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This paper employs the state-space model to reexamine the fundamental issue in finance
of whether it is the expected returns or the expected dividends growth that is primarily
responsible for stock price variations. We use Bayesian methods to show that there is a
substantial uncertainty about the contributions of expected returns and expected dividends
to fluctuations in the price–dividend ratio when the aggregate returns and dividends data
are used. The substantial uncertainty of the contributions results from the model being
weakly identified. Our finding challenges the notion long held in the existing literature
that it is the expected returns that contribute most to price–dividend variations.
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1. INTRODUCTION

Finance theory tells us that fluctuations in stock prices are attributable to move-
ments in either expected future dividend growth (cash flows) or expected future
returns (the discount rate). Campbell and Shiller (1988a, 1988b) derive an ap-
proximate accounting identity based on a linearization to decompose the stock
price–dividend ratio into the sum of expectations of future dividend growth and
returns. They show that if the price–dividend ratio can predict future stock returns,
then expected future returns should contribute to the price–dividend variation.

This paper is written in honor of Charles Nelson, who wrote numerous influential articles in the fields of macroeco-
nomics and finance. In particular, this paper follows in the wake of his often cited 2007 article on weak identification.
The importance of weak identification in the empirical literature has been neglected in many important studies.
This paper attempts to address this shortcoming. Address correspondence to: Jun Ma, Department of Economics,
Finance and Legal Studies, Culverhouse College of Commerce and Business Administration, University of Alabama,
Tuscaloosa, AL 35487-0024, USA; e-mail: jma@cba.ua.edu.
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Campbell (1991) further notes that the contribution of the expectations of future
returns to stock price fluctuation will depend not only on the degree of returns pre-
dictability, but also on the time series properties of expected returns. In particular,
the expected returns can have a large effect on the stock price, provided that the
expected returns are persistent, even if stock return predictability is low. Campbell
(1991) and Campbell and Ammer (1993) conclude that news about future excess
returns is the primary factor behind movements in U.S. stock returns.1

The relative contributions of expected returns and expected cash flows to move-
ments in the price–dividend ratio have been an area of interest in the finance
discipline for decades. A major challenge that researchers face when attempting
to investigate the question is that neither expected cash flows nor expected discount
rates are observable. Two primary approaches have been proposed to capture these
unobserved expectations of future variables: vector autoregression (VAR) and the
state-space model. The vector autoregression (VAR) decomposition approach has
found that it is expected returns that contribute most to movement in the price–
dividend ratio when traditional dividends are employed.2 A second approach
employs a state-space method and finds that expected returns are the primary
contributor to movements in the price–dividend ratio when dividends are used as
the cash flow measure.3 Applications of the two approaches using dividends as the
cash measure have reached the same conclusion: almost all aggregate stock price
variations are driven by discount rate news and almost none by cash flow news.

Most of this extant literature indicates not only that expected returns are time-
varying but also that it is expected returns, rather than expected dividend growth,
that contribute most to movements in asset prices. A number of important theoret-
ical papers set out to explain this result. Campbell and Cochrane (1999) focus on
what they refer to as the surplus consumption ratio (which is current consumption
relative to “habit,” essentially the history of aggregate consumption) and show that
their model can successfully replicate many empirical features of asset prices. In
their model. if the surplus consumption ratio is low (typically in recessions), risk
aversion will be high, current stock returns will be low, expected future equity
returns will be high, and the price–dividend ratio will be low. The model suggests
that most of the movement in the price–dividend ratio is due to expected returns. as
their endowment growth is i.i.d. On the other hand, Bansal and Yaron (2004) depart
from the i.i.d. assumption and argue that there exist persistent components (i.e., the
long-run risk) that are common in both consumption and dividend growth. They
show that this small but persistent component helps resolve several asset pricing
anomalies such as the risk premium puzzle.4 In particular, their model implies that
consumption and dividend growth are predictable by the price–dividend ratio and
that it is the expected dividend growth that contributes most to movements in the
price–dividend ratio.

The conclusion of the large extant literature, that it is the expected future returns
that are most responsible for movements in the price–dividend ratio, is not without
criticism. Inspired by Nelson and Kim (1993), who point out that the predictability
of stock returns turns out to be insignificant once finite sample inference bias
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is taken into account, Ma and Wohar (2012) apply a nonparametric bootstrap
procedure to document the uncertainty of the VAR stock price decomposition and
find that the seemingly large contribution of the expected future returns is not
statistically significant. There are also a number of other limitations and pitfalls in
such VAR decompositions. For example, the finding in the literature that expected
returns dominate dividend growth in explaining movements in the price–dividend
ratio is sensitive to the specification of the VAR [Balke and Wohar (2006)], to the
sample period [Chen (2009)], and to the choice of predictive variables [Goyal and
Welch (2008) and Chen and Zhao (2009)].

