Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2015), 29, 503-521.

© Cambridge University Press 2015 0890-0604/15
doi:10.1017/S0890060415000475

Toward a visual approach in the exploration

of shape grammars

TIEMEN STROBBE,' PIETER PAUWELS,! RUBEN VERSTRAETEN,! RONALD DE MEYER,! axp

JAN VAN CAMPENHOUT?

'Department of Architecture and Urban Planning, Ghent University, Ghent, Belgium
2Department of Electronics and Information Systems, Ghent University, Ghent, Belgium

(Recervep September 13, 2014; Acceptep March 15, 2015)

Abstract

The concept of shape grammars has often been proposed to improve or support creative design processes. Shape grammar
implementations have the potential to both automate parts of the design process and allow exploration of design alternatives.
In many of the existing implementations, the main focus is either on capturing the rationale of a particular existing grammar
or on allowing designers to develop a new grammar. However, little attention is typically given to the actual representation
of the design space that can be explored in the interface of the implementation. With such representation, a shape grammar
implementation could properly support designers who are still in the process of designing and may not yet have a clear shape
grammar in mind. In this article, an approach and a proof-of-concept software system is proposed for a shape grammar im-
plementation that provides a visual and interactive way to support design space exploration in a creative design process. We
describe the method by which this software system can be used and focus on how designers can interact with the exploration
process. In particular, we point out how the proposed approach realizes several important amplification strategies to support

design space exploration.

Keywords: Architectural Design; Design Space Exploration; Shape Grammar; User Interface

1. INTRODUCTION

One of the most fundamental questions underlying current
computer-aided design (CAD) research is how information
systems can effectively support a creative design process
(Lawson, 2005). In the current article, creative design is char-
acterized as a specific kind of problem solving in which de-
sign problems and design solutions are not only ill defined
(Cross, 1982) but also coevolve throughout the design pro-
cess (Maher & Poon, 1996). In other words, not only is it im-
possible to capture design problems and solutions in unam-
biguous, closed and complete representations, even if some
feasible representation is found, but it is also continuously
changing because of the impact of an evolving design con-
text. In particular, the design problem tends to be constrained
by quantifiable and nonquantifiable requirements, whose for-
mulation is often part of the design problem itself. According
to this characterization, design problems belong to the cate-
gory of ill-defined, ill-structured, or even wicked problems

Reprint requests to: Tiemen Strobbe, Department of Architecture and
Urban Planning, Ghent University, J. Plateaustraat 22, Ghent 9000, Belgium.
E-mail: tiemen.strobbe @ugent.be

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

503

(Rittel & Webber, 1973; Cross, 1982). Typical examples of
such design problems can be found in the domains of archi-
tectural design, urban planning, product design, and so forth.

Starting from this characterization of creative design, di-
verse strategies can be conceived for supporting creative de-
signers in their decision-making processes. One possible
strategy is to amplify designers’ capabilities to represent
and search a design space (Woodbury & Burrow, 2006).
This strategy assumes that designers typically address a de-
sign problem, as understood in the above interpretation,
through design space exploration: they continuously repre-
sent and search an evolving “space” of design solutions
with the aim of finding an appropriate design solution to an
evolving design problem. The common interpretation of the
design space exploration task involves the following three
steps (Gero, 1994):

e representing many design solutions in a structured net-
work called the design space;

e searching and navigating the design space by traversing
paths in the network; and

e evaluating possible design solutions against evaluation
criteria or design goals.

mailto:tiemen.strobbe@ugent.be
https://doi.org/10.1017/S0890060415000475

504

The implementation of the above three design space explora-
tion tasks into dedicated algorithms results in an information
system that can semiautonomously go through the design ex-
ploration task. In this sense, design alternatives are generated
automatically by the information system, while evaluation
and selection remains with the designer. Among the possible
benefits of allowing an information system to do this are that
certain parts of the design process can be automated and that
design alternatives designers had not thought of before can
emerge. According to Knight (2003), emergence of design
alternatives is available in all information systems, and is
even a foundational feature of shape grammars (Stiny,
2007). As a result, the information systems concerned can
function as specialized “agents” that act like assistants in a
creative design process. In an artificial intelligence context,
agents are defined as systems that perceive and act upon an
environment in order to achieve a specified goal (Russel &
Norvig, 2010). Existing agent applications provide specific
functionality in a wide variety of application domains, includ-
ing text editing, web browsing, information visualization, and
so forth. Information systems for design space exploration
could to some extent be implemented and used as agent-
based systems, leading us forward on the avenue toward a
more intelligent role for computers in design, rather than their
more limited role as oracles or draughtsmen (Lawson, 2005).

In recent decades, the potential of shape grammars (Stiny
& Gips, 1972) to support design space exploration has been
demonstrated through several research initiatives. In particu-
lar, several shape grammar implementations exist that allow
designers to automatically generate a set of shapes or designs
that are part of the language of a specific grammar. Many ex-
isting implementations focus on capturing the design ratio-
nale of a particular existing shape grammar as correctly as
possible, or at least as it is commonly understood or appreci-
ated. For example, Grasl and Economou (2012) have imple-
mented a graph grammar for the generation of Palladian-style
villas, and Granadeiro et al. (2013) have implemented the
Frank Lloyd Wright prairie house grammar (Koning & Eizen-
berg, 1981). In contrast, more general implementations exist
in which the main focus is to allow designers to specify and
develop new shape grammars (Hoisl & Shea, 2011; Trescak
et al., 2012; Grasl & Economou, 2013). However, current
shape grammar implementations hardly support the represen-
tation of the design space that can be explored in the interface
of the implementation.

In this article we investigate and develop an alternative
shape grammar implementation approach that is able to sup-
port design space exploration in a visual and interactive
way. It is particularly useful for designers who are in the pro-
cess of developing and exploring new shape grammars in a
creative design process. The key properties of this implemen-
tation are

o the ability to represent an evolving “space” of design
solutions, including ways to visualize both previously
generated solutions and new alternatives; and

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

T. Strobbe et al.

o the ability to explore this design space, including several
amplification strategies for supporting search and navi-
gation.

These features are typically not of central concern to current
shape grammar implementations, so they should make the al-
ternative approach presented in this article stand out as a
novel approach. In our discussion, we provide some back-
ground on the concept of the design space and define termi-
nology that is used throughout the article. Next, shape gram-
mars are discussed and a more detailed overview is given of
design space exploration possibilities in current shape gram-
mar implementations. Following that, we describe an ap-
proach to representing the design space and its implementa-
tion in a proof-of-concept software system. We present and
evaluate the main functionalities of this software system
using a case study of an implementation of the Frank Lloyd
Wright prairie house grammar. In addition, we indicate how
designers can interact with the exploration functionalities at
hand. Finally, our findings and directions for future work
are discussed at the end of the article.

2. THE DESIGN SPACE

In this section, we introduce the basic concepts and terms re-
lated to the design space, and explain how design space ex-
ploration is a compelling model from a cognitive point of
view. We also indicate why design space exploration is a fea-
sible basis for computer implementation and give an over-
view of several information systems that support design space
exploration.

2.1. Design space exploration

The design space can be defined as a dynamic network struc-
ture of related (final or intermediate) designs that are visited
during a creative design process. The designs in the network
structure are represented as design states, which are repre-
sentations of a design at a particular moment in time. The var-
ious design states are related to each other through design
paths. At any moment in time, designers take decisions that
lead them from one design state to the next, following particu-
lar design paths. Therefore, designers are able to traverse
these paths to explore the design space. More specifically, a
design path corresponds to a specific designer action or
move, such as visiting previously visited design states or find-
ing new unexplored design states. In this sense, exploration
comprises both navigation in the design space and the genera-
tion of new design paths and states. The collection of design
states that designers traverse over time is called the explicit
design space. The importance of the explicit design space
as an expanding library of potentially recoverable design
states or explored design paths is shown by Woodbury and
Burrow (2006). The collection of all design states that can
be traversed if designers follow all possible paths is called

https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

the implicit design space. The explicit design space is only a
small subset of the implicit design space, which can be infi-
nitely large.

In a design state, the available information is reduced to a
more manageable level that is suited for a design process and
for decision making within this design process. This reduc-
tion is often referred to as a “bounded rationality,” a term
coined by Simon (1957) to indicate that designers always
take into account only a small part of the design information
available in the real world. Defining the design space thus re-
lies heavily on removing detail from a complex design situa-
tion and reducing it to a set of necessary design features (or
variables). This process is often called abstraction or disam-
biguation (Simon, 1973). While this is the case, the concept
of the design space can be useful for designers to reflect upon
the available design states and design paths. While reflecting
on and choosing particular design paths, designers receive
feedback, based on which they can subsequently revise, fur-
ther develop, or even entirely reject their chosen exploration
strategy. In other words, designers engage in a dialogue or
“conversation” with the design space during the design pro-
cess. In continuously traversing design paths, designers re-
consider the design problem and associated design solution,
resulting in the coevolution effect that we identified in the In-
troduction (Maher & Poon, 1996). In this way, the concept of
the design space provides a useful model to support a creative
design process. The key concepts of the design space are
shown in Figure 1.

