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Abstract

The order statistics of intense speckles or “laser hot spots” are studied in the context of the so-called “optically smoothed”
light beams of laser-matter interaction. We investigate theoretically and by means of numerical simulations the distribution
function for the k-th most intense speckle maxima in the upper tail speckle distribution. From these distributions for each
order k, a distribution function for the intense speckles as a function of their peak intensity can be established, which allows
to compute their impact on nonlinear processes, like parametric instabilities. This is done for the example of stimulated
Brillouin scattering, using the so-called independent hot spot model, for which the backscatter reactivity level is
computed, which proves to be in very good agreements with numerical simulations. This result is of great interest for
nonlinear processes, like instabilities, where extreme speckles play an important role.
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1. INTRODUCTION

We study the extreme properties of the so-called speckle pat-
terns of optically smoothed laser beams, in the context of
laser-plasma interaction. Laser speckles are the small-scale
structures in the intensity pattern in the focal volume of the
laser beam. For a certain class of smoothing techniques,
these speckles are coherent structures of homogeneous size
with statistically distributed peak intensities. The most fre-
quently used method for spatial smoothing is the so-called
random phase plate (RPP) technique, which produces on
the focal plane an intensity pattern consisting of a large
number of small-size “speckles,” also called “hot spots”
(Ohtsubo & Asakura, 1977; Kato et al., 1984; Obenschain
et al., 1986).
We aim to describe the statistical properties of the most in-

tense speckles. These extreme properties, in particular, the
fluctuation of intensity maxima are an important issue for
nonlinear mechanisms, which affect the beam propagation,
like filamentation, or scattering instabilities (Rose &
DuBois, 1994; Hüller et al., 1998; Mounaix et al., 2000).

Such instabilities are particularly sensitive to the features
of the “upper tail” of the speckle distribution function, in par-
ticular, if they follow threshold like behavior.

As an illustration of the relevance of these extreme proper-
ties, we discuss the exemple of the reflectivity value of a
parametric instability generated by Stimulated Brillouin Scat-
tering (SBS).

A typical “speckle distribution function” can be character-
ized by the “body,” namely the interval in the speckle inten-
sity where the probability density for speckles peaks, and by
the “tail” of the most intense speckles. The body of the dis-
tribution, located around the mean speckle intensity 〈I〉
(Goodman 1984, 1985; Rose & DuBois, 1993a) is generally
a well-known function, which can in the case of
laser-smoothing easily be deduced from the experimental
technique applied (Ohtsubo & Asakura, 1977; Kato et al.,
1984; Obenschain et al., 1986; Goodman, 1984, 1985; Bian-
calana & Chessa, 1994). The “body” of the speckle distri-
bution function (DF) depends only very weakly on the
quality of the light beam incident to the RPP, i.e., whether
the beam is close to an ideal beam (e.g., a plane wave) or
whether imperfections in the optical path and/or during the
amplification deform the intensity profile and the wave
phase front. The “tail” of the distribution, however, contains
only a small number of intense speckles (for a finite-size
speckle pattern), and hence, statistically, depends delicately
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on the beam quality and on the information in the RPP mask.
The tail may therefore exhibit considerable fluctuations with
respect to changes in the phase mask and/or in the optical
path.
Theoretical modeling of laser-plasma interaction exper-

iments under conditions, relevant to laser fusion, had been
very difficult before single hot-spot experiments providing
well-defined laser beam conditions were achieved at the
end of the 1990s (Montgomery et al., 1999; Kline & Mon-
tgomery, 2005), with the exception of regimes with very
strong beam self-focusing (Malka et al., 2000). “Generic”
high-power laser beams, without any sophisticated phase
front correction, did not allow to incorporate reliably the
necessary phase information in theoretical models. In con-
trast to this, the application of theoretical models incorporat-
ing optical smoothing methods (Rose & DuBois, 1993a), has
already been very successful earlier (Tikhonchuk et al.,
1996, 1997, 2001; Hüller et al., 1998, Mounaix et al.,
2000; Myatt et al., 2001; Pesme et al., 2002; Weber et al.,
2004; Masson et al., 2006). The applicability of optically
smoothed beams in laser-plasma theory is a consequence
of the fact that each of the numerous speckles is no longer
affected by imperfections originating from the laser itself.
Ideally, the phase information of a speckle can be assumed
to be known. From this point of view, it is relatively irrele-
vant to the statistics and modeling of the speckle pattern in
the focal plane, whether the “generic” laser beam, before en-
tering into smoothing optical element, is well controlled in its
phase or not. This is the reason why good agreement between
theory and experimental results has been found using
RPP-smoothed beams where the physics was governed by
contributions from speckles in the body of the DF.
For processes, however, with critical dependence on high

intensities (Rose & DuBois, 1994), potentially situated in the
tail of the speckle DF, theoretical modeling is often difficult
because of the incomplete information from experiments. A
statistical treatment of the fluctuations in the tail of the
speckle DF is therefore necessary, and the study of extreme
properties in the tail of the DF is very valuable for such criti-
cal processes.
As we have shown in recent work (Porzio & Hüller, 2010),

the statistics of the most intense speckle in a speckle pattern
of a smoothed laser beam is essentially governed by the ratio
between the focal volume Vfoc, in which the considered
speckle pattern is defined, and the specific volume of a
single speckle, Vsp. For the method of RPP beams, the
specific speckle volume is, in priciple, the same for all speck-
les, so that the ratio Vfoc/Vsp simply indicates the number of
potential speckles in Vfoc. While there are other smoothing
techniques where this feature does not necessarily apply,
we restrict ourselves in this work to the case of a unique
size/volume of speckles.
The paper is organized as follows: In Section 2, we devel-

op the theory for the most intense speckle and the successive
orders. These results are in good agreement with numerical
simulations, which also confirm that the spacing in intensity

between succssive orders can be used to define a histogram
for the speckle maxima abundance of the most intense speck-
les. By means of numerical simulations using the properties
of optically smoothed beams, we show in Section 3 that the
theoretical results on order statistics allow to compute the
impact of the most intense speckles to critical nonlinear pro-
cesses like stimulated scattering. We discuss the limit of the
model and aspects going beyond the scope of this work in
Section 4.

2. ORDER STATISTICS

While the “body” of the speckle distribution function shows
almost no fluctuations from one realization to another, the
most intense speckles in a pattern show fluctuations in
their peak intensity value from one to another realization
for which one wants to quantify the relevant intensity inter-
val. Let us explain the meaning of “realisation” in this con-
text: a realization of a speckle pattern corresponds either to
a numerically generated pattern by simulations, or by a
speckle pattern associated with an experimental setup that
may vary the properties due to fluctuations in the optical
path, and which cannot be reproduced identically from one
laser shot to another.
It is intuitive that the fluctuations of intense speckles

should decrease successively and inversely with the order
(the most intense being the first maximum). For a speckle
field pattern of a smoothed laser beam, it is however interest-
ing to investigate the joint occurence of the first k successive
maxima following the most intense one.
We do this in the following by looking for the asymptotic

behavior of the joint probability distribution of the most in-
tense, the second, up to the k-th maximum, each maxi-
mum—this has to be underlined—being the maximum of a
number of local intensities mesured in a box approximately
of the size of a speckle.
The method used here to determine the successive orders

M1>…Mk−1>Mk>Mk+1 of maxima consists in dividing
the considered focal volume Vfoc in a number of nsp sub-cells
and to find the maxima in each sub-cell. The number nsp indi-
cates the number of potential speckles to be found in the con-
sidered volume.
Note that to order the maxima Mk does not mean that we

are ordering the strict intensity maxima of the field! Ordering
the maxima of different boxes has the meaning of ordering
the power contained in different speckles. Of course, in the
pure “Gaussian” case, where individual speckles do not exhi-
bit secondary peaks, these two approaches, namely ordering
the maxima and ordering the intensity peaks of the field,
coincide.
For this reason, the correlation properties inside an indi-

vidual speckle, depending on the method generating the pat-
tern, are important. Several techniques to generate RPP
speckle patterns are known, each giving rise to more or
less oscillatory stucture of the speckle field, both along and
across the propagation axis. However, we are interested in
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the speckle maxima so that subsidiary maxima of the same
speckle have to be excluded when considering speckle stat-
istics. For this reason, the characteristic dimensions of speck-
les have to be determined from the speckle correlation
functions, as done in Appendix B. An unsuitable choice of
typical speckle dimensions can henceforth lead to the
wrong number of the Vfoc/Vsp ratio. However, the knowledge
of the correct value of Vfoc/Vsp is of particular importance, as
we see in the following, to establish an order statistics of the
most intense speckles, because one uses a method to sub-
divide the speckle pattern in sub-volumes of the size of an
individual speckle.

