
Robotica (2014) volume 32, pp. 723–741. © Cambridge University Press 2013
doi:10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration of
heterogenous hexagonal-shaped modules toward a
straight chain
Yizhou Miao, Gangfeng Yan and Zhiyun Lin∗

State Key Laboratory of Industrial Control Technology, College of Electrical Engineering, Zhejiang
University, 38 Zheda Road, Hangzhou, 310027 P. R. China

(Accepted October 29, 2013. First published online: December 2, 2013)

SUMMARY
This study deals with a self-reconfiguration problem of hexagonal-shaped modules from an arbitrary
initial configuration to a straight chain. Modules are modeled as the same-sized rigid bodies. Two
categories of modules with different functionalities are used. One category comprises two powerful
modules, which are expected to play the role of terminal modules in a goal configuration. The other
category comprises several ordinary modules, which are expected to fill in the middle portion in
a goal configuration. A distributed control strategy, inspired by the idea of curve shortening, is
developed for each module to act cooperatively to attain a goal configuration. It is verified that under
the proposed strategy, modules eventually converge to a straight chain.

KEYWORDS: Modular robots; Motion planning; Control of robotic systems; Swarm robotics; Multi-
robot systems.

1. Introduction
A modular system may contain any finite number of autonomous modules. The modules have
similar appearances and computation abilities, and obey similar locomotion rules. Modules’
connecting/disconnecting to/from one another results in the reconfiguration of modular configuration.
Generally, the shape of a module looks symmetric, e.g., cubic,

1
hexagonal,

2
rhombic dodecahedral,

3

etc. Self-reconfiguration provides versatility and scalability to a modular system. Thus, it is more
adaptive in unknown and complicated environments compared with traditional fixed-morphology
robots. Potential applications include self-repairing systems,

4
surgical systems,

5
etc.

Researchers in this field mainly focus on the designing of motion planning strategies and
mechanical fabrications. Two different research groups (Chirikjian

6
and Murata et al.

7
) simultaneously

introduced hexagonal-shaped modular systems. Later, researchers started to study the reconfiguration
of modules. Reconfiguration from a simple connected initial configuration to another simple connected
final configuration was realized based on a simulated annealing algorithm.

8
Walter et al.

9
provided a

distributed algorithm for hexagonal modules to attain a simple connected configuration from a chain
configuration. Moreover, the reconfiguration from a straight chain configuration to any intersecting
chain configurations were addressed.

10
Preliminary geometric properties of a modular system were

investigated by Ghrist and Peterson
11

and Zhang and Dai,
12

which provide fresh ideas to view modular
systems. Related works with respect to modules’ motion planning can be found in refs. [13–19]. To
date, several entities of modular systems have been developed.

20–25
These modular systems are based

on different modular shapes (hexagonal or cubic), different textures (rigid or compressible), and
different reconfiguration methods (attachment or detachment).

It is expected that a modular system can re-shape to arbitrary configurations. Among diverse
configurations, a straight chain is one of the basic sub-configurations, since quite a lot of complicated

* Corresponding author. E-mail: linz@zju.edu.cn

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

724 Curve shortening-inspired self-reconfiguration

(a) (b)

Fig. 1. Curve shortening. (a) Shortened toward a point; (b) shortened toward a line segment with fixed vertices.

configurations can be divided into several straight chains. Thus, in this study we focus on developing
distributed strategies for modules to reconfigure toward a straight chain configuration. Suppose there
are N modules, among which two are of powerful functionalities such that they are capable of
detecting the entire configuration, while the other modules are with limited abilities. According to
different functionalities, the two powerful modules are required to occupy terminal positions in a
straight chain and the others to occupy middle positions. A novel strategy which is inspired by the
idea of curve shortening is presented, by which the modular configuration converges to a straight
chain in finite time in the absence of centralized control and full knowledge of entire configuration.
The contributions lie in the following aspects: (i) A curve shortening-inspired distributed control
strategy is developed for the task of achieving a chain configuration, which is considered to be
fundamental in autonomous modular systems. (ii) A decomposition idea is proposed to solve the
self-reconfiguration problem by transforming a global task into local objectives for different roles of
modules. (iii) Rigorous analysis is provided to show the finite-time convergence of the algorithm.

The organization of this study is given as follows: Section 2 contains several preliminary materials
and the problem formulation. Sections 3 and 4 are the main parts that provide distributed strategies as
well as correctness validation under two different situations respectively. Simulations and discussions
are addressed in Section 5. Section 6 concludes the work and lists the future work.

2. Preliminaries and Problem Formulation

2.1. Hexagonal lattice and lattice distance
In this study, every module is modeled as a rigid regular-hexagonal entity with the same size. Modules
are assumed to operate in a perfect hexagonal lattice consisting of regular hexagonal cells, in which
each cell is of the same size and shape as a module. The coordinate system in a hexagonal lattice was
first introduced by Chirikjian

6
with its origin at the center of a cell, its x-axis perpendicular to an edge

of lattice cell, and its y-axis being determined by rotating the x-axis π/3 radians counterclockwise.
The distance in a hexagonal lattice is called lattice distance and the lattice distance between two cells,
c1 = (x1, y1) and c2 = (x2, y2), is calculated according to the following formula:

LD(c1, c2) =
{

max(|�x|, |�y|) if �x · �y < 0
|�x| + |�y| otherwise , (1)

where �x = x1 − x2 and �y = y1 − y2. The lattice distance indicates the least number of steps
needed for one module to move from c1 to c2. Hence, components of a cell coordinate are integers.

2.2. Curve shortening and polytope
Given a smooth closed curve in a planar Cartesian coordinate system, one can shorten it by letting
every point in it move toward the direction of the corresponding curvature vector filed.

26, 27
Generally,

such a curve would shorten until it reaches a point (Fig. 1(a)). But if two points in the curve are fixed,
the curve would eventually shorten toward a line segment with the fixed two points acting as vertices
(Fig. 1(b)).

Given a set S, its convex hull is the smallest convex set containing S. Moreover, suppose S contains
a finite number of points:

{
p1, p2, . . . , pN

}
. Its convex hull is also called a polytope (Fig. 2(a)),

and is denoted as P = Co
{
p1, p2, . . . , pN

}
. In a similar way, suppose there are a finite number of

modules in a hexagonal lattice. Let us define a polytope in a hexagonal lattice as the convex hull
containing all the modules where each edge of a polytope should cross the center of a cell and be

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 725

p1

p2

p3

p4

p5

p6

p7

(a) (b)

Fig. 2. Polytopes (a) in a Cartesian coordinate system; (b) in a lattice coordinate system.

e1e1

e2
e2e2

e3e3
m

mm

sss

Empty Module Substrate

Fig. 3. Before (left), and after (right) locomotion.

perpendicular to an edge of the cell (Fig. 2(b)). For a given configuration, the polytope is formed by
drawing three pairs of parallel lines (namely, one pair of lines parallel to the x-axis, the second pair
of lines parallel to the y-axis, and the third pair of lines parallel to the y-axis rotated by π/3 radians
counterclockwise) such that the configuration is enclosed and each line contains at least one module.
So it is clear that a polytope in a hexagonal lattice has at most six vertices, and is at most a hexagon.