The design space, as described above, is both a compelling
model from a cognitive point of view and a feasible basis for
computer implementation. Goldschmidt (2006), for instance,
discusses the notion of design space exploration on a more
cognition-oriented basis. The author argues that exploration
is an important part of any inquiry or experiment that design-
ers undertake. These inquiries or experiments are to be under-
stood in the context of Schon’s theory of the designer as a “re-
flective practitioner” (Schon, 1983). Schon describes design

design
feature

abstraction
disambiguation

_—
—
feedback

505

as a combination of different kinds of experiments: explora-
tory experiments, move-testing experiments, and hypothesis
testing. Designers start an inquiry by formulating the design
situation, after which they can perform exploratory experi-
ments to either find new design solutions (move testing) or
alter their exploration strategy (hypothesis testing). Under
the effect of these inquiries or experiments, both the design
problem and corresponding solutions coevolve within the de-
sign space. As demonstrated above, this continuous interac-
tion between designers and the design space is an important
feature to support the creative design process.

2.2. Design space exploration in an information system

The design space is also a feasible basis for computer imple-
mentation and one of the long-standing motivating ideas un-
derlying CAD research in recent decades. The first attempt to
formalize the concept of design space was made in research
on design methods in the 1960s (Jones & Thornley, 1962),
and further steps were taken with the introduction of artificial
intelligence (for example, the use of numerical optimization
in the work of Radford and Gero (Radford & Gero, 1980,
1988; Gero et al., 1983) and cognitive science (Akin,
2006). To date, many information systems and digital tools
for creative designers have been conceived as systems for
design space exploration. Such systems are able to support
designers in exploring an implicit and explicit design space
containing either previously visited design states or new, un-
explored design paths. Specific examples of the former are
case-based reasoning tools that allow designers to find infor-
mation that could in some way be useful for their design. An
overview of early research efforts and more recent work in
case-based reasoning is given in the paper of Goel and
Craw (2006). Specific examples of tools for design genera-
tion are parametric design tools (Tidafi et al., 2011; Turrin
et al.,, 2011; Charbonneau & Tidafi, 2013) and grammar-
based design tools (Shea & Cagan, 1999; Schaefer &

*

X

‘\ explicit design space
\X 5 "

x

ij ® X

design feature

Fig. 1. The design space consists of design states and design paths. The initial design state (x) and subsequent design states (x) are related
by design paths (black arrows). The implicit design space consists of the complete collection of design states and design paths. The explicit

design space is the collection of visited design states.

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000475

506

Rudolph, 2005; Geyer, 2008). Generation in parametric de-
sign tools corresponds to assigning different values to a num-
ber of (geometrical) parameters, while grammar-based de-
sign tools deal with alternative systems or rearrangements
of design components.

In the context of an information system, most of the terms
in Figure 1 (design space, design state, design path, etc.) are
typically associated with a formal or structured representa-
tion. In particular, the formalized design space can be seen
as a network structure of design states (nodes in the network)
and design paths (arcs between the nodes). In the specific case
of grammar-based design tools, the design space also in-
cludes an initial design, represented as the root design state.
A design path corresponds to the generation of a new design
state by means of a specific generative mechanism. Based on
the chosen generative mechanism, the information system is
able to generate an implicit design space consisting of various
design states that can be reached through a number of design
paths. Within the scope of the formalized design space, infor-
mation systems are able to guide exploration toward a design
goal that is at best near optimal, both in a quantifiable and
nonquantifiable way. Because of the bounded nature of the
information taken into account in the formalized design
space, a fully optimal design state cannot be reached. As a re-
sult, we can talk about a “satisficing” process (Simon, 1956).
Satisficing, a combination of satisfy and suffice, directs ex-
ploration for design alternatives toward criteria for adequacy
within a bounded rationality, rather than a fully rational solu-
tion. As soon as a goal formulation and a set of design con-
straints are added, the exploration task can be formulated as
an optimization problem (Gero & Kazakov, 1996).

As indicated above, the act of design space exploration is
limited by the availability of a finite number of resources.
In the context of information systems for design space ex-
ploration, the design space is also heavily computationally
bound. However, such information systems draw their utility
from allowing designers to satisfice design alternatives
against goal criteria, rather than optimizing performance to-
ward a fully optimal design state (Simon, 1956). Therefore,
representing the design space facilitates a useful interaction
between designers and the tool that is used for design space
exploration. In the following section, we give an overview
of design space exploration possibilities in current shape
grammar implementations.

3. AN OVERVIEW OF SHAPE GRAMMARS AND
THEIR IMPLEMENTATIONS

3.1. Definition and terminology

At any moment in time, designers have a number of design
moves that they can apply in order to change the current de-
sign state into another design state. By formalizing these de-
sign moves and using the computational power of an informa-
tion system, designers might be able to foresee the possible
effects of taking a particular design move. An interesting

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

T. Strobbe et al.

and widely developed approach to support design space ex-
ploration is the “codification” of design moves (or paths in
the design space) as rules. This codification coheres with
the ability of computer tools to store and represent rules,
while designers focus on specifying, exploring, and develop-
ing design alternatives (Chase, 2002). On the one hand, such
rules need to comply with an exploration process that is well
bound and limited in breadth. The advantages of considering
a limited number of coherent design alternatives, rather than
many widely different alternatives, have been indicated in sev-
eral (empirical) research studies (Goldschmidt, 2005, 2006).
On the other hand, such rules need to be flexible to allow
the generation of design alternatives that are meaningful and
diverse enough to be useful to the designers. According to
Goldschmidt (2005), designers can perform exploration,
within a deliberately limited yet broad enough design space,
in which the goal is refinement of a coherent and well-
developed design idea.

The existence of such rules has been demonstrated for Pal-
ladian villas by Stiny and Mitchell (1978), for Alvaro Siza’s
Malagueira houses by Duarte (2005), for Frank Lloyd
Wright’s prairie houses by Koning and Eizenberg (1981),
and so on. In the domain of creative design, these rules are of-
ten formulated using shape grammars (Stiny, 2007). Shape
grammars were originally introduced by Stiny and Gips
(1972) as a way of analyzing and synthesizing paintings,
and later extended to various other application domains.
They are a class of production systems that generate geomet-
ric shapes or solids in Euclidean space (E? or E*). More spe-
cifically, a shape grammar is a 4-tuple (V1, Vi, R, I), con-
sisting of a finite set of terminal shapes (V1) and marker
shapes (V), a finite set of shape rules (R), and a nonempty
set of initial shapes () that is part of Vr U V). The shapes
defined in the set V1 U V) form the basic elements for the
definition of shape rules in the set R and the initial shape 1.
New shapes are generated by iteratively applying shape rules
to the initial shape. A shape rule is described as an if-then
statement A — B, and can be applied when the pattern shape
A (if-part) can be detected in a given shape C. This matching
process can occur under certain Euclidean transformations (¢)
to find more possible matches: translation, rotation, scaling,
and other linear transformations. Rule application results in
“subtracting” the transformed shape A from C, and “adding”
the transformed replacement shape B (then-part). This results
in a new shape C' = C — (A) + ¢(B). Further details about the
shape grammar formalism are given in the work of Stiny
(2007).

Using the design space terminology defined in the pre-
vious section, shape rules R correspond to design steps in
the design space. Shape rules are a generative mechanism
to derive new design states and shapes in particular. Each
rule of the form A — B involves replacing a transformed ver-
sion of A by an identically transformed version of B. There-
fore, rule application corresponds to navigating from one
design state in the design space to another. Shape rule
application can include deleting, adding, and transforming

https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

parts of the shape. A design path consists of multiple steps.
An initial shape I corresponds to an initial design state,
upon which applicable rules are applied iteratively. The set
of shapes that can be generated using a specific initial shape
and set of rules is called the language of the grammar L(G).
This language L(G) defines an implicit design space, which is
the part of the design space that can be explored using this
specific grammar G. As soon as the shape grammar is de-
fined, the design space is implicitly defined, and rules can
be used to explore a deliberately limited, yet broad enough,
design space. A similar definition of a design space in the
context of shape grammars was proposed in early work of
Gero and Kazakov (1996). Design states or shapes that are be-
yond the scope of the implicit design space or language can
only be reached by either changing the current shape gram-
mar or manually manipulating shapes with no regard to the
current shape rules. The latter strategy enables designers to
make shortcuts in the design space, allowing “on the spot” ex-
perimentation. The exploration process is terminated either
when no applicable rules are found or when a given goal state
is satisfied.