This paper investigates in a deeper way the time series dynamic properties
of expected returns and expected cash flows and shows that the results of the
earlier literature are questionable. In particular, we employ state-space Bayesian
methods to illustrate that the earlier empirical work in this area is subject to
severe inference problems, which makes reported findings unreliable. In particular,
we argue that stock price decompositions are plagued by weak identification.
Although this has been hinted at in Balke and Wohar (2002) and Ma and Wohar
(2012), what separates the current analysis from our earlier work is that the
Bayesian methods employed in this paper allow us to pinpoint the source of the
weak identification as uncertainty about the relative variances of the persistent
components of dividend growth and returns. The Bayesian methods also allow
us to better document just how large this uncertainty is. Once the uncertainty
about the variances of the persistent components of dividend growth and returns
is taken into account, we find that aggregate returns and dividends data cannot
provide sufficient statistical evidence to support the notion that it is expected
returns that explains the majority of the fluctuation in the price–dividend ratio
when dividends are used as the cash flow measure. To understand early on what
the issues are, note that the log price–dividend ratio is a fairly persistent series,
whereas returns and cash flows appear at a glance to be white noise series. In
order to capture the persistence in the log price–dividend ratio, there needs to
be a persistent component within (expected) returns and/or (expected) dividend
growth. Within a state-space modeling framework, it turns out that one only needs
a small permanent component to help explain movements in the log price–dividend
ratio, as the loading factor on this component in the log price–dividend equation
is relatively large. Unfortunately, neither of these two series individually provides
much information about its permanent component—they are both close to being
white noise. As a result, most information about movements in the permanent
components in both dividends and return is actually contained in the log price–
dividend ratio, not in the individual series themselves, but this is not sufficient to
separately identify a persistent component in dividend growth and returns.

The preceding is similar to the notion of a small signal-to-noise ratio of the
state-space model implying weak identification [in the sense of Nelson and Startz
(2007)]. In particular, Ma and Nelson (2012) find that the state-space models are
typically subject to a ZILC (zero-information-limit condition) as formulated by
Nelson and Startz (2007), and as a result, when the signal is small relative to noise
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for a particular process in the state-space model, the process becomes weakly
identified and the resulting uncertainty of the estimates is high.5 In our Bayesian
analysis, we find evidence consistent with weak identification of key variances and
covariances. The weak identification and the ZILC condition make it very difficult
to determine which factor explains movements in the price–dividend ratio.

2. STOCK PRICE DECOMPOSITION

Let rt+1 denote the logarithm of equity return during the period t+1. By definition,

rt+1 = log(Pt+1 + Dt+1) − log(Pt ). (1)

Here, Pt+1 is the equity price at the end of time t+1, and Dt+1 is the dividends
distributed during the period t+1. Campbell and Shiller (1988a, 1988b) applied
the log-linearization approximation to (1) and derived the well-known identity in
terms of logarithmic variables

rt+1 ≈ κ + dt+1 + ρ · pdt+1 − pdt , (2)

where dt+1 = log(
Dt+1

Dt
), pdt+1 = log(

Pt+1

Dt+1
), ρ = exp[E(pdt )]

1+exp[E(pdt )]
, and κ = log{1 +

exp[E(pdt )]} − ρ · E(pdt ).
By iterating (2) forward and excluding the explosive solution, one can show

that the price–dividend ratio is the sum of discounted future returns and dividends
growth. If we assume finite conditional expectations for both future returns and
dividends growth, we can take conditional expectations of both sides and obtain
the following result:

pdt = κ

1 − ρ
+ Et

∞∑
j=0

ρ j (dt+1+ j − rt+1+ j ). (3)

Equation (3) states that any variation in the price–dividend ratio must come ei-
ther from the variation of future dividend growth expectations or from future
returns expectations. It is important to study which of the two components on the
right-hand side of the equation is more important in driving the price–dividend
variations. The major challenge in this study is how to estimate the expectations
of future dividend growth and future returns. Without direct observation of the
expectations, one has to make assumptions about the agent’s information set and
explore possible dynamic patterns in these variables to estimate these expectations.
As discussed in the Introduction, much research work in the literature has relied
on the VAR model, following Campbell and Shiller’s (1988a, 1988b) pioneering
work.
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3. STATE-SPACE MODEL DECOMPOSITION

Recent work by Balke and Wohar (2002) and Binsbergen and Koijen (2010)
has applied state-space models to model and estimate the expectation processes
directly. The state-space framework offers a nice alternative to the VAR model
and has the advantages of modeling the expectations directly as latent factors and
capturing the long-run serial correlations that a VAR with a finite number of lags
would have difficulty in capturing. The latter point comes from the fact that the
state-space model typically results in moving average terms in its reduced form
[see Morley et al. (2003)].

