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We examine the wave-induced flow of small-amplitude, quasi-monochromatic,
three-dimensional, Boussinesq internal gravity wavepackets in a uniformly stratified
ambient. It has been known since Bretherton (J. Fluid Mech., vol. 36 (4), 1969,
pp. 785–803) that one-, two- and three-dimensional wavepackets induce qualitatively
different flows. Whereas the wave-induced mean flow for compact three-dimensional
wavepackets consists of a purely horizontal localized circulation that translates with
and around the wavepacket, known as the Bretherton flow, such a flow is prohibited
for a two-dimensional wavepacket of infinite spanwise extent, which instead induces
a non-local internal wave response that is long compared with the streamwise extent
of the wavepacket. One-dimensional (horizontally periodic) wavepackets induce
a horizontal, non-divergent unidirectional flow. Through perturbation theory for
quasi-monochromatic wavepackets of arbitrary aspect ratio, we predict for which
aspect ratios which type of induced mean flow dominates. We compose a regime
diagram that delineates whether the induced flow is comparable to that of one-, two-
or compact three-dimensional wavepackets. The predictions agree well with the results
of fully nonlinear three-dimensional numerical simulations.

Key words: internal waves, stratified flows

1. Introduction

Internal gravity waves move vertically through a continuously stratified fluid,
transporting momentum and irreversibly accelerating the background flow where
they break. Even before breaking, however, localized internal wavepackets induce
transient flows that migrate with the group velocity of the wavepacket. In part, this
is a consequence of the divergence of the momentum flux, which is zero far from
the wavepacket and largest near its centre. The result is a ‘divergent-flux-induced
flow’ uDF, which scales as the amplitude squared of the waves. Its horizontal
component, uDF, is analogous to the pseudo-momentum per mass originally derived
through the principle of wave action for internal waves (Bretherton 1966, 1969;

† Email address for correspondence: ton.vandenbremer@ed.ac.uk
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Bretherton & Garrett 1969; Acheson 1976), later determined through the generalized
Lagrangian mean formulation (Andrews & McIntyre 1978a,b; Bühler & McIntyre
1998) and Hamiltonian fluid dynamics (Scinocca & Shepherd 1992), and, perhaps
most physically intuitively, through momentum conservation for quasi-monochromatic
wavepackets (Dosser & Sutherland 2011a,b), as reviewed in part in textbooks by
Bühler (2009, 2014) and Sutherland (2010).

For one-dimensional wavepackets – which are horizontally periodic (in the
x-direction), spanwise infinite and vertically localized – the total wave-induced flow is
just uDF î, a non-divergent unidirectional flow in the x-direction. However, the structure
of the wave-induced flow changes qualitatively for two- and three-dimensional
wavepackets, for which the divergent velocity field uDF necessitates a response flow
uRF, so that the total wave-induced flow uDF + uRF is non-divergent. Two-dimensional
(spanwise-infinite) wavepackets induce long internal waves whose vertical phase speed
matches the vertical group velocity of the wavepacket (Bretherton 1969; Tabaei &
Akylas 2007; van den Bremer & Sutherland 2014). The induced horizontal velocity
field changes sign across the wavepacket itself, oriented with the horizontal group
velocity along the leading flank and having opposite sign on the trailing flank. In
contrast, three-dimensional wavepackets with comparable horizontal and vertical
extents induce a horizontal circulation known as the ‘Bretherton flow’ (Bretherton
1969; Bühler & McIntyre 2003; Tabaei & Akylas 2007; Bühler 2009). As for
one-dimensional wavepackets, the wave-induced flow is strictly horizontal and oriented
in the same direction as the horizontal component of the group velocity over the entire
vertical extent of the wavepacket. However, the response flow sets up an oppositely
oriented recirculation on the spanwise flanks of the wavepacket. For both two- and
three-dimensional wavepackets, momentum transport is not necessarily localized to
the wavepacket, as in the circumstance of ‘remote recoil’ by the Bretherton flow
(Bühler & McIntyre 2003).

Unlike studies of wave beams (Kataoka & Akylas 2013, 2015), for which ω
is constant and the waves have infinite spatial extent in the along-beam direction
(perpendicular to k), we stress here that this study focuses upon wavepackets for
which both the wavenumber and frequency have finite, but small, bandwidth.

The mean flow has important consequences for stability, which can dominate
triad resonant interactions, including parametric subharmonic instability (Mied 1976;
Drazin 1977; Klostermeyer 1991), if the wavetrain is sufficiently locally confined
(e.g. Sutherland 2006a). For one-dimensional wavepackets, Akylas & Tabaei (2005)
and Sutherland (2006b) developed a nonlinear Schrödinger equation to examine the
effect of mean flow on stability. In terms of θ , the angle that lines of constant phase
make with the vertical, Akylas & Tabaei (2005) and Sutherland (2006b) predicted
these one-dimensional wavepackets to be modulationally unstable if |θ | < θc, where
θc= cos−1(2/3)≈ 35.3◦, corresponding to waves propagating at the maximum vertical
group velocity. The prediction was confirmed using numerical simulations.

More generally, Tabaei & Akylas (2007, henceforth TA07) examined the nonlinear
interaction with the mean for three-dimensional wavepackets, distinguishing ‘round’
(localized in all three dimensions), ‘flat’ (wide in both horizontal directions compared
to the vertical) and two-dimensional (spanwise-infinite) wavepackets in the presence of
rotation. Without making the small-amplitude approximation a priori, TA07 performed
perturbation expansions in all three cases to find coupled sets of differential equations
describing the mean flow and the evolution of the packet, as influenced by the
mean flow, and provided numerical solutions to these reduced-form equations. For
horizontally periodic flat wavetrains and in the absence of rotation, TA07 recovered
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Wave-induced flow of internal gravity wavepackets 387

the stability criterion of Akylas & Tabaei (2005) and Sutherland (2006b) discussed
above. For round three-dimensional wavepackets, no resonance with the mean flow
is found, and TA07 recover the equations derived previously by Shrira (1981), with
rotation not playing a leading-order role. However, performing a linear stability
analysis, TA07 showed that flat three-dimensional wavepackets are always unstable.
Crucially, they showed that the most unstable perturbation corresponds to a resonance
with the hydrostatic gravity-inertial waves that constitutes the flow induced by the
wavepacket.

Bridging the gap between one-, two- and three-dimensional wavepackets, here we
examine flows induced by three-dimensional wavepackets of different aspect ratios.
We take a step back from TA07: we do not examine the effect of the mean flow
on nonlinear evolution of the packet and consider the response to a wavepacket
that travels steadily without changing shape due to dispersion. Here, our goal is to
derive explicit solutions for the flow induced by a wavepacket of any aspect ratio
and thence to quantify how wide a wavepacket must be for induced long waves to
dominate over the induced, horizontally recirculating, Bretherton flow and to quantify
how long a wavepacket must be for the induced flow to be comparable to that
for a one-dimensional wavepacket. These theoretical predictions are corroborated by
numerical simulations of Gaussian wavepackets.

The paper is laid out as follows. After introducing the governing equations in § 2,
perturbation theory for quasi-monochromatic wavepackets is applied in § 3. Therein,
we generalize the results of Bretherton (1969) to wavepackets of arbitrary aspect ratio
by identifying the divergent-flux-induced flow as the forcing of the total wave-induced
flow and decomposing the latter into the sum of a local and horizontal Bretherton
circulation and a non-local three-dimensional long-wave field. From asymptotic
limits of these solutions, we construct a regime diagram that delineates for which
wavepacket aspect ratios the induced flow is dominated by either the Bretherton flow
or induced long waves. These predictions are compared with our fully nonlinear
numerical simulations in § 4 and with the previous results of TA07 in § 5. Finally,
conclusions are drawn in § 6.