2.3. Problem formulation
We consider the following problem in the paper.

Problem 1. Design a local information-based distributed reconfiguration strategy for each module
such that the modular system reconfigures from arbitrary initial configuration to a straight chain
configuration.

The concepts of straight chain configuration and collinearity are referred to Walter et al.
10

Denote

κ(ci, cj) := min
{|xi − xj |, |yi − yj |, |(xi + yi) − (xj + yj)|}

as the degree of collinearity between any two distinct cells, ci(xi, yi) and cj (xj , yj). It is intuitive
that κ(ci, cj) = 0 if and only if ci and cj are collinear. Besides, under the same lattice distance, the
smaller the value of κ , the less steps needed for two modules locating on these two cells to achieve a
collinear distribution.

Throughout this study, we denote a round as a constant time period within which a module would
accomplish certain behaviors to update to an adjacent empty cell if possible. Concurrent motions are
allowed in a round, and asynchronous mechanism is simulated for preventing potential collisions from
happening. Physical restrictions are taken into consideration for a rigid module with the locomotion
mechanism being designed as follows.

Definition 1. A module first slides along the common edge of one of its adjacent modules called
substrate that remains static in the same round, and next slides into an empty cell along another edge
of the substrate.

An illustration of the locomotion mechanism is given in Fig. 3. It infers that in order to perform a
one-step updating, a module needs one adjacent module and two adjacent empty cells such that the
three cells are contiguously spaced. A candidate empty cell e1 for a module m to move into is called
a feasible cell, which satisfies the following properties:

• e1 is adjacent to module m;
• a common adjacent cell of e1 and module m is empty, while the other is not.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

726 Curve shortening-inspired self-reconfiguration

A module with at least one feasible cell is said to be active, and a module without feasible cells is
said to be inactive. In addition, a module is said to be isolated if all of its adjacent cells are empty.
An isolated module cannot locomote according to Definition 1.

Two different kinds of modules with different functionalities are used in our study to fulfill the goal
configuration cooperatively. Let S1 and S2 represent the set of two kinds of modules, respectively.
Specifically, S1 contains two powerful modules, and S2 contains the other N−2 modules (called
ordinary modules). Without loss of generality, let m1, m2 denote powerful modules, and m3, . . . , mN

denote ordinary modules (actually labels are not necessary information for modules).
Quite commonly, a configuration of a group of modules is represented in a global reference frame. If

global coordinates of the modules are all available and all-to-all communications are allowed, it is then
trivial to attain a desired configuration. However, it is usually impossible for distributed modules to
access all global coordinates in a global reference frame and to have all-to-all communications. Thus,
we concentrate on developing distributed control strategies via local interaction with neighboring
modules in absence of a global reference frame and all-to-all communications for this objective.
Inspired by the idea of global-to-local programming put forward by Yamins and Nagpal,

28
we would

like to decompose Problem 1 into the following two subproblems.

Subproblem 1. Design a distributed reconfiguration strategy for each powerful module such that
the two powerful modules reach a collinear distribution with N − 1 cells lattice distance.

Subproblem 2. Design a distributed reconfiguration strategy for each ordinary module such that
each ordinary module reaches a location collinear with all of its neighbors and also adjacent to its
neighbors.

The proposition below will show the equivalence of Problem 1 and the union of Subproblems 1
and 2.

Proposition 1. The straight chain configuration in Problem 1 is achieved with both terminal nodes
being the powerful modules if and only if both Subproblems 1 and 2 are achieved.

Proof. (Necessity) If the current configuration is a straight chain configuration with both terminal
nodes being the powerful modules, then it is certain that the two powerful modules are collinearly
distributed, and the lattice distance between them equals N − 1. At the same time, each ordinary
module has two adjacent modules, and is collinear with all neighbors.

(Sufficiency) Suppose, in contradiction, that the current configuration is not a straight chain
configuration with both terminal nodes being the powerful modules. Therefore, either collinearity is
not satisfactory, or there exists a terminal node being an ordinary module, although the configuration
is a straight chain. For the former situation, at least one module should not have reach a collinear
distribution with its neighbors. For the latter case, either the lattice distance between the two powerful
modules does not equal to N − 1, or there exists an ordinary module (acting as a terminate node)
which has only one adjacent neighbor. Both cases contradict the statements in Subproblem 1 and
Subproblem 2 respectively. �

At the end of this section, several assumptions are summarized.
(A1) The two powerful modules are able to obtain the relative positions of each other.
(A2) All modules are able to detect the relative positions of the nearest modules in each direction.
(A3) Communication only occurs between adjacent modules. The communication message

transmitted by a powerful module contains only information (logic values) to indicate that it has
reached the goal in Subproblem 1, and whether it is located on the boundary of its local polytope.
The communication message transmitted by an ordinary module contains the following information
(also logic values): (1) The status whether it has reached the goal in Subproblem 2 or the equivalent
terminating condition. (2) Its understanding about the status of whether a powerful module has
reached the goal in Subproblem 1, and whether the powerful module is located on the boundary of
its local polytope.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 727

x
y

X+

X−

Y+

Y−

Z+

Z−

Q1Q2

Q3

Q4 Q5

Q6

Fig. 4. A module divides the lattice plane into 12 parts.

3. Convergence of Ordinary Modules
This section concentrates on solving Subproblem 2, with the assumption that the two powerful
modules initially have been fixed at desired positions, i.e., they are collinearly spaced with N − 1
cells lattice distance. The initial positions of ordinary module are randomly distributed without any
isolated module. The idea to solve Subproblem 2 can be summarized as follows. Each ordinary
module determines its local polytope according to the union of its neighbors’ positions and the self-
position; after knowing the local polytope, a module is then able to determine whether it is located on
the boundary or strictly interior to the local polytope; and design a reconfiguration strategy for each
ordinary module to shrink the local polytope till a straight chain.

3.1. Self-identification for modules
An intuitive way to make a polytope shrinking is to let modules which are located on the boundary to
their local polytopes select feasible cells interior to their local polytopes to move to. It then follows the
question about how can a module, using limited local information, differentiate its role, i.e., whether
it is located on the boundary or interior to its local polytope, and in addition, the relationship between
one’s local polytope and the polytope of the entire configuration. A novel method will be introduced
in this section to make modules possible to differentiate self-roles.

Given a module positioned on an arbitrary cell in the lattice, we can divide the lattice plane into
six quadrants, denoted as Q1∼ Q6 by inscribing three lines across the center of the module such
that two of them are parallel to x-axis and y-axis respectively and the third by rotating y-axis π/3
radians counterclockwise. Denote by X+, X−, Y+, Y−, Z+, and Z− the six axes with each separating
adjacent quadrants respectively. Regard the six quadrants plus the six axes as 12 distinct directions.
The union of these 12 directions together with the given module compose the entire lattice (Fig. 4).

