valued map to Y . We define the domain of definition of g to be

the largest such open set of X , However, considered as a multi-valued map from X to Y ,
it is possible that πY ◦ π

−1
X has indeterminacy, since some fibers of πX may be empty or

positive-dimensional.

Example 2.2. Let f : X→ Y be a rational map. Set 0 f to be the graph of f , that is, the
set (x, f (x)) ∈ X × Y , and set πX and πY to be the natural projection maps from 0 f to
X and Y , respectively. Then (0 f , πX , πY ) : X Y is a rational correspondence, which
happens to be generically single-valued. Thus any rational map can be thought of as a
rational correspondence.

Example 2.3. Let φ be an orientation-preserving branched covering from S2 to itself,
such that every critical point of φ has finite forward orbit. Thurston [DH93] described
a pullback map induced by φ on the Teichmüller space of complex structures of S2

marked at the post-critical locus of φ; Koch [Koc13] showed that Thurston’s pullback
map descends to a correspondence on the moduli space M0,n of configurations of n points
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on P1. These correspondences are called Hurwitz correspondences and have been studied
in [Ram18a, Ram18b].

Example 2.4. Recall that the modular surface X0 := SL2(Z)//H defined as the left
quotient of the hyperbolic plane by SL2(Z) is isomorphic to C. We can thus view X0 as
an algebraic Riemann surface, whose compactification is the Riemann sphere. The Hecke
operator of weight n is a morphism on the free abelian group generated by the rank-two
lattices of R2 such that, for any lattice 3 in R2, the image T (n)(3) is defined as

T (n)[3] =
∑

[3′:3]=n

[3′].

Since X0 is the quotient of the space of rank-two lattices of R2 up to a scaling by [Ser73,
VII §2.2, Proposition 3], the map T (n) descends to a correspondence on X0.

Definition 2.5. Suppose f = (0 f , πX , πY ) : X Y and g = (0g, π
′

Y , π
′

Z ) : Y Z are
rational correspondences such that the image under πY of every irreducible component
of 0 f intersects the domain of definition of the multi-valued map π ′Z ◦ (π

′

Y )
−1. The

composite g ◦ f is a rational correspondence from X to Z defined as follows.
Pick dense open sets UX ⊆ X and UY ⊆ Y such that πY (π

−1
X (UX ))⊆UY , and

πX |π−1
X (UX )

and π ′Y |(π ′Y )−1(UY )
are both étale. Set

g ◦ f := (π−1
X (UX ) πY×π ′Y

(π ′Y )
−1(UY ), π1, π2),

where π1 and π2 are the natural maps to X and Z , respectively.

This composite does depend on the choices of open sets UX and UY , but is well defined
up to conjugation by a birational transformation.

2.2. Pullback on numerical groups by correspondences. Fix X a normal projective
compactification of X . We now recall how these correspondences induce a natural action
on the numerical groups of k-cycles.

When K is the field of complex numbers and X is smooth, then one can consider 0 f the
desingularization of a compactification of the correspondence f = (0 f , π1, π2) : X X .
One can pull back smooth forms along π2; this induces a linear map π∗2 : H

2k(X)→
H2k(0 f ) on de Rham cohomology groups. Also, one can push forward homology
classes along π1, obtaining a map π1∗ : H2n−2k(0 f )→ H2n−2k(X). Finally, since X
and 0 f are smooth oriented compact manifolds, Poincaré duality induces identifications
PD0 f

: H2k(0 f )' H2n−2k(0 f ) and PDX : H
2k(X)' H2n−2k(X). We may compose

pullback, pushforward, and Poincaré duality maps to obtain a pullback along the
correspondence f :

f ∗ := PD−1
X
◦π1∗ ◦ PD0 f

◦π∗2 : H
2k(X)→ H2k(X).

In order to be able to work over an arbitrary algebraically closed field of characteristic
zero, we replace the de Rham cohomology by abelian groups called numerical groups. We
first introduce the general terminology on these groups.