The realized dividend growth and realized returns are the sum of a persistent
component and a transitory component:

dt+1 = d p
t+1 + dτ

t+1, (4)

rt+1 = r p
t+1 + r τ

t+1 + rn
t+1. (5)

For simplicity, we model d p
t+1 and r p

t+1 by random walks with innovations ε
dp
t+1

and ε
rp
t+1:

d p
t+1 = d p

t + ε
dp
t+1, (6)

r p
t+1 = r p

t + ε
rp
t+1. (7)

Let transitory components of dividends and returns, dτ
t+1 and r τ

t+1, be modeled as
stationary AR(p) processes:

dτ
t+1 = φd(L) · dτ

t + εdτ
t+1, (8)

r τ
t+1 = φr (L) · r τ

t + εrτ
t+1, (9)

where φi (L) = ∑p
j=1 φi, j L j−1, i = d, r . Note that the expectation of future

dividends is given by

E
t

dt+1 = d p
t + φd(L) · dτ

t , (10)

and the expectation of future returns is

E
t

rt+1 = r p
t + φr (L) · r τ

t . (11)

The additional term in the returns equation, (5), rn
t+1, is white noise, with

Et rn
t+1 = 0. To see this, write out the companion form of (8) and (9),

Zi
t+1 = Ai · Zi

t + V i
t+1, (12)

where i = d, r , Zd
t+1 = ( dτ

t+1, . . . , dτ
t−p+2 )′, V d

t+1 = ( εdτ
t+1, . . . , 0 )′, Zr

t+1 =
( r τ

t+1, . . . , r τ
t−p+2 )′, V r

t+1 = ( εrτ
t+1, . . . , 0 )′, and Ai is the corresponding com-

panion matrix. Plugging (12) into (3), we can derive the log price–dividend as
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follows:

pdt = (1 − ρ)−1
(
d p

t − r p
t

)
+ e′

1 · [
Ad · (I − ρ · Ad)

−1 · Zd
t − Ar · (I − ρ · Ar )

−1 · Zr
t

]
, (13)

where e1 is the selection vector, which has 1 as its first element and 0 elsewhere.
Plugging this result into (2) we obtain after some algebra

rn
t+1 = (1 − ρ)−1

(
ε

dp
t+1 − ε

rp
t+1

)
+ [1 − ϕd(ρ)]−1εdτ

t+1 − [1 − ϕr (ρ)]−1εrτ
t+1. (14)

Notice here that we use the result e′
1 · (I − ρ · Ai )

−1 · V i
t+1 = [1 − φd(ρ)]−1 εiτ

t+1
for i = d, r .

Note that rn
t+1 is a linear combination of shocks to the other underlying com-

ponents and that this particular linear combination has no effect on the log price–
dividend ratio. Because of this restriction, derived from the accounting identity
that ties together the three variables d, r , and pd, one only needs to use two of them
to estimate the model, whereas the third variable can be backed out. We follow
Binsbergen and Koijen (2010) in choosing to model dividends growth explicitly,
together with the log price–dividend ratio.

The preceding model can be put into a state-space representation as follows:

St = F(θ)St−1 + Vt , Vt ∼ MV N (0, Q(θ)), (15)

where θ is the vector of structural parameters, St =
(d p

t , r p
t , dτ

t , r τ
t , dτ

t−1, r τ
t−1, . . . , dτ

t−(p−1), r τ
t−(p−1))

′ the vector of unobserved

state variables, Vt = (ε
dp
t , ε

rp
t , εdτ

t , εrτ
t , 02×(p−1))

′ the vector of innovations to the
state variables, and the transition matrix is

F(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2×2 02×2 · · · 02×2

02×2 φ1 φ2 · · · φp−1 φp

I2×2 02×2 · · · 02×2 02×2
... 02×2 I2×2

. . .
...

. . .
. . .

...

02×2 02×2 · · · 02×2 I2×2 02×2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

φi =
[

φd,i 0
0 φr,i

]
for i = 1, 2, . . . p.