Consider an arbitrary module mi(xi, yi). The origin of mi’s local lattice coordinate frame is set
at some cell, and the x-axis and y-axis are parallel with that illustrated in Fig. 4. Let mj (xj , yj) be
another module in the system measured in mi’s local frame. Then the relationship between relative
distribution of mi, mj , and the 12 directions satisfies the following formulas (positions are measured
in the same local frame):

X+ = {
(xj , yj) | xj > xi, yj = yi

}
,

X− = {
(xj , yj) | xj < xi, yj = yi

}
,

Y+ = {
(xj , yj) | xj = xi, yj > yi

}
,

Y− = {
(xj , yj) | xj = xi, yj < yi

}
,

Z+ = {
(xj , yj) | xj < xi, xj + yj = xi + yi

}
,

Z− = {
(xj , yj) | xj > xi, xj + yj = xi + yi

}
,

(2)

Q1 = {
(xj , yj) | xj > xi, yj > yi

}
,

Q2 = {
(xj , yj) | xj < xi, xj + yj > xi + yi

}
,

Q3 = {
(xj , yj) | xj < xi, yj > yi, xj + yj < xi + yi

}
,

Q4 = {
(xj , yj) | xj < xi, yj < yi

}
,

Q5 = {
(xj , yj) | xj > xi, xj + yj < xi + yi

}
,

Q6 = {
(xj , yj) | xj > xi, yj < yi, xj + yj > xi + yi

}
.

(3)

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

728 Curve shortening-inspired self-reconfiguration

In each round, module mi will send electromagnetic waves to each of the 12 directions. Once
meeting with the nearest module in each direction, there is a feedback to mi , according to which
mi determines whether there exists some modules in that direction. No feedback infers no modules
located in that direction.

Remark 1. Mutual interference may happen due to simultaneous generation of electromagnetic
waves from multiple modules. However, as we are only concerned with the direction that has no
feedback rather than the direction that has feedback, interference signals can be ignored in the
modules’ self-role identification.

Denote

Ni(k) = {
j : LD(mi, mj)|k ≤ LD(mi, ms)|k,

∀ mj, ms in the same direction
}

as the neighbor set of module mi in round k. Let Pi(k) represent the local polytope of mi (corresponding
to the configuration comprising mi and its neighbors). In addition, let Bi(k) and Inti(k) represent the
boundary and the interior part of Pi(k) respectively. Similarly, let P (k), B(k), and Int (k) represent
the same meanings for the entire modular configuration. The convex property of a polytope infers
that if a module mi∈Bi(k), at least five contiguous directions (starting from a quadrant) are without
feedbacks. Define a radial angle φi(k), which is the smallest angle covered by the neighbor set of mi

(measured by both starting and ending at axes). As each quadrant covers π/3 radians in the lattice
plane, φi(k) equals to a value that is integer multiple of π/3. For example, in Fig. 4, if the neighbors of
mi are located in quadrant Q1 and Q5, then φi(k) = π . If the neighbors of mi are located in quadrant
Q5 and axis X+, then φi(k) = 2π/3. If its neighbors are located in quadrants Q1, Q4, and axis X+,
then φi(k) = 4π/3. In conclusion,

{
mi ∈ Bi(k), if φi(k) ≤ π

mi ∈ Inti(k), otherwise .

Moreover,

{
mi ∈ Bi(k) ⇒ mi ∈ B(k)
mi ∈ Inti(k) ⇒ mi ∈ Int(k) .

Similar conclusions hold when a module tests its feasible cells.
3.2. An equivalent terminating condition
To achieve the goal configuration, ordinary modules should reach their goals in Subproblem 2 in
the same round. Due to the absence of full knowledge about the entire configuration for an ordinary
module, it is somewhat difficult for them to reach goals simultaneously, especially when the system
contains a large number of modules. This inspires us to look for an equivalent condition to terminate
the evolution of an ordinary module. That is, the module becomes collinear with both powerful
modules, lies between them, and realizes that powerful modules have reached their subgoals (initially
holds in this section). In what follows, we will discuss how an ordinary module can assess the
equivalent condition based on limited local information.

Denote by gc
i (xc

i , y
c
i) the candidate cell at which the equivalent terminating condition is satisfied

for module mi . Module mi is able to know gc
i if (1) it can directly detect relative positions of both

powerful modules; (2) it has two adjacent neighboring modules that satisfy the equivalent terminating
conditions; and (3) it could eliminate all impossible cases as stated below.

Suppose module mi(xi(k), yi(k)) is adjacent to a powerful module (denoted by m1) in round k.
Without loss of generality, suppose the relative position of module m1 measured by module mi is
m1(x1(k), y1(k))=m1(xi(k)+1, yi(k)). The collinearity property of the equivalent condition implies
that

1.yc
i = yi(k) and xc

i < xi(k) + 1,

2.xc
i = xi(k) + 1 and yc

i < yi(k),
3.xc

i + yc
i = xi(k) + 1 + yi(k) and xc

i > xi(k) + 1,

4.yc
i = yi(k) and xc

i > xi(k) + 1,

5.xc
i = xi(k) + 1 and yc

i > yi(k),
6.xc

i + yc
i = xi(k) + 1 + yi(k) and xc

i < xi(k) + 1.

(4)

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 729

mi
mi

xi
yi

Fig. 5. (Colour online) Finding impossible positions of gc
i . Red symbol X: impossible cases. Blue lines: an edge

of polytope.

Table I. List of symbols used in Algorithm 1.

Symbol Interpretation 1 0

zi
j Relative position of module mj measured by module mi / /

Ni Neighbor set of module mi /
Fi Set for module mi storing recorded feasible cells / /
Achievi State of achievement of local objective for module mi Achieved Not achieved
fi(k) Feasible cell of module mi according to the locomotion

mechanism
/ /

Gc
i Set of gc

i / /
Isoi State of generating potential isolated modules, provided that

module mi moves
Generated Not generated

zi Position of module mi / /
N(0,1) the Gaussian distribution / /

Notes: ‘1’: true; ‘0’: false; ‘/’: the value is not a Boolean.

As illustrated in Fig. 4 where the module is supposed to be a powerful module, denoted by m1,
inequalities in Eq. (4) correspond to the six collinear cases (i.e., gc

i is in X−, Y−, Z−, X+, Y+ and
Z+ respectively).

Particularly if mi∈Bi(k), the directions that are without feedbacks also suggest impossible cases
of gc

i , compared with Eq. (4). After mi discovers five impossible cases, the remaining case in Eq. (4)
should be the correct one. See an example in Fig. 5 where the light colored module represents mi and
the dark colored module represents m1. On the left-hand side of Fig. 5, mi(k)∈Bi(k), the red symbol
X shows the impossible cases discovered in round k, corresponding to conditions (1), (5), and (6) in
Eq. (4). On the right-hand side of Fig. 5, module mi moves to another cell such that it is again located
on the boundary, condition (2) is also checked to be impossible. With further reconfiguration of mi ,
it may find the last impossible case and then the remaining case characterizes the property of gc

i .