2.1. The Principal Maximum M1

Before determining the order statistics, we first recall the
notion for the extreme statistics of the highest intensity of a
speckle field, which is the first order maximum M1 (Em-
brechts et al., 1997; Porzio & Hüller, 2010): let us denote
with F() the common probability distribution function for
the sequence {I}n≡ I1,…, In of intensity values in a speckle
pattern. Then F(un) is the probability P() that an intensity
value Ij, being one among the sequence {I}n of n known in-
tensity values, can be found below the level un, namely
P(Ij< un). Knowing that F(un) is common for all values in
{I}n, the mean number of exceedences of the level un by all
n values in {I}n is given by n(1− F(un)). If the value of
n(1− F(un)) stabilizes toward a positive real value τ for n
→∞, a limit law exists that can describe the extreme prop-
erties of speckle maxima (Embrechts et al., 1997). We first
assume that this is the case, limn→∞n (1− F(un))= τ, and
approximate F(un) by F(un)= 1− τ/n+ o(1/n) with a
residual error o(1/n) converging faster than 1/n. The latter
allows to calculate the probability that the maximum M1 of
all n values of {I}n stays below un, which is given by

P(M1 < un) =
∏n
j=1

F(un) = (F(un))
n,

under the condition that all values of {I}n are statistically in-
dependent. With the above approximation for F(un), one thus
obtains P(M1< un)→ e−τ for n→∞. In the case of speckle
fields generated by RPP smoothing techniques, the prob-
ability distribution is generally an exponential, such that
F(u)≡ 1− exp{−u}, with u being the intensity normalized
to the mean intensity. Therefore, the probability that the
maximum M1 is found below the level un finally reads

P(M1 < un) = exp {− ne−un} = exp {− e−un−ln n}, (1)

with τ→ n(1− F(un))= ne−un. This is a double exponential
distribution, identical to the so-called Gumbel distribution
with the tranform un= an+ bnx and the scaling factors
an= bn ln n and bn= 〈I〉, the latter being 〈I〉≡ 1 for intensi-
ties normalized to the mean value. The above mentioned

condition for the stabilization toward a limit law H() can
only be met if this tranform between a finite value n and
n→∞ exists such thatH(un)≡ limn→∞ P(M1< un) is equiv-
alent to H(x)≡ limn→∞P([M1−an]/bn< x)= exp{− e−x}.
The tranform between the level x and un corresponds to a
translation of the probability distribution in the intensity
axis, which has an important physical meaning.

The Gumbel limit law, as deduced above, strictly applies
only to independent values in the set {I}n= I1… In. If
among the n values only a portion θ< 1 meets this criterion,
the limit law reads

Hθ(x) = exp {− θ exp (− x)}. (2)

This means that a fraction 1− θ of the evaluated points is
“clustered,” so that the shift of the distribution is limited to
ln (n/θ) instead of ln n for a completely unclustered set
{I}n (which is usually the case for a resolution with a
number of points n smaller than the number of potential
speckles). To determine the intensity maximum of a speckle
field, the number of points required is naturally considerably
higher than the number of potentially independent values,
which is in fact the number of speckles nsp in a volume.
The shift has consequently a strict physical meaning, and
the probability distribution centers around the normalized in-
tensity equal to ln (n/θ)= ln nsp. This is intuitive because the
more speckles that are found in a volume, the more likely it is
to find a high-intensity maximum in the pattern.

The number nsp is an important parameter, also in what
follows later. It depends on the specific speckle volume Vsp

that can be derived from the speckle correlation function.
Characteristic sizes are deduced from the method generating
the speckle pattern. This is done in Appendix B. Table 1 lists
the typical speckle volumes for different generating algor-
ithms for RPP. It is also related to the spatial dimension
(d= 2 or 3 for 2D or 3D) in which numerical simulations
of speckle pattern are performed. The dimension d therefore
naturally enters in the ratio between the focal volume and the
specific speckle volume.

Table 1. Summary of specific volume of speckles in a RPP
pattern, generated by different methods in the near field. The quantities
f#, q, and λ0 are the optical f-number, the corresponding
cutoff-wavenumber (q≡ 2π/λ0f#), and the laser wavelength in
vacuum, respectively

Specific Speckle Volume

2D l⊥lz
Gaussian

����
ln 2

√
k0w3

RPP = 1.33f 3#λ
2
0

Flat-top 7.6k0/q
3= 1.58 f#

3 λ0
2

mod. RPP Flat-top 6.2k0/q
3= 1.23f#

3 λ0
2

3D l⊥
2 lz

cyl. Gaussian 0.29k0wRPP
4 = .69f#

4 λ0
3

cyl. Flat-top 14.3k0/q
4= .90 f#

4 λ0
3
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2.2. The Higher Order Maxima Mk <M1

We now proceed beyond this feature of a Gumbel law for the
principal intensity maximum M1 in a volume, by investi-
gating the order statistics properties of the next intense
maxima denoted as Mk< Mk−1…<M1 for k> 1. To
obtain an adequate formulation for the probability distri-
bution of the order statistics, one has to define the manner
on how the maxima are determined.
Since a speckle itself has a correlated structure, the points

in the neighborhood of a speckle maximum do consequently
not form a set of independent intensity values. As discussed
above, the number of independent points is hence limited by
the number nsp of speckles in the volume, of which we seek
the maximum values and sort them in intensity. The most ef-
ficient method, which also can be adequately described by a
probabilistic procedure, is to divide the volume into sub-cells
of the size of a specific speckle volume, Vsp (see Appendix
B), and to determine the maximum of each sub-cell. Such
a method is of course not free of errors that have to be
handled so that the number of incorrectly taken maxima
stays small with respect to the ensemble of nsp maxima.
For the details of the quite technical procedures choosing,
the maxima we refer to Appendix A.
We proceed in the way that the focal volume with the

speckle pattern, evaluated at n mesh points, is sub-divided
ns sub-cells, J1,…Jns. We take ns= nsp sub-cells each con-
taining m= [n/nsp] elements (=evaluated intensity values),
where n is the total number of points of the mesh. Then, if
we choose m such as each sub-cell contains a number of
points n going to infinity when also n→∞, if also the sub-
cells are disjoint and sufficiently separated for large values of
n, we can consider that the maxima of the sub-cells are inde-
pendent, and distributed following the Gumbel law with the
shift parameter θ, where θ is the shift parameter found in the
above mentioned limit law Eq. (2) of a sequences of “cluster-
ing” exponential intensities.
Based on the work developed by Leadbetter et al. (1982),

Leadbetter (1983), and Embrechts et al. (1997), we find that
Mm

k , denoting the maximum of the k-th cell, follows a
Gumbel law with the “clustering” parameter θ (Middleton,
1960; Leadbetter, 1982, 1983)

P(Mk
m ≤ akm + bkmx) → Hθ(x) = exp (−θe−x).