2. Governing equations
Ignoring Coriolis, diffusion and viscous effects, and invoking the Boussinesq

approximation, the conservation equations for momentum, internal energy and a
statement of incompressibility are as follows:

Du
Dt
=−

1
ρ0
∇p− g

ρ

ρ0
k̂,

Dρ
Dt
=−w

dρ
dz
, ∇ · u= 0, (2.1a−c)

where u= (u, v, w) denotes the velocity vector with components in the directions of
the respective unit vectors î (x), ĵ (y) and k̂ (z), p denotes the fluctuation pressure,
and gravity g acts in the negative z direction. In the Boussinesq approximation, ρ0
is the (constant) characteristic density. The background density is ρ(z) and, assuming
a uniformly stratified ambient, the squared buoyancy frequency N2

=−(g/ρ0)(dρ/dz)
is real and constant. It is convenient to express the density perturbation ρ in terms
of the vertical displacement field ξ through ξ ≡ −ρ/ρ ′(z), where the prime denotes
a z derivative. Then (2.1b) can be rewritten as Dξ/Dt=w. By taking the curl of the
momentum equation (2.1a), the pressure terms can be eliminated and we obtain an
equation for the baroclinic generation of vorticity ζ ≡∇× u:

Dζ

Dt
= ζ · ∇u−N2

(
∂ξ

∂y
î−

∂ξ

∂x
ĵ
)
. (2.2)
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Equations (2.1b) and (2.2) can be combined, by taking x and y derivatives of (2.1b).
Substituting the result into (2.2) after taking its temporal derivative gives 0 −∂2

t ∂z (∂2
t +N2)∂y

∂2
t ∂z 0 −(∂2

t +N2)∂x

−∂2
t ∂y ∂2

t ∂x 0


︸ ︷︷ ︸

≡ L

u

=∇ · [−∂t(u⊗ ζ )−N2[∂x(uξ)ĵ− ∂y(uξ)î]] + ∂t(ζ · ∇u)︸ ︷︷ ︸
≡F

, (2.3)

where the linear matrix operator L acts on the velocity vector u and the terms in
the right-hand side vector F are nonlinear in amplitude. The symbol ⊗ denotes the
tensor product, and the overline denotes averaging over the wave scales, as our interest
here is in mean-flow terms only. The components of (2.3) are written explicitly in
appendix A. We will refer to (2.3) as the forcing equation for the induced mean
flow, as linear (in amplitude) solutions substituted into the right-hand side will, after
averaging, give rise to a forcing of an order amplitude-squared mean flow on the
left-hand side.

3. Perturbation theory
Here we derive the perturbation equations and their solutions, using Fourier

transforms, for quasi-monochromatic internal wavepackets that are localized in all
three dimensions, but whose amplitude envelope has arbitrary aspect ratio. Without
loss of generality, it is assumed that the wavepacket travels in the x–z plane, for which
the waves with wavenumber vector k= (kx, 0, kz) are contained within an amplitude
envelope having extent σx, σy and σz in the horizontal ‘along-wave’, spanwise and
vertical directions, respectively. The waves have a peak frequency given by the
dispersion relation for non-rotating Boussinesq internal waves, ω=Nkx/|k|.

This section begins in § 3.1 with the definition of the scalings used to define the
quasi-monochromatic wavepacket and the presentation of its polarization relations,
taking into account its finite spatial extent. Realizing that the solution of (2.3) for
general aspect ratio results in both a purely horizontal Bretherton flow and long
waves, we formalize this decomposition of the solution in § 3.2 and solve for these
two components of the mean flow separately in §§ 3.3 and 3.4, respectively. Finally,
specifically for Gaussian wavepackets, relationships are derived that delineate the
different regimes of behaviour of the mean flow in § 3.5.

3.1. Quasi-monochromatic wavepackets
We introduce the slow variables X, Y and Z describing the translation of the
wavepacket at the group velocity, cg ≡ (cgx, 0, cgz)=N(k2

z , 0,−kxkz)/|k|3:

X = εx(x− cgxt), Y = εyy, Z = εz(z− cgzt), (3.1a−c)

in which the small bandwidth parameters based on the spatial scales of variation of
the amplitude envelope are defined as εx ≡ 1/(kxσx), εy ≡ 1/(kxσy) and εz ≡ 1/(kxσz).
Dispersion of the group occurs on the slow time scale T , which is understood to be
much slower than that which drives the wave-induced flow. Effectively, dispersion is
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Field Wave-scale O(α1ε0
i ) Envelope-scale O(α1ε1

i )

Vertical displacement ξ
(1)
0 = Aeiϕ ξ

(1)
1 = 0

Velocity (x-component) u(1)0 = i
Nkz

|k|
Aeiϕ u(1)1 =

Nkx

|k|3
[−kzεxAX + kxεzAZ]eiϕ

Velocity (y-component) v
(1)
0 = 0 v

(1)
1 =

N
|k|

kz

kx
εyAYeiϕ

Velocity (z-component) w(1)
0 =−i

Nkx

|k|
Aeiϕ w(1)

1 =
Nkz

|k|3
[−kzεxAX + εzkxAZ]eiϕ

Vorticity (x-component) ζ
(1)
x0 = 0 ζ

(1)
x1 =−i

N|k|
kx

εyAYeiϕ

Vorticity (y-component) ζ
(1)
y0 =−N|k|Aeiϕ ζ

(1)
y1 = i

N
|k|
[kxεxAX + kzεzAZ]eiϕ

Vorticity (z-component) ζ
(1)
z0 = 0 ζ

(1)
z1 = 0

TABLE 1. Expressions for different linear (in α) fields (first column) at the scale of
the waves (second column) and with small corrections (third column). This last column
accounts for the finite but relatively large extent of the wavepacket in the x, y and z
directions, as prescribed through the values of εx, εy and εz, respectively (captured by εi in
the column name). Values are given in terms of the amplitude envelope A of the vertical
displacement field, as found through the linearized equations for internal waves propagating
in the x–z plane. It is understood that the actual fields are the real parts of the tabulated
expressions, and the phase is given by ϕ = kxx+ kzz−ωt.

ignored. Formally, we define ε≡max{εx, εy, εz} and T ≡ ε2t. As a consequence, time
derivatives on the right-hand side of (2.3), which act upon the amplitude envelope and
not the waves themselves, can be represented at leading order by spatial derivatives
on the envelope scale denoting the translation of the wavepacket:

∂t ∼−εxcgx∂X − εzcgz∂Z. (3.2)

We introduce a second small parameter α = |kx|A0, in which A0 is the amplitude
of vertical displacements at the centre of the group. At first order in α, the vertical
displacement field is given by

ξ (1) = ξ
(1)
0 =Re[A(X, Y, Z, T)ei(kxx+kzz−ωt)

], (3.3)

in which the superscript denotes the order in α and the subscript denotes the order
in the bandwidth parameters εx, εy and εz. As εx, εy and εz can be of different
orders depending on the aspect ratio of the wavepacket that we later choose, we
emphasize that the subscript does not play the role of a formal ordering parameter,
but simply denotes the leading-order correction for the packet structure of the waves.
The operator Re[ ] denotes taking the real part of the enclosed expression. For the
vertical displacement field, we set higher-order terms in the bandwidth parameters to
be zero without loss of generality. The second column of table 1 reports the usual
polarization relationships for plane periodic internal waves, and the third column gives
the next-order corrections accounting for the finite size of the wavepacket, which can
be obtained from solving the linearized (in α) governing equations (2.1).
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Classification εx, εy, εz Ry, Rz

3D wavepacket 0< εx� 1, 0< εy� 1, 0< εz� 1 —
2D wavepacket 0< εx� 1, εy = 0, 0< εz� 1 Ry =∞

1D wavepacket εx = εy = 0, 0< εz� 1 Rz = 0

Round wavepacket 0< εx ∼ εy ∼ εz� 1 Ry =O(1), Rz =O(1)
Wide wavepacket 0< εy� εx ∼ εz� 1 Ry� 1, Rz =O(1)
Flat wavepacket 0< εx ∼ εy� εz� 1 Ry =O(1), 0< Rz� 1

Quasi-1D mean flow — Ry� 1 and Rz� R1/4
y

Quasi-2D mean flow — Rz� R1/4
y for Ry� 1

Rz� R1/2
y for Ry� 1

Quasi-3D mean flow — Rest of the (Ry, Rz)-plane

TABLE 2. Wavepacket- and induced-flow-based definitions. Note that the induced-flow-
based definitions are subject to generalizations and restrictions discussed in § 3.5.

We also define the aspect ratios Ry ≡ σy/σx and Rz ≡ σz/σx. Table 2 formalizes
the terminology used throughout the paper, distinguishing definitions based on the
geometry of the wavepacket itself and definitions based on the nature and geometry
of the induced flow. We will discuss the latter categorization in § 3.5 when we
propose our regime diagrams. In the most general case of a three-dimensional
(3D) wavepacket, the linear waves are modulated in all three directions, whereas a
two-dimensional (2D) wavepacket is spanwise independent, as obtained by setting
σy→∞ and thus εy→ 0. A one-dimensional (1D) wavepacket is not only spanwise
independent or infinitely wide, but also periodic in the x-direction, resulting in
σx→∞ and thus εx→ 0. Such a 1D wavepacket is only modulated in the z-direction.
Approximately then, a 3D wavepacket is said to be ‘round’ when all three of its
spatial scales are comparable: 0 < εx ∼ εy ∼ εz� 1. A 3D wavepacket is said to be
‘wide’ when its spanwise extent is larger than its ‘along-wave’ and vertical extents:
0 < εy � εx ∼ εz � 1. Finally, a 3D wavepacket is said to be ‘flat’ when both its
horizontal scales are comparable and larger than its vertical scale: 0<εx∼ εy� εz� 1,
corresponding to the definition in TA07.