The observation equation is

Y obs
t = H(θ)St , (16)
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FIGURE 1. Log price–dividend ratio, dividend growth, and the rate of return, 1952–2011.

where Y obs
t = (dt , pdt )

′ and

H(θ) =
[

Hd

(Hd − Hr ) (I − ρF)−1 F

]
,

with Hd = (1, 0, 1, 0, 02×(p−1)) and Hr = (0, 1, 0, 1, 02×(p−1)). The observation
variables, dividend growth (dt ) and the log price–dividend ratio (pdt ), are from
the CRSP market indices of NYSE/AMEX/NASDAQ. We follow Hansen et al.’s
(2008) aggregation procedure to construct the quarterly real equity return and real
dividend growth series for the period 1952–2011 (see Figure 1).6 In the estimated
model, we set the number of lags in the transitory components of dividend growth
and returns to be two (p = 2).

Before we move on to the empirical results, a short discussion of how to
interpret the unobserved components, d p

t , r p
t , dτ

t , r τ
t , might be useful. The market

fundamentals interpretation of these components is that they reflect the predictable
components in dividend growth (d p

t , dτ
t ) and in returns (r p

t , r τ
t ). These, through the

present value relationship, determine the log price–dividend ratio. Given that div-
idend growth is observed and is assumed not to depend on the return components,
an alternative interpretation is to think of the return components as idiosyncratic
components of the log price–dividend ratio. These idiosyncratic components could
reflect market fundamentals such as expectations about future returns, but they
could also reflect nonmarket fundamental effects on the log price–dividend ratio.7
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TABLE 1. Selected statistics of the posterior distribution of parameters for model
with two permanent components

Maximum of 95th
posterior Mean of St. dev. of 5th percentile percentile of

probability posterior posterior of posterior posterior
Parameter function distribution distribution distribution distribution

φd,1 0.33168 0.32766 0.066572 0.21769 0.43601
φr,1 0.33531 0.022255 0.11652 −0.11624 0.23836
φd,2 0.2229 0.22914 0.064297 0.12356 0.33448
φr,2 0.30176 0.023044 0.10237 −0.0996 0.22675
var(εdp

t ) 8.53E-05 0.017412 0.040751 2.77E-05 0.081385
var(εdτ

t ) 3.6304 3.778 0.43494 3.126 4.5319
var(εrp

t ) 0.002087 0.019619 0.037781 0.001915 0.079824
var(εrτ

t ) 62.907 2575.3 3985.1 129.15 9337.9
corr(εdp

t , εdτ
t ) −0.26609 −0.07817 0.64965 −0.99392 0.98655

corr(εdp
t , ε

rp
t ) −0.67979 0.55852 0.47759 −0.51583 0.98435

corr(εdp
t , εrτ

t ) 0.66205 −0.00138 0.50914 −0.82478 0.82
corr(εdτ

t , ε
rp
t ) 0.30062 0.14527 0.506 −0.86245 0.87093

corr(εdτ
t , εrτ

t ) 0.029226 0.076433 0.27935 −0.33432 0.61116
corr(εrp

t , εrτ
t ) −0.94262 0.007345 0.49364 −0.77055 0.77131

var(εdp
t − ε

rp
t ) 0.002746 0.004402 0.000969 0.002977 0.006078

For the discussion of weak identification, it does not matter which interpretation
one uses.

4. ESTIMATION RESULTS

Table 1 presents the mean, standard deviation, and 5th and 95th percentiles of the
posterior distributions of the state-space model parameters as well as the maximum
likelihood estimate of the parameters.8 Figures 2, 3, and 4 plot the posterior
distributions of the parameters. From Table 1 and Figure 2, we see that the means of
the posterior distributions for both of the autoregressive coefficients for transitory
returns are centered at zero. The sum of the AR(1) and AR(2) coefficients from the
ML estimation is not significantly different from zero. The means of the posterior
distributions for the AR(1) and AR(2) coefficients for the transitory dividend
process are 0.32 and 0.23, respectively. One interesting result is that the MCMC
sampler wants the AR coefficients of transitory returns to be very small and the
variance of the returns to be large. The maximum posterior probability (given the
relatively uniformed priors, essentially the maximum likelihood) point estimates
suggest that the AR(1) coefficient for returns is about 0.3 and the variance is small
relative to the MCMC results. This would appear to be a symptom of identification
problems, as the MCMC appears to explore other significant modes in the posterior
distribution.9
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FIGURE 2. Histogram of posterior distribution of autoregressive parameters for model with
permanent components in both dividends and returns.