3.2. Overview of shape grammar implementations

To date, a broad range of research has been done on shape
grammar implementations. An overview of research efforts
up to 1999 is given in the work of Gips (1999), while more
recent shape grammar implementations are discussed by
McKay et al. (2012), and an overview of the interaction pos-
sibilities in several shape grammar implementations is given

507

by Chase (2002). Based on these overviews, it is clear that
current implementations of shape grammars have made valu-
able contributions to enabling subshape recognition and
shape emergence, allowing parametric rules, supporting
curvilinear shapes, and so forth. However, researchers have
focused to a far lesser extent on representing the design space
and supporting exploration in the interface of the implemen-
tation.

In the following overview, the focus is on the capacities of
several existing shape grammar implementations to represent
a design space, support the generation of new design states,
and support exploration of already visited design states (the
explicit design space). In particular, we discuss the GEdit
shape grammar implementation (Tapia, 1999), because it is
one of the first implementations that considers the issue of ex-
ploration. In addition, three more recent shape grammar im-
plementations are included: Spapper (Hoisl & Shea, 2011),
SGI (Trescak et al., 2012), and GRAPE (Grasl & Economou,
2013). We either have obtained a working copy of the imple-
mentation discussed or determined its functionality from a
published paper. Our comparative overview of these four im-
plementations is summarized in Table 1.

GEdit, developed by Tapia (1999), is an early example of a
shape grammar implementation in which design space ex-
ploration is considered to a certain extent. The design space
is represented through a visualization of the current shape, to-
gether with a separate visualization of shape alternatives that
are the result of a single rule application. The shape alterna-
tives are structured in a two-dimensional array in which de-
signers can browse and examine shapes. The generation of

Table 1. Comparison of design space exploration possibilities in several shape grammar implementations

Name GEdit* Spapper” SGI¢ Grape?
(1) Design Space Visualization
Current design state Visual Visual Visual and symbolical Visual
Application results Two-dimensional array Individual results List Individual results
Derivation history No No Yes, current derivation No
(2) Generation of Alternatives
Rule application (Semi)automatic (Semi)automatic or manual Automatic (Semi)automatic
Automatic detection of
applicable rules No No Yes No
Manual intervention No No No Yes
(3) Navigation and Storage of Shapes
Backtracking Yes (@) No No
Save & reuse designs No Yes, current (.dxf, etc.) Yes, current (.xml) Yes, current (.dxf)
Save derivation history No No No Yes, current derivation (.dxf)
Reuse derivation
history No No No No

“Tapia (1999).

’Hoisl et al. (2011).
“Trescak et al. (2012).
4Grasl et al. (2013).

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000475

508

design alternatives happens in a semiautomatic manner: all
possible rule applications are calculated automatically, after
which designers can select and delete alternatives manually.
The author recognizes the importance of a design space
navigation mechanism that is richer than pure generation:
“the designer explores the language of designs, generating
designs, ... backtracking to a previous design, or saving the
current state” (Tapia, 1999). However, these features are
only partially implemented in the current version of GEdit.

Spapper is a more recent shape grammar implementation,
developed by Hoisl and Shea (2011), which provides a visual
way to edit or develop shape grammars. Similar to GEdit, the
interface visualizes a single shape that designers can alter
over time. Therefore, only the current design state in the de-
sign space is visualized. Designers can choose to explore
the language of a grammar using manual rule application
(through a predefined sequence or manual selection), semiau-
tomatic rule application, or automatic (random) rule applica-
tion. However, it is not possible to automatically detect all
rules that can be applied to the current shape. It is possible
to store a current shape using the standard functionality of
the underlying CAD system. However, the history of the
rule applications used to generate this shape is not stored.
Therefore, the stored shape is added to the set of initial shapes
as part of a new exploration process.

SGI, developed by Trescak et al. (2012), includes several
features to explore the language of a shape grammar in an in-
teractive way. First, a render line view shows the current der-
ivation line of the exploration process. This provides design-
ers with the possibility of tracing the execution of the shape
grammar from the initial shape to the current shape. Second,
a list view in which the resulting shapes of one rule applica-
tion are stored, allows designers to select and delete shape
alternatives manually. Third, the current shape is displayed
in a visual manner and a symbolic manner by showing a
list of all the design properties (for example, a name, position,
etc.). This allows designers to compare shapes with regard to
both geometric and nongeometric design properties.

GRAPE is a graph-based shape grammar library, devel-
oped by Grasl and Economou (2013). Several interfaces to
the GRAPE library have been developed, either based on
commercial CAD packages or as web applications. The
design space is represented through a single design state
view, visualizing the current shape. The generation of alter-
natives happens in a semiautomatic manner, because design-
ers explore and select shapes one at a time. Based on the
functionality of the underlying CAD package, it is possible
to manually intervene in the exploration process by adding,
deleting, and modifying shapes without the use of shape
rules. This feature is reflected in the structure of the user inter-
face, which distinguishes between a common CAD mode and
a grammar mode. The CAD functionality makes it possible to
store the current shape (without history) as a .dxf file. In ad-
dition, it is possible to export a snapshot of the current deri-
vation line (from the initial shape to the current shape).
This derivation cannot be reused in a new exploration pro-

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

T. Strobbe et al.

cess. In recent work (Grasl & Economou, 2014), GRAPE
has been extended with a framework to support selection
agents. Therefore, it is possible to enumerate a set of design
alternatives, following an agent-specific (extensive, goal-
directed, etc.) approach.

4. PROPOSED APPROACH

Shape grammars define a suitable formalism to encode de-
sign moves and allow the exploration of the language of a
grammar, which defines an implicit design space. However,
the overview of current shape grammar implementations dis-
cussed above indicates that the representation of the design
space is often limited to a small subset of design states and
paths (Tapia, 1999; Trescak et al., 2012) or even a single de-
sign state (Hoisl & Shea, 2011; Grasl & Economou, 2013). In
addition, navigation is limited to the derivation of alterna-
tives, without possibilities for backtracking and reusing
stored design states or paths. In their seminal paper about de-
sign space exploration, Woodbury and Burrow (2006) argue
that design space exploration using (shape) grammars might
be infeasible, because shape rules do not support the repre-
sentation of the explicit design space:

A flaw in standard rule-based accounts of design space ex-
ploration in implicit space is that the usual formulation of
rules cast navigation solely in terms of derivation, thus put-
ting the landscape of the explicit space forever beyond the
sight of the navigator.

In particular, shape rules of the form A — B replace a trans-
formed version of A with an identically transformed version
of B, without keeping track of the parent shape. Therefore,
it is not possible to represent the explicit design space, which
consists of design states that have been visited previously.
However, the representation of the explicit design space is es-
sential to support design space exploration. It allows design-
ers to consider multiple design states or design alternatives
simultaneously (Fig. 2a). The availability of design alterna-
tives is an important aspect, because these alternatives pro-
vide multiple design paths toward (one of) the specified
goal state(s). Because not all design information is available
in the design space, alternatives are important to satisfice
against what is known about the design space. By contrast,
the explicit design space allows designers to store and reuse
prior design states or design paths previously discovered.
Woodbury and Burrow (2006) stress the importance of the ex-
plicit design space as an expanding library of potentially re-
coverable design states or explored design paths. Therefore,
it is important to allow back and forth navigation in the ex-
plicit design space (Fig. 2b).

The argument of Woodbury and Burrow (2006) about the
shortcomings of shape grammars in supporting design space
exploration is debatable. For example, Krishnamurti (2006)
mentions that it should not be difficult to envisage a shape
grammar implementation that maintains a history of deriva-

https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

509

(a)

design

state 1

design
: e state 2
initia p . .
design design design design

g state | state 1.1 state 1.1.1

state

design

state 3 . =7 =, =7

navigation navigation
design
state 4

(b)

Fig. 2. The generation and representation of alternatives (a) and back and forth navigation in the derivation process (b) are two important
design space exploration strategies. The forward arrows (solid) correspond to specific rule applications, and the dashed arrows correspond

to navigation (i.e., returning to a previously stored design state).

tion. In this article, we follow this line of thought and propose
an approach to keep track of the explicit design space. In par-
ticular, a shape C' of the language L(G) is extended with a
pointer to a parent shape C. This pointer corresponds to a spe-
cific rule r in the set of R that was applied to this parent shape
C in order to generate the shape C’. As a result, the explicit
design space is defined as a hierarchical tree structure in
which the derived shapes constitute the nodes of the tree
(Fig. 3). The nodes are connected through parent—child rela-
tions, in which each node (excluding the root node) has ex-
actly one parent node. In particular, the parent—child relation
is defined as a rule application A — B between a parent shape
C and child shape C' = C- #(A) + #(B). The current design
path is indicated using a gray color (Fig. 3).