3.2. Mean-flow decomposition: Bretherton flow and long waves
It is evident from the outset that the solution to the mean-flow forcing equation (2.3)
in combination with conservation of volume (2.1c), a total of four equations, can give
rise to three types of induced flows, leading to the classification into wavepackets
that are effectively 1D (primarily inducing unidirectional flows), 2D (primarily
inducing long-waves) and fully 3D (primarily inducing horizontally recirculating flows)
(cf. table 2). The relative magnitudes of the three types of mean flow depend on the
aspect ratios of the wavepackets. We first conceptually distinguish two contributions
to the total mean flow of a wavepacket of general aspect ratio, namely the Bretherton
flow (BF) and long waves (LW):

u(2) = uBF + uLW . (3.4)
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Writing the forcing in (2.3) as F= (Fx,Fy,Fz), we define the two components in (3.4)
explicitly, so that

LuBF =

 0
0
Fz

 and LuLW =

Fx
Fy
0

 , (3.5a,b)

where the linear operator L is defined in (2.3). Both components separately satisfy
conservation of volume: ∇ · uBF = 0 and ∇ · uLW = 0.

We begin in § 3.3 by deriving solutions for the well-known Bretherton flow, and
consider the induced long waves in § 3.4. The method of inverse Fourier transforming,
taking appropriate branch cuts to remove the singularity in the integrand, is also
described in § 3.4. The total wave-induced mean flow is then given by the linear
superposition of the two contributions, as defined in (3.4). We emphasize that we
only consider up to second order in wave steepness α and leading order in the
separation-of-scales parameter ε, so that the effect of the mean flow on the nonlinear
evolution of the wavepacket and the change in shape of the wavepacket due to
dispersion, as considered by TA07, are beyond our scope. We return to this in § 5.

3.3. Bretherton flow
Taking the component of the total induced flow that is forced by the vertical vorticity
of the linear waves (cf. (3.5a)), the Bretherton flow uBF, we further decompose this
flow as the sum of the divergent-flux-induced flow uDF and the response flow uRF:

uBF = uDF + uRF. (3.6)

The divergent-flux-induced flow is determined explicitly from the advection terms in
the momentum equations (§ 3.3.1). The response flow is then found from conditions
for incompressibility and irrotational flow (§ 3.3.2).

3.3.1. Divergent-flux-induced flow
Generally, the divergent-flux-induced flow results from the acceleration of the flow

resulting from the slow spatial variations in the advection terms of the momentum
equations (2.1a) written in flux form (van den Bremer & Sutherland 2014):

∂uDF

∂t
≡−∇ · (u(1) ⊗ u(1)), (3.7)

in which the overline denotes averaging over the short spatial scales of the individual
waves. At leading order in ε, the time evolution of the wavepacket may be recast in
terms of spatial derivatives according to (3.2). Hence, we have

cguDF = u(1)u(1), vDF = 0, cgwDF =w(1)u(1). (3.8a−c)

Using the polarization relationships in table 1, we obtain from (3.8) the divergent-flux-
induced flow, which is oriented in the direction of the group velocity vector cg (van
den Bremer & Sutherland 2014):

uDF = uDF

(
1, 0,

cgz

cgx

)
, (3.9)
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in which
uDF = sgn(kx)

1
2 N|k||A|2. (3.10)

The horizontal component of the divergent-flux-induced flow uDF is the well-
established induced mean flow for 1D wavepackets with amplitude envelope A(Z, T)
except that in (3.10) the amplitude envelope is generally a function of 3D space and
time: A≡A(X, Y, Z, T). The quantity uDF is equal to the pseudo-momentum per mass,
which historically has been represented in terms of the wave action (Bretherton 1969;
Acheson 1976) by Ekx/ω, in which E is the mean energy per unit mass, or by an
expression derived from Hamiltonian fluid mechanics (Scinocca & Shepherd 1992),
−ξζy, in which ζy is the spanwise vorticity (see also the textbooks by Bühler (2009,
2014) and Sutherland (2010)).

3.3.2. Response and total Bretherton flow
At leading order, we obtain from the first two rows of (3.5a) that ∂YwBF(X,Y,Z)=0

and ∂XwBF(X, Y, Z)= 0, respectively. Hence wBF(X, Y, Z)= 0 is the only meaningful
solution: the Bretherton flow is purely horizontal. Although arising by assumption
here, this corresponds to the classical result first derived by Bretherton (1969), and
subsequently reproduced and used in studies of long-range influence and transfers
of energy to large scales by localized wavepackets (Bühler & McIntyre 1998, 2003;
Tabaei & Akylas 2007; Wagner & Young 2015; Xie & Vanneste 2015). With uDF
given by (3.9) and the requirement that the flow is purely horizontal (wBF = 0)
following from the first two rows of (3.5a), we must have wRF =−wDF. The non-zero
forcing arises in the third equation of (3.5a). Substituting the polarization relationships
in table 1 into the right-hand side (given explicitly in (A 3)), it is apparent that
(∇ × uBF) · k̂ = (∇ × uDF) · k̂. In other words, the response flow uRF is irrotational
in the horizontal, and all the vertical vorticity in the mean flow uBF is derived from
the divergent-flux-induced flow (cf. (3.5a)), so that (∇ × uRF,H) · k̂ = 0. Noting that
vDF = 0 in (3.9), the latter condition is recast in terms of the vertical vorticity of the
total horizontal flow being driven by the divergent-flux-induced flow:

∂xvBF − ∂yuBF =−∂yuDF. (3.11)

Finally, a fourth equation (in addition to the three in (3.5a)) requires the horizontal
Bretherton flow to satisfy incompressibility, so that

∂xuBF + ∂yvBF = 0. (3.12)

We solve these equations using 3D Fourier transforms with respect to the unscaled
translating coordinates (x̃, ỹ, z̃)= (x− cgxt, y, z− cgzt) to give transformed velocities in
terms of the wavenumber vector (κ, λ, µ). In particular, the Fourier transform of the
divergent-flux-induced flow given by (3.10) is

ûDF = sgn(kx)
1

8π3

(
1
2

N|k|
) ∫

∞

−∞

∫
∞

−∞

∫
∞

−∞

|A(x̃)|2e−i(κ x̃+λỹ+µz̃) dx̃ dỹ dz̃. (3.13)

The algebraic equations resulting from Fourier-transforming (3.12) and (3.11) are
solved to give the total induced flow in Fourier space:

ûBF = ûDF

 λ2/κ2
H

−κλ/κ2
H

0

 , (3.14)
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in which κH = (κ
2
+ λ2)1/2. The inverse transform gives the induced flow in real space:

uBF(x̃)=
∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

ûDF

 λ2/κ2
H

−κλ/κ2
H

0

 ei(κ x̃+λỹ+µz̃) dκ dλ dµ. (3.15)

Of course, if one can separate the µ dependence of ûDF from its κ and λ dependences,
then the integral in µ explicitly extracts the z̃-dependent part of uDF, N|k||A(z̃)|2/2,
from the integrals in κ and λ. The remaining double Fourier integral is the solution
of the partial differential equation given by (22) in TA07.