Figure 3 displays posterior distributions of the variances and correlation coeffi-
cients of innovations in the state vector. From Table 1 and Figure 3, one observes
that the posterior distributions of the correlations are very disperse—the posterior
distributions of many of the correlation coefficients span nearly the entire range
from −1 to 1. Interestingly, the posterior distributions of the variances of the two
permanent components look quite similar—they have similar means, medians,
and standard deviations, even though the variances of actual dividend growth and
returns are very different (see Figure 1).

Figure 4 and the last row of Table 1 display features of the posterior distribution
of var(εdp

t − ε
rp
t ). For comparison, we also include the posterior distributions

components of this variance: var(εdp
t ), var(εrp

t ), and corr(εdp
t , ε

rp
t ). We truncate

the plots of the histograms of var(εdp
t ) and var(εrp

t ) so that they can be com-
pared more readily with that of var(εdp

t − ε
rp
t ). Note that the posterior distribution

of var(εdp
t − ε

rp
t ) is much more concentrated than the posterior distributions of

var(εdp
t ) and var(εrp

t ). This implies that the data are informative about var(εdp
t −ε

rp
t )

(i.e., it is precisely estimated), but not so informative about var(εdp
t ), var(εrp

t ), or
corr(εdp

t , ε
rp
t ) individually (i.e., these are estimated imprecisely). This suggests that
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FIGURE 3. Posterior distributions of variances and correlations of innovations for state-
space model with permanent components in dividend growth and returns.

the variances of the innovations in the permanent factors are not well identified;
however, the variance of (ε

dp
t − ε

rp
t ) is.

Figure 5 displays the posterior distribution of the historical decomposition of
the log price–dividend ratio. The top panel displays the contribution of expected
future dividends, whereas the bottom panel displays the contribution of expected
future returns. Although the median contribution of expected future returns seems
to track the log price–dividend ratio, the 5th and 95th percentile band is quite large.
The posterior distribution of the contribution of expected future dividends is also
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FIGURE 4. Posterior distribution of the components of var(εdp
t − ε

rp
t ).

quite disperse. Together these suggest that the model is not too informative about
whether it is expectations of future dividends or future returns that are driving
stock prices.

To determine whether it is the permanent or transitory components that are
important, Figure 6 displays the contribution of just the permanent components
to the log price–dividend ratio. The top panel displays the contribution of the per-
manent component of dividend growth, the middle panel displays the contribution
of the permanent component of returns, and the bottom panel displays the joint
contribution of the two permanent components. Two important features stand out
from Figure 6. First, the individual contributions of expected future dividends and
expected future returns are largely driven by the permanent components and not
the transitory components. The posterior distribution for the total contribution of
expected dividends and returns (displayed in Figure 5) is similar to the top two
panels in Figure 6. This is not too surprising, as the transitory components are
estimated to have relatively small autoregressive parameters and hence do not
provide much information about future dividends or returns. Second, although
there is substantial uncertainty about the contributions of the individual perma-
nent components, the joint contribution of the permanent components has little
dispersion and tracks the actual log price–dividend ratio closely. This is consistent
with the fact that there was substantial uncertainty about the individual variances
of (and correlation between) innovations in the permanent components but much
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FIGURE 5. Historical decomposition of log price–dividend ratio: contribution of expected
future dividends and expected future returns. Median and 5th and 95th percentiles of the
posterior distribution.

less uncertainty about the value of var(εdp
t − ε

rp
t ). Overall, Figure 6 suggests that

the permanent components of dividends and returns are driving the log price–
dividend ratio, but the data cannot tell which of these two permanent components
is the more important.

Given that jointly the permanent components of dividend growth and returns
were estimated to be important for fluctuations in the log price–dividend ratio, one
might wonder whether such important permanent components are plausible given
the lack of persistence in actual dividend growth and excess returns. Figure 7 plots
actual dividend growth and actual returns against the median and the 5th and 95th
percentiles of the permanent component for dividend growth and returns. What
stands out from Figure 7 is that the permanent components for both dividend
growth and returns are very small compared with fluctuations in those variables.
Note that this was also the case for the variance of innovations in the permanent
and temporary components displayed in Table 1 and Figure 3. Our finding is
reminiscent of Nelson and Schwert (1977), who point out that it is possible for the
expectation dynamics to be drastically different from the observed series provided
that the expectation shock is small relative to the realized shock. Figure 7 also
points to the source of the lack of identification for the relative contributions
of dividends and returns to fluctuations in the price–dividend ratio. Because the
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Contribution