In the computer science domain, a tree is a widely used data
structure for modeling hierarchical data with parent—child re-
lations. For example, version control systems, used in soft-
ware engineering, use directed tree structures to visualize
one or more parallel lines of development. In the context of
design space exploration, we use trees as a practical and ele-
gant solution to keep track of the explicit design space. More-
over, several operations can easily be performed, including
generating new child nodes, and walking through the nodes
or “traversing” the tree. These operations correspond to the
design space exploration strategies explained above: genera-
tion of alternatives and navigation and backup in the explicit
design space, respectively. The operations are discussed
below.

Ay
design

state

1.1.1
design design dcmg\n
state 2 state 1.2 stats
S sttte & 112
design design design

state
state 3 state 1.3

1.1.3
design
state 4

Fig. 3. The representation of the explicit design space as a tree. The forward arrows (solid) correspond to specific rule applications, and the
dashed arrows correspond to navigation. The current design path is indicated in gray.

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000475

510

The derived shapes constitute the nodes of a tree, while the
possible rule applications constitute the relations between the
nodes. We have chosen to store the full design states in the
tree nodes, rather than storing the differences between the par-
ent state and the child state. This approach has important ben-
efits. First, design states can be recalled in a new design pro-
ject without reference to its parent shape. In this case, the
design state can be considered as a new root design state in
an exploration process. Second, it is not necessary to recon-
struct shapes, which may take a long time for shapes with a
long derivation history. A possible drawback of this approach
is that more space is needed to save the full design states. One
possible way to reduce the size of the explicit design space is
by using equivalence classes rather than individual shapes.
Such equivalence classes need to store only one representa-
tive, and hence this representative has pointers to a nonempty
set of parents instead of a single parent shape. When alterna-
tive rule sequences arrive at the same shape, this specific
shape has multiple parent shapes. In this case, the resulting
design space structure is no longer a tree, but a network.
Therefore, equivalent shapes are stored only once, while in
the case of trees, all generated shapes are considered to be
unique, even when they are visually equivalent. In the context
of this research, trees are found to be sufficiently effective in
supporting several aspects of design space exploration.

4.1. Generation of alternatives

This section describes a method for the generation (and rep-
resentation) of design alternatives or shapes. In order to imple-
ment this generation process, several steps must be taken:

¢ the automatic determination of rules that can be applied
to a given shape;

e the automatic generation of children by executing the
applicable rules; and

e the manual selection of a new shape that can be further
explored.

The first step in the generation process is the determination of
rules that can be applied to a given shape. This step corre-
sponds to detecting the pattern shape A of the rules under a
certain transformation #(A) in the given shape. The detection
of a pattern shape in a given shape is often referred to as the
subshape detection problem. In recent work, Yue and Krish-
namurti (2014) argue that subshape detection is a computa-
tionally complex task, especially in the case of parametric
rules. Nevertheless, various solutions have been proposed
in the literature. For example, using an underlying graph rep-
resentation for shapes, subshape detection can be devised as a
subgraph isomorphism problem (Grasl & Economou, 2013).
While this problem has proven to be NP-complete, algo-
rithms that calculate solutions in reasonable time are available
in several graph transformation libraries (Taentzer & Rudolf,
1998). This step results in a set of applicable rules, or mor-
phisms f: A — C, between the pattern shape A of a rule and

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

T. Strobbe et al.

a given shape C. These morphisms describe a structure-pre-
serving mapping between the rule and the given shape.

The second step is to generate new shapes by executing the
applicable rules. Following the expression C' = C — t(A) +
t(B), a new shape is generated after subtracting the trans-
formed pattern shape #(A) from the given shape C and adding
the transformed replacement shape #(B). As demonstrated in
Section 3.2, many existing implementations show a single
shape that can be altered over time by applying rules. Rule ap-
plication can be performed automatically by random selec-
tion, or manually by user selection. The approach described
here is different, because all possible rule applications are
performed iteratively. This results in a list of possible shape
design alternatives, similar to the list view used in SGI (Tres-
cak etal., 2012). In particular, the morphisms f: A — C of the
first step are used to derive a set of possible shape alternatives
from a given shape C. Although this is computationally inef-
ficient, it is advantageous in the context of satisficing to pro-
vide designers with a set of possible alternatives. In order to
reduce the computational complexity of this step, designers
can define a priori which rules to consider for exploration
and which rules to leave out.

The third step is the manual selection of a new shape for
further exploration. As a result of the repeated application
of rules in series, a list of possible alternatives is given that
can be considered for further exploration. As a result, design-
ers can manually select one of the generated child nodes. This
chosen tree node can in turn be reconsidered for the genera-
tion of new child nodes. Therefore, the three steps described
in this section are repeated at each level in the tree.

Following these three steps, a tree with multiple levels and
branches is constructed. The different levels of the tree corre-
spond to specific moments in time during the exploration pro-
cess, while the branches of the tree correspond to the shapes
that are generated at these specific moments in time. There-
fore, it is possible to represent some aspects of the design
space, particularly the explicit design space described above.
More specifically, automatic detection and repeated applica-
tion of rules in series enables the generation and representa-
tion of design alternatives as shown in Figure 2a.

4.2. Design space navigation and backup

In this section, a method is described for enabling several in-
teractions between designers and the explicit design space: in-
teractive navigation, backup of design states and paths, and
recall of design states and paths. An important feature of trees
is the possibility of traversing tree nodes by means of the con-
nections between parent and child nodes. Once the tree is
constructed, it is possible to visit tree nodes in several
ways. For example, it is possible to traverse tree nodes level
by level, where the root node is visited, followed by the child
nodes, grandchild nodes, and so forth, until all nodes have
been visited. Another way is to walk the tree nodes in the op-
posite direction, starting from child nodes and visiting their
respective parents (ancestors). These operations correspond

https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

to designers’ ability to go back to previously discovered
shapes or design states in the explicit design space
(Fig. 2b). When designers arrive at a particular node in the
tree, it is possible to select a sibling node and generate new
child nodes. It is also possible to prune a specific branch or
even a whole section of the tree. This is, for example, the
case when designers consider a specific area of the explicit
design space to be no longer relevant. Using the traversal
functionalities described above together with an appropriate
user interface, designers are able to navigate the explicit de-
sign space in an interactive way. An illustration of the naviga-
tion possibilities is shown in Figure 4.

The representation of the design space as a tree also enables
several backup strategies. In almost all commercial CAD sys-
tems, backup along a single derivation thread is typically sup-
ported through an “undo” command. In the context of our
proposed approach, the backup of design states and paths pre-
viously considered is supported. At any time, designers can
choose to recover a prior shape or design state in the explicit
design space. However, it is also beneficial to enable design-
ers to recover design states that are unrelated to the current ex-
ploration process. Woodbury and Burrow (2006) define the
concept of recall as the metaphor for such distant access.
More specifically, recall enables designers to recover shapes
or design states that were generated at a different time, in a dif-
ferent project or design task, or by a different designer. Exam-
ples of recall in commercial CAD systems include catalogs of
drawings and models, libraries with specific functionalities,
and so on.

In the context of grammar-based information systems, an
additional “persistence” system is needed to store shapes
and sequences of rule applications. A database can support
such functionality, because design states can be added to
and pulled from the database based on various semantic or

511

verbal search criteria. With such a recall system in place, it
is possible to reuse design states or even design paths by graft-
ing these paths onto a new tree. In other words, shapes and
grammar rules can be recalled in grammars and design pro-
jects other than those in which they were developed. A num-
ber of scenarios for recall are possible: the recall of shapes in a
new design project, the recall of grammar rules in a new de-
sign project, and the recall of shape derivations in a new de-
sign project. The ability to store and recall shapes and shape
derivations is an important design space exploration amplifi-
cation strategy, but it also has a positive impact on the com-
putational complexity of generating alternatives, because al-
ready visited design states can be pulled directly from the
database. Therefore, an explicit design space can consist of
both newly generated shapes and previously generated
shapes. In the following section, we discuss a possible proto-
type for such a system and demonstrate its potential benefits
and drawbacks.