3.4. Long waves
Here, we consider the component of the total induced flow that is forced by the
horizontal vorticity of the linear waves (cf. (3.5b)). We proceed with the following
two assumptions. First, we assume that the induced flow has a much larger x extent
than that of the wavepacket itself motivated by considerations similar to the 2D
(spanwise-infinite) case (cf. Bretherton 1969; Tabaei & Akylas 2007; van den Bremer
& Sutherland 2014). Explicitly, we let the induced long waves on the left-hand side
vary horizontally on the new coordinate X̃ = ε2(x − cgxt). For a 2D wavepacket,
Bretherton (1969) and van den Bremer & Sutherland (2014) replace the forcing
on the right-hand side by a Dirac delta function at the centre of the packet of
equivalent strength by integrating with respect to x̃ between x̃→−∞ and x̃→∞.
As a consequence, any terms in the forcing that involve slow x derivatives do
not contribute. Second, we assume the wavepacket itself is relatively wide, εy ∼ ε

2,
because a non-negligibly small contribution from the long waves is only expected then.
Explicitly, we set εz = ε and suppose εy ∼ ε

2 in the linear operator on the left-hand
side and in the forcing on the right-hand side of (2.3). Combining both assumptions,
the wavepacket we examine is thus wide, but not necessarily flat (cf. TA07), as we
set εx = ε (or smaller) in the forcing on the right-hand side. From (2.3) and (3.5b)
we obtain 0 −c2

gzε
3∂ZZZ ε4c2

gz∂ZZY +N2ε2∂Y

c2
gzε

3∂ZZZ 0 −ε4c2
gz∂ZZX̃ −N2ε2∂X̃

−c2
gzε

4∂ZZY c2
gzε

4∂ZZX̃ 0

 uLW(X̃, Y, Z)=

Fx
Fy
0

 , (3.16)

where we note that the averaging in (2.3) corresponds to averaging over the fast
scales of waves within the wavepacket. It is evident that the entries in the final row,
corresponding to operations acting on the vertical vorticity field, are of order ε4. In
order to have as many equations as unknowns after truncation at O(ε3), we replace
the final row by the incompressibility condition ∇ · uLW = 0, which still needs to be
satisfied.

The polarization relationships in table 1 allow for explicit evaluation of (Fx, Fy, 0).
From our first assumption above, we neglect terms involving slow x derivatives
because the response to the forcing is long compared to the wavepacket. We avoid
the cumbersome operation of introducing Dirac delta functions, since neglecting terms
involving slow x derivatives leads to equivalent results. From our second assumption
above, we neglect terms involving slow y derivatives because the wavepacket is
relatively wide. The terms involving Z derivatives alone come from the product of
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the vertical velocity with the spanwise vorticity, each occurring at order α. Thus, we
find that the dominant forcing at O(α2ε3) is

Fx = 0 and Fy =
N3k2

xk2
z

2|k|5
∂z̃z̃z̃|A(x̃, ỹ, z̃)|2. (3.17a,b)

Combining these results, retaining terms up to O(ε3), recasting the result in terms
of the unscaled translating coordinate (x̃, ỹ, z̃) and using (3.10), we have the following: 0 −c2

gz∂z̃z̃z̃ N2∂ỹ

c2
gz∂z̃z̃z̃ 0 −N2∂x̃

∂x̃ ∂ỹ ∂z̃

 uLW =

 0
c2

gz∂z̃z̃z̃uDF

0

 . (3.18)

In the expression for the forcing on the right-hand side, we have used the equation for
the vertical group velocity, cgz =−Nkxkz/|k|3. Next, we obtain the Fourier transform
of (3.18), solve the resulting algebraic equations and then obtain the inverse Fourier
transform. This gives the following general integral equation for the long-wave
contribution to the wave-induced flow:

uLW =

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

ûDF(κ, λ, µ)

c2
gzµ

4 −N2κ2
H

c2
gzµ

4
−N2λ2

N2κλ

−c2
gzκµ

3

 ei(κ x̃+λỹ+µz̃) dκ dλ dµ. (3.19)

The singularity in the integrand of (3.19) corresponds to hydrostatic internal waves
with wavenumber (κ, λ, µ) set so that the vertical phase speed of the induced
(long internal) waves equals the vertical group velocity of the wavepacket. It is
the singularity in (3.19) that results in an induced flow with non-negligible vertical
velocity. In order to select only outgoing waves, we make use of Cauchy’s residue
theorem to integrate around the singularity in (3.19) and reduce the expression to a
formula involving only a double integral (see also van den Bremer & Sutherland
2014). In order to apply the correct branch cut that selects only the outgoing
waves, we switch to cylindrical coordinates in wavenumber space, defining θ so
that (κ, λ)= κH(cos θ, sin θ). Equation (3.19) becomes

uLW =

∫
∞

−∞

∫ 2π

0

∫
∞

0

ûDF(κH, θ, µ)

c2
gzµ

4 −N2κ2
H

c2
gzµ

4
−N2κ2

H sin2(θ)

N2κ2
H cos(θ) sin(θ)

−c2
gzµ

3κH cos(θ)

 ei(κH r̃ cos(θ−θp)+µz̃)κH dκH dθ dµ,

(3.20)
where r̃ ≡

√
x̃2 + ỹ2 and θp ≡ tan−1(ỹ/x̃). The singularity in (3.20) is split into two

terms:

G≡
1

c2
gzµ

4 −N2κ2
H
=

1
2cgzµ2

[
1

NκH + cgzµ2
−

1
NκH − cgzµ2

]
. (3.21)

This expression in the integral can be decomposed into the sum of the Cauchy
principal value and a Dirac delta function (see also Voisin 1991):

G=GPV −
i2π

2cgzµ2
δ(NκH − |cgz|µ

2) sgn(µ), (3.22)
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where the absolute value and sign of µ ensure outward-propagating waves. It is the
delta function that gives rise to the radiating waves in the solution of the integral with
respect to κH in (3.20):

uLW = −
iπ sgn(cgz)

N2

∫
∞

−∞

∫ 2π

0
ûDF

 c2
gzµ

4 cos2(θ)

c2
gzµ

4 cos(θ) sin(θ)
−c2

gzµ
5
|cgz| cos(θ)/N


× ei[((|cgz|µ

2 r̃ cos(θ−θp))/N)+µz̃] sgn(µ) dθ dµ, (3.23)

in which κH = |cgz|µ
2/N in ûDF. For cgz > 0, the condition for outward-propagating

waves requires µ cos(θ − θp) > 0, so that θp − π/2 > θ > θp + π/2 for µ > 0 and
θp+π/2<θ <θp+ 3π/2 for µ< 0 (and vice versa for cgz< 0). Separately integrating
over positive and negative µ and combining the results gives

uLW =
2π

N2

∫
∞

0

∫ θp+π/2

θp−π/2
ûDF

 c2
gzµ

4 cos2(θ)

c2
gzµ

4 cos(θ) sin(θ)
−c2

gz|cgz|µ
5 cos(θ)/N


× sin

(
|cgz|µ

2r̃ cos(θ − θp)

N
+µz̃ sgn(cgz)

)
dθ dµ. (3.24)

Having removed the singularity, the double integral in (3.24) is readily solved by
standard numerical integration techniques.

Equation (3.24) corresponds to the solution of the differential equation (31) in TA07
derived for flat wavepackets when neglecting rotation by setting the Coriolis parameter
to zero. In our consideration of a wide, but not necessarily flat, wavepacket, the total
induced mean flow corresponds to the sum of the Bretherton flow uBF in (3.15) and
the induced long waves uLW in (3.24). Which of the two flows is dominant in the
horizontal plane depends on the horizontal and vertical aspect ratios Ry≡σy/σx= εx/εy

and Rz ≡ σz/σx = εx/εz. This is examined below in the specific case of a Gaussian
wavepacket.

3.5. Dominant induced flows for different wavepacket aspect ratios
Although the equations above apply to any quasi-monochromatic wavepacket, here we
specifically examine the predictions for Gaussian wavepackets with amplitude envelope
A = A0 exp[−(x̃2/σ 2

x + ỹ2/σ 2
y + z̃2/σ 2

z )/2], in which A0 is constant. Without loss of
generality, we will assume that A0 is real and positive, kx > 0 and kz < 0, so that
the vertical group velocity is positive. Our focus is to compare the largest values of
the horizontal velocity associated with the Bretherton flow (3.15) with that associated
with induced long waves (3.24): the former should be dominant for relatively round
wavepackets (small σy); the latter dominant for relatively wide wavepackets (large σy).

From (3.10), we see that the largest magnitude of the divergent-flux-induced flow
is ‖uDF‖ = N|k||A0|

2/2. Using (3.13), the Fourier-transformed divergent-flux-induced
flow is ûDF = [N|k|σxσyσz/(16π3/2)]|A0|

2 exp[−(κ2σ 2
x + λ

2σ 2
y +µ

2σ 2
z )/4]. We substitute

this into (3.15) and extract the largest value of the horizontal induced circulation of
the Bretherton flow, which occurs at the centre of the wavepacket. Thus, we find the
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scaled maximum flow, UBF ≡ uBF(0, 0, 0)/‖uDF‖, to be (cf. § 14.3.3 of Bühler 2009)

UBF =
1

4π

∫
∞

−∞

∫
∞

−∞

λ̂2

R2
y κ̂

2 + λ̂2
exp(−κ̂2/4− λ̂2/4) dκ̂ dλ̂=

1
Ry + 1

, (3.25)

in which κ̂ ≡ κσx, λ̂≡ λσy and Ry ≡ σy/σx denotes the horizontal aspect ratio of the
packet. This result is plotted as the thick solid line in figure 1(a).