For Mm
1 ,… , Mm

k ,…Mm
ns being the maxima on the J1,…Jns

(asymptotically) independent sub-cells, the law for the joint
probability, that the maxima Mm

k stay below the level un=
am
k + bm

k x for several maxima at the same time, is given by

P(M1
m ≤ a1m + b1mx, . . . , M

ns
m ≤ ansm + bnsm x)

→ exp (−nsθe
−x), (3)

because of the asymptotic independence of maxima in dis-
joints boxes.
We turn now to the order statistics of the maxima in the

boxes. The result of Eq. (4) below is motivated by the

following argument: We know that the exceedence of the
level un by the sequence M1,…Mn occurs with probability
�F(un), if F is the common distribution function of the inde-
pendent sequence M1,…Mn, this time of the maxima, with
n= ns. If the mean number of exceedences, i.e., ns�F(uns ),
tends to τ, then the number Sns of exceedences of the level
uns by the sequence M1,…Mn has limit distribution

P(Sn ≤ k) → e−τ
∑k
h=1

τh

h!
. (4)

Indeed, Sn= Sns is binomial with parameters (n, F̄(un)), so
that the result is just the Poisson limit for binomial distri-
bution when n F̄(un)→ τ.
We denote by Mk,n the k-th maximum in the ordered

sample of the maxima. Now, to evaluate the probability
that P(Mk,n≤ un)= P(Sn≤ k) we use Eq. (4) where the the
explicit value for τ is taken as τ=−lnHθ. Indeed, by order-
ing the ensemble of maxima corresponding to the ns sub-
cells, Mns,ns ≤ . . . ≤ M1,ns = M1 denotes the order statistics
of the sample (pattern), and we readily obtain from Eq. (4)

P(Mk,ns ≤ ans + bnsx) →

→ Hθ(x)
∑k−1

l=0

(− lnHθ(x))l

l!

( )
= 1

(k − 1)!
Γk(− lnHθ), (5)

where Γn(x)= (n− 1)! e−x∑k=0
n−1(xk/k!) is the incomplete

Gamma function, and Hθ(x)≡ exp(−θexp(−x)) is the
Gumbel (double exponential) law with the parameters an=
1 (or an→ 1) and bn= ln n, and θ as the (clustering) shift
parameter.
The joint distribution of several large maxima concerns the

simultaneous exceedence of multiple hierarchic levels
u1,ns , u2,ns , . . . ur,ns by the sequence M1,…Mns. Again,
searching for the number Skn of the exceedences of the
level uk,ns by the sequence, we obtain, see below, Eq. (6).
In fact, under the same hypothesis, it is possible to write

down the joint law of the maxima between order 1 and k
among the ns maxima, in decreasing order of intensity
(Leadbetter, 1982, 1983; Embrechts et al., 1997). With
Mns,k ≤ . . . ≤ Mns,1 = M1 andMk

ns
denoting k-th most intense

maximum, and uns,k ≤ . . . ≤ uns,1, following
un,k = ak,n + bn,kxk = ln n+ xk, one obtains for the joint
probability for the k most intense maxima

F(k)(x1, . . . xk) ≡ P(Mn,1 ≤ un,1, . . . , Mn,k ≤ un,k) =

= P
Mn,1 − an,1

bn,1
≤ x1, . . . ,

Mn,k − an,k
bn,k

≤ xk

( )

→ Hθ(xk)
∑
l2=0,1

. . .
∑

lk=0,1...k−1

∏k−1

i=1

1
li+1!

ln
Hθ(xi)
Hθ(xi+1)

( )li+1

. (6)

Let us explicitely express the result of F(k)(x1,…xk) for the
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first two maxima:

P
Mn,1 − an,1

bn,1
≤ M1,

Mn,2 − an,2
bn,2

≤ x2

( )

→ F(2)(x1, x2) = exp (−θe−x2 ) 1+ θ(e−x2 − e−x1 )[ ]. (7)

This allows us to evaluate the joint level of occurrence of the
two most intense speckles, Mns,1 =M1 and Mns,2 =M2, which
is the probability P[Mn,1< M1, Mn,2<M2]≡ F(2)(M1, M2),
where of course M1≥M2: Figure 1 shows the joint distri-
bution for the two largest maxima,

F(2)(M1, M2)∝ exp (− e−(M2−an)/bn))

× 1+ e−(M2−an)/bn − e−(M1−an)/bn
( )

, (8)

expressing hence the ( joint) probability that, at the same
time, the most intense maximum is smaller than M1, and
that the second maximum is found below the value of M2

(<M1). We know that the marginal probability distribution
for the second maximum F2(M2) is given by

F2(M2) ≡ lim
M1→∞

F(2)(M1, M2)

= exp [− e−(M2−an)/bn − 2(M2 − an)/bn], (9)

which is a consequence of the fact that for sufficiently high
values ofM1, say forM1> 2an, the value of the most intense
speckle is found most likely in the interval 0< I<M1. For
this reason, the cut in Figure 1 (see also Fig. 2), at high M1

values (M1≃ 10≃ 2an), approximately depicts the behavior
of F2(M2).
Figure 3 shows the marginal probability density of the

possible intensity values of several k-order maxima, which
become more and more peaked (narrower) with order than
the one for the most intense speckle.

2.3. Spacing in Intensity Between Maxima of Successive
Order

The marginal probability for the k-order maximum (decreas-
ing in intensity with increasing order) is equivalently the
limit of Eq. (6) for all M1 … Mk−1→∞ (Embrechts et al.,
1997),

Fk(Mk) ≡ lim
M1,...Mk−1→∞

F(k)(M1, M2, . . .Mk) =

= Hθ(xk)
∑k−1

s=0

(− lnHθ(xk))s

s!
, (10)

with xk= (Mk− an)/bn, which allows us to evaluate the dis-
tribution and the probability density of all higher order
maxima as a function of their intensity,

dFk(Mk)
dMk

= 1
Γ(k)

exp {−e−(Mk−an)/bn − k(Mk − an)/bn}. (11)

In particular, by searching the expectation value in intensity,
M̄k, with respect to the probability density of the k-th order
maximum (Fig. 3)

�Mk =∫
∞
0 M

dFk(M)
dM

dM = ans −
d

dk
ln Γ(k) ≡ ans − Ψ(k), (12)

with the function Ψ(k) standing for the Di-Gamma function
(also call Poly-Gamma function of 0-th order and Γ(k)= k!
for integers k). From this expression, one can determine the
spacing �Mk − �Mk+1 in M, given by the recursion identity
Ψ(k)−Ψ(k+ 1)= 1/k. Between the successive orders of
speckle maxima, we have consequently the relation (in di-
mensionless units after normalization to the mean intensity
of the overall speckle pattern <I>) M̄k= M̄1−∑j=1

k−11/j,
which is M̄1= ln nsp+ γ (with γ≃ 0.5772 being the Euler
Gamma constant) for the principal maximum, k= 1. All
higher orders, k> 1, can nicely be approximated by

�Mk = ln nsp − ln (k − 1)− 1/2(k − 1) fork > 1, (13)

with the expectation value of the most intense speckles of the
order k= 2, 3 ,4, 5, and 6 yielding M̄2= ln nsp+ γ− 1 (≃ln
nsp− 1/2), M̄3= ln nsp+ γ− 3/2 (≃ ln nsp− .94), M̄4= ln
nsp+ γ− 11/6 (≃ ln nsp− 1.26), M̄5= ln nsp+ γ− 25/12
(≃ ln nsp− 1.51), M̄6+ ln nsp+ γ− 137/60 (≃ ln nsp−
1.71), where the approximate values from Eq. (13) are
given in the parentheses.