3.3. Control strategies
In this section, a distributed strategy will be developed for each ordinary module to converge to a
goal configuration. The strategy contains four phases: communicating phase, detecting phase, waiting
phase, and updating phase. The pseudocode is presented in Algorithm 1, where the symbols are listed
in Table I. In the algorithms, we use k− to denote the moment state at the beginning of round k (before
modules’ locomotion). The state at k− is identical to the state at the end of round k − 1. Moreover,
we use k to denote the moment state at the end of round k (after modules’ one-step locomotion).

• Communicating phase: Module mi, ∀ i ∈ S2 currently occupying gc
i sends a message to its

adjacent modules (logical value “true”).
• Detecting phase: Module mi, ∀ i ∈ S2, which neither reaches the goal in Subproblem 2 nor

occupies a cell gc
i , records appropriate feasible cells. That is, if the radial angle φi(k) = 0, then all

the feasible cells are recorded; otherwise the recorded feasible cells are those belonging to its local
polytope as well as not resulting in isolated modules.

• Waiting phase: Module mi, ∀ i ∈ S2 with recorded feasible cells in the detecting phase, generates
a waiting time according to the following rules. That is, if a module is located on the boundary to its
local polytope, it generates a random waiting time within interval (τ1, τ2); and if a module is located
strictly interior to its polytope, it generates a random waiting time within interval (τ2, τ3), where it
holds that 0 < τ1 < τ2 < τ3. Modules then wait for the generated waiting time accordingly.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

730 Curve shortening-inspired self-reconfiguration

Algorithm 1 Reconfiguration algorithm for each module mi ∈ S2 in round k

1: Input:
{
zi
j (k−) : j ∈ Ni(k−)

}
2: Fi(k) ← ∅;
3: determine Gc

i , Achievi(k−), Pi(k−), φi(k−) and fi(k);
4: Phase I: communicating phase (lines 4-7)
5: if zi(k−) ∈ Gc

i
6: send ‘true’ to each adjacent module;
7: end if
8: Phase II: detecting phase (lines 8-15)
9: if Achievi(k−) = 0, zi(k−) /∈ Gc

i and φi(k−) = 0 then
10: add both fi(k) to Fi(k);
11: else if Achievi(k−) = 0, zi(k−) /∈ Gc

i and φi(k−)
= 0 then
12: for each fi(k) ∈ Pi(k−) s.t. Isoi(k) = 0
13: add fi(k) to Fi(k);
14: end for
15: end if
16: Phase III: waiting phase (lines 16-23)
17: if Fi(k)
= ∅
18: if zi(k−)∈Bi(k−) then
19: randomly generate �i(k)∈(τ1, τ2);
20: else randomly generate �i(k) ∈ (τ2, τ3);
21: end if
22: wait for a period of time �i(k);
23: end if
24: Phase IV: updating phase (lines 24-33)
25: if ∀j∈Ni(k−) s.t. LD(zi, zj)|k−≤2 and zi

j (k)=zi
j (k−) then

26: randomly generate δi(k) ∈ N(0, 1);
27: if δi(k) ∈ (−1.3, 1.3)
28: if zi(k−)∈Bi(k−) and exists f ∗

i (k)∈ (
Inti(k−)∩Fi(k)

)
then

29: zi(k) ← f ∗
i (k);

30: else zi(k) ← f ∗
i (k), ∀f ∗

i (k) ∈ Fi(k);
31: end if
32: end if
33: end if

mi

ma

mb

e1

e2

(a)

mi

ma

mb

e1

e2

(b)

Fig. 6. Nearby distribution of mi . Grey cells: occupied by modules; e1 and e2: either occupied or empty; others:
empty.

• Updating phase: Module mi, ∀ i ∈ S2, which has waited for the generated waiting time, is
a candidate locomoting module. If the module observes that none of its neighbors within 2 lattice
distance has moved, it will proceed updating. Depending on whether the module is located on the
boundary to its local polytope, it chooses recorded feasible cell that is strictly interior to its local
polytope to update.

3.4. Correctness validation
The correctness of Algorithm 1 will be verified in this section. First of all, let us explain the mechanism
we adopt to avoid potential isolated modules. Recall the assumption that a module can only detect
the nearest module in each direction and we have the following proposition.

Proposition 2. Suppose mi∈S2. There would come a potential isolated module from mi’s point of
view after locomotion of mi if and only if mi’s nearby distribution is as illustrated in Fig. 6.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 731

Proof. First, let us prove the sufficiency. Module mi in the figure has two adjacent neighbors and
it is without motion constraints according to Definition 1. No matter whether e1 and e2 are occupied
by some modules or not, they are not detectable by mi as for mi , module ma and e1 (if exists) are
located in the same direction, and ma is nearer than e1 (similar case for mb and e2). From mi’s point
of view, both ma and mb must regard it as a unique adjacent module. The moving of mi based on
either substrate would potentially make the other become isolated.

Next, let us provide the necessity in a contrapositive way by considering cases of mi with different
number of adjacent modules. (i) Suppose mi has only one adjacent module. Then the adjacent module
should be the unique choice of mi’s substrate and they are still adjacent after locomotion of mi . (ii)
Suppose mi has at least two adjacent modules, but not like the cases appeared in the figure. The
properties of owing feasible cells infer that at most one adjacent module of mi is uniquely adjacent
to mi again from mi’s point of view. Hence, by letting mi choose this module as its substrate, no
potential isolated module would appear. (iii) Suppose mi has two adjacent modules ma and mb as
distributed in the figure. Moreover, at least one of those empty cells (excluding e1 and e2) in the figure
is occupied by some module. Thus, at least one between ma and mb has another adjacent module
that is also detectable by mi , or equivalently, atmost one between ma and mb regard mi as a unique
adjacent module from mi’s point of view. By choosing this module as mi’s substrate, no potential
isolated module would appear. �

Remark 2. Potential isolated module is measured from a module’s local point of view so that
sometimes it does not mean a real isolated module from a global point of view. However, avoiding
potential isolated modules can well prevent real isolated modules from encountering. Besides, the
above proposition presents the case in which a potential isolated module must appear irrespective of
the feasible cell choosen. In other words, there exists a choice for a module to choose appropriate
feasible cells to avoid potential isolated modules if the nearby distribution of the module is not like
the situation illustrated in Fig. 6.

Proposition 3. Under Algorithm 1, multiple ordinary modules converge to fill up the goal
configuration in finite time.

The key point to prove the finite time convergence is to show that the polytope would decrease
with the reconfiguration of modules under the proposed algorithms. Before doing this, we argue that
among all possible configurations of N modules with fixed two vertices, the goal configuration has
the minimum area (the least number of cells contained in the polytope).

Lemma 1. Suppose the two powerful modules are collinearly positioned with lattice distance between
them equaling N−1. The area of polytope reaches its minimum if and only if the goal configuration
is achieved.