5. IMPLEMENTATION

To evaluate the approach described in this article, we have de-
veloped a proof-of-concept software system. The implemen-
tation is based on a JAVA development environment for
graph transformation called AGG (http:/user.cs.tu-berlin.de/
~gragra/agg/). The existing editor in AGG is used for devel-
oping a grammar, and the existing algorithms for automatic
rule matching and rule application. Therefore, the grammars
used in this research are implemented as graph grammars.
The use of graph grammars to describe shapes or solids in Eu-
clidean space was first introduced in the work of Fitzhorn
(1990) and further elaborated in several other research stud-
ies, including the work of Heisserman (1994) and Grasl and
Economou (2013). Due to the chosen graph environment,

design : design s design

state 1 state 1.1 state 1.1.1
LS S LI

design back navigation

state 2

design design

state 3 state 4.1

design
state 4.2.1

Fig. 4. Anexample of back navigation in the explicit design space from design state 1.1.1 to design state 1, after which new design states are

generated starting from design state 4.

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
https://doi.org/10.1017/S0890060415000475

512

shape rules must be defined as graph transformation rules,
and several aspects of shape grammars are not taken into ac-
count. For example, several shape grammars use “emergent”
shapes, which are shapes that are not predefined in a grammar
but emerge from the shapes generated by rule applications
(Knight, 2003). However, our proposed approach does not
depend on the chosen underlying environment, and could
be incorporated into other shape grammar implementations
that do support emergent shapes.

The focus of the software system is to provide a visual, in-
teractive interface that supports designers in exploring the
language of a grammar. In particular, the system provides
the following amplification functionalities:

e representation of the design space as a visual whole, al-
lowing designers to compare multiple alternatives
simultaneously;

e visualization of the explicit design space, which is the
collection of design states that have been previously vis-
ited, and the current design path;

e representation of design states in both a visual and a
symbolic (textual or verbal) manner;

e capacity to backup design states and recall previous de-
sign states and design paths using a relational database;
and

e interactive navigation within the (explicit) design space.

5.1. Exploration

The user interface of the software system consists of several
windows with specific functionalities. The “exploration”
window visualizes the explicit design space and allows de-
signers to generate new shape alternatives and navigate in
the explicit design space. This window is shown in Figure 5.
The user interface also provides a navigation toolbar (top), a
list of rules (upper left), and a visualization of the initial de-
sign state (lower left). The navigation toolbar includes com-
mands to reset the current exploration process, generate
new shape alternatives, and recall shapes from a database sys-
tem. The list of rules visualizes the set of rules R of the current
grammar. The designer can select a priori which rules to con-
sider for exploration, thereby reducing the computational
complexity of the generation step. Currently, a short descrip-
tion of the rules is shown, but the implementation of an intui-
tive and visual rule editor (e.g., in the work of Hoisl & Shea,
2011) could improve the user’s experience. The initial design
state can be pulled from a database system or imported from
external CAD files.

We have chosen to visualize the explicit design space as a
whole, rather than displaying a single design state that can be
altered over time. The shapes or design states are organized in
a two-dimensional grid of mxn cells. Each cell in the grid
layout contains a visual representation of the shape, and has
zoom and pan functionalities, allowing designers to consider
rule applications that are more subtle and harder to identify.

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

T. Strobbe et al.

Each column stores the n shape alternatives at a specific level
in the design space. Once a specific shape is selected for fur-
ther exploration by the designer, a new set of shapes is gener-
ated in a new column m + 1, which is added to the grid. The
current design path is indicated in gray to show the position of
the designer in the design space. In addition, it is possible to
navigate back in the explicit design space by selecting a shape
at a previous level or column x < m. If this shape has not been
expanded yet, a new set of shape alternatives is generated in a
new column x + 1, which is then added to the grid. If this is
the case, the descendants of the selected shape or design state
are no longer visible, and replaced by a new set of shape al-
ternatives. As a result, designers are able to return to a prior
design state in the design process. Perhaps more important,
back navigation to prior design states makes new areas of
the design space available for future exploration.

The layout of the user interface is an intuitive interpretation
of the explicit design space as a tree, as shown in Figure 3.
The tabular layout enables designers to scroll both in a hori-
zontal direction and in a vertical direction, allowing them to
examine multiple alternatives and shape derivations in a lim-
ited amount of screen space. In the proposed approach, only
the current design path and the sibling design states are shown
in the interface. While the visualization of the complete ex-
plicit design space can be useful in some cases, it quickly be-
comes too complex for larger design spaces. Nevertheless, it
is possible to explore the complete explicit design space by
selecting different shapes in the tree. Furthermore, in addition
to the proposed two-dimensional grid layout, other layouts
can be useful in specific cases: for example, a radial layout
can be useful to show visually adjacent design states or
shapes, or the combination of “inworld” views (a single de-
sign state and its immediate parent or child nodes) and “out-
world” views (an overview of the whole design space), as pro-
posed by Papanikolaou and Tunger (1999). The different
components of the layout can be changed or resized accord-
ing to user preferences. Currently, new shapes are generated
one step or rule application from the selected shape in the
tree. This could be extended using search algorithms for the
generation of new shapes at a greater depth, for example,
breadth-first, depth-first, or even heuristic search algorithms,
if some heuristic function is available to guide the search pro-
cess. Another important issue is the generation time of new
shape alternatives, because this influences the responsiveness
and usability of the software system. A case study to measure
the generation time of shapes of different complexity is dis-
cussed further in this article.

Design states are represented in both a visual and a textual
manner. A visual representation of the shape or design state is
given, which facilitates the comparison of shape alternatives.
Additional information about the shape is given: the rule that
was used to create this shape, the grammar that was used, the
project name, and so forth. Other relevant information can
also be added, because a design process is often associated
with a specific program, design intent, or design reasoning.
This additional information is often expressed verbally and

https://doi.org/10.1017/S0890060415000475

ssald Aussanun abprqued Ag auljuo paysiiand S/70005 L¥09006805/4101°0L/B10'10p//:sdny

| Design State Browser DC‘B'WEprraml

| . Naam H: Reset |[Expore || Sove || Fetchsuccesors | [wsgulle>>w]
1 VI 0 1 2
i mmm ‘: attributes figure attributes figure [] attributes figure
5_completing-the-core-unit v 12> >>> =
6_obligatory-extenss vl 3_Wc:; 7_mmu:1 | 6_obligatory-extensiod
7_obligatory-oxtonsions /| |FLW prairie house FLW prairie house FLW prairie house grg
8_assigning-function-zones v new:project new-project new-project
%——ff'"f'f“‘mzf‘ff. :t floor-area: 18m* B floor-area: 30.5m* floor-area: 43m*
| 4) L8]
6_oblgatory-extensiol 7_obligatory-extensiol
FLW praine house gra FLW prairie house grz
new-project new-project
AV
floor-area: 30.5m* floor-area: 43m*
=
7_obligatory-extensiol 7_completing-the-core
FLW praine house gra FLW praine house grz
new-project new-project
floor-area: 30.5m* foor-area: 43m*
7_oblgatory-extensiol
. FLW prairie house gra
new-project
floor-area: 30.5m*
7_obligatory-extensiof
FLW praine house grz
new-project
floor-area: 30.5m*
~

Fig. 5. Screenshot of the graphic user interface of the developed software system. The user interface also provides a navigation toolbar (top), a list of rules (upper left), and a visualization
of the initial design state (lower left). The current design path is indicated in gray.

sapununas advys fo uonyviojdxy

€IS

https://doi.org/10.1017/S0890060415000475

514

id figure

4 _obligatory-extensions:[8]
Grammar

Project

width = 6m

height = 3m
width-extension = 2.5m
height-extension = 5m

Fig. 6. Visual and symbolic (textual) visualization of a design state.

is associated with a specific design state. Therefore, this infor-
mation is used to compare shape alternatives toward nonvis-
ual design properties, as well as to facilitate design state recall
at a later time. A detailed visualization of a design state is
shown in Figure 6. In this example, additional information
is provided about the grammar, project, and some salient de-
sign features (width and height of spaces).

5.2. Backup and recall

Through the “design state browser” window, the user inter-
face also enables designers to store and recall shapes (design
states) and shape derivations (design paths). These shapes
and derivations can then be recalled in a later design process.
A relational database is implemented in the open-source
MySQL (www.mysql.com) database system in order to pro-
vide this functionality. In the context of this article, we
have defined three separate entities that can be stored in and

PROJECT

*id
name
date
iscurrent

project

GRAMMAR

*id
name
date
iscurrent
arammar

T. Strobbe et al.

pulled from the database: design states, projects, and gram-
mars. A design state entity represents a design at a specific
moment in time. More specifically, a design state entity con-
sist of a unique identifier, a date, a description of the shape as
a graph, and a rule that was used to create the design state. A
project entity represents the context in which a design state
was generated, for example, a design process or a project
name. A grammar entity contains the rules and the node types
that are used to generate a design state. Project and grammar
entities consist of an identifier, name, date, and description of
the entity. This experimental setup of three entities has proven
to be sufficiently effective in demonstrating the potential ben-
efits and drawbacks of design state backup and recall. How-
ever, in order to support backup and recall in more realistic
and complex design situations, the database needs to be fur-
ther elaborated, particularly with regard to the semantic infor-
mation associated with the shapes. The entity-relationship
diagram of the database is shown in Figure 7.