Contribution

Joint

FIGURE 6. Contribution of permanent components to log price–dividend ratio. Median and
5th and 95th percentiles of the posterior distribution.

factors loading on the permanent components are so large in the log price–dividend
equation, small fluctuations in a permanent component have large effects on the
log price–dividend ratio. As both dividend growth and returns have large transitory
components yet have small permanent components, these variables individually
have little direct information about the permanent components. As a result, nearly
all of the information about the two persistent components comes from a single
variable: the log price–dividend ratio. Unfortunately, this is not enough information
to separately identify a permanent component in dividend growth and a permanent
component in returns.
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Returns

FIGURE 7. Actual dividend growth and returns along with permanent components of divi-
dend growth and returns: median and 5th and 95th percentiles.

5. SOLVING WEAK IDENTIFICATION BY IMPOSING RESTRICTIONS
ON THE NUMBER OF PERMANENT COMPONENTS

One can in principle solve the weak identification problem by imposing restrictions
on the more general state-space model. In this section, we explore the consequences
of dropping one of the permanent components from the state-space model (i.e.,
restricting the variance of innovations in that component to be zero).

Figure 8 displays the posterior distributions of the variances and correlations
of innovations to the states when there is no permanent component in returns.
Comparing the posterior distribution in Figure 8 with those in Figure 3, it is clear
that the dispersion in the posterior distributions of the correlation parameters is
substantially smaller in the model with no permanent component in returns than
in the model with permanent components in both dividends and returns. Note that
the posterior distribution of var(εdp

t ) for the model with no permanent component
in returns looks more like the posterior distribution of var(εdp

t − ε
rp
t ) for the model

with two permanent components. Figure 9 displays the posterior distributions of
variances and correlations for the model where there is no permanent compo-
nent of dividends. Again, compared to the model with permanent components in
both dividends and returns, the correlations are much more precisely estimated.
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FIGURE 8. Posterior distribution of variances and correlations of innovations in state-space
model with a permanent component in dividend growth but no permanent component in
returns.

Similarly, the posterior distribution of innovations in the single permanent
component [in Figure 9,var(εrp

t )] looks much like the posterior distribution of
var(εdp

t − ε
rp
t ) in the model with two permanent components.

Although both models’ parameters appear to be estimated with precision, which
of the two models do the data favor? Figure 10 plots the cumulative density
functions of the likelihood values based on draws from the MCMCs used to
estimate the posterior distribution of the parameters. The CDFs for the empirical
likelihood values lie nearly on top of one another—neither model appears to
stochastically dominate the other—in other words, the data view these models as
almost equally likely.

Although the data do not appear to favor one of the models over the other,
the two models have very different implications for stock price decomposition.
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FIGURE 9. Posterior distribution of variances and correlations of innovations in a state-space
model with a permanent component in returns but no permanent component in dividend
growth.

In fact, for the model with a permanent dividend component and no permanent
returns component, it is expectations of future dividends that explain nearly all
of the fluctuations in the log price–dividend ratio. For the model with a per-
manent returns component and no permanent component for dividends, it is the
expectations of future returns that explain stock price fluctuations. The top panel
of Figure 11 plots the posterior distribution of the historical contribution of the
permanent component of dividends to the log price–dividend ratio for the model
without permanent returns; the middle panel plots the historical contribution of
the permanent component of returns to the log price–dividend ratio for the model
without permanent dividends; for comparison, the bottom panel plots the posterior
distribution of the combined historical contribution of the permanent components
for the model with both permanent dividends and returns. In all three panels, the
permanent component(s) explains the vast majority of price–dividend movements
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FIGURE 10. Cumulative density function for likelihood values from MCMC draws for
models with a single permanent component.

over the sample. In all three panels, the posterior distribution of the contribution
of the permanent component(s) is very tight—given a model, there is little uncer-
tainty that the permanent components explain nearly all of the log price–dividend
ratio regardless of whether it is in dividend growth alone (top panel), in returns
alone (middle panel), or in both dividends and returns (bottom panel). Yet, when
one takes account of uncertainty across models, the data are unable to ascertain
whether the permanent component(s) is primarily in dividends or in returns.