Proof. Suppose current configuration is the goal configuration. Then the polytope is a line segment
without empty cells. The area of it is N . Polytopes under other configurations contain empty cells,
and the area of which must be larger than N .

Now suppose the current configuration is not the goal configuration. Since two powerful modules
are fixed, the area of the line segment between them is already equal to N . In addition, several modules
are not located on that line segment, the area of polytope is larger than N .

In conclusion, the goal configuration has the minimum polytope area. �

Proof of Proposition 3. For a non-goal configuration, the corresponding polytope is either a polygon
or a line segment. First, we will show that the area of a polygon polytope is non-increasing under the
proposed algorithms.

Suppose P (k) is a polygon. Therefore, B(k) contains empty cells and we are able to find a module
mi∈B(k) and an empty cell ei∈B(k) such that mi and ei are adjacent. Because mi is not isolated,
there exists another module (denoted by mj) which is adjacent to mi .

Without loss of generality, let the line determined by mi and ei act as the left boundary of P (k) as
shown in Fig. 7 (by rotating the entire configuration kπ/3 radians for some appropriate integer k).
Thus, mj must position on some cell among c1, c2, and c3. Below, by discussing different distributions
of the three cells, we will show that there always exists some module capable of moving in a round
to reconfigure the modular configuration.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

732 Curve shortening-inspired self-reconfiguration

mi

ei
c1

c2
c3

c4

e3

(a)

mi

ei
c1

c2
c3

c4

e3

(b)

Fig. 7. Feasibility of configuration evolution.

(i) All the three cells c1∼c3 are occupied by modules (including mj). Then ei∈P (k) is a feasible
cell for mi, which will be recorded after executing Algorithm 1.

(ii) Two contiguous cells among c1∼c3 are occupied by modules. Then ei∈P (k) is a feasible cell
for mi when c1 and c2 are occupied by modules, and similarly c1∈P (k) is a feasible cell of mi when
c2 and c3 are occupied by modules.

(iii) Only one cell among c1∼c3 is occupied by a module, i.e., mj . Then e1∈P (k), c1∈P (k), and
c2∈P (k) are feasible cells for mi when c1, c2 and c3 are occupied by mj respectively.

(iv) Cells c1 and c3 are occupied by modules as illustrated in Fig. 7(b). Now suppose e3 is occupied
by some module. Then ei∈P (k) is a feasible cell for mi . Otherwise, suppose e3 is empty, which results
in that ei is no longer a feasible cell for mi due to the mechanism that we adopted to avoid potential
isolated modules (the locomotion of mi from its current cell to ei would make c3 a potential isolated
module since mi cannot detect cell c4). It then follows that c2∈P (k) is a feasible cell for module in
c3 if c4 is empty, while e3∈P (k) is a feasible cell for module in c3 if c4 is not empty.

Based on a polygon polytope, we are always able to find a module capable of moving while
guaranteeing the area of current polytope non-increasing as the feasible cells selected are within the
current polytope.

Next, suppose P (k) is a line segment. Therefore at least one vertex cell of P (k) is occupied by
an ordinary module because current configuration is not a goal configuration. Let mi represent the
ordinary module that acts as the vertex in P (k). Hence, mi neither has achieved its local objective,
nor has positioned on some crude goal cell. Both feasible cells will be recorded after executing
Algorithm 1. No matter which feasible cell it moves to, the area of polytope actually increases.
However, this would not affect the convergence of the configuration for the following two reasons:
(1) The area of a line segment polytope in round k1 is larger than that of a line segment polytope in
round k2 if k1<k2; (2) once the polytope changes from a line segment to a polygon, the area of which
is non-increasing until it reaches to another line segment polytope.

By now the non-increasing of the area of polytope is guaranteed by the proposed algorithms.
Non-increasing is not sufficient, and we will further show that the area of polytope would decrease in
finite rounds. Algorithm 1 suggests that a module on the boundary to its local polytope has a higher
priority to locomote than a module strictly interior. In addition, a boundary module is preferred to
move to an interior feasible cell than move to a boundary cell. Hence, the polytope quickly decreases
when it is “wide.” On the other hand, with the “thinning” of polytope, rich information will be attained
for modules to get the idea of equivalent terminating cells. As stated above, the goal configuration is
achieved in finite rounds. �

Remark 3. Modules take actions in synchronous rounds, which means that each round lasts the same
time period, for example, a constant T . The communicating phase and the detecting phase for each
module are assumed to last also for the same time, although in practice different modules may take
less time to finish the tasks in each phase. The asynchronous mechanism is caused by the different
waiting time generated by different modules. It is deemed that the event that any two different modules
generate the same waiting time measures zero in probability. As a result, the concurrent locomotion
of modules within one round appears to be in asynchronous manner. Besides, in the updating phase,
the Gaussian distribution is introduced which acts as a reference parameter for a module to decide
whether to move in a round. The parameter added effectively deals with the situation of “chattering,”
especially when current configuration approaches the goal configuration. Although it is possible that
a configuration is the same as it is in the previous round, the value of the parameter guarantees that
a module will move to a new cell with about 80% probability, and will not move with only 20%
probability. The probability can also be changed to other values.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 733

4. Convergence of the Entire Configuration
We would like to solve Subproblems 1 and 2 together in this section. The initial positions of all
modules are randomly distributed without any isolated module.

It is sure that if Subproblem 1 can be solved within finite rounds, and the finish state of Subproblem 1
is spread to ordinary modules, Subproblem 2 can be reached as discussed in the previous section.
Equivalently, the entire modular configuration converges to a straight chain configuration with
terminal nodes being powerful modules.

4.1. Control strategies
Different strategies will be proposed for powerful modules and ordinary modules. Both strategies
contain four phases similar to the algorithm presented in the previous section. The pseudocodes are
presented in Algorithms 2 and 3. Symbols are almost the same as addressed in Table I except that
Achievi

1,2 is a logic value representing module i ′s understanding of whether the powerful modules have
reached goals in Subproblem 1, and P i

1,2 is another logic value representing module i ′s understanding
of whether a powerful module is located on the boundary or interior to its local polytope.