A k-cycle on X is a formal linear combination of subvarieties
∑

ai [Vi ] where ai are
real numbers and Vi are subvarieties of X . The group of k-cycles on X is denoted by
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Zk(X). The rational equivalence classes of k-cycles form the group Ak(X). In [Ful98,
Ch. 3], Fulton introduces the Chern classes of a vector bundle E on X of degree k as
operators from Al(X)→ Al−k(X). Chern classes can be composed and a product of
Chern classes α of degree k is said to be numerically equivalent to zero if the intersection
(α · z) is equal to zero for any k-cycle z. The numerical group of codimension k of X ,
denoted by Nk(X)n is the abelian group generated by product of Chern classes of degree
k modulo the numerical equivalence relation. Dually, we denote by Nk(X) the quotient of
the abelian group of k-cycles on X by the group generated by cycles z ∈ Zk(X) satisfying
(α · z)= 0 for any product of Chern classes of degree k. When X is smooth or has at
worst quotient singularities, then the two groups Nk(X) and Nn−k(X) are isomorphic and
the isomorphism is realized by intersecting with the fundamental class [X ]. Classes in
Nk(X) can be pulled back, and conversely classes in Nk(X) can be pushed forward.

Definition 2.6. Suppose f = (0 f , π1, π2) : X X is a rational correspondence, and X
is a normal projective variety birational to X . Take a desingularization 0 f of some
compactification of 0 f with the property that π1 and π2 are regular maps on 0 f . The
pullback map on the numerical groups, denoted by f • : Nk(X)→ Nn−k(X), is given by
the intersection product

f •(α) := π1∗(π
∗

2α · [0 f ]) ∈ Nn−k(X),

where α is a class in Nk(X).

2.3. Dynamical degrees.

Definition 2.7. Let dim X = n, and let f = (0 f , π1, π2) : X X be a rational
correspondence. Fix a smooth projective compactification X of X , a projective
compactification and D an ample divisor class on X . Now pick a projective
compactification 0 f of 0 f such that both maps π1, π2 : 0 f → X are regular. Now, for
k = 0, . . . , n, the k-degree of f with respect to D is the intersection number on 0 f :

degk( f, X , D) := (π∗1 Dn−k
· π∗2 Dk).

Note that while this intersection number very much does depend on the choices of
X and D, by the projection formula, it is independent of the choice of compatible
compactification 0 f .

Definition 2.8. Let f = (0 f , π1, π2) : X X be a rational correspondence such that the
restriction of π2 to every irreducible component of 0 f is dominant. In this case we say
that f is a dominant rational self-correspondence.

Definition 2.9. Let 0 f be as in Definition 2.8. Let f p
= f ◦ . . . ◦ f (p times). Pick any

normal projective variety X birational to X and fix D an ample divisor class on X . The
kth dynamical degree λk( f ) of 0 f is defined to be

λk( f ) := lim
p→∞

(degk( f p, X , D))1/p.

This limit exists and depends neither on the choice of the normal projective variety
X birational to X nor on the choice of the ample divisor D. Moreover, the sequence
k 7→ λk( f ) is log-concave and we shall refer to [TT16] for the general properties of these
quantities.
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2.4. Monomial correspondences. Fix n > 0 and let T be the torus (K∗)n . Recall that
any (n × n) matrix M = (Mi j ) with integer entries defines a morphism (homomorphism)
φ(M) on T defined by

φ(M) : (x1, . . . , xn) 7→

(∏
l

x M1l
l , . . . ,

∏
l

x Mnl
l

)
. (2)

We have φ(M · N )= φ(M) ◦ φ(N ). Also, φ(M) is dominant if and only if M is
non-singular (i.e. has non-zero determinant); in which case φ(M) is étale of degree
det(M). A monomial correspondence is any correspondence on the torus T given by
(T, φ(M), φ(N )) where M, N are matrices with integer entries, and M is non-singular.
The correspondence (T, φ(M), φ(N )) is dominant if and only if N is non-singular as well.

Example 2.10. Let n = 1, so T is the one-dimensional torus K∗. Let M = N = [2], so both
φ(M) and φ(N ) are the squaring map z 7→ z2. Here, we compute explicitly the second
iterate g2 of the correspondence g = (T, φ(M), φ(N )). For clarity, we use different
coordinates on each copy of T; we include the coordinate as a subscript. We have the
following commutative diagram:

Tφ(N ) ×φ(M) T
π1

%%

π2

yy
Tx

φ(N )
t=x2 &&

φ(M)
s=x2

~~

Ty φ(N )
u=y2

  

φ(M)
t=y2

xx
Ts Tt Tu

The fibered product Tφ(N ) ×φ(M) T is explicitly the subset {(x, y) ∈ T2
| x2
= y2
}, that

is, the union of two lines L1 = {(x, y) ∈ T2
| x = y} and

L2 = {(x, y) ∈ T2
| x =−y}.