The induced long waves, on the contrary, have zero horizontal flow at the centre
of the wavepacket, with the maximum in the streamwise direction occurring vertically
above the centre. Defining the non-dimensional horizontal flow along the z̃ axis to be
ULW(ẑ)≡ uLW(0, 0, ẑ)/‖uDF‖, we have, from (3.24),

ULW(ẑ)= ε2
x

Ry

R4
z

K2

4
√

π

∫
∞

0

∫ π/2

−π/2
exp

[
−
µ̂2

4
−
ε2

x K2R2
yµ̂

4 sin2(θ)

4R4
z

]
µ̂4 cos2(θ) sin(µ̂ẑ) dθ dµ̂︸ ︷︷ ︸

≡ I(ẑ,∆≡εxKRy/R2
z )

,

(3.26)
in which ẑ = z̃/σz and K ≡ k2

x |kz|/|k|3. Consistent with the assumption that the
generated waves are long relative to the x extent of the packet, we can ignore
the contribution κ2σ 2

x /4 = κ2
H cos2(θ)σ 2

x /4 in the envelope function ûDF. The
non-dimensional group ∆ plays the role of an effective wavepacket aspect ratio.
For large Ry, (3.26) reduces to its 2D equivalent (cf. (52) of van den Bremer &
Sutherland 2014). For small Ry, (3.26) corresponds to the wave field radiated by a
point source in a 3D domain, noting the restriction that the packet remains wide
(cf. § 3.4). How large Ry has to be depends on the bandwidth parameter εx, the
orientation of the wavevector K and the aspect ratio Rz, as captured by ∆.

We begin by considering the case for which Rz = 1: the wavepacket is round in
the x–z plane, but of arbitrary width in the spanwise direction. The maximum and its
relative vertical location are computed numerically and are plotted as a function of
Ry as the blue dashed lines in figure 1 for three different values of εx, as indicated;
in both panels, we set kz = −kx. It is worth emphasizing here that the long-wave
contribution (3.26) is derived based on the assumption of a wide wavepacket: εy∼ ε

2
z .

Taking a practical approach, we thus set εy 6 ε2
z as its domain of validity, which

corresponds to Ry > R2
z/εx. For the values εx = εz = 1/5, 1/20, 1/100 considered in

figure 1, the dashed blue lines are thus only strictly valid for values of Ry greater than
5, 20 and 100, as indicated by the transition of the blue dashed lines into blue dotted
lines. It is evident that, for smaller values of Ry, the magnitude of the long waves is
sufficiently small compared to the Bretherton flow, so the long-wave contribution can
be ignored regardless.

More generally, the asymptotic behaviour of ULW is determined first by finding the
maximum, as it depends upon z̃, of the double integral I(ẑ,∆) in (3.26), as a function
of ∆≡ εxKRy/R2

z . The resulting value, denoted by I?(∆), is plotted in figure 2. The
double integral asymptotically approaches a constant value for small ∆, and varies
as ∆−1 for large ∆. The non-dimensional height where the maximum occurs varies
only little, increasing from z̃ ' 0.474 for small ∆ to z̃ ' 0.596 for large ∆. Taking
a practical approach, the crossover from the small- to large-∆ asymptotic regimes is
estimated from the intersection of the two asymptotic curves, occurring for ∆=∆c'

0.35. Combining these results with the terms in front of the double integral in (3.26),
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(a)

(b)

Maximum horizontal induced flow

Height of maximum flow above wavepacket centre

FIGURE 1. (Colour online) (a) Relative maximum value of the horizontal velocity and
(b) its vertical location predicted as a function of the horizontal aspect ratio Ry of the
wavepacket for the Bretherton flow (solid line), induced long waves (blue dashed lines)
and their combination (thick red dashed line). For values of Ry for which our long-wave
solution is not strictly valid, the blue dashed lines are replaced by blue dotted lines.
Values are computed for a wavepacket with kz/kx=−1 and εx= εz= 1/5, 1/20, 1/100, as
indicated (Rz = 1). The circles indicate the results measured from numerical simulations
with εx= εz= 1/20 and Ry= 1, 10, 40 and 100. The black diamond indicates the solution
found for the numerical simulation of a 2D wavepacket by van den Bremer & Sutherland
(2014).

we arrive at the following asymptotic approximations for the maximum induced flow
in the x-direction associated with induced long waves:

max
z̃
{ULW} '


4.19 K2ε2

x
Ry

R4
z

for ∆�∆c,

1.45 Kεx
1
R2

z

for ∆�∆c.

(3.27)
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10010–110–210–3 102101

102

101

100

10–1

FIGURE 2. Maximum value of the double integral I(ẑ, ∆) in (3.26) as a function of ∆≡
εxKRy/R2

z . Asymptotic limits are indicated by the dashed lines: for ∆� 0.1, I? ∼ 29.71;
for ∆� 1, I? ∼ 10.30∆−1.

By comparing the maximum horizontal velocity of the Bretherton flow (3.25) and
the limits of and the maximum horizontal velocity associated with induced long
waves (3.27), we construct the regime diagram, shown in figure 3, which illustrates
whether the flow induced by the wavepacket over its extent is best described by that
of 1D, 2D or fully 3D wavepackets, as it depends upon the horizontal and vertical
aspect ratios Ry and Rz. We will refer to these induced flows as quasi-1D, quasi-2D
and quasi-3D and summarize the regimes in table 2. In order to draw boundaries
to delineate what is a smooth transition between the different regimes, we make the
following assumptions.

A wavepacket is considered to be quasi-1D if the wave-induced flow has a
magnitude within 10 % of the divergent-flux-induced flow uDF. From (3.25), this
occurs for Ry . 0.1. This transitional value is plotted as the vertical long-dashed line
in figure 3.

A wavepacket is considered to be quasi-2D if the flow induced by long waves
exceeds the Bretherton flow. An estimate of the critical vertical aspect ratio of the
wavepacket R?z (as a function of Ry) when these flows are comparable is given by
equating UBF in (3.25) to ULW in (3.27), in which the asymptotic approximations are
extrapolated outside their strict domains of validity to ∆ = ∆c. For Ry & 1.0, the
large-∆ limit dominates in (3.27). Otherwise the small-∆ limit dominates. Together
we find the transition boundary is given by

R?z '

{
1.43[K2ε2

x Ry(Ry + 1)]1/4 ∼ 1.43[Kεx]
1/2R1/4

y for Ry . 1.0,
1.20[Kεx(Ry + 1)]1/2 ∼ 1.20[Kεx]

1/2R1/2
y for Ry & 1.0,

(3.28)

where the second similarity in two respective limits follows from taking the small-
and large-Ry limits of the (1+Ry) term. Equation (3.28) is plotted as the short-dashed
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FIGURE 3. Regime diagram indicating for what vertical and horizontal aspect ratios (Rz
and Ry, respectively) a Gaussian wavepacket will induce a flow similar to that of a 1D
wavepacket (medium grey), a 2D wavepacket (light grey), which induces long waves,
and a fully 3D wavepacket (white), which induces a horizontal circulation known as
the Bretherton flow. The long-wave transition boundary is computed using (3.28) taking
|kz| = |kx| (so that K= 2−3/2) and εx= 1/20. The cross-hatched regions indicate where the
quasi-monochromatic wavepacket assumption breaks down for εx = 1/20 because either
εy > 1/5 or εz > 1/5. The region to the right of the dotted line corresponds to the domain
of validity of the long-wave solution. The closed circles indicate the values of Ry and Rz
for the five simulations with snapshots shown in figure 5.

curve in figure 3 for the case of a wavepacket with |kz| = |kx| (K = 2−3/2) and εx =

1/20. In particular, for large Ry and this choice of parameters, the transition curve
between quasi-2D and quasi-3D wavepackets is given approximately by R?z '0.161R1/2

y .
Conversely, this transition written in terms of the horizontal aspect ratio as it depends
upon the vertical aspect ratio is R?y ' [0.689/(Kεx)]R2

z ' 39.0R2
z .