Algorithm 2 Reconfiguration algorithm for each module mi ∈ S1 in round k

1: Input:
{
zi
j (k−) : j ∈ Ni(k−)

}
2: Fi(k) ← ∅;
3: determine Achievi(k−), fi(k), Pi(k−), LD

(
zi(k−), z̄i(k−)

)
, LD

(
fi(k), z̄i(k−)

)
, κ

(
zi(k−), z̄i(k−)

)
, and

κ
(
fi(k), z̄i(k−)

)
;

4: Phase I: communicating phase (lines 4-5)
5: send Achievi(k−) and zi(k−) ∈ Bi(k−) (or Inti(k−)) to each adjacent module;
6: Phase II: detecting phase (lines 6-11)
7: if Achievi(k−) = 0 and LD

(
zi(k−), z̄i(k−)

)
= N−1 then
8: add each fi(k) to Fi(k) s.t. Isoi(k) = 0 and |LD

(
fi(k), z̄i(k−)

) −(N−1)| ≤ |LD
(
zi(k−), z̄i(k−)

) −(N−1)|;
9: else if Achievi(k−) = 0 and LD

(
zi(k−), z̄i(k−)

) =N−1 then
10: add each fi(k) to Fi(k) s.t. LD

(
fi(k), z̄i(k−)

) = N−1, Isoi(k) = 0, and κ
(
fi(k), z̄i(k−)

) ≤
κ

(
zi(k−), z̄i(k−)

)
;

11: end if
12: Phase III: waiting phase (lines 12-16)
13: if Fi(k)
= ∅ then
14: randomly generate �i(k) ∈ (τ1, τ2);
15: wait for a period of time �i(k);
16: end if
17: Phase IV: updating phase (lines 17-26)
18: if ∀j∈Ni(k−) s.t. LD(zi, zj)|k−≤2 and zi

j (k)=zi
j (k−) then

19: randomly generate δi(k) ∈ N(0, 1);
20: if δi(k) ∈ (−1.3, 1.3)
21: if exists f ∗

i (k) ∈ Fi(k) s.t. |LD
(
f ∗

i (k), z̄i(k−)
) −(N−1)|<|LD

(
zi(k−), z̄i(k−)

) −(N−1)| then
22: zi(k) ← f ∗

i (k)
23: else zi(k) ← f ∗

i (k),∀f ∗
i (k) ∈ Fi(k)

24: end if
25: end if
26: end if

• Communicating phase
1. Module mi, ∀ i ∈ S1, sends a message to its adjacent modules containing the information of
whether it has reached the goal in Subproblem 1, and whether it is located on the boundary or interior
to its local polytope.
2. Module mi, ∀ i ∈ S2, sends a message to its adjacent modules, including module i ′s understanding
about the status of powerful modules, i.e., to its knowledge, whether a powerful module has reached
the goal in Subproblem 1, and whether a powerful module is located on the boundary or interior
to its local polytope. Moreover, module i observes that the information of whether it satisfied the
equivalent terminating condition is also included in the message.

• Detecting phase
1. Module mi, ∀ i ∈ S1, which has not reached the goal in Subproblem 1, records appropriate feasible
cells. That is, if the lattice distance between the two powerful modules is equal to N − 1, then record

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

734 Curve shortening-inspired self-reconfiguration

Algorithm 3 Reconfiguration algorithm for each module mi ∈ S2 in round k

1: Input:
{
zi
j (k−) : j ∈ Ni(k−)

}
2: Fi(k) ← ∅;
3: determine Gc

i , Achievi(k−), Pi(k−), φi(k−), fi(k), Achievi
1,2(k−) and P i

1,2(k−);
4: Phase I: communicating phase (lines 4-11)
5: if Achievi

1,2(k−) = 1
6: if zi(k−) ∈ Gc

i then
7: send Achievi

1,2(k−) = 1 and zi(k−) ∈ Gc
i to each adjacent module;

8: else send Achievi
1,2(k−) = 1 to each adjacent module;

9: end if
10: else send Achievi

1,2(k−) = 0 and P i
1,2(k−) to each adjacent module;

11: end if
12: Phase II: detecting phase (lines 12-19)
13: if Achievi

1,2(k−) = 0, zi(k−) ∈ Bi(k−) and z1,2 ∈Int1,2(k−) then
14: for each fi(k) /∈Inti(k−) s.t. Isoi(k) = 0
15: add fi(k) to Fi(k);
16: end for
17: else
18: run lines 9-15 in Algorithm 1;
19: end if
20: Phase III: waiting phase (lines 20-27)
21: if Fi(k)
= ∅
22: if Achievi

1,2(k−) = 1 and zi(k−) ∈ Bi(k−) then
23: randomly generate �i(k) ∈ (τ1, τ2);
24: else randomly generate �i(k) ∈ (τ2, τ3);
25: end if
26: wait for a period of time �i(k);
27: end if
28: Phase IV: updating phase (lines 28-41)
29: if ∀j∈Ni(k−) s.t. LD(zi, zj)|k−≤2 and zi

j (k)=zi
j (k−) then

30: randomly generate δi(k) ∈N(0,1);
31: if δi(k) ∈ (−1.3, 1.3)
32: if Achievi

1,2(k−) = 1
33: run lines 28-31 in Algorithm 1;
34: else
35: if zi(k−) ∈ Bi(k−), z1,2 ∈Int1,2(k−) and exists

{
f ∗

i (k) :
(
f ∗

i (k) ∈ Fi(k)
) ∩ (

f ∗
i (k) /∈ Pi(k−)

) }
then

36: zi(k) ← f ∗
i (k);

37: else zi(k) ← f ∗
i (k),∀f ∗

i (k) ∈ Fi(k);
38: end if
39: end if
40: end if
41: end if

those feasible cells that do not change the lattice distance between the powerful modules, reduce
the degree of collinearity between them, and do not bring isolated modules. If the lattice distance
between the powerful modules does not equal to N − 1, record those feasible cells that make the
lattice distance between the powerful modules change monotonically toward N − 1, and do not bring
isolated modules.
2. For a module mi, i ∈ S2, if it lies on the boundary of its own local polytope and knows that the
powerful modules have not reached the goal in Subproblem 1 and a powerful module is located in the
interior of powerful module’s local polytope, then record those feasible cells that are either located on
the boundary or outside module mi’s local polytope. Otherwise, do the same things as in Algorithm 1.

• Waiting phase
1. Module mi, ∀ i ∈ S1, with recorded feasible cells randomly generates a waiting time within interval
(τ1, τ2) and then waits for the generated waiting time accordingly.
2. Module mi, ∀ i ∈ S2, with recorded feasible cells in the detecting phase, generates a randomly
waiting time according to the status of powerful modules to its knowledge. That is, if the powerful
modules have not reached the goal in Subproblem 1 to its knowledge, it generates a random waiting

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 735

time within interval (τ2, τ3). Otherwise, do the same things as in Algorithm 1. Modules then wait for
the generated waiting time accordingly.

• Updating phase: Module mi , which has waited for the generated waiting time, is a candidate
locomoting module. If the module observes that none of its neighbors within 2 lattice distance has
moved, it will proceed updating.
1. If mi ∈ S1, a recorded feasible cell which makes the lattice distance between the powerful modules
change toward N − 1 is preferred.
2. If mi ∈ S2 and to its knowledge, the powerful modules have not reached the goal in Subproblem 1, a
recorded feasible cell which is outside m′

is local polytope is preferred. Otherwise an ordinary module
does the same thing as in Algorithm 1.

4.2. Correctness validation
The correctness of Algorithms 2 and 3 will be discussed in this section by respectively showing
the finite time convergence of two powerful modules and finite time convergence of the entire
configuration.

