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Surgery on S̃L × En-Manifolds

J. A. Hillman and S. K. Roushon

Abstract. We show that closed eSL × En-manifolds are topologically rigid if n ≥ 2, and are rigid up to

s-cobordism, if n = 1.

The “Borel Conjecture” asserts that aspherical closed manifolds are topologically

rigid, i.e., are determined up to homeomorphism by their fundamental groups. Far-

rell and Jones have proven this for infrasolvmanifolds (of dimensions ≥ 4) [5] and

for smooth manifolds (of dimensions ≥ 5) with Riemannian metrics of nonpositive

curvature [4], while Nicas and Stark have shown it to hold for manifolds (of dimen-

sions ≥ 5) admitting an effective codimension-2 toral action of hyperbolic type [8].

The work of Farrell and Jones was used in [10] to establish topological rigidity for

M × Dk for all orientable closed irreducible 3-manifolds M with β1(M) > 0 and

all k ≥ 3. In our main result (Theorem 4) we shall adapt the approach of [10] to

show that manifolds with finite covering spaces admitting such toral actions are also

topologically rigid. (These are the natural higher dimensional analogues of geomet-

ric Seifert fibred spaces.) In particular, all closed S̃L × En-manifolds with n ≥ 2

are topologically rigid, although such manifolds do not admit metrics of nonpositive

curvature [2], and may not admit codimension-2 toral actions. (See Corollary A.)

The most immediate applications of our work are to low dimensions. In Corol-

lary B we complete the characterization of aspherical geometric 4-manifolds up to

s-cobordism, in terms of fundamental group and Euler characteristic. (This was es-

tablished for all other 4-dimensional geometries of aspherical type in Theorem 9.11

of [6].) In passing we also show (in Theorem 2) that noncompact complete S̃L-

manifolds of finite volume are homeomorphic to complete H2 × E1-manifolds of

finite volume. (This was stated without proof in [11].)

If G is a group let G ′, ζG and
√

G denote the commutator subgroup, centre and

Hirsch–Plotkin radical of G, respectively. (In the cases considered below
√

G is al-

ways abelian, and thus is the unique maximal abelian normal subgroup.) If H is a

subgroup of G let CG(H) denote the centralizer of H in G. (Thus ζG = CG(G).) Let

E(n) = Isom(En) = Rn
⋊ O(n).

The following lemma is based on Lemma 9.5 of [6]. We give it here for the conve-

nience of the reader.

Lemma 1 Let π be a finitely generated group with normal subgroups A ≤ N such

that A is free abelian of rank r, [π : N] < ∞ and N ∼
= A × N/A. Then there is a

homomorphism f : π → E(r) with image a discrete cocompact subgroup and such that

f |A is injective.
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Proof Let G = π/N and M = Nab ∼
= A ⊕ (N/AN ′). Then M is a finitely generated

Z[G]-module and the image of A in M is a Z[G]-submodule. Extending coefficients

to the rationals Q gives a natural inclusion QA ≤ QM, since A is a direct summand

of M (as an abelian group), and QA is a Q[G]-submodule of QM. Since G is finite

Q[G] is semisimple, and so QA is a Q[G]-direct summand of QM. Let K be the ker-

nel of the homomorphism from M to QA determined by a splitting homomorphism

from QM to QA, and let K̃ be the preimage of K in π. Then K is a Z[G]-submodule

of M and M/K ∼
= Zr, since it is finitely generated and torsion free of rank r. More-

over K̃ is a normal subgroup of π and A ∩ K̃ = 1. Hence H = π/K̃ is an extension

of G by M/K and A maps injectively onto a subgroup of finite index in H. Let T

be the maximal finite normal subgroup of H. Then H/T is isomorphic to a discrete

cocompact subgroup of E(r), and the projection of π onto H/T is clearly injective

on A.

Theorem 2 Let M be a 3-manifold which is Seifert fibred over a complete open H2-

orbifold B of finite area. Then M is homeomorphic to a complete open H2×E1-manifold.

Proof Let π = π1(M) and let A ∼
= Z be the image in π of the fundamental group

of the general fibre. Let p : π → π/A ∼
= πorb

1 (B) be the epimorphism given by

the Seifert fibration, and let ψ : πorb
1 (B) → Isom(H2) be a monomorphism onto a

discrete subgroup of finite coarea which determines the hyperbolic structure of B.

Since B is complete and has finite area πorb
1 (B) is finitely generated and since B is

open πorb
1 (B) has a free normal subgroup F of finite index. Then π is finitely gener-

ated. Let N = p−1(F) ∩Cπ(A). Then A < N and N ∼
= A × (N/A), since A is central

in N and N/A is free. Hence there is a homomorphism f : π → E(1) which is injec-

tive on A, by the lemma. Let θ = (ψp, f ) : π → Isom(H2 × E1). Then θ is injective,

and θ(π) is a discrete subgroup of finite covolume. Since θ(π) is torsion free it acts

freely and so P = H2×R/θ(π) is a complete open H2×E1-manifold of finite volume.