Evidently, it is worth emphasizing again that the long-wave contribution (3.26) is
derived based on the assumption of a wide wavepacket and that its validity is thus
limited to Rz 6

√
εxRy, denoted by the dotted line in figure 3. By equating the value

of Rz corresponding to this boundary to the transition value R?z in (3.28), we can obtain
an estimate of how wide the wavepacket needs to be for our classification to be valid:

Ry,min '

{
1.434K2/(1− 1.434K2) for Ry . 1.0,
1.202K/(1− 1.202K) for Ry & 1.0.

(3.29)

This is plotted in figure 4 as a function of the angle θ = tan−1(|kz/kx|) that lines of
constant phase make with the vertical. This minimum width is not dependent on εx.
For the case |kz| = |kx| considered herein, θ = 45◦ and Ry,min = 1.10. Our estimates in
figure 3 are thus only valid for wavepackets that are at least marginally wider than
they are long in the x-direction, i.e. for Ry > Ry,min = 1.10.

Finally, it is also important to keep in mind that these results rely on the starting
assumption that the wavepacket is quasi-monochromatic, so that dispersion is a
negligible effect. Hence all of εx, εy and εz must be much smaller than unity.
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1
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70 80 900

FIGURE 4. Minimum width for which the regime diagram is valid as a function of the
angle θ that lines of constant phase make with the vertical (kx = |k| cos(θ)).

For given εx, this puts a limitation on the aspect ratios Ry = σy/σx = εx/εy and
Rz = σz/σx = εx/εz for which the transition boundaries can be considered reliable.
In particular, the cross-hatched regions in figure 3 show the values of Ry < 5εx
and Rz < 5εx for which the wavepacket is, respectively, too narrow (εy > 1/5) or
insufficiently tall (εz > 1/5) for the case εx = 1/20. The quasi-1D wavepacket regime
and the long-wave regime in the small Ry limit lie entirely within the cross-hatched
regions for the value of εx considered here.

The different asymptotic regimes are summarized in table 2. In theory one could
examine cases in which εx is so small that transitions to flows associated with 1D
wavepackets and 2D wavepackets at small Ry could be reliably predicted. However, in
the numerical simulations that follow, we restrict our test of theory to the examination
of wavepackets with εx = 1/20. This is because simulations with significantly smaller
εx would require much larger domain sizes and consequently more memory and longer
computation time. Furthermore, vertically propagating wavepackets with σx� 20k−1

x '

3λx are unlikely to be generated by a realistic geophysical system on mesoscales and
larger.

4. Comparison with numerical simulations
4.1. Code description

The flows induced by a Gaussian wavepacket were examined using fully nonlinear
numerical simulations that solved the equations (2.1) with the addition of damping
terms to the momentum and internal energy equations for the purpose of numerical
stability. Specifically, under the assumption that N2 is constant, the code evolved in
time the horizontal velocity and vertical displacement fields according to

∂tu=−∂x(uu)− ∂y(vu)− ∂z(wu)− ∂xP+ νD(u), (4.1a)
∂tv =−∂x(uv)− ∂y(vv)− ∂z(wv)− ∂yP+ νD(v), (4.1b)
∂tξ =−∂x(uξ)− ∂y(vξ)− ∂z(wξ)+w+ κD(ξ), (4.1c)

in which the vertical velocity w and pressure divided by density P≡ p/ρ0 were found
from the respective diagnostic equations:

∂zw=−∂xu− ∂yv (4.2)
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Panel in
figure 5

Ry Rz Domain
width Ly

Numerical
simulations

Perturbation
theory

Error (%)

(a) 1 1 100k−1
x 0.4961 0.5000 0.8

(b) 10 1 800k−1
x 0.0943 0.0939 −0.4

(c) 40 1 6400k−1
x 0.0438 0.0402 −8

(d) 100 1 8000k−1
x 0.0316 0.0318 0.6

(e) 10 0.5 1600k−1
x 0.1455 0.1555 7

TABLE 3. Comparison of the scaled maximum horizontal velocity U(2) from numerical
simulations and perturbation theory.

and

∇
2P = −∂xx(uu)− ∂yx(vu)− ∂zx(wu)

− ∂xy(uv)− ∂yy(vv)− ∂zy(wv)

− ∂xz(uw)− ∂yz(vw)− ∂zz(ww)−N2∂zξ . (4.3)

The equations were solved in Fourier space (corresponding to x, y and z) in a
triply periodic domain. The nonlinear (e.g. advective) terms in the equations were
computed by fast Fourier transforming the fields to real space, multiplying and then
transforming back to Fourier space. The diffusion operator D was prescribed to act
as a Laplacian operator only upon horizontal wavenumbers greater than 2kx. The
diffusivities of momentum and substance acting on these high wavenumbers were set
to be ν = κ = 0.001N/k2

x . The fields were advanced in time using a leapfrog scheme
with an Euler backstep taken every 20 steps.

4.2. Initial conditions
The initial wavepacket centred at the origin had wavenumber set so that kz = −kx,
and the Gaussian envelope had amplitude A0 = 0.01/kx (α = 0.01) and x extent σx =

20/kx (εx = 1/20). The details of the five simulations presented here are summarized
in table 3. We first examined four vertically round (σz= σx, Rz= 1) wavepackets with
lateral extents kxσy= 20, 200, 800 and 2000, thus exploring the range between round
and wide wavepackets with Ry = 1, 10, 40 and 100, bracketing the predicted critical
transition value of R?y = 39.0, as derived below (3.28). Furthermore, we examined
a more flat wavepacket chosen to lie on our transition curve in figure 3 (Ry= 10, Rz=

0.5).

The choice of initial conditions for the mean flow is crucial for the interpretation of
results from numerical simulations. Up to the orders we consider (see also § 5), our
analytical solution consists of a packet that translates at the group velocity, and the
mean flow (Bretherton flow and long waves) it induces is entirely steady. Numerical
solutions intended to reproduce this steady solution should therefore in principle
have both aspects, the linear packet and the second-order mean flow (Bretherton flow
and long waves), superimposed at the outset. If the second-order solutions are not
superimposed at the outset, the flow responds as follows. The second-order (amplitude)
equations instantaneously demand the generation of a mean flow (Bretherton flow
and long waves) that are bound to the packet and travel with it. An ‘error wave’ (or
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flow) then forms that is equal and of opposite sign to the mean flow, so that the total
second-order signal is zero, as prescribed by the initial conditions and by conservation
of momentum. The error wave does not generally travel at the same speed as the
packet. Here, it stays behind. The error wave can be thought of as unphysical in
the sense that it is not part of a (quasi-)steady solution. If one is interested in this
(quasi-)steady solution, it is imperative to wait long enough for the solution and the
error wave to separate (cf. van den Bremer & Sutherland 2014).

Here, we take the following practical approach. Out of the two parts of the second-
order mean flow (the Bretherton flow and the long waves), we have only initialized
with the Bretherton flow predicted by (3.15). This way, we do not leave an error flow
(with opposite sign to the Bretherton flow) behind and can see whether waves are
indeed generated, but we do leave behind error waves (with opposite sign to the long
waves). We are left with the subtlety that the long waves will consist of both the
actual long waves travelling with the packet and the error wave left behind. We will
have to wait for long enough for the two to separate, conceptually analogous to what
was done by van den Bremer & Sutherland (2014).

4.3. Domain size and post-processing
In all cases, the domain was set to be much larger than the anticipated spatial extent
of the induced flow over the duration of the simulation, up to time t= 200/N when
the wavepacket had propagated sufficiently far away from its initial position centred
at the origin. The simulation resolved disturbances with wavenumbers up to 4kx and
4|kz| in the x- and z-directions. In the case Ry = 1, the spanwise domain range was
|y|6 Ly with Ly= 100k−1

x (kz=−kx) and resolved by wavenumbers up to 128π/Ly. In
the wider cases, the domain was substantially larger to accommodate the generation of
long waves and so the resolution was reduced in order for the numerical simulations to
complete in a reasonable time frame (see table 3), with wavenumbers being resolved
up to 32π/Ly. The time resolution was 0.010/N in the case Ry = 1 and 0.025/N in
the cases Ry= 10, 40 and 100. Each run took four days to complete running in serial
on a 2.9 GHz Intel Core i5.