Proposition 4. Under Algorithm 2 and Algorithm 3, two powerful modules converge to achieve the
desired distribution in finite time.

Proof. Powerful modules have the highest locomotion priority as addressed in the proposed
algorithms. Consider a powerful module m1. If m1 records some feasible cell, the moving of m1

would make the lattice distance between two powerful modules approaching N−1 (at least not
increasing). Otherwise if m1 cannot locomote in a round although it has not achieved local objective,
it will be able to move some rounds later after reconfiguration of some ordinary modules. This is
because the information about the achievement state of powerful modules will be received by adjacent
modules, the behavior of which will relax the motion constraints encountered by powerful modules.
For the modules without receiving such information, they are not adjacent to the ones received, and
hence will not affect the motion of the modules that received the information. With the help of some
ordinary modules, the two powerful modules would converge to achieve desired distribution, i.e.,
collinearly positioned with lattice distance N−1 in finite time. �

Proposition 5. Under Algorithm 2 and Algorithm 3, the modules converge to a goal configuration
in finite time.

Proposition 5 is obtained by combining the analysis for Propositions 4 and 3. Hence, we do not
restate details here.

Remark 4. From a global point of view, the goal configuration is fixed under Algorithm 1 since
the positions of two powerful modules are initially fixed. However, ordinary modules are freely
occupying any middle cells in a goal configuration. The goal configuration under Algorithm 2 and
Algorithm 3 is not fixed due to the uncertainty of final positions of powerful modules, although the
relative position between them is known (desired distribution).

5. Simulation and Discussion
Simulations are done using MATLAB to validate the proposed algorithms. Fig. 8 shows an example
of reconfiguration of ordinary modules while the two powerful modules are initially set at desired
positions (validating conclusions obtained in Section 3). Ordinary modules finally achieve their local
objectives after 27 rounds. From Fig. 8(g), we observe that the area of the enclosing polytope is
41→34→26→21→15→8 as time goes on, which is non-increasing with respect to the evolution of
modules and strictly decreases after a finite number of rounds.

Two tests under Algorithms 2 and 3 are illustrated in Figs. 9 and 10 where the initial lattice distance
between two powerful modules is less and larger than the desired value respectively. Besides initial
and goal configurations, six intermediate configurations are also presented, each shows the change
of area of polytopes during the reconfiguration process. According to Fig. 9(g), we discover that (i)
the lattice distance between powerful modules is increasing until it reaches 7 (round 11); (ii) the
collinearity degree of powerful modules is decreasing since round 11 until it reaches zero (round
14); and (iii) after powerful modules have achieved local objective (round 14), the area of polytope

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

736 Curve shortening-inspired self-reconfiguration

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(a)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(b)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(c)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(d)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(e)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(f)

1 3 5 7 9 11 13 15 17 19 21 23 25 27
5

10

15

20

25

30

35

40

45

Round

A
re

a
of

 p
ol

yt
op

e

(g)

Fig. 8. (Colour online) Example illustrating convergence of ordinary modules. (a) Initial configuration; (b)–(e)
several intermediate rounds; (f) goal configuration; (g) response of area of polytope. (a)–(f) are matching with the
rounds marked with black rectangular in (g). Red circle: powerful modules; blue rectangle: ordinary modules;
green line: boundary of polytope.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 737

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(a)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(b)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(c)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(d)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(e)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(f)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 47
0

10

20

30

round

A
re

a
of

 p
ol

yt
op

e

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 47
0

5

10

round

La
tti

ce
 d

is
ta

nc
e

be
tw

ee
n

po
w

er
fu

l m
od

ul
es

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 47
0

1

2

3

Round

C
ol

lin
ea

rit
y

be
tw

ee
n

po
w

er
fu

l m
od

ul
es

(g)

Fig. 9. (Colour online) Example illustrating convergence of all modules. (a) Initial configuration; (b)–(e): several
intermediate rounds; (f) goal configuration; (g) (from top to bottom) area of polytope; lattice distance between
powerful modules; collinearity between powerful modules. Red circle: powerful modules; blue rectangle:
ordinary modules; green line: boundary of polytope.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

738 Curve shortening-inspired self-reconfiguration

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(a)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(b)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(c)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(d)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(e)

−40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

(f)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 48
0

50

100

Round

A
re

a
of

 p
ol

yt
op

e

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 48
5

10

15

Round

La
tti

ce
 d

is
ta

nc
e

be
tw

ee
n

po
w

er
fu

l m
od

ul
es

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 48
0

5

10

Round

C
ol

lin
ea

rit
y

be
tw

ee
n

po
w

er
fu

l m
od

ul
es

(g)

Fig. 10. (Colour online) Another example illustrating convergence of all modules. (a) Initial configuration;
(b)–(e) several intermediate rounds; (f) goal configuration; (g) (from top to bottom) area of polytope; lattice
distance between powerful modules; collinearity between powerful modules. Red circle: powerful modules;
blue rectangle: ordinary modules; green line: boundary of polytope.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 739

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Lattice diatance between goal configuration and initial ordinary module chain

C
on

ve
rg

in
g

tim
e

Fig. 11. (Colour online) Relationship between the converging time and the initial lattice distance between the
desired goal configuration and the initial ordinary module chain.

is decreasing until the goal configuration is achieved (round 47). Similarly, according to Fig. 10(g),
we find that (i) the lattice distance between powerful modules is decreasing until reaches 7 (round
14); (ii) the collinearity degree of powerful modules is decreasing since round 14 until reaches zero
(round 21); and (iii) after the powerful modules have achieved their local objective (round 21), the
area of the enclosing polytope is decreasing until the goal configuration is achieved (round 48). Both
results coincide well with the conclusions we obtained in Section 4.

Moreover, we discover that under Algorithm 1(i) the converging time for the case when ordinary
modules are initially dispersed is less than that for the case when ordinary modules are initially
densely positioned, and (ii) it takes less time for an initial configuration to approach a near-goal
configuration (in which each ordinary module at most departs from crude goal cells with the lattice
distance 1), but the convergence from a near-goal configuration to the goal configuration usually
spends much more time. An example is shown in Fig. 11, in which the ordinary modules are initially
collinear and the line segment is parallel to the desired goal configuration. The figure shows the
relationship between the converging time (number of rounds) and the initial lattice distance between
the desired goal configuration and the initial ordinary module chain (the converging time under each
case is an average value that is obtained by doing about 50 tests).

6. Conclusions and Future Work
We have developed a distributed strategy for a group of modules with limited abilities to transform
from arbitrary initial configuration to a straight chain. Based on the idea of curve shortening, the
strategy well guarantees the convergence to a goal configuration within finite rounds.