The spacing between the expectation values for first
maxima is hence different from the spacing between the
peak values, Mk

(peak), of d Fk(Mk)/dMk, which can be found
from Embrechts et al. (1997) Mk

(peak)= ln nsp− ln k,
(Mk

(peak)−Mk−1
(peak))= ln[(k− 1)/k]. The histograms corre-

sponding to either the peak or the expectation values can
be written in the form

order of speckle maximum k ≡ nsp
fp(M(peak)) for peak values,

fe( �Mk) for expectation values,

{

as illustrated in Figure 5. In comparison to the spacing of the
expectation values M̄k, the spacing of the peak values evi-
dently yields an exponential decrease in the tail of the equiv-
alent histogram fp(Mk

(peak)), whereas fe(M̄k) has a slower
decrease for the intense maxima and then comes close to
an exponential one as well. This can be explained by the
fact that the shape of the marginal probability densities (as
a function of the speckle intensity) for the first order
maxima is quite asymmetric around its peak, while for
higher order maxima the shape becomes more and more sym-
metric. Figure 4 shows the comparison between peak values
and expectation values as a function of the inverse of the
speckle order, 1/k. In a similar way, we depict this difference
between peak and expectation values in the form of an abun-
dance histogram, indicating how many speckles, namely ≤k
is equal to the order of speckle maxima k in average, with
maximum intensity M being found in the interval M≥ M̄k.
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The histogram established via the numerical simulations
shows very good agreement with the histogram, k= nsp
fe(M̄k), where one associates the k-order maximum with its
expectation value M̄k in intensity, see Figure 5. We are there-
fore led to consider that the order of the maximum k deter-
mines, in an ensemble average over numerous realisations,
the number of speckles with a peak intensity M greater or
equal to the expectation value of the k-th order maximum,

i.e., M≥ M̄k. (Note that the “peak intensity” of individual
speckles M has to be distinguished from the “peak value”
Mk

(peak)) of the marginal probability density of the k-th
order maximum). We can hence use the inverse of Eq. (12),

number of speckles with peak intensity ≥ �Mk ≡

order of speckle maximumk = nspfe( �Mk) ≡ (Ψ)−1( �Mk − an),

(14)

represented in Figure 5. This equivalence allows us, hence, to
use Eq. (5) as an expression for the “tail” of the distribution
for high-intensity speckle maxima. The fact that we start
counting, due to the order statistics, from the most intense
speckle toward the less intense ones, has the consequence
that the “body” of the speckle maxima distribution corre-
sponds to very high orders k∼ e−1nsp.

2.4. Computing the Response from Independent
Speckles

In the frame of the “independent hot spot model” (Rose &
DuBois, 1994), it is of interest to compute response of a
speckle (or “hot spot”) pattern to a nonlinear physical pro-
cess. For the purpose, to compute the response Rtot to such
a process from the ensemble of speckles in a plasma, the
assumption of independent “hot spots” means that one can
sum over the contributions to the response from each
speckle, R(Mk)/nsp, i.e., Rtot ≡

∑nsp
k=1 R(Mk)/nsp, where

the response of the speckles (numbered from k= 1 to nsp)
is a function of the speckle peak intensity Mk. The validity
criteria for such an approach are (1) that the process con-
sidered (e.g., stimulated scattering) can be expressed by

Fig. 1. (Color online) Joint distribution of the first two intensity maxima, M1>M2, with ln nsp≃ 5.29. Intensities are normalized to the
mean intensity. The steepest gradient of the distribution in M2 is asymptotically, for M1≫ln nsp, found at M2=M1− ln 2≃ 4.6. (a) sur-
face 3D graphics representation, (b): contours (in reduced interval).

Fig. 2. (Color online) Derivative ∂M2
F(2)(M1,M2), with respect toM2, of the

joint distribution F(2)(M1, M2) of the first two intensity extrema, M1>M2,
corresponding to what is shown in Figure 1. Superposed to the contours is
the curve following the steepest gradient of ∂M2

F(2).
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either a stationary or an instantaneous response function, and
(2) that the contributions of adjacent layers in the speckle pat-
tern do not give rise to subsequent re-amplification. In prac-
tice, this means for the case of stimulated scattering in
speckles, that the light scattered off different layers with re-
spect to the laser propagation, originating from the (sub-) en-
semble of speckles in each layer, can be considered as an
incoherent superposition of the individual contributions.
We shall consider the particular case of stimulated scatter-

ing, for which the above mentioned criteria can be explicited
for an inhomogeneous plasma (Tikhonchuk, 1997): (1) the
stimulated scattering process is in a convective amplification
regime where the plasma waves, off which electromagnetic
wave are scattered, are strongly damped; (2) the plasma is
inhomogeneous with a three-wave-coupling interaction
length ℓint that is shorter than the longitudinal speckle
length 2lz (see Appendix B), but longer than the speckle
width 2l⊥. For a plasma wave damping rate na/ωa and a

plasma inhomogeneity length L∇, the latter condition can
be expressed by 2l⊥< ℓint= (na/ωa)L∇< 2lz.

For a layer of the length of a speckle, ∼2lz (see Appendix
B for the equivalence between lz, the Rayleigh length, and
the length L∥), the response function for the backscattered
light flux produced due to parametric scattering instabilities,
such as stimulated Brillouin and raman scattering (SBS and
SRS, respectively), can be written as R(Mk) = Rsp(Mk)Mk.
With Rsp( ) we denote the single speckle reflectivity, i.e.,
the portion of light—with respect to the incident light
flux—that is backscattered off a single speckle. A speckle
having Mk times the mean intensity 〈I〉 of the incident

Fig. 3. (Color online) (a) Marginal probability distribution function, F(Mk) and (b) the corresponding marginal probability density d Fk/d
Mk of the 1st, 2nd, 3rd, and 5th (k= 1, 2, 3, and 5) most intense speckle as a function of their intensityMk. Dots display simulation results
based on 1600 realisations of an RPP speckle pattern, the lines correpond to the model expressed by Eqs. (10) and (3). The simulation
volume contains 2048 laser wavelengths in both directions, containing about nsp≡ Vfoc/Vsp= 1330 potential laser speckles such that
the shift in the distribution is ln nsp≃ 7.2.

Fig. 4. (Color online) Dots: spacing between the expectation values for the
intensity of the k-th order maximum, (M̄k− M̄k−1)/〈I〉 as a function of 1/k.
Solid line: spacing between the peak values, (M(peak)

k –M(peak)
k−1 )//〈I〉, of the

probability density of maxima of successive order, following ln [(k+ 1)/k], as
a function of 1/k.

Fig. 5. Histogram constructed by plotting the order k of the speckle maxi-
mum as a function of its peak (dotted line) and expectation values (dotted
line with markers), M(peak) and M̄k (from Eqs. (12) and (5)), respectively,
as well as of the mean values in intensity (asterisks) for each speckle maxi-
mum from numerical simulations. Two series of simulations are shown with
the corresponding values k∼ exp−M(peak) and k≡ eq. (15), with (a) ln
nsp= 8.3 (left group), and (b) ln nsp= 9.75 (right group). The simulations
are based on about 1200 realisations of speckle patterns with identical optical
properties, but different random distributions of the phase mask. The histo-
gram corresponding to the peak values follows an exponential decrease∝
e−Mk, while the histogram corresponding to the expectation values and to
the simulations follows a slower decrease in intensity according to Eqs.
(12) and (15).

Order statistics of intense laser hot spots 469

https://doi.org/10.1017/S0263034610000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034610000418


beam, contributes hence with Rsp (Mk) Mk to the total back-
scatter response.
Following the above-mentioned argument that the contri-

butions of adjacent layers of the length of a speckle do not
give rise to re-amplification, the total backscatter response
can be expressed consequently by the double sum

Rtot ≡
1
nsp

∑jz
j=1

∑nsp,j
kj=1

MkjRsp(Mkj )|z=zj , (15)

where nsp, j denotes the number of speckles in each of the jz=
[Lfoc/2lz] layers of length 2lz, and where the contribution
from each of the nsp,j speckles, MkjRsp(Mkj), is evaluated in
the j-th sub-layer around z= zj with 0< j= [zj/2lz]< Lfoc/
2lz. The sub-division into sub-layers is necessary in case
that the response in each of the jz layers depends on the
local plasma quantities like density, damping etc., and/
or in case of pump depletion of the local laser power
(see model in Tikhonchuk et al., 1997) such that∑nsp,j

kj=1 Mkj/nsp,j ≡ 〈I〉 is no longer constant, but diminishes

along the propagation axis.
Under the condition that the spatial dependence of the

local contributions on z is negligible, so that Rsp(Mk,j) does
not considerably vary over Lfoc along the propagation axis,
this expression simplifies to