6. FURTHER ANALYSIS USING DISAGGREGATED PORTFOLIOS

The results in the preceding sections essentially applied to the market portfolio.
As expected returns largely reflect systematic risk, one might expect movements
in the market log price–dividend ratio to reflect changes in expected returns (as
has been the dominant finding in the literature). More disaggregated portfolios
are more likely to be influenced by idiosyncratic cash flows than in aggregate
portfolios where this idiosyncratic cash flow gets diversified away. This suggests
that at a more disaggregated level, dividend growth should matter more for stock
return decompositions.10 In terms of decompositions of the price–dividend ratio,
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FIGURE 11. Contribution of permanent components to log price–dividend. Median and 5th
and 95th percentiles of the posterior distribution.

however, it is not clear whether examining disaggregated portfolios helps to solve
the weak identification problem pointed out in the preceding sections. Although
idiosyncratic cash flows get diversified away, using aggregate dividend growth
might actually filter out some of the high-frequency/idiosyncratic fluctuations in
cash flows allowing for better inference about the low frequency component in
dividend growth. To ascertain whether more disaggregated portfolios suffer from
the same sort of weak identification problem that we have showed plague aggregate
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portfolios, we apply our Bayesian MCMC analysis to portfolios arranged by firm
size, book-to-market, dividend–yield, earnings–price, and cash-flow–price ratio.

The returns with and without dividends distribution for these portfolios are
obtained from Kenneth French’s website.11 We impute the price–dividend ratio
and aggregate the monthly observation to quarterly frequency by following the
same procedure as we described and applied to the aggregate market portfolio in
Section 3. We examine the bottom and top deciles for each of these portfolios.
The sample period is from 1952 to 2011, the same as for the aggregate market
portfolio analyzed in preceding sections. We employ the model that allows for a
permanent component in both expected dividend growth and expected returns.

Figure 12 presents the results for the bottom decile, whereas Figure 13 presents
the results for the top decile. The first column of each figure presents the
contribution of permanent dividend growth to fluctuations in the log price–
dividend ratio, and the second column presents the contribution of permanent
returns, whereas the third column report the results for the joint contribution of
permanent dividend growth and permanent returns. Similarly to the aggregate re-
sults, reported earlier in the paper, the contributions of permanent dividend growth
and permanent returns are estimated imprecisely individually. However, the joint
contribution of permanent dividend growth and permanent returns is estimated
very precisely. We are thus unable to determine the relative contribution of each
component individually.

7. CONCLUSION

The relative contributions of expected returns and expected cash flows to move-
ments in the price–dividend ratio have been an area of interest in the finance
discipline for decades. A major challenge in finance research is to ascertain
whether it is expected returns or expected dividends growth that contributes to
movements in the price–dividend ratio.

This paper contributes to the existing literature by illustrating that the earlier
empirical work in this area is subject to severe inference problems that make
their findings unreliable. We employ quarterly real equity return and real dividend
growth series for the period 1952–2011 and use Bayesian methods to infer that, in
contrast to much of the previous literature, there is substantial uncertainty about
whether expected returns or expected dividends drive stock price fluctuations. Our
results show that using aggregate returns and dividends data, one cannot provide
sufficient statistical evidence to support the long-held notion that that it is expected
returns that explain the majority of the fluctuation in the price–dividend ratio when
dividends are used as the cash flow measure. The source of weak identification is
the size of the variances of innovations relative to the low-frequency component
of dividends or returns. What the data support is that there is a small, persistent
component affecting the log price–dividend ratio, but the data are essentially silent
on whether it is in dividends or returns.
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NOTES

1. Cuthbertson et al. (1999) find that similar results hold for the U.K. stock market.
2. For the VAR literature see Campbell and Shiller (1988a, 1988b), Campbell (1991), Cochrane

(1992, 2008), Shiller and Beltratti (1992), and Campbell and Ammer (1993). Note, however, that
Larrain and Yogo (2008) find when a broader definition of dividends is employed (called net
payout), expected net payout is found to contribute most to movement in the price–net payout
ratio.

3. For the state-space approach see Balke and Wohar (2002), Binsbergen and Koijen (2010), and
Ma and Wohar (2012).

4. Ma (2013) shows that the long-run risk model is weakly identified, and the corrected inference
suggests that the uncertainty of the persistent components for the consumption and dividend growth is
large.

5. Ma et al. (2007) also show that the weak identification in a GARCH model implies a great deal
of uncertainty of the persistence estimate and the standard inference often fails to report the correct
confidence interval.

6. Hansen, Heaton, and Li’s data sources and procedures for computing return and dividend series
are available on Nan Li’s website: http://www.bschool.nus.edu.sg/staff/biznl/.