Two relationships between the entities are defined. First, a
one-to-many relationship is defined between a design state
and a project, indicating that a design state is generated within
the context of the given project. Similarly, a design state is
generated using a specific grammar, which is shown by a
one-to-many relationship between a design state and a gram-
mar. When a design state is recalled, the design state is pulled
from the database, together with the corresponding project
and grammar. Moreover, it is possible to start a new design
project and recall an existing grammar and the corresponding
rules from the database. Therefore, both design states and
grammars can be recalled in a design project other than the
one in which they were developed. In order to recall prior de-
sign states, it is possible to search the database for design
states using a project name, a grammar that was used, or a
combination of both. A further elaboration of the database al-
lows designers to specify more complex search queries.

Second, a one-to-many “predecessor—successor’ relationship
is mutually defined between design states. This relationship in-
dicates that a design state can have multiple child design states,
but only one parent design state. In addition, we keep track of the
rule that was applied to the parent in order to generate the design

design state

DESIGN STATE

*id
date
graph
rule

I
: Successor

Fig. 7. Entity-relationship diagram of the database.

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

http://www.mysql.com
https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

state. Therefore, it is possible to fetch successors of a design state
from the database without having to regenerate them. This not
only allows recall of shape derivations in a new design project
but also has a positive impact on the computational complexity
of generating alternatives, because already visited design states
can be pulled directly from the database.

6. CASE STUDIES

In order to investigate the feasibility of the proposed approach,
two case studies are carried out, each implementing a different
grammar from the architectural design domain. First, we
implemented a subset of simplified compositional shape rules
from the Malagueira grammar, originally developed by Duarte
(2005). This case study is used to evaluate the generation time
of new design alternatives as a measure of the system’s respon-
siveness and the usability of the navigation method. Second,
we implemented the Frank Lloyd Wright prairie house gram-
mar, developed by Koning and Eizenberg (1981). This case
study is used to demonstrate how designers can interact with
the grammar by using exploration, backup, and recall of the
shapes in this grammar in a different design project.

6.1. Malagueira compositional rules

In this case study, several compositional shape rules from the
Malagueira grammar, developed by Duarte (2005), are imple-

rl:

r2:
] —_ o|lo
r3:
° —_—
rd:
—_

1.3 4 28

515

mented. The shape rules from the original grammar were
translated into graph transformation rules, because of the un-
derlying AGG environment. The visual representation of the
selected rules is shown in Figure 8 (left), together with the
graph representation of these rules (right). In particular, we
considered rules for perpendicular dissection of rectangles
(rule 1 and 2), a rule for deleting markers (rule 3), and a
rule for diagonal dissection of rectangles (rule 4). Because
the scope of this article is focused on the interface, rather
than the underlying framework used to implement shape
grammars, only the essential details about the graph-theoretic
representation of shapes are included here. An extensive over-
view and discussion of several graph representation possibili-
ties of shapes is given in the work of Grasl (2013). In our
work, we have chosen to represent the topology of the shape
in terms of its basic elements (points and maximal lines) and
the relations between the basic elements (part—relation
graph). The graph transformation rules shown in Figure 8
consist of point nodes (white), edge nodes (black), and label
nodes (gray). Rules 1 and 2 from the original grammar are
implemented using the same graph transformation rule and
different constraints on the attributes of the graph nodes.
The generation time of new design alternatives is a good
measure of the system’s responsiveness and the usability of
the navigation method. A reasonably low generation time en-
hances intuitive exploration of the grammar, because new de-
sign paths are quickly unfolded in the design space. Because

|

|

!

>
%
<Y

Fig. 8. Malagueira composition rules: rules for perpendicular dissection of rectangles (rules 1 and 2), rule for deleting markers (rule 3), and
rule for diagonal dissection of rectangles (rule 4). The graph transformation rules (right) consist of vertex nodes (white), edge nodes (black),

and label nodes (gray).

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000475

516

rule application is driven by (parametric) subshape matching,
and shapes are represented as graphs, subgraph isomorphism
detection is one of the most runtime-intensive steps in the pro-
cess. As an example, we measured the generation time for the
dissection rule of Figure 8 at different steps in a generation pro-
cess. This test was performed on an Intel Core 2 Quad 3-GHz
processor with 4 GB of RAM and Windows 7 (64-bit). The re-
sults of the test are shown in Figure 9. The generation time in-
creased exponentially as the number of graphs objects (nodes
and edges) became larger, but remained reasonably low (<2 s)
for graphs that consisted of up to approximately 600 to 800 graph
objects. Using the graph representation described here, 21 nodes
and edges are required to model a rectangular space. Therefore,
600 graph objects would correspond to a medium-size floor plan
with approximately 30 spaces. In benchmarks of similar graph-
based implementations (Grasl, 2013), it is concluded that the
generation time also depends on the complexity of the pattern
graph of rules: a more constrained pattern graph results in a faster
generation time. For larger floor plans that have more than 30
spaces, it is possible to use more compact graph representations
or more constrained graph rules in order to keep the generation
time sufficiently low.

6.2. Frank Lloyd Wright prairie house grammar

In this case study, we implemented a part of the Frank Lloyd
Wright prairie house grammar, developed by Koning (1981).
The original grammar was developed on paper, and several
computer implementations of this grammar also exist, for ex-
ample, Granadeiro et al. (2013). The grammar is a three-di-
mensional parametric shape grammar, in which rule applica-
tion is driven by markers (V). In the scope of this article, the
new grammar contains a number of rules equivalent to the
rules of the original prairie house grammar by Koning and
Einzenberg (1981). In particular, the implemented grammar

2000 A

1500 -

1000 -

Generation time (ms)

T. Strobbe et al.

contains rules to: create a fireplace (rule 1), add a living
zone (rules 2—4), complete the core unit (rule 5), add obliga-
tory extensions (rules 6-7), and assign function zones (rules
8-10). These rules generate all the basic compositions under-
lying prairie-style houses. The other rules from the original
grammar (e.g., ornamentation, adding porches, interior de-
tails, etc.) are not considered within the scope of this article.
The new rules are visualized in Figure 10. In this figure, liv-
ing zones are indicated in white, service zones in gray, and the
obligatory extensions in black.

There are several differences between the original grammar
and the new grammar. First, some of the original rules have
been slightly modified in order to make them more amenable
to computer implementation. For example, rule 1 does not
distinguish between a single-hearth and a double-hearth fire-
place. Therefore, this rule replaces rules 1 and 2 from the orig-
inal shape grammar (indicated between brackets in Fig. 10).
Second, the new grammar is two-dimensional, because the
floor height typically remains constant in Frank Lloyd
Wright’s prairie houses. Third, rule application is primarily
driven by (parametric) subshape detection. However, in cer-
tain cases, the use of markers is necessary to avoid redun-
dancy of isomorphic results and to include intentional infor-
mation (e.g., the labels in rule 5 specify that the obligatory
extensions can only be added once at each side). Fourth,
the rules are defined as graph transformation rules, because
of the underlying AGG environment. The implemented graph
transformation rules are parametric rules in the sense that sev-
eral linear transformations are allowed in order to match the
rules to the shapes (translation, mirroring, and proportional
scaling). We have chosen to demonstrate the visual represen-
tation rather than the graph representation of the rules in Fig-
ure 10, because the graph-theoretic representation of shapes is
not the main focus of this article. The basic elements of the
shapes and the relations between the basic elements are de-

0 150 300

450 600

Number of graph objects

Fig. 9. The generation time of shapes increases exponentially as the number of graph objects (nodes and edges) becomes larger.

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

rl: a > =
(1-2] (0,0,0)

R a
r2: . |
[3-4]

13: L — D
[5]
r4: " —
[6] o
A
rs: - S
[7]
v

517
rh: —
[8-10]
o b =—=
[9-11] - ._
8: —
[12]
r9:
[13-15]
rl0: —
[16]

Fig. 10. Newly developed grammar rules: locating the fireplace (1), adding a living zone (2—4), completing the core unit (5), adding ob-
ligatory extensions (6—7), and assigning function zones (8—10). Living zones are indicated in white, service zones in gray, and the obliga-
tory extensions in black. Numbers between square brackets refer to the original rule numbers in the grammar of Koning and Eizenberg

(1981).

fined similarly to the rules shown in Figure 8. In addition, la-
bel nodes are used to specify the function of the spaces in the
floor plan (living, service, or extension).