Rtot = 1
nsp

∑nsp
k=1

Rsp(Mk)Mk , (16)

for the entire speckle pattern with nsp=∑j nsp,j. In this sum,
the order of the contributing speckles does not matter. In the
ensemble average over many realizations, one can use the
values of the successive orders k in intensity of the speckle
maxima Mk, as developed above.
For a single realization of a speckle pattern, as for a con-

crete speckle pattern, Eq. (16) can easily be determined. In
many cases, only the optical properties of a speckle pattern
are known, but not the details of the pattern, and therefore
a single realization is statistically not representative for the
high-intensity tail of the speckle distribution. For the ensem-
ble average over many realizations of speckle patterns, the
computation of the response requires an integration over
the joint probability distributions F(k)(M1 … Mk), which is
pratically a very tough procedure. We can, however, make
use of the quite general feature seen in Figure 2: for the
example of the joint probability density for M1 and M2, it
can be seen that the joint probability density in Mk+1 already
tends, as a function ofMk quite rapidly toward its asymptotic
form corresponding to the marginal probability density.
For this reason, the model developed in Section 2.3 can

yield a good estimate of Eq. (16) by evaluating Rsp(Mk) at

the expectation value M̄k of the k-th maximum, yielding

〈 �R〉 ≡
1
nsp

∑nsp
k=1

Rsp( �Mk) �Mk. (17)

The latter is a good approximation provided that the change
of the response function Rsp in the interval around Mk= M̄k

determined by the variance σk of the marginal probability
density Eq. (11), namely |Rsp( �Mk − σk)− Rsp( �Mk + σk)|, is
small compared to Rsp(M̄k).
Using Eq. (12), the sum applies to discrete values of M̄k.

In contrast to our discrete approach, the distribution of
speckle maxima as a function of their peak intensities has
been expressed by a continuous expression (Garnier, 1999).
It might therefore be useful to express the sum of Eq. (17)
in the form of an integral

〈 �R〉 ≃
∑nsp−1

k=1
∫
�Mk+1

�Mk
Rsp(M)M dfe(M), (18)

with dfe(M )≡ (dfe(M )/dM) dM, knowing that ∫
�Mk+1
�Mk

dfe =
fe( �Mk+1)− fe( �Mk) ≡ 1/nsp. This approximation is, however,
not very precise for orders k< 3, because we took
interpolated values when performing the partial integration.
The latter expression yields, in the continuous limit,

→∫
0
�M1

Rsp(M)M dfe(M). We can here use the fact that the
values of M̄k can be approximated in a continuous manner,
using Eq. (13), such that the inversion of Eq. (5) readily
yields a nice approximate explicit expression of the speckle
maxima abundance fe(M̄k), namely with the function

fe( �Mk) ≃ exp
1
2
e
�Mk−ln nsp − �Mk

{ }
for �Mk ≤ ln nsp + γ, (19)

which is normalized to the total number of speckle maxima,
namely ns= nsp= exp{an}= exp{ln nsp}.

2.5. Numerical Simulations of Order Statistics

We have performed numerical simulations in order to deter-
mine the order statistics from speckle patterns generated by a
RPP. For this purpose, we have solved the stationary paraxial
equation for a forward-going laser pulse

2ik0∂ζ + ∂2x +
ω2

c2
− k20

( )[ ]
A = 0, (20)

where the wave number k0 and and the frequency ω are
chosen such that ω2/c2− k0

2≡ 0, because of the dispersion
in a homogeneous medium or vacuum. The corresponding
solution of a light field composed by speckles can be written
as the superposition of an ensemble of complex fields am, all
with the same propagator eik0ζ−iωt, but with distinct values
in the transverse direction. The field describes, in paraxial
approximation, the propagation from the so-called “near
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field,” where the speckle-generating RPP is situated, ∑m

ame
iφm, toward the “far field” E(x, z) in the focal plane.

How concrete realizations of RPP beams can be done is ex-
plained in more detail in Appendix B.
Our simulations are performed on a highly resolved mesh

over a large lateral size and over many characteristic lengths,
namely Rayleigh lengths of speckles in the propagation di-
rection, with typical number of speckles of 2000, thus ln
nsp∼ 7.5. The total number of mesh points (8 to 16 × 1016)
is considerably higher than nsp such that a great number of
points inside a speckle are clustered and the shift ln nsp on
the intensity axis applies. From the simulations we have de-
termined the most intense speckle maxima, starting with M1,
up to order 6 in the case presented here. To determine the
highest intensity value M1, being a local maximum at the
same time, follows a straightforward procedure. The next
maxima following in order, Mn<Mn−1<…M3<M2<
M1 have to be determined with caution because the error in
ordering the maxima increases with the order. The algorithm
chosen may therefore modify considerably the result. We
have therefore devoted Appendix A to explain the searching
procedure for the maxima. Let us just mention that the most
efficient method is to divide the volume in sub-cells of the
size of a individual speckle, in respecting the typical sizes
due to the manner how the speckle pattern is generated
with the RPP. For the different cases of RPP masks in the
“near field,” we have listed the specific speckle volume in
Table 1. The maximum of each sub-cell is retained, and all
maxima are sorted in magnitude, however, to reduce errors,
a discriminating filter can be applied, see Appendix A. In
order to establish the probability distribution numerically,
we have computed a large number of realizations of RPP
masks with identical optical properties: that means that the
focusing optics, the size of the overall phase plate, and the
size of the phase plate elements is the same in each realiz-
ation, whereas the phase shift φm

( j ) in each individual element
m follows a random value sequence from realization j to
realization j+ 1. It is unimportant whether φm

( j ) randomly
jumps between the values 0 and π/2 or whether the values
of φm

( j ) have homogeneous distribution in the interval (0,π/
2). The order statistics can be determined in registering the
intensity values of the first k (here 6) most intense maxima.
Numerically determined probability distributions for extreme
speckles are shown in Figure 5. From the same statistics we
have determined the expectation value of the k-th order maxi-
mum, which is compared to the values derived from prob-
ability theory in Eqs. (13) and (19) above. Both
comparisons shown in Figures 5 and 4 show very good
agreement between simulations and theory. In Figure 4, the
spacing between the expectation values for the successive
maxima clearly exhibits a departure from the 1/k law for
small k, i.e., for the most intense speckles, giving rise to a
simply exponential (exp−M/〈I〉) speckle distribution. The
histogram, see Figure 5, counting the number of maxima in
the interval M<Mk, which represents the upper tail of the
speckle distribution, shows hence a decrease that is slower

than an exponential for the maxima below order 8, namely
for M> M̄8≃ 3〈I〉.

3. BACKSCATTERING FROM EXTREME
SPECKLES

Let us show the pertinence of the order statistics developed
above for the example of the backscatter reflectivity value
of a parametric instability. We will illustrate it for the particu-
lar example of SBS by making use of simulation results from
the Harmony interaction code (Hüller et al., 2006) for several
realizations of a speckle pattern generated with a RPP. The
simulations were carried out in an inhomogeneous plasma
with a linear velocity gradient of an exploiding-foil type
plasma such that SBS in single speckles should follow
that amplification according to Rosenbluth’s model
(Rosenbluth, 1973). Ion acoustic waves are assumed to be
strongly damped.