Thus the second iterate g2 is the correspondence ((L1)x t (L2)x , x 7→ x2, x 7→ x2),
which can be thought of as a ‘union’ of two monomial correspondences but is not one
itself. Observe that the graph of g2 is reducible; in contrast, the graph of a monomial
correspondence is required by the definition to be a torus, thus irreducible.

3. Dynamics of monomial correspondences
While the composition of monomial maps φ(M) and φ(N ) is itself a monomial map,
namely φ(M · N ), the composition of two monomial correspondences may not be
monomial. Also, for a fixed monomial correspondence (T, φ(M), φ(N )), its iterates may
not be monomial; see Example 2.10 above. The essential ingredient to understand the
iterates of monomial correspondences is the following lemma, which relates the dynamical
behavior of the monomial correspondence (T, φ(M), φ(N )) to the dynamical behavior of
φ(N · TCom(M)), where TCom(M) is the transpose of the cofactor matrix of M .

LEMMA 3.1. Fix two n × n integer matrices M and N, both with non-zero
determinant, and take f to be the monomial correspondence f := (T, φ(M), φ(N )) and
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P = N · TCom(M) where TCom(M) is the transpose of the cofactor matrix of M. For
any integer p > n, the following diagram is commutative:

0p
vp

��

u p

��
T

φ(P p)

''

T

φ(det(M)p Id)
��
T

where f p
:= (0p, u p, vp) denotes the pth iterate of f .

Proof. We induct on p. Throughout, we use the facts that φ(A · B)= φ(A) ◦ φ(B) and
that a scalar matrix (in particular, det(M) Id) commutes with all matrices, so φ(det(M) Id
commutes with all monomial maps.

Base case: p = 1. Then (0p, u p, vp)= (T, φ(M), φ(N )). So

φ(P p) ◦ u p = φ(P) ◦ φ(M)

= φ(N · TCom(M)) ◦ φ(M)

= φ(N ) ◦ φ(TCom(M))) ◦ φ(M)

= φ(TCom(M))) ◦ φ(M) ◦ φ(N )

= φ(TCom(M) · M) ◦ φ(N )

= φ(det(M) Id) ◦ φ(N )

= φ(det(M p) Id) ◦ vp.

Inductive hypothesis: For some p > 0, φ(P p) ◦ u p = φ(det(M p) Id) ◦ vp.

Inductive step: We have the following commutative digram:

0p+1
y

!!

x

}}
T

φ(N )
!!

φ(M)

��

0p
vp

��

u p

||
T T T

Here, the square is Cartesian, u p+1 = φ(M) ◦ x , and vp+1 = vp ◦ y.
Now we post-compose vp+1 by φ(det(M)p+1 Id) to obtain

φ(det(M p+1) Id) ◦ vp+1 = φ(det(M) Id) ◦ φ(det(M)p Id) ◦ vp ◦ y

= φ(det(M) Id) ◦ φ(P p) ◦ u p ◦ y

= φ(det(M) Id) ◦ φ(P p) ◦ φ(N ) ◦ x

= φ(P p) ◦ φ(N ) ◦ φ(det(M) Id) ◦ x

= φ(P p) ◦ φ(N ) ◦ φ(TCom(M) · M) ◦ x
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= φ(P p) ◦ φ(N ) ◦ φ(TCom(M)) ◦ φ(M) ◦ x

= φ(P p) ◦ φ(P) ◦ φ(M) ◦ x

= φ(P p+1) ◦ φ(M) ◦ x

= φ(P p+1) ◦ u p+1.

Here, the second equality follows from the inductive hypothesis and the third equality
follows from the commutativity of the Cartesian square. �

3.1. Dynamical degree of monomial correspondences.

THEOREM 3.2. Fix two n × n integer matrices M and N, both with non-zero determinant,
and take f to be the monomial correspondence f := (T, φ(M), φ(N )). Denote by P =
N · TCom(M) where TCom(M) is the transpose of the cofactor matrix of M. For any toric
compactification X of T, for any integer p > 1 and for any integer l 6 n, the following
equality holds on Nl(X)⊗Q:

( f p)• =
1

|det(M)|lp−p φ(P
p)•.