A derivation of the Frank Lloyd Wright prairie house
grammar, defined above, is given in Figure 11. The rules
that are used are indicated between parentheses. It is possible
to store the current derivation of “adding a living zone and
completing the core unit” (indicated in gray) to the database.
Therefore, it is possible to recall this derivation and the gen-

“ Adding a living zone and
completing the core unit "

3

o

erated shapes in a new context. For example, the derivation
shown in Figure 12 starts from a shape taken from the data-
base (indicated in gray). Figure 12 demonstrates a part of
the explicit design space, including one shape that corre-
sponds to a design from the catalog of basic compositions un-
derlying prairie houses defined by Koning and Eizenberg
(1981). A total of 36 compositions can be generated using
the specified grammar, whereas the original grammar is
able to generate 89 compositions. In order to generate all

(1)
3 —_—
(0,0,0)

2

Fig. 11. Example of a derivation of the prairie house grammar. The current derivation (gray) can be stored in the database.

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060415000475

518

* Adding a living zone
and completing the
core unit

T

T. Strobbe et al.

(8-9)

(7 -

(7

(6)

Fig. 12. Example of a derivation of the prairie house grammar, starting from a design state pulled from the database.

compositions, it is necessary to navigate back into the explicit
design space, thus making new areas available for future ex-
ploration. This example demonstrates the value of represent-
ing the explicit design space as a whole. While intermediate
design states may not have intentional value, they allow ac-
cess to specific parts of the design space that remained inac-
cessible before.

7. DISCUSSION

In the Introduction of this article, we identified several key prop-
erties for supporting design space exploration that are typically
not of central concern to current shape grammar implementa-
tions: the ability to represent design spaces, and the ability to ex-
plore these design spaces, including several amplification strate-
gies. These strategies include, first, the representation of the
explicit design in a structured and visual way, enabling designers
to satisfice design alternatives against goal criteria. Second, back
navigation is an important amplification strategy because it
makes new areas of the design space available for future explora-
tion. Third, the incorporation of an additional database system
has shown to be both feasible and valuable.

Such a database system, as demonstrated by the Frank
Lloyd Wright prairie house grammar case study, enables de-
signers to recall shapes or specific shape derivations that are

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

generated in a different context or project, such as “adding a
living zone and completing the core unit”’ in Figure 11. How-
ever, the case study has also indicated that several aspects need
further elaboration in order to be useful in more realistic and
complex design situations. On the one hand, the use of equiva-
lence classes rather than individual shapes could not only re-
duce the size of the explicit design space but also enhance
the possibility to recall design states based on a measure of
equivalence or similarity. This would also imply a representa-
tion of the explicit design space as a network rather than a tree.
On the other hand, further elaboration of the database system
shown in Figure 7 could allow the designer to specify more
complex (semantic) search queries and could enhance the pos-
sibility to recall design states in an improved way. A possible
way to enable recall in the design process is the use of graph
databases (such as triplestores) or other types of noSQL data-
bases. While search queries in relational databases are based
on metadata (grammar, project, etc.), graph databases allow
more complex semantic search queries based on the graph
structures in the database. The potential use of elaborated da-
tabase systems is part of our current ongoing research.

The case study of the Malagueira grammar demonstrates
the feasibility of the proposed approach in terms of the sys-
tem’s responsiveness and the usability of the navigation
method. The case study of the Frank Lloyd Wright prairie

https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

house grammar demonstrates how designers can interact with
grammars using the proposed design space exploration fea-
tures. In particular, the interactive and visual user interface
allows designers to engage in a dialogue or “conversation”
with the design space. As described in the Introduction of
this article, the design space exploration task consists of three
steps: representing a design space, navigating a design space,
and evaluating or satisficing design alternatives against goal
criteria. Based on the observations made during the Frank
Lloyd Wright prairie house case study, our proposed ap-
proach can be interpreted as a semiautomatic approach, in
which design alternatives are generated automatically by
the information system, but evaluation and selection is per-
formed by the designer. In contrast to fully automated ap-
proaches, such information systems guide exploration toward
specified goal criteria by proposing different paths and alter-
natives. Therefore, such information systems can be devised
as specialized agents that support or even amplify an explora-
tion process, resembling more closely an intelligent, agentlike
role for the computer in design. If evaluation mechanisms for
quantifiable aspects of designs, such as building perfor-
mance, are incorporated into the system, evaluation could
be performed autonomously by the computer. This would re-
quire further investigation in future research.

Based on the overview of existing shape grammar imple-
mentations in this article, the proposed design space explora-
tion features are typically not supported in current implemen-
tations. Therefore, the approach proposed in this article stands
out as a novel approach that can contribute to the current state
of the art of shape grammar implementations. Because our
proposed approach does not depend on a specific underlying
framework, the described functionality can also be added to
other existing generative design systems and shape grammar
implementations. For example, the aspects of backtracking
and recall through a database system can be designed as
add-ons to a more general graph-theoretic implementation
that supports emergence and three-dimensional shapes (Grasl,
2013). Therefore, the approach proposed in this paper can be
extended with several functionalities in future work, including
simultaneous manipulation of design states and the possibility
to manually intervene in the exploration process by modifying
design states with no regard for rules. The former would in-
volve the use of shared variables to apply changes in one de-
sign state to other design states. The latter would enable the
designer to make shortcuts in the design space, allowing
“on the spot” experimentation. Such functionality is already
implemented in GRAPE (Grasl, 2013) by allowing designers
to switch from a grammar mode to a manual drafting mode.

8. CONCLUSION

The work presented in this article demonstrates an alternative
shape grammar implementation approach that is able to sup-
port design space exploration in a visual and interactive way.
The key properties of this implementation approach, as de-
scribed in the Introduction of this article, are the representa-

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

519

tion of the design space and the ability to explore this design
space. Because shape grammars do not inherently keep track
of the explicit design space, it is necessary to extend the shape
grammar formalism with relations between a parent shape
and the generated child shapes, resulting in a tree structure.
As aresult, it is possible to represent the explicit design space
and allow several design space exploration amplification
strategies: generation of alternatives, interactive navigation,
backup of design states and paths, and recall of these design
states and paths. A proof-of-concept software system has
been developed in which the following features are provided:
representation of the design space as a visual whole, represen-
tation of design states in both a visual and symbolic manner,
and support of exploration through the amplification strate-
gies discussed above. The feasibility of the proposed ap-
proach and proof-of-concept software system has been shown
through case studies using two existing shape grammars from
the architectural domain. Future research will focus on addi-
tional design space representation possibilities, shape equiva-
lence or similarity, and enhanced database systems.

ACKNOWLEDGMENTS

The graph grammars are implemented using AGG, a JAVA develop-
ment environment for attributed graph transformation. The research
is funded by the Agency for Innovation by Science and Technology
in Flanders (IWT).

REFERENCES

Akin, O. (2006). The whittled design space. Artificial Intelligence for Engi-
neering Design, Analysis and Manufacturing 20(2), 83-88.

Charbonneau, N., & Tidafi, T. (2013). Enabling the architectural designer to
move within a graph of interconnected decisions: a case study dealing
with a parametric object. International Journal of Business, Humanities
and Technology 3(1), 42-51.

Chase, S. (2002). A model for user interaction in grammar-based design
systems. Automation in Construction 11(2), 161-172.

Cross, N. (1982). Designerly ways of knowing. Design Studies 3(4),
221-227.

Duarte, J.P. (2005). A discursive grammar for customizing mass housing: the
case of Siza’s houses at Malagueira. Automation in Construction 14(2),
265-275.

Fitzhorn, P. (1990). Formal graph language of shape. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 4(3), 151-163.
Gero, J.S. (1994). Toward a model of exploration in computer-aided-design.
In Formal Design Methods for CAD (Gero, J.S., & Tyugu, E., Eds.), pp.

315-336. Amsterdam: North—Holland.

Gero, J.S., & Kazakov, V.A. (1996). An exploration-based evolutionary
model of a generative design process. Computer-Aided Civil and Infra-
structure Engineering 11(3), 211-218.

Gero, J.S., Neville, D., & Radford, A.D. (1983). Energy in context: a
multicriteria model for building design. Building and Environment
18(3), 99-107.

Geyer, P. (2008). Multidisciplinary grammars supporting design optimiza-
tion of buildings. Research in Engineering Design 18(4), 197-216.
Gips, J. (1999). Computer implementation of shape grammars. Workshop on

Shape Computation, MIT.

Goel, A.K., & Craw, S. (2006). Design, innovation and case-based reasoning.
Knowledge Engineering Review 20(3), 271-276.

Goldschmidt, G. (2005). How good are good ideas? Correlates of design
creativity. Design Studies 26(6), 593-611.