To compute the SBS reflectivity from the model developed
here, we can assume that the contribution to backscattering
comes independently from each speckle. The reflectivity
can be compute by summing over all speckles with a response
function of the reflectivity R(Mk) parametrized on the speckle
peak intensityMk, as done, e.g., in Hüller et al., 1998 and Ti-
khonchuk et al., 1997, following an amplification described
by Rosenbluth’s model (Rosenbluth, 1973). For a concrete
speckle pattern, the values of the speckle maxima Mk are
known. One can hence compute the reflectivity Rtot corre-
sponding to backscattering of the overall speckle pattern by
Rtot = 〈 �R〉 from Eq. (17), for all Mk being normalized to
the mean intensity 〈I〉. The value R(Mk) indicates, as men-
tioned earlier, the fraction of light flux that has been backscat-
tered off an individual speckle. One can assume that the single
speckle reflectivity is a result of an exponential amplification
with Rsp (M )∝Rnoiseexp{GM} from a noise level Rnoise, with
G being the SBS gain for an average-intensity speckle, andM
standing for the peak intensity value of an individual speckle.
For simplicity, here, we limit the single speckle reflectivity by
unity once the speckle peak intensityMk exceeds the value of
ln(1/Rnoise)/G. We readily obtain

Rtot = 1
nsp

∑nsp
k=1

�Mk min {1, Rnoisee
G �Mk}, (21)

which can be further evaluated using the approximate
expression Eq. (13) for the expectation value M̄k of the
succesive orders of the speckle maxima,

Rtot ≃
�M1

nsp
min 1, Rnoisee

G �M1

{ }

+ 1
nsp

∑nsp
k=2

ln
nsp

k − 1
− 1

2(k − 1)

( )

×min 1,Rnoise
nsp

k − 1

( )G
e−G/2(k−1)

{ }
(22)
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It is important to note that, starting from the general
expressions (Eq. (17) and (21)), the contribution of the most
intense speckles to the total reflectivity Rtot yields a non-
negligible portion. For the case of a realization yielding a par-
ticular pronounced principal maximum such that difference
between the first two maxima M̄1− M̄2 is considerably
larger that the successive differences M̄k− M̄k−1, the contri-
bution of the principal maximum to Rtot can assume a high
percentage.
Figure 6 shows the simulation results for the SBS reflectiv-

ity of a speckle pattern with about nsp∼ 1820 speckles. The
SBS gain corresponding to these simulation yields for aver-
age intensity speckles at 〈I〉 the value of G= 1.1, the noise
in the simulations was such that an average reflectivity of
Rnoise∼ 10−5 results in absence of amplification (i.e., for
G= 0). Since the gain for an average-intensity speckle (at
〈I〉) is small, only intense speckles can contribute to Rtot.
For this reason, each different realization of simulations
reaches eventually a different reflectivity level, plotted here
as a function of the principal intensity maximumM1. The de-
pendence of the reflectivity onM1 brings to evidence the fact
that the contribution of the most intense speckles, and their
fluctuations in intensity, cannot be neglected if the number
of speckles is limited.
The evaluation of the average SBS reflectivity corresponds

to an ensemble average of many realisations of speckle pat-
terns with each time nsp speckles. Applying Eq. (23) for
the current example, this yields a value of Rtot≃ 0.0003.
The histogram in Figure 6 shows that the reflectivity assumes
this value around the expectation value of the most intense

speckle, namely M̄1= ln nsp+ .5772, being M̄1≃ 8.1 for
nsp≃ 1820, hence in good agreement with the average over
the realisations in our simulations.
We have compared our results to previous work on the stat-

istics on speckle maxima, which is shown in Figure 7. In
addition to the speckle maxima histogram fe(M̄k) correspond-
ing to our model, see Eqs. (15) and Eqs. (19), we show the
corresponding distribution from work done by Garnier
(1999) where fG(M ) has a powerlaw-type times exponential
dependence in M, fG(M )∼ nsp (c1M

d/2+ c2 M−1+d/2) exp
(−M ) with c2= π/2+ 1 and c2= 1 in 2 spatial dimensions,
d= 2, and c1= 1 and c2=−3/10 in 3 spatial dimensions,
d= 3. To understand the impact of the differences between
the PDFs for fe(M̄k) and fG(M ), we have furthermore
computed the mean backscatter reflecitivity, as explained
above, both from Eq. (refrmean) and by convolving the
PDF∝ fG(M ) with the single speckle reflectivity parame-
trized by the gain value G (of an average-intensity speckle),

〈R〉 ≡ ∫
1

∞
min 1,Rnoise e

GM
{ }

M dfG(M), (23)

here with a noise level Rnoise= 10−5, and again with dfG≡
(dfG/dM)dM. Note that, for practical reasons, the integral is
truncated at the lower bound of the mean intensity of the
beam (M≡ 1) because (1), for not too high gain values,
speckles with lower intensities do not potentially contribute,
and because (2) the speckle maxima distributions, both fe and
fG, are usually poorly reliable for lower values, which is a
consequence of the fact that a low intensities (with respect
to the mean beam intensity), speckles can hardly be distin-
guished from each other. Let us remark that in the shown
example, the gain is entirely proportional to the average
(speckle) intensity. The gain can also be changed by varying
the speckle size (not the case in our simulations), which
would, however, for the same overall volume, change the
number of speckles. This has to be taken into account
when using Eq. (23).
In the past, the speckle maxima distributions due to work

by Rose and DuBois (1993) and Garnier (1999) have shown
to yield good agreement with numerical simulations (Hüller
et al., 1998). In what concerns the regime illustrated here, we
observe that for sufficiently high gain, say G≥ 2, the com-
parison of our and Garnier’s results do not show a particular
difference, while the difference is striking for relatively small
values 0.3<G< 2. In particular, our simulation result,
which yields an ensemble average reflectivity 〈R〉∼
0.0003, is well reproduced by our model computed with
Eq. (23). Note that for the shown case, with the number of
speckles of the order of ∼2000, the most intense speckles
will have intensities around eight times the mean intensity,
with statistical fluctuations around this value, as illustrated
in Figure 6. The variation of the average reflecitivity is
hence non-negligible, as indicated by an error bar for the
value of G= 1.1 in Figure 7b. Following Garnier’s PDF
using Eq. (23), equivalent to Eq. (23) for a continuous

Fig. 6. Backscatter reflectivity of Stimulated Brillouin Scattering, computed
from different realizations of a speckle pattern generated by a RPP. Each
point corresponds to a realization for which the reflecitivity is plotted as a
function of the peak intensity M1 in the respective speckle pattern. Simu-
lation parameters: average beam laser intensity 〈I〉= 2 1014 W/cm2 at the
wavelength λ= 1 μm, electron temperature Te= 1 keV, and density ne=
0.1nc, ion wave damping na/ωa= 0.1, velocity profile inhomogeneity
length L∇v= 150λ, optical f-number f#= 5 resulting in a specific speckle
volume of 2lz, RPP × 2l⊥, RPP≃ 175λ × 4.2λ (see Table 3 of Appendix B
for “modified flat top”), and plasma volume Lz × Lx⊥ = 500λ × 717λ,
equivalent to ln nsp≃ 6.2.
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expression fG(M ), the ensemble average reflectivities yield
values for 0.7<G< 2 that are almost by one order of mag-
nitude higher than those of the simulations, thus fairly out-
side the interval indicated by the error bar.
Just in the mentioned interval of gain, 0.5<G< 2, the

contribution of the (about) 10 most intense speckles to the
average reflectivity is of the order of 20% or higher, so that
the order statistics of intense speckles, have a strong
impact, see Figure 8. At high gain values, the main contri-
bution to the reflectivity is evidently dominated by the
numerous speckles in the “body” of the speckle distribution
function, usually well-described in previous work (Rose &
DuBois, 1993; Garnier, 1999). Differences in models de-
scribing the tail of the speckle distribution function should
not be too important in this high-gain regime. In the
moderate- and low-gain regime, G≤ 1, however, a good

description of the tail in the speckle maxima distribution is
necessary, provided that the gain in the most intense speck-
les, Gk=GM̄k with, say, 1≤ k< 20, is sufficiently high,
say G1∼ ln nspln (1/Rnoise).

4. DISCUSSION AND CONCLUSIONS

With the help of the theory of extrema, we have derived the
order statistics of intense laser speckles in a laser beam gen-
erated by RPP. The distribution function for each of the most
intense laser speckles, conditioned by the order k of occur-
ence in peak intensity Mk in speckle patterns, has been
derived from the joint probability distribution F(k)(M1,…,
Mk) over k(≥) speckle maxima. The theoretical result is in
very good agreement with numerical simulations over
numerous realisations of speckle patterns. To establish the
order statistics from these simulations, a selection procedure
has been applied that is based on the sub-division of the
simulation volume in sub-cells having the characteristic
size of individual speckles. In a further step, we have estab-
lished the histogram fe(M̄k) for the high-intensity tail of all
speckle maxima via the expectation value in intensity of
each order k derived from the marginal probability density,
dFk(Mk)/dMk, for each speckle maximum.