Proof. Fix a toric compactification X of T. We observe that for any scalar matrix a Id, the
map φ(a Id) is a regular morphism on X and that the pullback satisfies

φ(a Id)∗ = |a|l Id

on Nl(X). Thus the morphism φ(det(M)p Id) on T induces a regular morphism on X and
the pullback satisfies

φ(det(M)p Id)∗ = |det(M)|pl Id

on Nl(X). As a result, we have the following equality on Nl(X)⊗Q:

1
|det(M)|pl φ(det(M)p Id)∗ = Id. (3)

By Lemma 3.1, for any integer p, the following diagram is commutative:

0p
vp

��

u p

��
T

φ(P p)

''

T

φ(det(M)p Id)
��
T

where P = N · TCom(M). Note that u p and vp are étale of degrees |det(M)|p and
|det(N )|p, respectively. First, we choose a birational modification π : X̃→ X so that the
map φ̃(P p) : X̃→ X induced by φ(P p) is regular. Then we choose a compactification
0p of 0p so that the maps induced by u p and vp from 0p to X are regular, and the map
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ũ p : 0p→ X̃ is also regular. We thus obtain the following commutative diagram:

0p

ũ p
��

vp

&&

u p

��
X

φ(P p)
))

X̃
φ̃(P p)

&&

πoo X

φ(det(M)p Id)
��

X

Note that ũ p as a map from 0p to X̃ is generically finite of degree |det(M)|p. Thus, on
Nl(X̃)⊗Q, we have that (ũ p)∗ ◦ ũ∗p = |det(M)|p Id. By the above diagram and (3), we
compute the pullback ( f p)• on Nl(X)⊗Q:

( f p)• = u p∗ ◦ v
∗
p

=
1

|det(M)pl |
u p∗ ◦ v

∗
p ◦ φ(det(M)p Id)∗

=
1

|det(M)pl |
u p∗ ◦ ũ∗p ◦ φ̃(P

p)∗

=
1

|det(M)pl |
π∗ ◦ (ũ p)∗ ◦ ũ∗p ◦ φ̃(P

p)∗

=
|det(M)|p

|det(M)pl |
π∗ ◦ φ̃(P p)∗

=
1

|det(M)|lp−p φ(P
p)∗,

where the penultimate equality follows from the fact that (ũ p)∗ ◦ ũ∗p = |det(M)|p Id. �

From the behavior of the corresponding monomial map associated to the
correspondence on the numerical groups, we deduce Theorem A.

3.2. Proof of Theorem A. Let X be any toric compactification of T and P = N ·
TCom(M). For any integer p > 0, Theorem 3.2 asserts that

( f p)• =
1

|det(M)|lp−p φ(P
p)∗

on Nl(X)⊗Q. We fix a norm ‖ · ‖ on Nl(X)⊗Q and compute the l-dynamical degree of
the correspondence using the formula

λl( f )= lim
p→+∞

‖( f p)•‖1/p.

The previous expression thus gives

λl( f )=
1

|det(M)|l−1 lim
p→+∞

‖φ(P p)∗‖1/p

=
1

|det(M)|l−1 λl(φ(P)).
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Let ρ′1, . . . , ρ
′

l be the l largest eigenvalues (in absolute value, and counted with
multiplicity) of the matrix P = N · TCom(M)= det(M) · N · M−1. Let ρ1, . . . , ρl be the
l largest eigenvalues of the matrix N · M−1. Then ρ′i = det(M) · ρi . By [FW12, Lin12]
applied to the monomial map associated to P , we have

λl( f )=
1

|det(M)|l−1 |ρ
′

1| · . . . · |ρ
′

l |

=
1

|det(M)|l−1 |det(M)||ρ1| · . . . · |det(M)||ρl |

=
|det(M)|l

|det(M)|l−1 |ρ1| · . . . · |ρl |

= |det(M)||ρ1| · . . . · |ρl |.

Remark 3.3. It follows immediately from the projection formula that for a general
correspondence (0, π1, π2) on an n-dimensional variety, the lth dynamical degree of
(0, π1, π2) is equal to the (n − l)th dynamical degree of (0, π2, π1). The following
computation provides a sanity-check for Theorem A. Let ρ1, . . . , ρn be the eigenvalues
of N · M−1, arranged so that the sequence of absolute values is non-increasing. Then
1/ρn, . . . , 1/ρ1 are the eigenvalues of M · N−1, again arranged so that the sequence of
absolute values is non-increasing. We note that

lth dynamical degree of (T, φ(M), φ(N ))
= |det(M)||ρ1| · . . . · |ρl |

=

∣∣∣∣det(M) · det(N · M−1)

|ρl+1| · . . . · |ρn|

∣∣∣∣
=

∣∣∣∣det(N )
∣∣∣∣ · 1
|ρn|
· . . . ·

1
|ρl+1|

= (n − l)th dynamical degree of (T, φ(N ), φ(M)).