Goldschmidt, G. (2006). Quo vadis, design space explorer? Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 20(2), 105-111.

https://doi.org/10.1017/S0890060415000475

520

Granadeiro, V., Duarte, J., Correia, R., & Vitor, M.L. (2013). Building
envelope shape design in early stages of the design process: integrating
architectural design systems and energy simulation. Automation in Con-
struction 32, 196-209.

Grasl, T., & Economou, A. (2012). Transformational Palladians. Environ-
ment and Planning B 39(1), 83-95.

Grasl, T., & Economou, A. (2013). From topologies to shapes: parametric
shape grammars implemented by graphs. Environment and Planning B
40(5), 905-922.

Grasl, T., & Economou, A. (2014). Toward controlled grammars—
approaches to automating rule selection for shape grammars. Proc.
32th eCAADe Conf. (Thompson, E.M., Ed.), pp. 357-363, Newcastle
upon Tyne, UK, September 12-14.

Heisserman, J. (1994). Generative geometric design. I[EEE Computer Graph-
ics and Applications 14(2), 37-45.

Hoisl, F., & Shea, K. (2011). An interactive, visual approach to developing
and applying parametric three-dimensional spatial grammars. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing
25(4), 333-356.

Jones, J.C., & Thornley, D. (1962). The Conference on Design Methods.
Proc. Conf. Systematic and Intuitive Methods in Engineering, Indus-
trial Design, Architecture and Communications. London: Pergamon
Press.

Knight, T.W. (2003). Computing with emergence. Environment and Plan-
ning B 30(1), 125-155.

Koning, H., & Eizenberg, J. (1981). The language of the prairie: Frank Lloyd
Wright’s prairie houses. Environment and Planning B 8(3), 295-323.

Krishnamurti, R. (2006). Explicit design space? Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing 20(2), 95-103.

Lawson, B. (2005). Oracles, draughtsmen, and agents: the nature of knowl-
edge and creativity in design and the role of IT. Automation in Construc-
tion 14(3), 383-391.

Maher, M., & Poon, J. (1996). Modelling design exploration as co-evolution.
Microcomputers in Civil Engineering 11(3), 195-209.

McKay, A., Chase, S., Shea, K., & Chau, H.H. (2012). Spatial grammar im-
plementation: from theory to useable software. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing 26(2), 143-159.

Papanikolaou, M., & Tunger, B. (1999). The Fake.Space experience—
exploring new spaces. Proc. 17th eCAADe Conf., pp. 395-402. Liver-
pool: University of Liverpool.

Radford, A.D., & Gero, J.S. (1980). On optimization in computer aided archi-
tectural design. Building and Environment 15(2), 73-80.

Radford, A.D., & Gero, J.S. (1988). Design by Optimization in Architecture,
Building, and Construction. New York: Van Nostrand Reinhold.

Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning.
Policy Science 4(2), 155-169.

Russel, S., & Norvig, P. (2010). Artificial Intelligence—A Modern Approach.
New York: Prentice—Hall.

Schaefer, J., & Rudolph, S. (2005). Satellite design by design grammars.
Aerospace Science and Technology 9(1), 81-91.

Schon, D. (1983). The Reflective Practitioner: How Professionals Think in
Action. New York: Basic Books.

Shea, K., & Cagan, J. (1999). Languages and semantics of grammatical dis-
crete structures. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 13(4), 241-251.

Simon, H.A. (1956). Rational choice and the structure of the environment.
Psychological Review 63(2), 129-138.

Simon, H.A. (1957). Models of Man: Social and Rational. New York: Wiley.

Simon, H.A. (1973). The structure of ill-structured problems. Artificial Intel-
ligence 4(3—4), 181-201.

Stiny, G. (2007). Shape—Talking About Seeing and Doing. Cambridge, MA:
MIT Press.

Stiny, G., & Gips, J. (1972). Shape grammars and the generative specification
of painting and sculpture. Information Processing 71, 1460-1465.

Stiny, G., & Mitchell, W.J. (1978). The Palladian grammar. Environment and
Planning B 5, 5-18.

Taentzer, G., & Rudolf, C. (1998). AGG-approach: language and tool envi-
ronment. In Graph Grammar Handbook 2: Specification and Program-
ming (Rozenberg, G., Ed.). Singapore: World Scientific.

Tapia, M.A. (1999). A visual implementation of a shape grammar system.
Environment and Planning B 26(1), 59-73.

Tidafi, T., Charbonneau, N., & Araghi, S.K. (2011). Backtracking decisions
within a design process: a way of enhancing the designers thought pro-
cess and creativity. Proc. 14th Int. Conf. Computer Aided Architectural

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

T. Strobbe et al.

Design (Pierre Leclercq, A.H., & Martin, G., Ed.), pp. 573-587, Liege,
Belgium, July 4-8.

Trescak, T., Esteva, M., & Rodriguez, I. (2012). A shape grammar interpreter
for rectilinear forms. Computer-Aided Design 44(7), 657-670.

Turrin, M., von Buelow, P., & Stouffs, R. (2011). Design explorations of per-
formance driven geometry in architectural design using parametric mod-
eling and genetic algorithms. Advanced Engineering Informatics 25(4),
656-675.

Woodbury, R., & Burrow, A. (2006). Whither design space? Artificial
Intelligence for Engineering Design, Analysis and Manufacturing
20(2), 63-82.

Yue, K., & Krishnamurti, R. (2014). A paradigm for interpreting tractable
shape grammars. Environment and Planning B 41(1), 110-137.

Tiemen Strobbe is a PhD Researcher in the Ugent SmartLab
research group in the Department of Architecture and Urban
Planning and the Department of Electronics and Information
Systems of Ghent University. He graduated as an engineer—ar-
chitect from Ghent University, Belgium, with a Master disserta-
tion on the applicability of parametric design strategies. His in-
terests and current PhD research focus on design space
exploration, generative design, shape grammars, and the applica-
tion of information technology in architectural design in general.

Pieter Pauwels is a Postdoctoral Researcher in the Department
of Architecture and Urban Planning at Ghent University. He
holds Master’s and PhD degrees (2012) in engineering—archi-
tecture, both obtained at Ghent University. During his PhD re-
search, he investigated how information system support can be
provided for architectural design thinking. Pieter was pre-
viously a Postdoctoral Researcher at the Institute for Logic,
Language and Computation in the University of Amsterdam.
Dr. Pauwels is now working full-time on topics affiliated
with building information modeling, linked building data,
and linked data in architecture and construction.

Ruben Verstraeten is as an Assistant Professor in the De-
partment of Architecture and Urban Planning at Ghent Uni-
versity. He graduated as an engineer—architect from Ghent
University. His PhD dissertation was focused on the auto-
mated compliance checking mechanisms of architectural de-
signs. Dr. Verstraeten teaches several courses in computa-
tional design, including three-dimensional modeling,
parametric design, and digital fabrication.

Ronald De Meyer is a Senior Lecturer in the Department
of Architecture and Urban Planning of Ghent University
and a Lecturer in the Department of Architecture and Design
of Hasselt University. He graduated from the Hoger Architec-
tuurinstituut van het Rijk, Antwerp, and received his PhD
with a dissertation on the development of the 19th-century
Antwerp town district Het Zuid from Leuven University.
His research involves 19th- and 20th-century construction
history, more specifically, the role of concrete and iron struc-
tures in Belgium, and the intelligent deployment of ICT tech-
nology within architectural design.

Jan Van Campenhout is a member of the Department
of Electronics and Information Systems of the Faculty of

https://doi.org/10.1017/S0890060415000475

Exploration of shape grammars

Engineering at Ghent University. He received a degree in
electromechanical engineering from the University of Ghent
and MSEE and PhD degrees from Stanford University. Dr.
Van Campenhout’s research interests include the study and
implementation of various forms of parallelism in informa-

https://doi.org/10.1017/50890060415000475 Published online by Cambridge University Press

521

tion processing systems, currently focused on the modeling
and design of short-range parallel optical interconnects
from a systems perspective. In recent years, his interests
also include the computer support of the design methodology
in other areas, such as architectural design exploration.

https://doi.org/10.1017/S0890060415000475

	Toward a visual approach in the exploration of shape grammars
	Abstract
	INTRODUCTION
	THE DESIGN SPACE
	Design space exploration
	Design space exploration in an information system

	AN OVERVIEW OF SHAPE GRAMMARS AND THEIR IMPLEMENTATIONS
	Definition and terminology
	Overview of shape grammar implementations

	PROPOSED APPROACH
	Generation of alternatives
	Design space navigation and backup

	IMPLEMENTATION
	Exploration
	Backup and recall

	CASE STUDIES
	Malagueira compositional rules
	Frank Lloyd Wright prairie house grammar

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