Projection from H2 × R onto the first factor induces a Seifert fibration of P over B,

and since π1(P) ∼= π = π1(M) it follows that M and P are homeomorphic.

In particular, if M is a compact 3-manifold with a nontrivial JSJ decomposition

then every geometric piece of type S̃L also admits the geometry H2 × E1. (This is

part of Theorem 4.7.10 of [11]. However no proof is given there.) A more geometric

proof of Theorem 2 is given in [7].

A similar argument shows that if M is an open (m + 2)-manifold which is the total

space of an orbifold bundle with base a complete open hyperbolic 2-orbifold B of fi-

nite area, general fibre a flat m-manifold F and monodromy group a finite subgroup

of Out
(
π1(F)

)
then there is an H2 × Em-manifold M1 which is an orbifold bundle

with base B and general fibre F and a homotopy equivalence f : M → M1 which

preserves the conjugacy classes of the subgroups corresponding to the cusps. Since

the cusps are flat (m + 1)-manifolds we may assume that f is a homeomorphism off

a compact set, and a relative version of the Farrell–Jones curvature argument then

shows that f is homotopic to a homeomorphism, if m ≥ 3. Is there a direct, ele-

mentary argument to show that M and M1 must be fibrewise diffeomorphic (for any

m ≥ 1)?
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If an (m + 2)-manifold M admits an effective action of the m-torus Tm
= Rm/Zm

the image in π1(M) of the fundamental group of the principal orbit is central and the

orbit space Q is a 2-orbifold [1]. In [8] it is shown that if M is an aspherical (m + 2)-

manifold with an effective Tm action of hyperbolic type the higher Whitehead groups

Whi

(
π1(M)

)
are trivial for all i ≥ 0 and |STOP(M×Dk, ∂)| = 1, whenever m+k ≥ 4

(or m + k ≥ 3, if ∂M = ∅). Their argument for the Whitehead groups extends

immediately to the following situation.

Lemma 3 Let π be a torsion-free group with a virtually poly-Z normal subgroup N

such that π/N ∼
= πorb

1 (B), where B is a compact 2-orbifold. Then Wh(π) = 0.

Proof If B is a closed E2-orbifold then π is virtually poly-Z and the result is proven in

[3]. If B is a closed H2-orbifold the argument of [8] using hyperelementary induction

applies with little change. If π/N is virtually free it is the fundamental group of a

graph of groups with all vertex groups finite or 2-ended and all edge groups finite, and

so π is the fundamental group of a graph of groups with all vertex groups torsion free

and virtually poly-Z. Thus the result follows from [3] and the Waldhausen Mayer–

Vietoris sequence [12]. (Note that c.d.π < ∞ since π is torsion free, c.d.N < ∞ and

v.c.d.π/N ≤ 2 in all cases.)

The argument of [8] determining the surgery structure sets for (m + 2)-manifolds

admitting an effective Tm action of hyperbolic type appears to use the hypothesis of a

toral action in an essential way, to establish an induction on m. We shall rely instead

on the curvature argument of [4].

Theorem 4 Let M be the total space of an orbifold bundle p : M → Q with base Q

a closed H2-orbifold and general fibre a flat m-manifold F of dimension ≥ 3, and such

that A =

√
π1(F) ∼

= Zm is centralized by a subgroup of finite index in π = π1(M).

If f : M1 → M is a homotopy equivalence with M1 a closed m-manifold then f is

homotopic to a homeomorphism.

Proof Suppose first that there is an epimorphism q : πorb
1 (Q) → Z. Let Q̂ and M̂

be the induced covering spaces and p̂ : M̂ → Q̂ be the corresponding fiber bundle

projection. Then Q̂ is noncompact, and is the increasing union Q̂ =

⋃
k≥1 Qk of

compact suborbifolds with nontrivial boundary. We may assume that for each k ≥
0 the boundary of Qk does not contain any corner points, Gk = πorb

1 (Qk) is not

virtually abelian, and Gk maps injectively to G = πorb
1 (Q̂). Let DQk be the closed

orbifold obtained by doubling Qk along its boundary. Since πorb
1 (DQk) is not virtually

abelian there is a monomorphism ψ : πorb
1 (DQk) → Isom(H2) with image a discrete,

cocompact subgroup. (See [13, p. 248].)