3.3. Proof of Theorem B. Fix a monomial correspondence f := (T, φ(M), φ(N )) for
M, N ∈ GLn(Z) whose l-dynamical degree satisfies the condition

λ2
l ( f ) > λl+1( f )λl−1( f ).

Using Theorem A, this condition implies that

λl( f )2

λl+1( f )λl−1( f )
=

λl(φ(P))2

λl+1(φ(P))λl−1(φ(P))
> 1,

where P is the matrix N · TCom(M). This proves that φ(P) satisfies the conditions of
[FW12, Theorem D], hence the asymptotic growth of the l-degree of φ(P) is given by

degl(φ(P)
p)= Cλl(φ(P))p

+ O
(

pr
(
λl−1(φ(P))λl+1(φ(P))

λl(φ(P))

)p)
as p→+∞, where r is an integer.

Using Theorem 3.2 and the fact that λl( f )|det(M)|l−1
= λl(φ(P)), we deduce that

degl( f p)= Cλl( f )p
+ O

(
pr
(

λl(φ(P))2

λl+1(φ(P))λl−1(φ(P))

)p)
,

and the theorem is proved.
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3.4. Proof of Theorem C. Fix a monomial correspondence f = (T, φ(M), φ(N ))
where M, N are two matrices in GLn(Z) such that the eigenvalues of the matrix N M−1

are all real, distinct and positive. This implies that the eigenvalues of the matrix P =
N · TCom(M) also satisfy the assumption of the theorem. By [LW14, Theorem A], we
can find a toric compactification X of the torus T, with at worst quotient singularities, on
which the monomial map φ(P) is k-stable. Using Theorem 3.2, we deduce that that the
k-stability of φ(P) on X implies the k-stability of the correspondence f on X , that is, we
have, on Nl(X)⊗Q,

( f p)• =
1

|det(M)|p(l−1)φ(P
p)∗

=

(
1

|det(M)|(l−1)

)p

φ(P∗)p

=

(
1

|det(M)|(l−1)φ(P
∗)

)p

= ( f •)p.

3.5. Proof of Theorem D. We fix an embedding of T into Pn . Fix also an integer p > 1
and denote by (0p, u p, vp) the pth iterate of the correspondence f . By Lemma 3.1, we
can find a toric compactification 0 p of 0p such that the following diagram is commutative:

0 p
vp

  

u p

~~
Pn

φ(P p)

((

Pn

φ(det(M)p Id)
��

Pn

Fix D an ample divisor in Pn , a point x ∈ T(Q) and denote by hD the Weil height
associated to D. Observe that since φ(det(M)p Id) is the map that raises each homogenous
coordinate of Pn to its det(M)pth power, we have

hD(φ(det(M)p Id)x)= |det(M)|phD(x)

for any point x ∈ T(Q). As a result, we compute the height of the image of the point
x ∈ T(Q) as

hD(vp∗u
∗
p[x])=

1
|det(M)|p

hD(φ(det(M)p Id)∗vp∗u
∗
p[x]).

As the above diagram is commutative, we thus obtain

hD(vp∗u
∗
p[x])=

1
|det(M)|p

hD(φ(P p)∗u p∗u
∗
p[x]).

As the cycle u p∗u
∗
p[x] equals |det(M)|p[x], we deduce that

hD( f p(x))= hD(φ(P p)(x)).

By [Sil14, Theorem 4], the asymptotic limit

lim sup hD(φ(P p)(x))1/p

is well defined and belongs to the set {1, |ρ1|, |ρ2|, . . . , |ρn|} where each ρi is an
eigenvalue of P , and the result is proved.
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Remark 3.4. Observe that the Zariski density for the orbit of the monomial correspondence
f = (T, φ(M), φ(N )) does not imply the Zariski density of the orbit of φ(P) where
P = N · TCom(M). One can take, for example, the case where M = 2 Id, N = Id and
T= C∗. The correspondence f = (T, φ(M), φ(N )) is the ‘square root’ correspondence,
f (z)= {+

√
(z),−

√
(z)}. Consider the point z0 = 1 ∈ T: its orbit under f is the set

{z ∈Q | z(2k )
= 1}, thus Zariski dense. However, under the monomial map φ(P)= z 7→

z2, the orbit of z0 is {z0}, not Zariski dense. As a result, one cannot directly apply
Silverman’s result to prove that a point x ∈ T(Q) whose orbit for f is Zariski dense
satisfies α f (x)= λ1( f ). This later statement is often referred to as the Kawaguchi–
Silverman conjecture [KS16].
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[DTV10] H. De Thélin and G. Vigny. Entropy of meromorphic maps and dynamics of birational maps. Mém.
Soc. Math. France (N.S.)(122) (2010).