For the example of SBS from a speckle pattern in the
regime where the contribution from “independent” speckles
can be approximated by a sum, we have compared our
model with numerical simulations, revealing good agree-
ment. The comparison underlines as well that particular
importance to the precision of the description in the high-
intensity tail of the speckle distribution function has to be
given. The fact that our approach is accentuated to this
regime, it allows to compute, with higher precision than
available from previous work, the contribution from intense
speckles to critical nonlinear processes.

Fig. 7. (Color online) (a) Comparison between the speckle maxima probability distribution computed from Eq. (19) (solid line) and
Garnier’s results (dashed line) (Garnier, 1999). (b) Mean backscatter reflectivity computed from Eqs. (19) and (21) (solid line) and
from Garnier’s model (dashed line) with a single speckle reflectivity parametrized with Rsp (Mk)=min{1, Rnoise exp(G Mk)}. The isolated
points show the reflectivity corresponding to simulation results with the code Harmony. The multiple values displayed by points at G= 1.1
correspond to the range of values displayed in Figure 6 for several realisations with the same parameters.

Fig. 8. (Color online) Proportion of the sum of backscatter reflectivities
from the speckles up to theK-th order to the total reflectivity Rtot of all speck-
les, corresponding to the above-mentioned cases, for three different gain
values G= 1.1 (blue dots, intermediate), G= 2 (red dots, upper curve),
and G= 3 (green dots, lower curve).

Order statistics of intense laser hot spots 473

https://doi.org/10.1017/S0263034610000418 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034610000418


In experiments with relevance to laser fusion, the influ-
ence of high-intensity speckles is not at all desired. Therefore
laser beams are designed to contain as much as ∼105 speck-
les. It is furthermore evident that the experimental parameters
have been designed such that speckles that have peak inten-
sities of 2–5 times the mean intensity, should dominate es-
sentially most of the physics processes, as far as they can
be entirely controlled. On the other hand, experiments that
have been performed with a relatively “small” number of,
say ≪104, speckles in the plasma volume, may require a
more precise analysis of the speckle distribution, as provided
by our model, because the onset of potentially nonlinear
processes may be energetically important under such
circumstances. Furthermore, processsus with threshold-like
behavior for the onset of absolute instabilities, or of laser-
beam self-focusing, might be particularly sensitive to the dis-
tribution of speckles in the high-intensity tail (even though
saturation of such processes may limit their importance).
The theory developed here is based on the assumption of

an idealized speckle pattern generated by RPP beams. This
means that at least speckles with peak intensities higher
than the average intensity of the beam, 〈I〉, can all be charac-
terized by the same characteristic sizes along (ℓ∥) and across
(ℓ⊥) the laser propagation direction. For speckle patterns
generated by the superposition of optically smoothed laser
beams, these characteristic sizes can be described by a prob-
ability distribution, namely F(ℓ∥, ℓ⊥), where ℓ∥ can be either
independent of, or coupled to the value of ℓ⊥. The latter is the
case for RPP beams (with ℓ∥ ∝ k0ℓ2⊥).
Nonlinear response of processes like self-focusing in in-

tense speckles, as well as pump-depletion due to strong scat-
tering in speckles, can considerably change the image of the
speckle pattern inside the plasma. This is not taken into ac-
count in the present work. A calculation including the non-
linear modification of the speckle pattern in a plasma has
to be done for such purposes, which can hardly give a
universal response to the potentially arising mechanisms.
Numerical simulations can partially give an answer to this
problem. Starting from simulations, statitics of so-called
“plasma-induced smoothing” of laser beams have already
been investigated (Hüller, 2003) for the case of “dancing fi-
laments” (Schmitt & Afeyan, 1998).
To establish the order statistics of speckle patterns with

multiple characteristic lengths, or with a statistical distri-
bution of characteristics lengths, ℓ⊥ and ℓ∥, it is more appro-
priate to consider boxes of different sizes. Therefore, as
above, one has to proceed in the way that the focal volume,
containing the speckle pattern, is evaluated at n mesh
points, and is sub-divided in ns sub-cells. Each cell contains
the number of nk points, for which holds ∑k nk≤ n. We can
still consider that the maxima of the sub-cells are indepen-
dent, and being distributed following the Gumbel law with
the shift parameter θk, if (1) each sub-cell contains in the
limit of a very large number of points nk, say n→∞, and
if (2) the sub-cells are disjoint and sufficiently separated
for large values of n. Then θk is found from the limit law

of a sequences of “clustering” intensities (exponential law)
for the fraction of points observed in the k-th sub-cells.
The fact that the superposition of optically smoothed laser

beams gives rise to non-homogeneous speckle sizes (charac-
terized by a statistical distribution of them), may lead to a
modulation of the limit law for the most intense maxima.
This is subject of work in progress.
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APPENDIX A: CHOICE OF SPECKLE MAXIMA
IN SUB-CELLS

In order to find an adequate selection procedure for the
speckle maxima by sub-division in cells, various problems
have to be handled: (1) First of all, the characteristic size of
speckles has be chosen adequately, which can be done
with the help of the lengths listed in Appendix B, and the
specific speckle volume listed in Table 1. An inadequate
choice may increase the error in the order statistics with in-
creasing order of the maxima. (2) To locate the sub-cells in
the simulation volume, there are essentially two main choices
for uniform size cells: (i) the cells regularly are placed in ad-
jacent order starting from one corner of the simulation
volume, or (ii) all cells are placed around the cell containing,
in its center the principal maximum of the speckle pattern.
Once the volume is sub-divided in nsp sub-cells, it is straight-
forward to determine the principal maximum of each. The re-
sulting nsp values found can be ordered in decreasing order.
However, subsidiary of intense maxima that drop into a
neighboring cell, because of the vicinity of the principal
speckle peak to a cell border. Such subsidiary maxima that
may exists depending on the generating method (“flat-top”
or “Gaussian,” see Appendix B), are a consequence of the co-
herent structure inside speckles. They can be considered er-
roneously as the real peak maximum of the cell and hence
falsify the order statistics. Method (ii) avoids this error for
the case of the most intense speckle of the entire volume.
However, beyond this order, the confusion persists between
subsidiary maxima, that are correlated to the main speckle
peak, and the real peak value of another speckle. For this
reason, a second selection step is necessary: after having es-
tablished the order between the maxima, all of those ones are
eliminated, which are too close to an intenser maximum in a
neighboring cell. In practical terms, one can define a distance
that should not fall below a length of the order of ℓ⊥ and/or
ℓ∥ (see herefore Appendix B). It is preferable to eliminate
realisations that are subject to error.

Following the same arguments as in Leadbetter (1982,
1983), which we apply to random variables representing
speckle intensities, the location and the height of the speckle
peaks can be considered as being independent of each
other; furthermore, the distribution of the location is uniform,
so that we expect that method (i) and (ii) for the choice
of subcells give the same results (despite small errors due
to problems evoked in 2) provided that simulations are
based on a sufficiently high number of realizations and
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points in space. Nevertheless, for a reasonable choice of
simulations, it appears that numerical results for the cells ac-
cording to method (ii) are the best with respect to our model
results.