7. Balke and Wohar (2009) consider the case of an explicitly nonfundamental component in the
log price–dividend ratio in the form of a bursting and reoccurring rational bubble. This differs from
the expected future returns components in that a rational bubble imposes fairly strong restrictions on
the stochastic process governing the bubble component.

8. The posterior distribution is based on a 750,000 sample of every fifth draw from the Metropolis–
Hastings (MH) MCMC after a burn-in period of 250,000 draws. For each of the models, the individual
autoregressive parameters have a prior distribution of joint truncated normal N(0, 1,000) and the
variances of innovations in (15) are distributed U(0, 10,000), whereas the correlations of innovations
are distributed U(−1, 1). Draws in autoregressive parameters that imply nonstationarity are rejected.
These prior distributions ensure that for this model and data, the acceptance in the Metropolis–Hastings
sampler depends only on the likelihoods.

9. This does not appear to be the result of the Markov chain being stuck in an inferior mode, as the
chain traversed a large part of the parameter space, especially for the correlations between innovations.

10. Cochrane (2008) argues that much of the cash flow variance is idiosyncratic in nature, whereas
the expected return variance is common (i.e., related to systematic risk). Studies by Vuolteenaho
(2002), Callen and Segal (2004), and Chen et al. (2013) have found that cash flow news is the primary
factor explaining the variance in stock returns at the firm level, whereas discount rate news explains
most of the movements in stock returns at the aggregate level.

11. The link to the website is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library
.html.

12. Formally, for each of the models the individual autoregressive parameters have a prior distribution
of the joint truncated normal N(0, 1,000) and the variances of innovations in (15) are distributed U(0,
10,000) whereas the correlations of innovations are distributed U(−1, 1). Draws in autoregressive
parameters that imply nonstationarity are rejected. These prior distributions ensure that for this model
and these data, the acceptance in the Metropolis–Hastings sampler depends only on the likelihoods.
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APPENDIX: MCMC ALGORITHM

The predictive log likelihood of the state-space model is given by

log(L(YT , θ)) =
T∑

t=1

{−0.5log[det(H(θ)′ Pt |t−1 H(θ))]

− 0.5[Yt − H(θ)St |t−1]′[H(θ)′ Pt |t−1 H(θ)]−1[Yt − H(θ)St |t−1]}, (A.1)

where St |t−1 and Pt |t−1 are the conditional mean and variance of St from the Kalman
filter. Given a prior distribution over parameters, h(θ), the posterior distribution, P(θ|YT ),
is

P(θ|YT ) ∝ L(YT , θ)h(θ). (A.2)

In this Appendix, we consider the case of very diffuse priors for which the likelihood
function is the principal determinant of the posterior distribution.12

Because the log-likelihood is a nonlinear function of the structural parameter vector, it is
not possible to write an analytical expression for the posterior distribution. As a result, we
use Bayesian Markov chain Monte Carlo methods to estimate the posterior distribution of
the parameter vector, θ. In particular, we employ a Metropolis-Hasting sampler to generate
draws from the posterior distributions. The algorithm is as follows:

(i) Given a previous draw of the parameter vector, θ(i−1), draw a candidate vector θc

from the distribution g(θ|θ(i−1)).
(ii) Determine the acceptance probability for the candidate draw,

α(θc, θ(i−1)) = min

[
L(YT , θc)h(θc)

L(YT , θ(i−1))h(θ(i−1))

g(θ(i−1)|θc)

g(θc|θ(i−1))
, 1

]

.
(iii) Determine a new draw from the posterior distribution, θ(i):

θ(i) = θc with probability α[θc, θ(i−1)];
θ(i) = θ(i−1) with probability 1 − α[θc, θ(i−1)].

(iv) Return to (i).

Starting from an initial parameter vector and repeating enough times, the distribution
parameters draws, θ(i), will converge to the true posterior distribution.

In our application, θc = θ(i−1) + ν, where ν is drawn from a multivariate t-distribution
with 50 degrees of freedom and a covariance matrix �. We set � to be a scaled value of
the Hessian matrix of − log[L(YT , θ)] evaluated at the maximum likelihood estimates. We
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choose the scaling so that between 25 and 40% of the candidate draws are accepted. We can
also obtain the posterior distributions for the unobserved states. Given a parameter draw, we
draw from the conditional posterior distribution for the unobserved states, P(ST |θ(i), YT ).
Here we use the “filter forward, sample backwards” approach proposed by Carter and Kohn
(1994) and discussed in Kim and Nelson (1999). The posterior distribution is based on a
750,000 sample of every fifth draw from the MH-MCMC after a burn-in period of 250,000
draws.
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