The key ideas of this study for solving the reconfiguration problem toward a straight chain fall
into two aspects: Use of as less as possible powerful modules and use of as more as possible ordinary
modules require only local measurements and local communications, which can be made with low
costs. Based on the geometric property of the goal configuration (straight chain), decompose the
reconfiguration problem into two subproblems which can be realized locally. The algorithms presented
in this study are specifically for a goal configuration of straight chain. However, the ideas can be
extended to goal configurations of other shapes. For example, for an “8”-shaped goal configuration,
we can use three powerful modules that are expected to occupy the top, middle, and bottom cells such
that the three cells are collinear and spaced equally. Since an “8” can be regarded as two connected
circles (regular hexagons in a hexagonal lattice), the geometric property of the two circles can be
described as to have even curvatures at any point on the circle, or equivalently, to have a uniform lattice

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

740 Curve shortening-inspired self-reconfiguration

distance to the center of the circle. For an S-shaped goal configuration, we can use four powerful
modules. Similar geometric properties can be extracted, and distributed reconfiguration schemes can
be developed accordingly. For a general goal configuration, the concrete procedures would be much
complicated. This is left for the future work, including further investigating general principles to
solve reconfiguration problems in a distributed manner.

Acknowledgment
The work is supported by National Natural Science Foundation of China under Grant 61273113.

References
1. C. J. Chiang and G. S. Chirikjian, “Modular robot motion planning using similarity metrics,” Auton. Robots

10(1), 91–106 (2001).
2. G. Chirikjian, A. Pamecha and I. Ebert-Uphoff, “Evaluating efficiency of self-reconfiguration in a class of

modular robots,” J. Robot. Syst. 13(5), 317–338 (1996).
3. M. Yim, Y. Zhang, J. Lamping and E. Mao, “Distributed control for 3D metamorphosis,” Auton. Robots

10(1), 41–56 (2001).
4. K. Stoy, “Controlling Self-Reconfiguration Using Cellular Automata and Gradients,” In: Proceedings of

the 8th International Conference on Intelligent Autonomous Systems (2004) pp. 693–702.
5. K. Harada, D. Oetomo, E. Susilo, A. Menciassi, D. Daney, J. P. Merlet and P. Dario, “A reconfigurable

modular robotic endoluminal surgical system: Vision and preliminary results,” Robotica 28, 171–183
(2010).

6. G. S. Chirikjian, “Kinematics of a Metamorphic Robotic System,” In: Proceedings of the 1994 IEEE
International Conference on Robotics and Automation (1994) pp. 449–455.

7. S. Murata, H. Kurokawa and S. Kokaji, “Self-Assembling Machine,” In: Proceedings of the 1994 IEEE
International Conference on Robotics and Automation (1994) pp. 441–448.

8. A. Pamechal, I. E. Uphoff and G. S. Chirikjian, “Useful metrics for modular robot motion planning,” IEEE
Trans. Robot. Autom. 13(4), 531–545 (1997).

9. J. E. Walter, J. L. Welch and N. M. Amato, “Concurrent metamorphosis of hexagonal robot chains into
simple connected configurations,” IEEE Trans. Robot. Autom. 18(6), 945–956 (2002).

10. J. E. Walter, J. L. Welch and N. M. Amato, “Distributed reconfiguration of metamorphic robot chains,”
Distrib. Comput. 17(2), 171–189 (2004).

11. R. Ghrist and V. Peterson, “The geometry and topology of reconfiguration,” Adv. Appl. Math. 38(3), 302–323
(2007).

12. L. Zhang and J. S. Dai, “Metamorphic Techniques and Geometric Reconfiguration Principles,” In:
International Conference on Reconfigurable Mechanisms and Robots 2009 (2009) pp. 32–40.

13. S. Matysik and J. Walter, “Using a Pocket-Filling Strategy for Distributed Reconfiguration of a System of
Hexagonal Metamorphic Robots in an Obstacle-Cluttered Environment,” In: Proceedings of the 2009 IEEE
International Conference on Robotics and Automation (2009) pp. 3266–3273.

14. J. E. Walter, E. M. Tsai and N. M. Amato, “Algorithms for fast concurrent reconfiguration of hexagonal
metamorphic robots,” IEEE Trans. Robot. 21, 621–631 (2005)

15. F. Hou and W. Shen, “On the Complexity of Optimal Reconfiguration Planning for Modular Reconfigurable
Robots,” In: 2010 IEEE International Conference on Robotics and Automation (2010) pp. 2791–2796.

16. E. Guan, Z. Fu, W. Yan, D. Jiang and Y. Zhao, “Self-reconfiguration path planning design for M-lattice
robot based on genetic algorithm,” Intell. Robot. Appl. 7102, 505–514 (2011).

17. P. Ivanov and J. Walter, “Layering Algorithm for Collision-Free Traversal Using Hexagonal Self-
Reconfigurable Metamorphic Robots,” In: Proceedings of 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (2010) pp. 521–528.

18. Y. Miao, G. Yan and Z. Lin, “A Distributed Reconfiguration Strategy for Target Enveloping with Hexagonal
Metamorphic Modules,” In: Proceedings of the 2011 IEEE International Conference on Robotics and
Automation (2011) pp. 4804–4809.

19. T. Larkworthy and S. Ramamoorthy, “A characterization of the reconfiguration space of self-reconfiguring
robotic systems,” Robotica 29(1), 73–85 (2011).

20. A. Pamecha, C. chiang, D. Stein and G. Chirikjian, “Design and Implementation of Metamorphic
Robots,” In: Proceedings of the 1996 ASME Design Engineering Technical Conferences and Computers in
Engineering Conference (1996) pp. 1–10.

21. S. Murata, H. Kurokawa, E. Yoshida, K. Tomita and S. Kokaji, “A 3-D Self-Reconfigurable Structure,” In:
Proceedings of the 1998 IEEE International Conference on Robotics and Automation (1998) pp. 432–439.

22. A. Castano, W. M. Shen and P. Will, “CONRO: Towards deployable robots with inter-robots metamorphic
capabilities,” Auton. Robots 8(3), 309–324 (2000).

23. B. Salemi, M. Moll and W. Shen, “SUPERBOT: A Deployable, Multi-Functional, and Modular Self-
Reconfigurable Robotic System,” In: Proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems (2006) pp. 3636–3641.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

Curve shortening-inspired self-reconfiguration 741

24. K. Gilpin, K. Kotay, D. Rus and I. Vasilescu, “Miche: Modular shape formation by self-disassembly,” Int.
J. Robot. Res. 27(3–4), 345–372 (2008).

25. K. Gilpin, A. Knaian and D. Rus, “Robot Pebbles: One Centimeter Modules for Programmable Matter
Through Self-Disassembly,” In: Proceedings of the 2010 IEEE International Conference on Robotics and
Automation (2010) pp. 2485–2492.

26. M. A. Grayson, “The heat equation shrinks embedded plane curves to round points,” J. Differ. Geom. 26(2),
285–314 (1987).

27. M. A. Grayson, “Shortening embedded curves,” Ann. Math. 129, 71–111 (1989).
28. D. Yamins and R. Nagpal, “Automated Global-to-Local Programming in 1-D Spatial Multi-Agent Systems,”

In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems
(2008) 615–622.

https://doi.org/10.1017/S0263574713001136 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001136