APPENDIX B: A GUIDE FOR MODELLING SINGLE
UND MULTIPLE LASER SPECKLES
IN 2D AND 3D

A Gaussian laser beam can be defined by its electric field ac-
cording to the paraxial solution in the space dimensions ξ
along and x⊥ across the propagation direction

E(x⊥, ξ) = fnD(ξ) exp
�x 2⊥

|W(ξ)|2 1− i2ξ/k0w
2

( ){ }
, (24)

with the width of the beam

|W(ξ)| =
�����������������
1+ (2ξ/k0w2)2

√
=

�������������
1+ (ξ/LR)2

√
,

at the distance ξ from the focus, involving the width at best
focus w and the definition of the Rayleigh length LR. In
2D, we have f2D(ξ)=W(ξ)−1/2 being a function decreasing
slowlier with the distance ξ= z− z0 in the focal point at z0
than in 3D (cylindrical) geometry, for which the decrease
f3D(ξ)=W(ξ)−1 to 2−1/2 occurs a the one Rayleigh length
ξ= LR. It is important to note that the integrals over the
square amplitudes differ decisively from 2D to 3D, namely
the integral does not converge in 2D, while the integral con-
verges rapidly in 3D geometry,

∫
L

−L|fnD(z)|2
dz

LR
=

arsinh
L

LR
→ ∞ for 2D,

arctan
L

LR
→ 2π for 3D ,

⎧⎪⎪⎨
⎪⎪⎩

for L→∞.
In the so-called “near field image,” which is principally

the Fourier transform of the field in the focal plane (usually
called “far field”), we can write the field as

E(k⊥, z) = Q(k⊥)e
i(c2k2⊥/2ω0)z/cg , (25)

where the function Q(k⊥) is also a (1) Gaussian Q(k⊥)∝
exp(−4 w2 k⊥

2 )] for the Gaussian field Eq. (24), and a so-
called, (2) “flat-top” for

Q(k⊥) =
const = 1 for |k⊥| ≤ q

0 otherwise,

{

For both cases, in 2D, the integrals over z in the square am-
plitude diverge. To remedy the problem of the missing con-
vergence of this integral in 2D, Rose (1997) has suggested a
beam called (3) “modified flat-top” by using a function
Q(k⊥) ≡ |k⊥/q| for |k⊥| ≤ q, and 0 elsewhere. This yields

the following shape around the focal point,

E(x⊥, 0) = 2q
sin qx
qx

− 1
2

sin qx/2
qx/2

( )2
( )

, (26)

which has a converging integral along z.
The cutoff value q of the “flat-top” beams in the transverse

wave vector determines the width∝q−1 in of the beam in the
focal plane. In 3D, the shape along the propagation axis (for
x⊥= 0) is given by

E(0, z) = q exp {iq2z/4k0}
sin q2z/4k0
q2z/2k0

.

being identical to the one of the cylindrical flat-top speckle,
for which the amplitude for z= 0 is given by

E(r, 0) = 2q
J1(qr)
qr

with r =
����
�x 2
⊥

√
.

For both types of beams, the modified flat-top in 2D and the
cylindrical flat-top in 3D, due to the identical behavior in z,
the integral ∫

L
−L |E(z, 0)|2dz converges for L→∞ to the

same value πq.
For the ordinary “flat-top” speckle, (2), in 2D (i.e., a single

transverse dimension), generated by Q(k⊥)= const in Eq.
(25), the shape of the field in the 2D space spanned by the
coordinates (x⊥, z) is hence, along each axes, given by

E(x⊥, 0) = 2q
sin qx
qx

,

and

E(0, z) = ��
π

√ 1+ i

2
q
erf (1+ i)

�������
q2z/k0

√
/2

[ ]
�������
q2z/k0

√ ,

being equivalent to the behaviour of a Fresnel integral as a
function of z. From these shapes, we henceforth deduce
characteristic lengths, indicating the measure of a typical
size of the beams, which eventually allows to determine
the specific speckle volume.
In Table 2 we indicate the correlation lengths with respect

to the transverse x⊥ and the longitudinal dimension z, for
which we use the following definitions L⊥ =∫

∞
0

|E(x, 0)/E(0, 0)|2dx and L∥ =∫
∞
0 |E(0, z)/E(0, 0)|2dz, used

in the tables below. Alternatively, by defining the widths
l⊥ (in x⊥ or r) and the lengths lz by the distance where the
speckle intensity assumes one half of the peak value, one ob-
tains the values (by using a= 2−1/2w) as listed in Tab. 2.

B.1 Case of the equivalent RPP beams

Equivalent to the above definitions one can determine the
corresponding beam features when a Random Phase Plate
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is introduced in the beam path before the focusing lens
(Rose & DuBois, 1993b)

E(�x⊥, z = 0, t) =
∑
�k⊥

|E(�k⊥, t)| exp {i�k⊥ · �x⊥ + ifk}(8) (27)

where fk jumps randomly between the values 0 and π in the
intervals in k⊥. One can evaluate the shape of individual
speckles in the focal plane without knowing the explicit
distribution of the fk-values, with the help of the
auto-correlation function defined as

CEE(�x⊥ − �x ′
⊥, z− z′) ≡ 〈E(�x⊥, z, t)E∗(�x ′

⊥, z
′)〉

=
∑
�k⊥

|E(�k⊥)|2ei�k⊥·(�x⊥−�x′⊥)−i�k
2
⊥(z−z′)/2k0 . (28)

For the particular case of the “modidied flat-top” with a RPP
one obtains, we can again use Eq. (25) but with a amplitude
function, now going with the square root of the perpendicular
wave vector, QRPP(k⊥)= | k⊥/q|

1/2 for |k⊥|< q which is

different from the coherent case, (3), discussed above. The
expression for the 2D standard flat top, the cylindrical flat
top and the Gaussian are immediate from the above definition
28 and are not explicited here.

We list in the following the typical lengths and widths of
speckles generated by a RPP corresponding to the generating
“near-field” configuration. The corresponding values for the
specific volume occupied by a speckle are listed in Table 1
found in the main text. The latter is of particular importance
to determine the number of potential speckles in a finite focal
volume.

To have equivalence between Gaussian and flat-top de-
scription, the following condition has to be satisfied (Rose
& DuBois, 1993) q= k0/2 f#= π/( f # λ0) yielding in 2D:
wRPP2D≃ 2.1(1.95)/q≃ 0.64f # λ0 between Gaussian and
flat-top (modified flat-top); in 3D: wRPP2D≃ 2.65/q≃
0.84f # λ0.

Table 2. Summary of typical longitudinal and transversal sizes of
a single speckle, generated by different methods in the near field

2D l⊥ L⊥ lz L∥ lz/l⊥

Gauss
����
ln 2

√
a

�����
π/2

√
a k0 a

2= LR ∞ k0l⊥/ln 2

flat-top
��
2

√
/q π/2q≃ 1.5/q 5.4k0/q

2 ∞ 2.7 k0 l⊥
mod flat-top 1.1/q 2π/3q≃ 2.1/q 5.6k0/q

2 2πk0/q
2 ≃4.5 k0 l⊥

3D
cyl Gauss

����
ln 2

√
a

�����
π/2

√
a ≃.64LR π LR/2 0.93 k0 l⊥

cyl flat top 1.6/q 16/3πq≃ 1.6/q 5.6k0/q
2 2πk0/q

2 ≃2.2 k0 l⊥

Table 3. Summary of typical longitudinal and transversal sizes of
speckles in a RPP pattern, generated by different methods in the
near field

2D l⊥, RPP lz,RPP

Gauss
����
ln 2

√
k0wRPP,2D

≃ 1.67/q ≃ .53f #λ0

k0w2
RPP,2D/2 ≃ 2k0/q2

≃ 2.5f 2#λ0
Flat top ≃1.5/q ≃.45 f# λ0 ≃5.5 k0/q

2 ≃3.5 f#
2λ0

mod Flat top ≃1.1/q≃ .35 f# λ0 ≃5.5 k0/q
2 ≃3.5 f#

2 λ0
3D
Gauss

����
ln 2

√
k0wRPP,3D

≃ 2.1/q ≃ 0.7f #λ0

0.64k0w2
RPP,3D/2 ≃ 2.2k0/q2

≃ 1.4f 2#λ0
Flat top 1.6/q ≃0.5 f# λ0 ≃5.6 k0/q

2 ≃3.6 f#
2 λ0
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