The flows induced by the wavepacket were assessed by filtering the Fourier
modes with horizontal wavenumbers between 0.5kx and 2kx corresponding to the
linear waves that make up the wavepacket. The inverse transform thereby revealed
the flow induced by the propagating wavepacket. The result of this analysis at
the end of five simulations is shown in figure 5, which plots cross-sections of the
x-component of the induced flow at time t = 200/N, when the wavepacket had
propagated sufficiently far away from its initial position at the origin, being centred
at (x, y, z)' (70.7, 0, 70.7). (A multimedia version of figure 5 is available online at
https://doi.org/10.1017/jfm.2017.745, which shows 3D representations of the induced
flows and their cross-sections.)

4.4. Results
Consistent with predictions, the round wavepacket with σy = σz = σx (Ry = Rz = 1)
induces a horizontal circulation only (the Bretherton flow), as shown in figure 5(a).
There is no trace of the Bretherton flow that was initially superimposed on the
wavepacket at the origin, as it has translated with the wavepacket at the predicted
group velocity. The maximum x-component of the induced flow at this time indeed
occurs at the centre of the wavepacket, with a value consistent with that predicted by
theory (see figure 1 and table 3). In simulations with a spanwise wider wavepacket
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FIGURE 5. (Colour online) The wavepacket-filtered x-component of velocity determined at
time Nt= 200 from five simulations initialized with a Gaussian wavepacket of maximum
amplitude A0 = 0.01k−1

x centred at the origin, having vertical wavenumber kz = −kx, x
extents of σx = 20k−1

x , and y and z extents as reported in the panels. The left (right)
panels show a cross-section of the flow in the y–z (x–z) plane through the centre of
the wavepacket. The thick black ovals are drawn around one standard deviation from the
centre of the wavepacket predicted to be at (cgxt, 0, cgzt); these ovals appear as vertical
lines in the right panels of (b)–(e) because the extents in x are small compared to the
width of the domain. The colour bars to the lower left in the left panels indicate the
magnitude of the induced flows in the left and corresponding right panels.
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(Ry large), keeping Rz=1 fixed, the magnitude of the Bretherton flow becomes smaller
and the flow associated with long waves becomes larger. For Ry=10 (σy=200/kx), the
largest flow associated with long waves is predicted to be 6 % that of the maximum
Bretherton flow. Indeed, a weak wave signature is seen to be superimposed on the
Bretherton flow in the snapshot cross-sections taken from the numerical simulation
shown in figure 5(b).

Also as predicted, long waves eventually dominate in the simulation with Ry=100>
R?y (σy=2000/kx), as shown in figure 5(d). In this case the x-component of the induced
flow is close to zero at the centre of the wavepacket, with the maximum shifted up
relative to the centre of the packet, as predicted by theory and shown in figure 1. The
small discrepancies between the simulated and predicted values of max(U(2)) and its
vertical location, as compared in figure 1(b), are attributed to the necessarily coarse
spatial and temporal resolution of the simulations.

In the two simulations for which the Bretherton flow and long waves are predicted
to have comparable amplitudes (Ry = 40 and Rz = 1, shown in figure 5c; Ry = 10
and Rz = 0.5, shown in figure 5e) at t = 200/N, the superposition is evident of the
Bretherton flow, for which a negative horizontal induced flow exists to either side of
the wavepacket, and long waves, for which horizontal velocity perturbations occur in
the lee and to either side of the wavepacket. The errors associated with our predictions
are now somewhat larger, but remain small, as is evident from table 3.

5. Comparison with Tabaei & Akylas (2007)

Tabaei & Akylas (2007, TA07) consider two cases of wavepackets having
finite extent in all three spatial dimensions: ‘three-dimensional equally strong
modulations’ (i.e. round wavepackets for which Ry ∼ Rz ∼ 1) and ‘flat wavetrains’
(i.e. wavepackets for which Ry ∼ 1 and Rz � 1). They also consider the effects
of rotation, finite-amplitude effects and they revisit spanwise-infinite wavepackets
(‘two-dimensional equally strong modulations’, i.e. Ry→∞ and Rz ∼ 1).

A significant contribution of TA07 is the examination of modulational stability of
a wavetrain through interaction with the wave-induced flow. Specifically, TA07
examine the stability of weakly nonlinear flat wavetrains (their (66)–(68)) and
show that perturbations can always be unstable (cf. their (79)), except when the
wavepacket remains periodic in x and there is zero rotation. In the latter case, TA07
recover the stability criterion derived by Sutherland (2006b) for 1D wavepackets
(see § 1). More generally, TA07 demonstrate that the instability is strongest when
the two sets of roots from their stability analysis coalesce, these representing free
hydrostatic gravity-inertial waves (their (77)) and modulations of the horizontal
wavetrain travelling with the vertical group velocity (their (78)). Physically, this
corresponds to the self-interaction of the packet with the 3D long waves that it
generates. For the weakly nonlinear equations in TA07 and to leading order, the
equations for the induced mean flow can be solved analytically for a given amplitude
envelope by the solutions we propose herein. This explicitly computed mean flow
affects the way the wavepacket evolves through the nonlinear term in the nonlinear
Schrödinger-type equations in TA07, effectively through Doppler shifting the waves
within the wavepacket. If the amplitude of these waves is sufficiently large, the
Doppler shifting by the induced mean flow changes the extrinsic frequency of the
wave and hence the structure of the amplitude envelope, as prescribed by the advective
and dispersive terms in the nonlinear Schrödinger-type equations in TA07. The change
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in amplitude envelope then requires recalculation of the corresponding induced mean
flow at every time given the shape of the packet at that time.

In the work presented here we have assumed that the amplitude of the waves is
sufficiently small that the weakly nonlinear feedback between the induced mean flow
and the waves is negligible. We also ignore changes of shape of the packet due to
linear dispersion. Thus, the induced mean flow is steady in a frame moving with the
constant group velocity of the wavepacket. Nonetheless, we are able to compare our
predictions and the results of our numerical simulations with those of TA07, who
presented simulation results for relatively small-amplitude waves in the particular
limits of round wavepackets (§ 5.1) and flat wavetrains (§ 5.2).

5.1. Round wavepackets
If the modulations are equally strong in all three directions and indeed as strong as
the effect of rotation, TA07 also conclude that the velocity is essentially horizontal
(their § 2.1). Without making restrictive assumptions about the amplitude of the waves,
the mean flow is then governed by their (17) and (18), which is in agreement with
Grimshaw (1972) in the absence of rotation, as noted by these authors. Without
rotation and in the weakly nonlinear limit, their (17) and (18) reduced to their (22),
which in turn agrees with Shrira (1981) (and Bretherton 1969), as noted by TA07.
In the small-amplitude limit, our prediction given by (3.14) is the solution to (22) in
TA07.

The right panel of our figure 5(a) can be compared at least qualitatively with
the induced flow shown by line contours in the left panel of figure 4 of TA07.
Their simulation was somewhat different: it included the effects of rotation, and the
vertical wavenumber was relatively smaller in magnitude. Despite these differences,
two instructive comparisons can be made. First, because TA07 did not initialize the
simulation with the predicted Bretherton flow, they observe a negative, non-translating,
induced flow at the origin in addition to the positive induced flow that translates with
the wavepacket. Second, because their wavepacket was round in this simulation, TA07
also did not observe the generation of long waves. Our figure 1 indeed confirms that
the maximum induced flow associated with long waves is three orders of magnitude
smaller than the Bretherton flow in the case Ry = 1 and εx = 1/20 (and Rz = 1).

5.2. Flat wavetrains
Assuming the horizontal extent of the wavepacket is comparable in the x- and
y-directions but both are much larger than the vertical extent, TA07 predicted the
wavepacket should excite long waves according to their (31). They solved this
prognostic differential equation in a simulation with no rotation, setting |kz/kx| = 0.4
(so K = 0.32), and setting the horizontal wavepacket extent in both directions to
be 100 times larger than the vertical extent indeed shows trailing waves (so Ry = 1,
Rz = 0.01 and εx = 10−4). This indeed showed the generation of trailing long waves,
as revealed in figure 2 of TA07. Yet evidence of an induced flow at the origin is
indicative of an error flow resulting from not superimposing the predicted induced
flow at the outset and thus considering an inherently unsteady problem.

Generally, we predict that a flat wavepacket should excite long waves of comparable
or larger amplitude than the Bretherton flow if Rz . R?z , with R?z given by (3.28).
With Ry = 1, K = 0.32 and εx = 10−4, we predict the transition occurs at R?z ' 0.007.
Thus, the simulation of TA07 shown in their figure 2 corresponds to the regime of
induced flows dominated by the Bretherton flow, but which is nonetheless close to
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the transition in which induced long waves have comparable amplitude. This explains
the appearance of the Bretherton-flow-like error flow at the origin as well as the
manifestation of induced long waves trailing the propagating wavepacket.