[DWY16] L. DeMarco, X. Wang and H. Ye. Torsion points and the Lattès family. Amer. J. Math. 138(3) (2016),
697–732.

[DX17] N.-B. Dang and J. Xiao. Positivity of valuations on convex bodies and invariant valuations by linear
actions. Preprint, 2017, arXiv:1709.08304.

[FG18] info[issue]2 C. Favre and T. Gauthier. Classification of special curves in the space of cubic
polynomials. Int. Math. Res. Not. IMRN 2018 (2018), 362–411.

[FJ11] C. Favre and M. Jonsson. Dynamical compactifications of C2. Ann. of Math. (2) 173(1) (2011),
211–249.

[Ful98] W. Fulton. Intersection Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3 Folge [Results
in Mathematics and Related Areas. 3rd Series]. A Series of Modern Surveys in Mathematics, 2),
2nd edn. Springer, Berlin, 1998.

[FW12] C. Favre and E. Wulcan. Degree growth of monomial maps and McMullen’s polytope algebra.
Indiana Univ. Math. J. 61(2) (2012), 493–524.

[Giz80] M. K. Gizatullin. Rational G-surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 44(1) (1980), 110–144, 239.
[Gro03] M. Gromov. On the entropy of holomorphic maps. Enseign. Math. 49 (2003), 217–235.
[Gue05] V. Guedj. Ergodic properties of rational mappings with large topological degree. Ann. of Math. (2)

161(3) (2005), 1589–1607.
[HP07] B. Hasselblatt and J. Propp. Degree-growth of monomial maps. Ergod. Th. & Dynam. Sys. 27(5)

(2007), 1375–1397.
[JW11] M. Jonsson and E. Wulcan. Stabilization of monomial maps. Michigan Math. J. 60(3) (2011),

629–660.
[Koc13] S. Koch. Teichmüller theory and critically finite endomorphisms. Adv. Math. 248 (2013), 573–617.
[KR16] S. Koch and R. K. W. Roeder. Computing dynamical degrees of rational maps on moduli space.

Ergod. Th. & Dynam. Sys. 36(8) (2016), 2538–2579.
[KS16] S. Kawaguchi and J. H. Silverman. On the dynamical and arithmetic degrees of rational self-maps of

algebraic varieties. J. Reine Angew. Math. 713 (2016), 21–48.
[LB17] F. Lo Bianco. On the primitivity of birational transformations of irreducible holomorphic symplectic

manifolds. Int. Math. Res. Not. IMRN 2019(1) (2019), 1–32.
[Lin12] J.-L. Lin. Pulling back cohomology classes and dynamical degrees of monomial maps. Bull. Soc.

Math. France 140(4) (2012), 533–549 (2013).
[LW14] J.-L. Lin and E. Wulcan. Stabilization of monomial maps in higher codimension. Ann. Inst. Fourier.

Grenoble 64(5) (2014), 2127–2146.
[MZ10] D. Masser and U. Zannier. Torsion anomalous points and families of elliptic curves. Amer. J. Math.

132(6) (2010), 1677–1691.
[Né65] A. Néron. Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. of Math. (2) 82 (1965),

249–331.
[Ram18a] R. Ramadas. Hurwitz correspondences on compactifications of M0,N . Adv. Math. 323 (2018),

622–667.
[Ram18b] R. Ramadas. Dynamical degrees of Hurwitz correspondences. Ergod. Th. & Dynam. Sys. doi:10.101

7/etds.2018.125. Published online 4 December 2018.

https://doi.org/10.1017/etds.2020.32 Published online by Cambridge University Press

http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1701.07947
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
http://www.arxiv.org/abs/1709.08304
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2018.125
https://doi.org/10.1017/etds.2020.32


Dynamical invariants of monomial correspondences 2015

[RS97] A. Russakovskii and B. Shiffman. Value distribution for sequences of rational mappings and complex
dynamics. Indiana Univ. Math. J. 46(3) (1997), 897–932.

[Sch79] S. H. Schanuel. Heights in number fields. Bull. Soc. Math. France 107(4) (1979), 433–449.
[Ser73] J.-P. Serre. A Course in Arithmetic. Springer, New York, 1973.
[Sib99] N. Sibony. Dynamique et géométrie complexes (Lyon 1997) (Panorama et Synthèses, 8). Société
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