Let Mk = p̂−1(Qk). Then Mk is a compact bounded m-manifold and p̂ : Mk → Qk

is an orbifold fibration with general fibre F. Doubling Mk gives a closed m-manifold

DMk with an orbifold fibration over DQk, and π(k) = π1(DMk) is an extension

of πorb
1 (DQk) by π1(F). As πorb

1 (Qk) acts on A through a finite subgroup the cen-

tralizer of A in π(k) again has finite index. Let N be a characteristic subgroup of

finite index in π(k) which centralizes A and such that N/A is a PD+
2 -group, and let

e ∈ H2(N/A; A) be the cohomology class of the extension 0 → A → N → N/A → 1.

The reflection which interchanges the copies of Mk leaves the boundary pointwise
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fixed, and projects to the corresponding reflection of DQk. Thus it induces an auto-

morphism of N which is the identity on A and reverses the orientation of N/A. It

follows that e = −e and so the extension splits: N ∼
= A × N/A. Therefore there is a

homomorphism f : π(k) → E(m) which is injective on A, by Lemma 1. The homo-

morphism (ψk p|π(k), f ) : π(k) → Isom(H2 ×Em) has finite kernel, and so is injective,

since π is torsion free. The quotient Pk = H2 × Rm/π(k) is closed and nonpositively

curved, and is Seifert fibred over DQk. Moreover DMk ≃ Pk since each is aspherical,

and so Mk is a homotopy retract of Pk.

Now the structure set of Pk is trivial, by the Topological Rigidity theorem of Far-

rell and Jones [4]. Since Mk is a homotopy retract of Pk, the structure set of Mk is

also trivial. Equivalently, the assembly maps H j(Mk; Lw
o ) → L j

(
π1(Mk), w

)
are iso-

morphisms for j large, where w = w1(M). (Note that no decorations are needed on

the surgery obstruction groups as Wh(π) = 0, by Lemma 3.) Since homology and

L-theory commute with direct limits we conclude that H j(M̂; Lw
o ) → L j

(
π1(M̂), w

)

is an isomorphism for j large. Using the Wang sequence for homology, naturality

of the assembly maps and Ranicki’s algebraic version of Cappell’s Mayer–Vietoris se-

quence for square root closed HNN extensions it follows that the same is true for M.

(See [10] for more details.)

If β1

(
πorb

1 (Q)
)

= 0 we may use hyperelementary induction, as in [8], to reduce

to the case already treated.

A similar curvature argument could be used to show that Wh(π) = 0, for π =

π1(M) as in the theorem.

Corollary (A) Let M be a closed S̃L×En-manifold, where n ≥ 2, and let f : M1 → M

be a homotopy equivalence, with M1 a closed (n + 3)-manifold. Then f is homotopic to

a homeomorphism.

Proof The composite of projection from the model space S̃L×Rn onto the first factor

with the fibration of S̃L over H2 induces an orbifold bundle fibration p : M → Q,

with base Q a closed H2-orbifold and general fibre F a flat (n + 1)-manifold. In

Theorem 9.3 of [6] it is shown that when n = 1 the fundamental group of a closed

S̃L × En-manifold has a subgroup of finite index which is a direct product, and the

argument extends immediately to the general case. It follows that
√

π1(F) ∼
= Zn+1 is

centralized by a subgroup of finite index in π, and so we may apply the theorem.

We may adapt this result to obtain a somewhat weaker result for the case n = 1 by

taking products with S1.

Corollary (B) Let N be a closed S̃L × E1-manifold, and let N1 be a closed 4-manifold

with π1(N1) ∼= π = π1(N) and χ(N1) = χ(N). Then N1 is s-cobordant to N.

Proof The manifold N1 is aspherical, by Corollary 3.5.1 of [6], and so there is a

homotopy equivalence g : N1 → N. Let M = N × S1, M1 = N1 × S1, and f =

g× idS1 . Then M is a S̃L×E2-manifold. Hence f is homotopic to a homeomorphism

h : M1
∼
= M, by the theorem. Since h ∼ g × idS1 it lifts to a homeomorphism

N1 × R ∼
= N × R. The submanifold of N × R bounded by N × {0} and a disjoint
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copy of N1 is an h-cobordism. It is in fact an s-cobordism, since Wh
(
π1(N)

)
= 0,

by Lemma 3.

This result complements Theorem 9.11 of [6], where a similar result is proven for

all 4-manifolds admitting a nonpositively curved geometry.

Is there a corresponding result for manifolds with a proper geometric decompo-

sition? The argument for Theorem 3.3 of [9] extends readily to show that if M is

a n-manifold with a finite collection of disjoint flat hypersurfaces S such that the

components of M − ∪S all have complete finite volume geometries of type Hn or

Hn−1 × E1, and if there is at least one piece of type Hn then M admits a Riemannian

metric of nonpositive sectional curvature (see [2]). Such manifolds are topologically

rigid if n ≥ 5, by [4], and we again deduce rigidity up to s-cobordism when n = 4, as

in the above corollary.
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