6. Conclusions
Historically, the induction of the Bretherton flow and of long waves by internal

wavepackets have been treated as two distinct problems, the former resulting
from a round wavepacket and the latter resulting from a flat or infinitely wide
wavepacket (Bretherton 1969; Bühler & McIntyre 1998; Tabaei & Akylas 2007).
Using perturbation theory for quasi-monochromatic internal wavepackets, we have
rederived the equations in an approach that lends physical insight to the connection
and overlap of these distinct flows: the Bretherton flow, which has zero vertical
velocity and is forced by vertical vorticity, as has been derived by several authors,
including Bühler & McIntyre (1998); and the induced long waves, which have
non-negligible vertical velocity and are forced by horizontal vorticity. We also provide
explicit integral solutions for the 3D induced long waves. Combined, these predict
the mean flow induced by wavepackets of arbitrary vertical and horizontal aspect
ratio, provided they are marginally wider than round in the horizontal. In particular,
these explicit integral solutions allow us to assess for which aspect ratios induced
long waves dominate over the Bretherton flow and lead us to predict a transitional
vertical wavepacket aspect ratio R?z , as it depends upon the horizontal aspect ratio Ry
through (3.28).

Numerical simulations examined the evolution of small-amplitude wavepackets
with a range of aspect ratios designed to explore the transition from induced flows
dominated by the Bretherton flow to induced flows dominated by long waves. In
accordance with theory, the simulations predict well the peak amplitudes of the
induced horizontal flow and their locations. In particular, the results clearly show that
the Bretherton flow and induced long waves both contribute to the observed induced
flow particularly near the transition boundary.
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Appendix A. Explicit forcing equation
Here we explicitly give the three components of the matrix equation (2.3). From

substitution of the linear (in α) fields in table 1 (both columns), including only those
terms that are non-zero, we obtain

−∂ttzv
(2)
+ (∂tt +N2)∂yw(2)

= −∂t[∂x(u0ζx1)+ ∂z(w0ζx1)]

+N2∂y[∂x(u1ξ0)+ ∂y(v1ξ0)+ ∂z(w1ξ0)]

+ ∂t[ζx1∂xu0 + ζy0∂yu1 + ζy1∂yu0], (A 1)
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∂ttzu(2)
− (∂tt +N2)∂xw(2)

= −∂t[∂x(u0ζy1 + u1ζy0)+ ∂y(v1ζy0)+ ∂z(w0ζy1 +w1ζy0)]

−N2∂x[∂x(u1ξ0)+ ∂y(v1ξ0)+ ∂z(w1ξ0)] + ∂t[ζy0∂yv1], (A 2)

−∂ttyu(2)
+ ∂ttxv

(2)
= ∂t[ζx1∂xw0 + ζy0∂yw1 + ζy1∂yw0], (A 3)

where we have left out the superscripts (1) on the linear (in α) fields on the right-hand
side for convenience. It is also understood that the expressions on the right-hand side
are averaged over the fast spatial scale of waves in the wavepacket.

REFERENCES

ACHESON, D. J. 1976 On over-reflexion. J. Fluid Mech. 77, 433–472.
AKYLAS, T. R. & TABAEI, A. 2005 Resonant self-acceleration and instability of nonlinear internal

gravity wavetrains. In Frontiers of Nonlinear Physics (ed. A. Litvak), pp. 129–135. Institute
of Applied Physics.

ANDREWS, D. G. & MCINTYRE, M. E. 1978a An exact theory of nonlinear waves on a Lagrangian-
mean flow. J. Fluid Mech. 89, 609–646.

ANDREWS, D. G. & MCINTYRE, M. E. 1978b On wave action and its relatives. J. Fluid Mech. 89,
647–664.

VAN DEN BREMER, T. S. & SUTHERLAND, B. R. 2014 The mean flow and long waves induced
by two-dimensional internal gravity wavepackets. Phys. Fluids 26, 106601.

BRETHERTON, F. P. 1966 The propagation of groups of internal gravity waves in a shear flow.
Q. J. R. Meteorol. Soc. 92, 466–480.

BRETHERTON, F. P. 1969 On the mean motion induced by gravity waves. J. Fluid Mech. 36 (4),
785–803.

BRETHERTON, F. P. & GARRETT, C. J. R. 1969 Wavetrains in inhomogeneous moving media.
Proc. R. Soc. Lond. A 302, 529–554.

BÜHLER, O. 2009 Waves and Mean Flows. Cambridge University Press.
BÜHLER, O. 2014 Waves and Mean Flows, 2nd edn. Cambridge University Press.
BÜHLER, O. & MCINTYRE, M. E. 1998 On non-dissipative wave–mean interactions in the atmosphere

or oceans. J. Fluid Mech. 354, 301–343.
BÜHLER, O. & MCINTYRE, M. E. 2003 Remote recoil: a new wave–mean interaction effect. J. Fluid

Mech. 492, 207–230.
DOSSER, H. V. & SUTHERLAND, B. R. 2011a Anelastic internal wavepacket evolution and stability.

J. Atmos. Sci. 68, 2844–2859.
DOSSER, H. V. & SUTHERLAND, B. R. 2011b Weakly nonlinear non-Boussinesq internal gravity

wavepackets. Physica D 240, 346–356.
DRAZIN, P. G. 1977 On the instability of an internal gravity wave. Proc. R. Soc. Lond. A 356,

411–432.
GRIMSHAW, R. H. J. 1972 Nonlinear internal gravity waves in a slowly varying medium. J. Fluid

Mech. 54, 193–207.
KATAOKA, T. & AKYLAS, T. R. 2013 Stability of internal gravity wave beams to three-dimensional

modulations. J. Fluid Mech. 736, 67–90.
KATAOKA, T. & AKYLAS, T. R. 2015 On three-dimensional internal gravity wave beams and induced

large-scale mean flows. J. Fluid Mech. 769, 621–634.
KLOSTERMEYER, J. 1991 Two-dimensional and three-dimensional parametric instabilities in finite

amplitude internal gravity waves. Geophys. Astrophys. Fluid Dyn. 61, 1–25.
MIED, R. R. 1976 The occurrence of parametric instabilities in finite-amplitude internal gravity

waves. J. Fluid Mech. 78, 763–784.
SCINOCCA, J. F. & SHEPHERD, T. G. 1992 Nonlinear wave-activity conservation laws and Hamiltonian

structure for the two-dimensional anelastic equations. J. Atmos. Sci. 49, 5–27.
SHRIRA, V. I. 1981 On the propagation of a three-dimensional packet of weakly non-linear internal

gravity waves. Intl J. Non-Linear Mech. 16, 129–138.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.745


408 T. S. van den Bremer and B. R. Sutherland

SUTHERLAND, B. R. 2006a Internal wave instability: wave–wave versus wave-induced mean flow
interactions. Phys. Fluids. 18, 074107.

SUTHERLAND, B. R. 2006b Weakly nonlinear internal wavepackets. J. Fluid Mech. 569, 249–258.
SUTHERLAND, B. R. 2010 Internal Gravity Waves. Cambridge University Press.
TABAEI, A. & AKYLAS, T. R. 2007 Resonant long–short wave interactions in an unbounded rotating

stratified fluid. Stud. Appl. Maths 119, 271–296; TA07.
VOISIN, B. 1991 Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and

point sources. J. Fluid Mech. 231, 439–480.
WAGNER, G. L. & YOUNG, W. R. 2015 Available potential vorticity and wave-averaged quasi-

geostrophic flow. J. Fluid Mech. 785, 401–424.
XIE, J.-H. & VANNESTE, J. 2015 A generalised-Lagrangian-mean model of the interactions between

near-inertial waves and mean flow. J. Fluid Mech. 774, 143–169.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

74
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.745

	The wave-induced flow of internal gravity wavepackets with arbitrary aspect ratio
	Introduction
	Governing equations
	Perturbation theory
	Quasi-monochromatic wavepackets
	Mean-flow decomposition: Bretherton flow and long waves
	Bretherton flow
	Divergent-flux-induced flow
	Response and total Bretherton flow

	Long waves
	Dominant induced flows for different wavepacket aspect ratios

	Comparison with numerical simulations
	Code description
	Initial conditions
	Domain size and post-processing
	Results

	Comparison with Tabaei & Akylas (2007)
	Round wavepackets
	Flat wavetrains

	Conclusions
	Acknowledgements
	Appendix A. Explicit forcing equation
	References


